1
|
Okafor A, Adam Y, Brors B, Adebiyi E. Transcriptome analysis reveals a de novo DNA element that may interact with chromatin-associated proteins in Plasmodium berghei during erythrocytic development. Sci Rep 2025; 15:18621. [PMID: 40436967 PMCID: PMC12120095 DOI: 10.1038/s41598-025-03586-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 05/21/2025] [Indexed: 06/01/2025] Open
Abstract
The life cycle of Plasmodium parasites involves intricate, multistage processes that are tightly regulated by stage-specific transcription factors. These factors bind to regulatory regions within gene promoters, enabling the precise expression of genes required for each developmental stage. Despite the importance of these transcriptional mechanisms, our understanding remains limited, particularly in the rodent model organism P. berghei. To address this, we conducted a genome-wide analysis of RNA-Seq data from different developmental stages of P. berghei by initially integrating data from human malaria parasites P. falciparum and P. vivax. We identified unique transcriptional signatures across Plasmodium species. Our analysis of P. berghei revealed stage-specific gene sets clustered by expression profiles and predicted regulatory motifs involved in their control. We interpreted these motifs using known binding sites for eukaryotic transcription factors including ApiAP2 proteins. Additionally, we expanded the annotation of the AGGTAA motif which resembles a de novo motif linked to erythrocytic development in P. falciparum, and identified its potential interacting proteins including members of the PfMORC and GCN5 complexes. This study enhances our understanding of gene regulation in P. berghei and provides new insights into the transcriptional dynamics underlying Plasmodium development.
Collapse
Affiliation(s)
- Adaobi Okafor
- Applied Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Im Neuenheimer Feld 234, 69120, Heidelberg, Germany
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, 112233, Ogun State, Nigeria
| | - Yagoub Adam
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, 112233, Ogun State, Nigeria
| | - Benedikt Brors
- Applied Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Im Neuenheimer Feld 234, 69120, Heidelberg, Germany
| | - Ezekiel Adebiyi
- Applied Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, 112233, Ogun State, Nigeria.
- African Center of Excellence in Bioinformatics & Data Intensive Science, Makerere University, 10218, Kampala, Uganda.
- Institute of Infectious Diseases (IDI), Makerere University, 10218, Kampala, Uganda.
| |
Collapse
|
2
|
Thiele PJ, Mela-Lopez R, Blandin SA, Klug D. Let it glow: genetically encoded fluorescent reporters in Plasmodium. Malar J 2024; 23:114. [PMID: 38643106 PMCID: PMC11032601 DOI: 10.1186/s12936-024-04936-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/06/2024] [Indexed: 04/22/2024] Open
Abstract
The use of fluorescent proteins (FPs) in Plasmodium parasites has been key to understand the biology of this obligate intracellular protozoon. FPs like the green fluorescent protein (GFP) enabled to explore protein localization, promoter activity as well as dynamic processes like protein export and endocytosis. Furthermore, FP biosensors have provided detailed information on physiological parameters at the subcellular level, and fluorescent reporter lines greatly extended the malariology toolbox. Still, in order to achieve optimal results, it is crucial to know exactly the properties of the FP of choice and the genetic scenario in which it will be used. This review highlights advantages and disadvantages of available landing sites and promoters that have been successfully applied for the ectopic expression of FPs in Plasmodium berghei and Plasmodium falciparum. Furthermore, the properties of newly developed FPs beyond DsRed and EGFP, in the visualization of cells and cellular structures as well as in the sensing of small molecules are discussed.
Collapse
Affiliation(s)
- Pia J Thiele
- Inserm, CNRS, Université de Strasbourg, UPR9022/U1257, Mosquito Immune Responses (MIR), IBMC, F-67000, Strasbourg, France
| | - Raquel Mela-Lopez
- Inserm, CNRS, Université de Strasbourg, UPR9022/U1257, Mosquito Immune Responses (MIR), IBMC, F-67000, Strasbourg, France
| | - Stéphanie A Blandin
- Inserm, CNRS, Université de Strasbourg, UPR9022/U1257, Mosquito Immune Responses (MIR), IBMC, F-67000, Strasbourg, France
| | - Dennis Klug
- Inserm, CNRS, Université de Strasbourg, UPR9022/U1257, Mosquito Immune Responses (MIR), IBMC, F-67000, Strasbourg, France.
- Institute of Physiology and Pathophysiology, Department of Molecular Cell Physiology, Philipps University Marburg, 35037, Marburg, Germany.
| |
Collapse
|
3
|
Ouologuem DT, Dara A, Kone A, Ouattara A, Djimde AA. Plasmodium falciparum Development from Gametocyte to Oocyst: Insight from Functional Studies. Microorganisms 2023; 11:1966. [PMID: 37630530 PMCID: PMC10460021 DOI: 10.3390/microorganisms11081966] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/06/2023] [Accepted: 07/14/2023] [Indexed: 08/27/2023] Open
Abstract
Malaria elimination may never succeed without the implementation of transmission-blocking strategies. The transmission of Plasmodium spp. parasites from the human host to the mosquito vector depends on circulating gametocytes in the peripheral blood of the vertebrate host. Once ingested by the mosquito during blood meals, these sexual forms undergo a series of radical morphological and metabolic changes to survive and progress from the gut to the salivary glands, where they will be waiting to be injected into the vertebrate host. The design of effective transmission-blocking strategies requires a thorough understanding of all the mechanisms that drive the development of gametocytes, gametes, sexual reproduction, and subsequent differentiation within the mosquito. The drastic changes in Plasmodium falciparum shape and function throughout its life cycle rely on the tight regulation of stage-specific gene expression. This review outlines the mechanisms involved in Plasmodium falciparum sexual stage development in both the human and mosquito vector, and zygote to oocyst differentiation. Functional studies unravel mechanisms employed by P. falciparum to orchestrate the expression of stage-specific functional products required to succeed in its complex life cycle, thus providing us with potential targets for developing new therapeutics. These mechanisms are based on studies conducted with various Plasmodium species, including predominantly P. falciparum and the rodent malaria parasites P. berghei. However, the great potential of epigenetics, genomics, transcriptomics, proteomics, and functional genetic studies to improve the understanding of malaria as a disease remains partly untapped because of limitations in studies using human malaria parasites and field isolates.
Collapse
Affiliation(s)
- Dinkorma T. Ouologuem
- Malaria Research and Training Center, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques, and Technologies of Bamako, Bamako 1805, Mali
| | - Antoine Dara
- Malaria Research and Training Center, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques, and Technologies of Bamako, Bamako 1805, Mali
| | - Aminatou Kone
- Malaria Research and Training Center, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques, and Technologies of Bamako, Bamako 1805, Mali
| | - Amed Ouattara
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Abdoulaye A. Djimde
- Malaria Research and Training Center, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques, and Technologies of Bamako, Bamako 1805, Mali
| |
Collapse
|
4
|
Hentzschel F, Mitesser V, Fraschka SAK, Krzikalla D, Carrillo EH, Berkhout B, Bártfai R, Mueller AK, Grimm D. Gene knockdown in malaria parasites via non-canonical RNAi. Nucleic Acids Res 2020; 48:e2. [PMID: 31680162 PMCID: PMC7145648 DOI: 10.1093/nar/gkz927] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 10/01/2019] [Accepted: 10/07/2019] [Indexed: 12/13/2022] Open
Abstract
The lack of endogenous RNAi machinery in the malaria parasite Plasmodium hampers gene annotation and hence antimalarial drug and vaccine development. Here, we engineered rodent Plasmodium berghei to express a minimal, non-canonical RNAi machinery that solely requires Argonaute 2 (Ago2) and a modified short hairpin RNA, so-called AgoshRNA. Using this strategy, we achieved robust and specific gene knockdown throughout the entire parasite life cycle. We also successfully silenced the endogenous gene perforin-like protein 2, phenocopying a full gene knockout. Transcriptionally restricting Ago2 expression to the liver stage further enabled us to perform a stage-specific gene knockout. The RNAi-competent Plasmodium lines reported here will be a valuable resource for loss-of-function phenotyping of the many uncharacterized genes of Plasmodium in low or high throughput, without the need to engineer the target gene locus. Thereby, our new strategy and transgenic Plasmodium lines will ultimately benefit the discovery of urgently needed antimalarial drug and vaccine candidates. Generally, the ability to render RNAi-negative organisms RNAi-competent by mere introduction of two components, Ago2 and AgoshRNA, is a unique paradigm that should find broad applicability in other species.
Collapse
Affiliation(s)
- Franziska Hentzschel
- Heidelberg University Hospital, Center for Infectious Diseases / Parasitology, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany.,Heidelberg University Hospital, Center for Infectious Diseases / Virology, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany.,BioQuant Center, Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| | - Vera Mitesser
- Heidelberg University Hospital, Center for Infectious Diseases / Parasitology, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany.,Heidelberg University Hospital, Center for Infectious Diseases / Virology, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany.,BioQuant Center, Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| | | | - Daria Krzikalla
- Heidelberg University Hospital, Center for Infectious Diseases / Parasitology, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany.,Heidelberg University Hospital, Center for Infectious Diseases / Virology, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany.,BioQuant Center, Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| | - Elena Herrera Carrillo
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology, Meibergdreef 15, K3-110, 1105 AZ Amsterdam, The Netherlands
| | - Ben Berkhout
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology, Meibergdreef 15, K3-110, 1105 AZ Amsterdam, The Netherlands
| | - Richárd Bártfai
- Radboud University, Dept. of Molecular Biology, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Ann-Kristin Mueller
- Heidelberg University Hospital, Center for Infectious Diseases / Parasitology, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany.,German Center for Infection Research (DZIF), partner site Heidelberg
| | - Dirk Grimm
- Heidelberg University Hospital, Center for Infectious Diseases / Virology, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany.,BioQuant Center, Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany.,German Center for Infection Research (DZIF), partner site Heidelberg.,German Center for Cardiovascular Research (DZHK), partner site Heidelberg
| |
Collapse
|
5
|
Caldelari R, Dogga S, Schmid MW, Franke-Fayard B, Janse CJ, Soldati-Favre D, Heussler V. Transcriptome analysis of Plasmodium berghei during exo-erythrocytic development. Malar J 2019; 18:330. [PMID: 31551073 PMCID: PMC6760107 DOI: 10.1186/s12936-019-2968-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/17/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The complex life cycle of malaria parasites requires well-orchestrated stage specific gene expression. In the vertebrate host the parasites grow and multiply by schizogony in two different environments: within erythrocytes and within hepatocytes. Whereas erythrocytic parasites are well-studied in this respect, relatively little is known about the exo-erythrocytic stages. METHODS In an attempt to fill this gap, genome wide RNA-seq analyses of various exo-erythrocytic stages of Plasmodium berghei including sporozoites, samples from a time-course of liver stage development and detached cells were performed. These latter contain infectious merozoites and represent the final step in exo-erythrocytic development. RESULTS The analysis represents the complete transcriptome of the entire life cycle of P. berghei parasites with temporal detailed analysis of the liver stage allowing comparison of gene expression across the progression of the life cycle. These RNA-seq data from different developmental stages were used to cluster genes with similar expression profiles, in order to infer their functions. A comparison with published data from other parasite stages confirmed stage-specific gene expression and revealed numerous genes that are expressed differentially in blood and exo-erythrocytic stages. One of the most exo-erythrocytic stage-specific genes was PBANKA_1003900, which has previously been annotated as a "gametocyte specific protein". The promoter of this gene drove high GFP expression in exo-erythrocytic stages, confirming its expression profile seen by RNA-seq. CONCLUSIONS The comparative analysis of the genome wide mRNA expression profiles of erythrocytic and different exo-erythrocytic stages could be used to improve the understanding of gene regulation in Plasmodium parasites and can be used to model exo-erythrocytic stage metabolic networks toward the identification of differences in metabolic processes during schizogony in erythrocytes and hepatocytes.
Collapse
Affiliation(s)
- Reto Caldelari
- Institute of Cell Biology, University of Bern, Bern, Switzerland.
| | - Sunil Dogga
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva CMU, Geneva, Switzerland
| | | | - Blandine Franke-Fayard
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Chris J Janse
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva CMU, Geneva, Switzerland
| | - Volker Heussler
- Institute of Cell Biology, University of Bern, Bern, Switzerland.
| |
Collapse
|
6
|
ApiAP2 Transcription Factors in Apicomplexan Parasites. Pathogens 2019; 8:pathogens8020047. [PMID: 30959972 PMCID: PMC6631176 DOI: 10.3390/pathogens8020047] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 12/26/2022] Open
Abstract
Apicomplexan parasites are protozoan organisms that are characterised by complex life cycles and they include medically important species, such as the malaria parasite Plasmodium and the causative agents of toxoplasmosis (Toxoplasma gondii) and cryptosporidiosis (Cryptosporidium spp.). Apicomplexan parasites can infect one or more hosts, in which they differentiate into several morphologically and metabolically distinct life cycle stages. These developmental transitions rely on changes in gene expression. In the last few years, the important roles of different members of the ApiAP2 transcription factor family in regulating life cycle transitions and other aspects of parasite biology have become apparent. Here, we review recent progress in our understanding of the different members of the ApiAP2 transcription factor family in apicomplexan parasites.
Collapse
|
7
|
Obiero JM, Campo JJ, Scholzen A, Randall A, Bijker EM, Roestenberg M, Hermsen CC, Teng A, Jain A, Davies DH, Sauerwein RW, Felgner PL. Antibody Biomarkers Associated with Sterile Protection Induced by Controlled Human Malaria Infection under Chloroquine Prophylaxis. mSphere 2019; 4:e00027-19. [PMID: 30787114 PMCID: PMC6382972 DOI: 10.1128/mspheredirect.00027-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 01/21/2019] [Indexed: 12/25/2022] Open
Abstract
Immunization with sporozoites under chloroquine chemoprophylaxis (CPS) induces distinctly preerythrocytic and long-lasting sterile protection against homologous controlled human malaria infection (CHMI). To identify possible humoral immune correlates of protection, plasma samples were collected from 38 CPS-immunized Dutch volunteers for analysis using a whole Plasmodium falciparum proteome microarray with 7,455 full-length or segmented protein features displaying about 91% of the total P. falciparum proteome. We identified 548 reactive antigens representing 483 unique proteins. Using the breadth of antibody responses for each subject in a mixture-model algorithm, we observed a trimodal pattern, with distinct groups of 16 low responders, 19 medium responders, and 3 high responders. Fifteen out of 16 low responders, 12 of the 19 medium responders, and 3 out of 3 high responders were fully protected from a challenge infection. In the medium-responder group, we identified six novel antigens associated with protection (area under the curve [AUC] value of ≥0.75; P < 0.05) and six other antigens that were specifically increased in nonprotected volunteers (AUC value of ≤0.25; P < 0.05). When used in combination, the multiantigen classifier predicts CPS-induced protective efficacy with 83% sensitivity and 88% specificity. The antibody response patterns characterized in this study represent surrogate markers that may provide rational guidance for clinical vaccine development.IMPORTANCE Infection by Plasmodium parasites has been a major cause of mortality and morbidity in humans for thousands of years. Despite the considerable reduction of deaths, according to the WHO, over 5 billion people are still at risk, with about 216 million worldwide cases occurring in 2016. More compelling, 15 countries in sub-Saharan Africa bore 80% of the worldwide malaria burden. Complete eradication has been challenging, and the development of an affordable and effective vaccine will go a long way in achieving elimination. However, identifying vaccine candidate targets has been difficult. In the present study, we use a highly effective immunization protocol that confers long-lasting sterile immunity in combination with a whole P. falciparum proteome microarray to identify antibody responses associated with protection. This study characterizes a novel antibody profile associated with sterile protective immunity and trimodal humoral responses that sheds light on the possible mechanism of CPS-induced immunity against P. falciparum parasites.
Collapse
Affiliation(s)
- Joshua M Obiero
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California, Irvine, Irvine, California, USA
| | | | - Anja Scholzen
- Radboud University Medical Center, Department of Medical Microbiology, Nijmegen, The Netherlands
| | - Arlo Randall
- Antigen Discovery, Inc., Irvine, California, USA
| | - Else M Bijker
- Radboud University Medical Center, Department of Medical Microbiology, Nijmegen, The Netherlands
| | - Meta Roestenberg
- Radboud University Medical Center, Department of Medical Microbiology, Nijmegen, The Netherlands
| | - Cornelus C Hermsen
- Radboud University Medical Center, Department of Medical Microbiology, Nijmegen, The Netherlands
| | - Andy Teng
- Antigen Discovery, Inc., Irvine, California, USA
| | - Aarti Jain
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California, Irvine, Irvine, California, USA
| | - D Huw Davies
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California, Irvine, Irvine, California, USA
| | - Robert W Sauerwein
- Radboud University Medical Center, Department of Medical Microbiology, Nijmegen, The Netherlands
| | - Philip L Felgner
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California, Irvine, Irvine, California, USA
| |
Collapse
|
8
|
Klug D, Kehrer J, Frischknecht F, Singer M. A synthetic promoter for multi-stage expression to probe complementary functions of Plasmodium adhesins. J Cell Sci 2018; 131:jcs.210971. [PMID: 30237220 DOI: 10.1242/jcs.210971] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 09/10/2018] [Indexed: 11/20/2022] Open
Abstract
Gene expression of malaria parasites is mediated by the apicomplexan Apetala2 (ApiAP2) transcription factor family. Different ApiAP2s control gene expression at distinct stages in the complex life cycle of the parasite, ensuring timely expression of stage-specific genes. ApiAP2s recognize short cis-regulatory elements that are enriched in the upstream/promoter region of their target genes. This should, in principle, allow the generation of 'synthetic' promoters that drive gene expression at desired stages of the Plasmodium life cycle. Here we test this concept by combining cis-regulatory elements of two genes expressed successively within the mosquito part of the life cycle. Our tailored 'synthetic' promoters, named Spooki 1.0 and Spooki 2.0, activate gene expression in early and late mosquito stages, as shown by the expression of a fluorescent reporter. We used these promoters to address the specific functionality of two related adhesins that are exclusively expressed either during the early or late mosquito stage. By modifying the expression profile of both adhesins in absence of their counterpart we were able to test for complementary functions in gliding and invasion. We discuss the possible advantages and drawbacks of our approach.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Dennis Klug
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Jessica Kehrer
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Mirko Singer
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| |
Collapse
|
9
|
Agop-Nersesian C, De Niz M, Niklaus L, Prado M, Eickel N, Heussler VT. Shedding of host autophagic proteins from the parasitophorous vacuolar membrane of Plasmodium berghei. Sci Rep 2017; 7:2191. [PMID: 28526861 PMCID: PMC5438358 DOI: 10.1038/s41598-017-02156-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/05/2017] [Indexed: 01/05/2023] Open
Abstract
The hepatic stage of the malaria parasite Plasmodium is accompanied by an autophagy-mediated host response directly targeting the parasitophorous vacuolar membrane (PVM) harbouring the parasite. Removal of the PVM-associated autophagic proteins such as ubiquitin, p62, and LC3 correlates with parasite survival. Yet, it is unclear how Plasmodium avoids the deleterious effects of selective autophagy. Here we show that parasites trap host autophagic factors in the tubovesicular network (TVN), an expansion of the PVM into the host cytoplasm. In proliferating parasites, PVM-associated LC3 becomes immediately redirected into the TVN, where it accumulates distally from the parasite’s replicative centre. Finally, the host factors are shed as vesicles into the host cytoplasm. This strategy may enable the parasite to balance the benefits of the enhanced host catabolic activity with the risk of being eliminated by the cell’s cytosolic immune defence.
Collapse
Affiliation(s)
- Carolina Agop-Nersesian
- Institute of Cell Biology, University of Bern, 3012, Bern, Switzerland. .,Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, MA, 02118, USA.
| | - Mariana De Niz
- Institute of Cell Biology, University of Bern, 3012, Bern, Switzerland.,Wellcome Centre for Molecular Parasitology, University of Glasgow, G12 8QQ, Glasgow, UK
| | - Livia Niklaus
- Institute of Cell Biology, University of Bern, 3012, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012, Bern, Switzerland
| | - Monica Prado
- Bernhard Nocht Institute of Tropical Medicine, 20359, Hamburg, Germany.,Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José, Costa Rica, USA
| | - Nina Eickel
- Institute of Cell Biology, University of Bern, 3012, Bern, Switzerland.,CSL Behring, Bern, Switzerland
| | - Volker T Heussler
- Institute of Cell Biology, University of Bern, 3012, Bern, Switzerland.
| |
Collapse
|
10
|
The s48/45 six-cysteine proteins: mediators of interaction throughout the Plasmodium life cycle. Int J Parasitol 2016; 47:409-423. [PMID: 27899328 DOI: 10.1016/j.ijpara.2016.10.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/01/2016] [Accepted: 10/05/2016] [Indexed: 01/05/2023]
Abstract
During their life cycle Plasmodium parasites rely upon an arsenal of proteins that establish key interactions with the host and vector, and between the parasite sexual stages, with the purpose of ensuring infection, reproduction and proliferation. Among these is a group of secreted or membrane-anchored proteins known as the six-cysteine (6-cys) family. This is a small but important family with only 14 members thus far identified, each stage-specifically expressed during the parasite life cycle. 6-cys proteins often localise at the parasite surface or interface with the host and vector, and are conserved in different Plasmodium species. The unifying feature of the family is the s48/45 domain, presumably involved in adhesion and structurally related to Ephrins, the ligands of Eph receptors. The most prominent s48/45 members are currently under functional investigation and are being pursued as vaccine candidates. In this review, we examine what is known about the 6-cys family, their structure and function, and discuss future research directions.
Collapse
|
11
|
Singer M, Frischknecht F. Time for Genome Editing: Next-Generation Attenuated Malaria Parasites. Trends Parasitol 2016; 33:202-213. [PMID: 27793562 DOI: 10.1016/j.pt.2016.09.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/20/2016] [Accepted: 09/26/2016] [Indexed: 12/20/2022]
Abstract
Immunization with malaria parasites that developmentally arrest in or immediately after the liver stage is the only way currently known to confer sterilizing immunity in both humans and rodent models. There are various ways to attenuate parasite development resulting in different timings of arrest, which has a significant impact on vaccination efficiency. To understand what most impacts vaccination efficiency, newly developed gain-of-function methods can now be used to generate a wide array of differently attenuated parasites. The combination of multiple attenuation approaches offers the potential to engineer efficiently attenuated Plasmodium parasites and learn about their fascinating biology at the same time. Here we discuss recent studies and the potential of targeted parasite manipulation using genome editing to develop live attenuated malaria vaccines.
Collapse
Affiliation(s)
- Mirko Singer
- Integrative Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany.
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany.
| |
Collapse
|
12
|
Kaiser G, De Niz M, Zuber B, Burda PC, Kornmann B, Heussler VT, Stanway RR. High resolution microscopy reveals an unusual architecture of the Plasmodium berghei endoplasmic reticulum. Mol Microbiol 2016; 102:775-791. [PMID: 27566438 DOI: 10.1111/mmi.13490] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2016] [Indexed: 02/04/2023]
Abstract
To fuel the tremendously fast replication of Plasmodium liver stage parasites, the endoplasmic reticulum (ER) must play a critical role as a major site of protein and lipid biosynthesis. In this study, we analysed the parasite's ER morphology and function. Previous studies exploring the parasite ER have mainly focused on the blood stage. Visualizing the Plasmodium berghei ER during liver stage development, we found that the ER forms an interconnected network throughout the parasite with perinuclear and peripheral localizations. Surprisingly, we observed that the ER additionally generates huge accumulations. Using stimulated emission depletion microscopy and serial block-face scanning electron microscopy, we defined ER accumulations as intricate dense networks of ER tubules. We provide evidence that these accumulations are functional subdivisions of the parasite ER, presumably generated in response to elevated demands of the parasite, potentially consistent with ER stress. Compared to higher eukaryotes, Plasmodium parasites have a fundamentally reduced unfolded protein response machinery for reacting to ER stress. Accordingly, parasite development is greatly impaired when ER stress is applied. As parasites appear to be more sensitive to ER stress than are host cells, induction of ER stress could potentially be used for interference with parasite development.
Collapse
Affiliation(s)
- Gesine Kaiser
- Institute of Cell Biology, University of Bern, Baltzerstr. 4, 3012 Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Baltzerstrasse 2, 3012, Bern, Switzerland
| | - Mariana De Niz
- Institute of Cell Biology, University of Bern, Baltzerstr. 4, 3012 Bern, Switzerland.,Wellcome Trust Center for Molecular Parasitology, G12 8TA, Glasgow, UK
| | - Benoît Zuber
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012, Bern, Switzerland
| | - Paul-Christian Burda
- Institute of Cell Biology, University of Bern, Baltzerstr. 4, 3012 Bern, Switzerland
| | - Benoît Kornmann
- Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, 8093, Zürich, Switzerland
| | - Volker T Heussler
- Institute of Cell Biology, University of Bern, Baltzerstr. 4, 3012 Bern, Switzerland
| | - Rebecca R Stanway
- Institute of Cell Biology, University of Bern, Baltzerstr. 4, 3012 Bern, Switzerland
| |
Collapse
|
13
|
Protective efficacy and safety of liver stage attenuated malaria parasites. Sci Rep 2016; 6:26824. [PMID: 27241521 PMCID: PMC4886212 DOI: 10.1038/srep26824] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 05/09/2016] [Indexed: 12/15/2022] Open
Abstract
During the clinically silent liver stage of a Plasmodium infection the parasite replicates from a single sporozoite into thousands of merozoites. Infection of humans and rodents with large numbers of sporozoites that arrest their development within the liver can cause sterile protection from subsequent infections. Disruption of genes essential for liver stage development of rodent malaria parasites has yielded a number of attenuated parasite strains. A key question to this end is how increased attenuation relates to vaccine efficacy. Here, we generated rodent malaria parasite lines that arrest during liver stage development and probed the impact of multiple gene deletions on attenuation and protective efficacy. In contrast to P. berghei strain ANKA LISP2(-) or uis3(-) single knockout parasites, which occasionally caused breakthrough infections, the double mutant lacking both genes was completely attenuated even when high numbers of sporozoites were administered. However, different vaccination protocols showed that LISP2(-) parasites protected better than uis3(-) and double mutants. Hence, deletion of several genes can yield increased safety but might come at the cost of protective efficacy.
Collapse
|
14
|
De Niz M, Stanway RR, Wacker R, Keller D, Heussler VT. An ultrasensitive NanoLuc-based luminescence system for monitoring Plasmodium berghei throughout its life cycle. Malar J 2016; 15:232. [PMID: 27102897 PMCID: PMC4840902 DOI: 10.1186/s12936-016-1291-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 04/13/2016] [Indexed: 01/08/2023] Open
Abstract
Background Bioluminescence imaging is widely used for cell-based assays and animal imaging studies, both in biomedical research and drug development. Its main advantages include its high-throughput applicability, affordability, high sensitivity, operational simplicity, and quantitative outputs. In malaria research, bioluminescence has been used for drug discovery in vivo and in vitro, exploring host-pathogen interactions, and studying multiple aspects of Plasmodium biology. While the number of fluorescent proteins available for imaging has undergone a great expansion over the last two decades, enabling simultaneous visualization of multiple molecular and cellular events, expansion of available luciferases has lagged behind. The most widely used bioluminescent probe in malaria research is the Photinus pyralis firefly luciferase, followed by the more recently introduced Click-beetle and Renilla luciferases. Ultra-sensitive imaging of Plasmodium at low parasite densities has not been previously achieved. With the purpose of overcoming these challenges, a Plasmodium berghei line expressing the novel ultra-bright luciferase enzyme NanoLuc, called PbNLuc has been generated, and is presented in this work. Results NanoLuc shows at least 150 times brighter signal than firefly luciferase in vitro, allowing single parasite detection in mosquito, liver, and sexual and asexual blood stages. As a proof-of-concept, the PbNLuc parasites were used to image parasite development in the mosquito, liver and blood stages of infection, and to specifically explore parasite liver stage egress, and pre-patency period in vivo. Conclusions PbNLuc is a suitable parasite line for sensitive imaging of the entire Plasmodium life cycle. Its sensitivity makes it a promising line to be used as a reference for drug candidate testing, as well as the characterization of mutant parasites to explore the function of parasite proteins, host-parasite interactions, and the better understanding of Plasmodium biology. Since the substrate requirements of NanoLuc are different from those of firefly luciferase, dual bioluminescence imaging for the simultaneous characterization of two lines, or two separate biological processes, is possible, as demonstrated in this work.
Collapse
Affiliation(s)
- Mariana De Niz
- Institute of Cell Biology, University of Bern, 3012, Bern, Switzerland.
| | - Rebecca R Stanway
- Institute of Cell Biology, University of Bern, 3012, Bern, Switzerland
| | - Rahel Wacker
- Institute of Cell Biology, University of Bern, 3012, Bern, Switzerland
| | - Derya Keller
- Institute of Cell Biology, University of Bern, 3012, Bern, Switzerland
| | - Volker T Heussler
- Institute of Cell Biology, University of Bern, 3012, Bern, Switzerland
| |
Collapse
|
15
|
Kumar H, Frischknecht F, Mair GR, Gomes J. In silico identification of genetically attenuated vaccine candidate genes for Plasmodium liver stage. INFECTION GENETICS AND EVOLUTION 2015; 36:72-81. [PMID: 26348884 DOI: 10.1016/j.meegid.2015.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/28/2015] [Accepted: 09/02/2015] [Indexed: 12/28/2022]
Abstract
Genetically attenuated parasites (GAPs) that lack genes essential for the liver stage of the malaria parasite, and therefore cause developmental arrest, have been developed as live vaccines in rodent malaria models and recently been tested in humans. The genes targeted for deletion were often identified by trial and error. Here we present a systematic gene - protein and transcript - expression analyses of several Plasmodium species with the aim to identify candidate genes for the generation of novel GAPs. With a lack of liver stage expression data for human malaria parasites, we used data available for liver stage development of Plasmodium yoelii, a rodent malaria model, to identify proteins expressed in the liver stage but absent from blood stage parasites. An orthology-based search was then employed to identify orthologous proteins in the human malaria parasite Plasmodium falciparum resulting in a total of 310 genes expressed in the liver stage but lacking evidence of protein expression in blood stage parasites. Among these 310 possible GAP candidates, we further studied Plasmodium liver stage proteins by phyletic distribution and functional domain analyses and shortlisted twenty GAP-candidates; these are: fabB/F, fabI, arp, 3 genes encoding subunits of the PDH complex, dnaJ, urm1, rS5, ancp, mcp, arh, gk, lisp2, valS, palm, and four conserved Plasmodium proteins of unknown function. Parasites lacking one or several of these genes might yield new attenuated malaria parasites for experimental vaccination studies.
Collapse
Affiliation(s)
- Hirdesh Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi 110016, India.; Integrative Parasitology, Department of Infectious Diseases, University of Heidelberg Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Department of Infectious Diseases, University of Heidelberg Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Gunnar R Mair
- Integrative Parasitology, Department of Infectious Diseases, University of Heidelberg Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - James Gomes
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi 110016, India..
| |
Collapse
|
16
|
Siciliano G, Alano P. Enlightening the malaria parasite life cycle: bioluminescent Plasmodium in fundamental and applied research. Front Microbiol 2015; 6:391. [PMID: 26029172 PMCID: PMC4426725 DOI: 10.3389/fmicb.2015.00391] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/16/2015] [Indexed: 12/31/2022] Open
Abstract
The unicellular protozoan parasites of the genus Plasmodium impose on human health worldwide the enormous burden of malaria. The possibility to genetically modify several species of malaria parasites represented a major advance in the possibility to elucidate their biology and is now turning laboratory lines of transgenic Plasmodium into precious weapons to fight malaria. Amongst the various genetically modified plasmodia, transgenic parasite lines expressing bioluminescent reporters have been essential to unveil mechanisms of parasite gene expression and to develop in vivo imaging approaches in mouse malaria models. Mainly the human malaria parasite Plasmodium falciparum and the rodent parasite P. berghei have been engineered to express bioluminescent reporters in almost all the developmental stages of the parasite along its complex life cycle between the insect and the vertebrate hosts. Plasmodium lines expressing conventional and improved luciferase reporters are now gaining a central role to develop cell based assays in the much needed search of new antimalarial drugs and to open innovative approaches for both fundamental and applied research in malaria.
Collapse
Affiliation(s)
| | - Pietro Alano
- Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate, Istituto Superiore di SanitàRome, Italy
| |
Collapse
|
17
|
De Niz M, Helm S, Horstmann S, Annoura T, del Portillo HA, Khan SM, Heussler VT. In vivo and in vitro characterization of a Plasmodium liver stage-specific promoter. PLoS One 2015; 10:e0123473. [PMID: 25874388 PMCID: PMC4398466 DOI: 10.1371/journal.pone.0123473] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 03/03/2015] [Indexed: 12/28/2022] Open
Abstract
Little is known about stage-specific gene regulation in Plasmodium parasites, in particular the liver stage of development. We have previously described in the Plasmodium berghei rodent model, a liver stage-specific (lisp2) gene promoter region, in vitro. Using a dual luminescence system, we now confirm the stage specificity of this promoter region also in vivo. Furthermore, by substitution and deletion analyses we have extended our in vitro characterization of important elements within the promoter region. Importantly, the dual luminescence system allows analyzing promoter constructs avoiding mouse-consuming cloning procedures of transgenic parasites. This makes extensive mutation and deletion studies a reasonable approach also in the malaria mouse model. Stage-specific expression constructs and parasite lines are extremely valuable tools for research on Plasmodium liver stage biology. Such reporter lines offer a promising opportunity for assessment of liver stage drugs, characterization of genetically attenuated parasites and liver stage-specific vaccines both in vivo and in vitro, and may be key for the generation of inducible systems.
Collapse
Affiliation(s)
- Mariana De Niz
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- * E-mail:
| | - Susanne Helm
- Molecular Parasitology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Sebastian Horstmann
- Molecular Parasitology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Takeshi Annoura
- Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
- Department of Parasitology, National Institute of Infectious Diseases (NIID), Tokyo, Japan
| | - Hernando A. del Portillo
- Barcelona Centre for International Health Research (CRESIB), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Shahid M. Khan
- Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
18
|
Burda PC, Roelli MA, Schaffner M, Khan SM, Janse CJ, Heussler VT. A Plasmodium phospholipase is involved in disruption of the liver stage parasitophorous vacuole membrane. PLoS Pathog 2015; 11:e1004760. [PMID: 25786000 PMCID: PMC4364735 DOI: 10.1371/journal.ppat.1004760] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 02/22/2015] [Indexed: 11/18/2022] Open
Abstract
The coordinated exit of intracellular pathogens from host cells is a process critical to the success and spread of an infection. While phospholipases have been shown to play important roles in bacteria host cell egress and virulence, their role in the release of intracellular eukaryotic parasites is largely unknown. We examined a malaria parasite protein with phospholipase activity and found it to be involved in hepatocyte egress. In hepatocytes, Plasmodium parasites are surrounded by a parasitophorous vacuole membrane (PVM), which must be disrupted before parasites are released into the blood. However, on a molecular basis, little is known about how the PVM is ruptured. We show that Plasmodium berghei phospholipase, PbPL, localizes to the PVM in infected hepatocytes. We provide evidence that parasites lacking PbPL undergo completely normal liver stage development until merozoites are produced but have a defect in egress from host hepatocytes. To investigate this further, we established a live-cell imaging-based assay, which enabled us to study the temporal dynamics of PVM rupture on a quantitative basis. Using this assay we could show that PbPL-deficient parasites exhibit impaired PVM rupture, resulting in delayed parasite egress. A wild-type phenotype could be re-established by gene complementation, demonstrating the specificity of the PbPL deletion phenotype. In conclusion, we have identified for the first time a Plasmodium phospholipase that is important for PVM rupture and in turn for parasite exit from the infected hepatocyte and therefore established a key role of a parasite phospholipase in egress. Leaving their host cell is a crucial process for intracellular pathogens, allowing successful infection of other cells and thereby spreading of infection. Plasmodium parasites infect hepatocytes and red blood cells, and inside these cells they are contained within a vacuole like many other intracellular pathogens. Before parasites can infect other cells, the surrounding parasitophorous vacuole membrane (PVM) needs to be ruptured. However, little is known about this process on a molecular level and Plasmodium proteins mediating lysis of the PVM during parasite egress have not so far been identified. In this study, we characterize a Plasmodium phospholipase and show that it localizes to the PVM of parasites within hepatocytes. We demonstrate that parasites lacking this protein have a defect in rupture of the PVM and thereby in host cell egress. In conclusion, our study shows for the first time that a phospholipase plays a role in PVM disruption of an intracellular eukaryotic parasite.
Collapse
Affiliation(s)
- Paul-Christian Burda
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- Graduate School of Cellular Biology, University of Bern, Bern, Switzerland
- * E-mail:
| | | | - Marco Schaffner
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Shahid M. Khan
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Chris J. Janse
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
19
|
Cevenini L, Camarda G, Michelini E, Siciliano G, Calabretta MM, Bona R, Kumar TRS, Cara A, Branchini BR, Fidock DA, Roda A, Alano P. Multicolor bioluminescence boosts malaria research: quantitative dual-color assay and single-cell imaging in Plasmodium falciparum parasites. Anal Chem 2014; 86:8814-21. [PMID: 25102353 PMCID: PMC4151787 DOI: 10.1021/ac502098w] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
New
reliable and cost-effective antimalarial drug screening assays
are urgently needed to identify drugs acting on different stages of
the parasite Plasmodium falciparum,
and particularly those responsible for human-to-mosquito transmission,
that is, the P. falciparum gametocytes.
Low Z′ factors, narrow dynamic ranges, and/or
extended assay times are commonly reported in current gametocyte assays
measuring gametocyte-expressed fluorescent or luciferase reporters,
endogenous ATP levels, activity of gametocyte enzymes, or redox-dependent
dye fluorescence. We hereby report on a dual-luciferase gametocyte
assay with immature and mature P. falciparum gametocyte stages expressing red and green-emitting luciferases
from Pyrophorus plagiophthalamus under
the control of the parasite sexual stage-specific pfs16 gene promoter. The assay was validated with reference antimalarial
drugs and allowed to quantitatively and simultaneously measure stage-specific
drug effects on parasites at different developmental stages. The optimized
assay, requiring only 48 h incubation with drugs and using a cost-effective
luminogenic substrate, significantly reduces assay cost and time in
comparison to state-of-the-art analogous assays. The assay had a Z′ factor of 0.71 ± 0.03, and it is suitable
for implementation in 96- and 384-well microplate formats. Moreover,
the use of a nonlysing d-luciferin substrate significantly
improved the reliability of the assay and allowed one to perform,
for the first time, P. falciparum bioluminescence
imaging at single-cell level.
Collapse
Affiliation(s)
- Luca Cevenini
- INBB, Istituto Nazionale di Biostrutture e Biosistemi , 00136 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Annoura T, van Schaijk BCL, Ploemen IHJ, Sajid M, Lin JW, Vos MW, Dinmohamed AG, Inaoka DK, Rijpma SR, van Gemert GJ, Chevalley-Maurel S, Kiełbasa SM, Scheltinga F, Franke-Fayard B, Klop O, Hermsen CC, Kita K, Gego A, Franetich JF, Mazier D, Hoffman SL, Janse CJ, Sauerwein RW, Khan SM. Two Plasmodium 6-Cys family-related proteins have distinct and critical roles in liver-stage development. FASEB J 2014; 28:2158-70. [PMID: 24509910 DOI: 10.1096/fj.13-241570] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The 10 Plasmodium 6-Cys proteins have critical roles throughout parasite development and are targets for antimalaria vaccination strategies. We analyzed the conserved 6-cysteine domain of this family and show that only the last 4 positionally conserved cysteine residues are diagnostic for this domain and identified 4 additional "6-Cys family-related" proteins. Two of these, sequestrin and B9, are critical to Plasmodium liver-stage development. RT-PCR and immunofluorescence assays show that B9 is translationally repressed in sporozoites and is expressed after hepatocyte invasion where it localizes to the parasite plasma membrane. Mutants lacking B9 expression in the rodent malaria parasites P. berghei and P. yoelii and the human parasite P. falciparum developmentally arrest in hepatocytes. P. berghei mutants arrest in the livers of BALB/c (100%) and C57BL6 mice (>99.9%), and in cultures of Huh7 human-hepatoma cell line. Similarly, P. falciparum mutants while fully infectious to primary human hepatocytes abort development 3 d after infection. This growth arrest is associated with a compromised parasitophorous vacuole membrane a phenotype similar to, but distinct from, mutants lacking the 6-Cys sporozoite proteins P52 and P36. Our results show that 6-Cys proteins have critical but distinct roles in establishment and maintenance of a parasitophorous vacuole and subsequent liver-stage development.
Collapse
Affiliation(s)
- Takeshi Annoura
- 3Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Claser C, Malleret B, Peng K, Bakocevic N, Gun SY, Russell B, Ng LG, Rénia L. Rodent Plasmodium-infected red blood cells: Imaging their fates and interactions within their hosts. Parasitol Int 2014; 63:187-94. [DOI: 10.1016/j.parint.2013.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 06/30/2013] [Accepted: 07/15/2013] [Indexed: 10/26/2022]
|
22
|
Vial H, Taramelli D, Boulton IC, Ward SA, Doerig C, Chibale K. CRIMALDDI: platform technologies and novel anti-malarial drug targets. Malar J 2013; 12:396. [PMID: 24498961 PMCID: PMC3827883 DOI: 10.1186/1475-2875-12-396] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 10/22/2013] [Indexed: 12/24/2022] Open
Abstract
The Coordination, Rationalization, and Integration of antiMALarial drug Discovery & Development Initiatives (CRIMALDDI) Consortium, funded by the EU Framework Seven Programme, has attempted, through a series of interactive and facilitated workshops, to develop priorities for research to expedite the discovery of new anti-malarials. This paper outlines the recommendations for the development of enabling technologies and the identification of novel targets.Screening systems must be robust, validated, reproducible, and represent human malaria. They also need to be cost-effective. While such systems exist to screen for activity against blood stage Plasmodium falciparum, they are lacking for other Plasmodium spp. and other stages of the parasite's life cycle. Priority needs to be given to developing high-throughput screens that can identify activity against the liver and sexual stages. This in turn requires other enabling technologies to be developed to allow the study of these stages and to allow for the culture of liver cells and the parasite at all stages of its life cycle.As these enabling technologies become available, they will allow novel drug targets to be studied. Currently anti-malarials are mostly targeting the asexual blood stage of the parasite's life cycle. There are many other attractive targets that need to be investigated. The liver stages and the sexual stages will become more important as malaria control moves towards malaria elimination. Sexual development is a process offering multiple targets, even though the mechanisms of differentiation are still not fully understood. However, designing a drug whose effect is not curative but would be used in asymptomatic patients is difficult given current safety thresholds. Compounds active against the liver schizont would have a prophylactic effect and Plasmodium vivax elimination requires effectors against the dormant liver hypnozoites. It may be that drugs to be used in elimination campaigns will also need to have utility in the control phase. Compounds with activity against blood stages need to be screened for activity against other stages.Natural products should also be a valuable source of new compounds. They often occupy non-Lipinski chemical space and so may reveal valuable new chemotypes.
Collapse
Affiliation(s)
| | | | | | - Steve A Ward
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK.
| | | | | |
Collapse
|
23
|
Frevert U, Nacer A, Cabrera M, Movila A, Leberl M. Imaging Plasmodium immunobiology in the liver, brain, and lung. Parasitol Int 2013; 63:171-86. [PMID: 24076429 DOI: 10.1016/j.parint.2013.09.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 08/28/2013] [Accepted: 09/18/2013] [Indexed: 01/10/2023]
Abstract
Plasmodium falciparum malaria is responsible for the deaths of over half a million African children annually. Until a decade ago, dynamic analysis of the malaria parasite was limited to in vitro systems with the typical limitations associated with 2D monocultures or entirely artificial surfaces. Due to extremely low parasite densities, the liver was considered a black box in terms of Plasmodium sporozoite invasion, liver stage development, and merozoite release into the blood. Further, nothing was known about the behavior of blood stage parasites in organs such as the brain where clinical signs manifest and the ensuing immune response of the host that may ultimately result in a fatal outcome. The advent of fluorescent parasites, advances in imaging technology, and availability of an ever-increasing number of cellular and molecular probes have helped illuminate many steps along the pathogenetic cascade of this deadly tropical parasite.
Collapse
Affiliation(s)
- Ute Frevert
- Division of Medical Parasitology, Department of Microbiology, New York University School of Medicine, 341 E 25 Street, New York, NY 10010, USA.
| | | | | | | | | |
Collapse
|
24
|
Nagel A, Prado M, Heitmann A, Tartz S, Jacobs T, Deschermeier C, Helm S, Stanway R, Heussler V. A new approach to generate a safe double-attenuated Plasmodium liver stage vaccine. Int J Parasitol 2013; 43:503-14. [DOI: 10.1016/j.ijpara.2013.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 01/11/2013] [Accepted: 01/14/2013] [Indexed: 10/27/2022]
|
25
|
Wierk JK, Langbehn A, Kamper M, Richter S, Burda PC, Heussler VT, Deschermeier C. Plasmodium berghei MAPK1 displays differential and dynamic subcellular localizations during liver stage development. PLoS One 2013; 8:e59755. [PMID: 23544094 PMCID: PMC3609774 DOI: 10.1371/journal.pone.0059755] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 02/18/2013] [Indexed: 11/18/2022] Open
Abstract
Mitogen-activated protein kinases (MAPKs) regulate key signaling events in eukaryotic cells. In the genomes of protozoan Plasmodium parasites, the causative agents of malaria, two genes encoding kinases with significant homology to other eukaryotic MAPKs have been identified (mapk1, mapk2). In this work, we show that both genes are transcribed during Plasmodium berghei liver stage development, and analyze expression and subcellular localization of the PbMAPK1 protein in liver stage parasites. Live cell imaging of transgenic parasites expressing GFP-tagged PbMAPK1 revealed a nuclear localization of PbMAPK1 in the early schizont stage mediated by nuclear localization signals in the C-terminal domain. In contrast, a distinct localization of PbMAPK1 in comma/ring-shaped structures in proximity to the parasite's nuclei and the invaginating parasite membrane was observed during the cytomere stage of parasite development as well as in immature blood stage schizonts. The PbMAPK1 localization was found to be independent of integrity of a motif putatively involved in ATP binding, integrity of the putative activation motif and the presence of a predicted coiled-coil domain in the C-terminal domain. Although PbMAPK1 knock out parasites showed normal liver stage development, the kinase may still fulfill a dual function in both schizogony and merogony of liver stage parasites regulated by its dynamic and stage-dependent subcellular localization.
Collapse
Affiliation(s)
- Jannika Katharina Wierk
- Department of Molecular Parasitology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Annette Langbehn
- Department of Molecular Parasitology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Maria Kamper
- Department of Molecular Parasitology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Stefanie Richter
- Department of Molecular Parasitology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | | | - Christina Deschermeier
- Department of Molecular Parasitology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
26
|
Eickel N, Kaiser G, Prado M, Burda PC, Roelli M, Stanway RR, Heussler VT. Features of autophagic cell death in Plasmodium liver-stage parasites. Autophagy 2013; 9:568-80. [PMID: 23388496 DOI: 10.4161/auto.23689] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Analyzing molecular determinants of Plasmodium parasite cell death is a promising approach for exploring new avenues in the fight against malaria. Three major forms of cell death (apoptosis, necrosis and autophagic cell death) have been described in multicellular organisms but which cell death processes exist in protozoa is still a matter of debate. Here we suggest that all three types of cell death occur in Plasmodium liver-stage parasites. Whereas typical molecular markers for apoptosis and necrosis have not been found in the genome of Plasmodium parasites, we identified genes coding for putative autophagy-marker proteins and thus concentrated on autophagic cell death. We characterized the Plasmodium berghei homolog of the prominent autophagy marker protein Atg8/LC3 and found that it localized to the apicoplast. A relocalization of PbAtg8 to autophagosome-like vesicles or vacuoles that appear in dying parasites was not, however, observed. This strongly suggests that the function of this protein in liver-stage parasites is restricted to apicoplast biology.
Collapse
Affiliation(s)
- Nina Eickel
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | | | | | | | | | | | | |
Collapse
|
27
|
Orito Y, Ishino T, Iwanaga S, Kaneko I, Kato T, Menard R, Chinzei Y, Yuda M. Liver-specific protein 2: a Plasmodium protein exported to the hepatocyte cytoplasm and required for merozoite formation. Mol Microbiol 2012; 87:66-79. [PMID: 23216750 DOI: 10.1111/mmi.12083] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2012] [Indexed: 12/16/2022]
Abstract
The liver stage is the first stage of the malaria parasite that replicates in the vertebrate host. However, little is known about the interplay between the parasite liver stage and its host cell, the hepatocyte. In this study, we identified an exported protein that has a critical role in parasite development in host hepatocytes. Expressed sequence tag analysis of Plasmodium berghei liver-stage parasites indicated that transcripts encoding a protein with an N-terminal signal peptide, designated liver-specific protein 2 (LISP2), are highly expressed in this stage. Expression of LISP2 was first observed 24 h after infection and rapidly increased during the liver-stage schizogony. Immunofluorescent staining with anti-LSP2 antibodies showed that LISP2 was carried to the parasitophorous vacuole and subsequently transported to the cytoplasm and nucleus of host hepatocytes. Gene targeting experiments demonstrated that majority of the LISP2-mutant liver-stage parasites arrested their development during formation of merozoites. These results indicate that exported LISP2 is involved in parasite-host interactions required for the development of liver-stage parasites inside hepatocytes. This study demonstrated that mid-to-late liver-stage malarial parasites have a system for exporting proteins to the host cell as intraerythrocytic stages do and presumably to use the proteins to modify the host cell and improve the environment.
Collapse
Affiliation(s)
- Yuki Orito
- Department of Medical Zoology, Mie University School of Medicine, Mie, Tsu 514-0001, Japan
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Analysis of liver stage development in and merozoite release from hepatocytes. Methods Mol Biol 2012; 923:411-27. [PMID: 22990795 DOI: 10.1007/978-1-62703-026-7_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Exoerythrocytic Plasmodium parasites infect hepatocytes and develop to huge multinucleated schizonts inside a parasitophorous vacuole. Finally, thousands of merozoites are formed and released into the host cell cytoplasm by complete disintegration of the parasitophorous vacuole membrane. This, in turn, results in death and detachment of the infected hepatocyte, followed by the formation of merosomes. The fast growth of the parasite and host cell detachment are hallmarks of liver stage development and can easily be monitored. Here, we describe how to translate these observations into assays for characterizing parasite development. Additionally, other recently introduced techniques and tools to analyze and manipulate liver stage parasites are also discussed.
Collapse
|
29
|
Deschermeier C, Hecht LS, Bach F, Rützel K, Stanway RR, Nagel A, Seeber F, Heussler VT. Mitochondrial lipoic acid scavenging is essential for Plasmodium berghei liver stage development. Cell Microbiol 2012; 14:416-30. [PMID: 22128915 DOI: 10.1111/j.1462-5822.2011.01729.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Lipoic acid is an essential cofactor for enzymes that participate in key metabolic pathways in most organisms. While in mammalian cells lipoylated proteins reside exclusively in the mitochondria, apicomplexan parasites of the genus Plasmodium harbour two independent lipoylation pathways in the mitochondrion and the apicoplast, a second organelle of endosymbiotic origin. Protein lipoylation in the apicoplast relies on de novo lipoic acid synthesis while lipoylation of proteins in the mitochondrion depends on scavenging of lipoic acid from the host cell. Here, we analyse the impact of lipoic acid scavenging on the development of Plasmodium berghei liver stage parasites. Treatment of P. berghei-infected HepG2 cells with the lipoic acid analogue 8-bromo-octanoic acid (8-BOA) abolished lipoylation of mitochondrial enzyme complexes in the parasite while lipoylation of apicoplast proteins was not affected. Parasite growth as well as the ability of the parasites to successfully complete liver stage development by merosome formation were severely impaired but not completely blocked by 8-BOA. Liver stage parasites were most sensitive to 8-BOA treatment during schizogony, the phase of development when the parasite grows and undergoes extensive nuclear division to form a multinucleated syncytium. Live cell imaging as well as immunofluorescence analysis and electronmicroscopy studies revealed a close association of both host cell and parasite mitochondria with the parasitophorous vacuole membrane suggesting that host cell mitochondria might be involved in lipoic acid uptake by the parasite from the host cell.
Collapse
Affiliation(s)
- Christina Deschermeier
- Bernhard Nocht Institute for Tropical Medicine, Department of Molecular Parasitology, Malaria Laboratory I, Hamburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Graewe S, Rankin KE, Lehmann C, Deschermeier C, Hecht L, Froehlke U, Stanway RR, Heussler V. Hostile takeover by Plasmodium: reorganization of parasite and host cell membranes during liver stage egress. PLoS Pathog 2011; 7:e1002224. [PMID: 21909271 PMCID: PMC3164640 DOI: 10.1371/journal.ppat.1002224] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 07/05/2011] [Indexed: 11/27/2022] Open
Abstract
The protozoan parasite Plasmodium is transmitted by female Anopheles mosquitoes and undergoes obligatory development within a parasitophorous vacuole in hepatocytes before it is released into the bloodstream. The transition to the blood stage was previously shown to involve the packaging of exoerythrocytic merozoites into membrane-surrounded vesicles, called merosomes, which are delivered directly into liver sinusoids. However, it was unclear whether the membrane of these merosomes was derived from the parasite membrane, the parasitophorous vacuole membrane or the host cell membrane. This knowledge is required to determine how phagocytes will be directed against merosomes. Here, we fluorescently label the candidate membranes and use live cell imaging to show that the merosome membrane derives from the host cell membrane. We also demonstrate that proteins in the host cell membrane are lost during merozoite liberation from the parasitophorous vacuole. Immediately after the breakdown of the parasitophorous vacuole membrane, the host cell mitochondria begin to degenerate and protein biosynthesis arrests. The intact host cell plasma membrane surrounding merosomes allows Plasmodium to mask itself from the host immune system and bypass the numerous Kupffer cells on its way into the bloodstream. This represents an effective strategy for evading host defenses before establishing a blood stage infection. Malaria is one of the most important infectious diseases in the developing world. It is caused by Plasmodium parasites, which are transmitted by female Anopheles mosquitoes during blood feeding. In the mammalian host, Plasmodium first develops within liver cells, growing from one parasite into many thousands. After this extensive replication, the parasites are released into the blood stream in vesicles termed merosomes that are surrounded by membrane. However, the origin of this membrane was unclear due to the absence of typical host cell membrane markers. Here, we analyzed several parasite- and host cell-derived membranes and show that the merosome membrane is of host cell origin. We also demonstrate that characteristic markers are lost from the host cell membrane once the parasite is liberated from its enclosure within the cell and moves freely in the host cell. The disappearance of membrane markers seems to be a consequence of the host cell death that is triggered toward the end of parasite development in the liver cell. The simultaneous induction of host cell death and retention of an intact host cell membrane enables the Plasmodium parasite to hide from the host immune system and thus to escape elimination before establishing a blood stage infection.
Collapse
Affiliation(s)
- Stefanie Graewe
- Malaria Lab I, Department of Molecular Parasitology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Stanway RR, Mueller N, Zobiak B, Graewe S, Froehlke U, Zessin PJM, Aepfelbacher M, Heussler VT. Organelle segregation into Plasmodium liver stage merozoites. Cell Microbiol 2011; 13:1768-82. [PMID: 21801293 DOI: 10.1111/j.1462-5822.2011.01657.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The liver stage of the Plasmodium parasite remains one of the most promising targets for intervention against malaria as it is clinically silent, precedes the symptomatic blood stage and represents a bottleneck in the parasite life cycle. However, many aspects of the development of the parasite during this stage are far from understood. During the liver stage, the parasite undergoes extensive replication, forming tens of thousands of infectious merozoites from each invading sporozoite. This implies a very efficient and accurate process of cytokinesis and thus also of organelle development and segregation. We have generated for the first time Plasmodium berghei double-fluorescent parasite lines, allowing visualization of the apicoplast, mitochondria and nuclei in live liver stage parasites. Using these we have seen that in parallel with nuclear division, the apicoplast and mitochondrion become two extensively branched and intertwining structures. The organelles then undergo impressive morphological and positional changes prior to cell division. To form merozoites, the parasite undergoes cytokinesis and the complex process of organelle development and segregation into the forming daughter merozoites could be analysed in detail using the newly generated transgenic parasites.
Collapse
Affiliation(s)
- Rebecca R Stanway
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359 Hamburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Trieu A, Kayala MA, Burk C, Molina DM, Freilich DA, Richie TL, Baldi P, Felgner PL, Doolan DL. Sterile protective immunity to malaria is associated with a panel of novel P. falciparum antigens. Mol Cell Proteomics 2011; 10:M111.007948. [PMID: 21628511 DOI: 10.1074/mcp.m111.007948] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The development of an effective malaria vaccine remains a global public health priority. Less than 0.5% of the Plasmodium falciparum genome has been assessed as potential vaccine targets and candidate vaccines have been based almost exclusively on single antigens. It is possible that the failure to develop a malaria vaccine despite decades of effort might be attributed to this historic focus. To advance malaria vaccine development, we have fabricated protein microarrays representing 23% of the entire P. falciparum proteome and have probed these arrays with plasma from subjects with sterile protection or no protection after experimental immunization with radiation attenuated P. falciparum sporozoites. A panel of 19 pre-erythrocytic stage antigens was identified as strongly associated with sporozoite-induced protective immunity; 16 of these antigens were novel and 85% have been independently identified in sporozoite and/or liver stage proteomic or transcriptomic data sets. Reactivity to any individual antigen did not correlate with protection but there was a highly significant difference in the cumulative signal intensity between protected and not protected individuals. Functional annotation indicates that most of these signature proteins are involved in cell cycle/DNA processing and protein synthesis. In addition, 21 novel blood-stage specific antigens were identified. Our data provide the first evidence that sterile protective immunity against malaria is directed against a panel of novel P. falciparum antigens rather than one antigen in isolation. These results have important implications for vaccine development, suggesting that an efficacious malaria vaccine should be multivalent and targeted at a select panel of key antigens, many of which have not been previously characterized.
Collapse
Affiliation(s)
- Angela Trieu
- Division of Immunology, Queensland Institute of Medical Research, Brisbane, QLD 4006, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Limenitakis J, Soldati-Favre D. Functional genetics in Apicomplexa: potentials and limits. FEBS Lett 2011; 585:1579-88. [PMID: 21557944 DOI: 10.1016/j.febslet.2011.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 05/02/2011] [Accepted: 05/03/2011] [Indexed: 01/15/2023]
Abstract
The Apicomplexans are obligate intracellular protozoan parasites and the causative agents of severe diseases in humans and animals. Although complete genome sequences are available since many years and for several parasites, they are replete with putative genes of unassigned function. Forward and reverse genetic approaches are limited only to a few Apicomplexans that can either be propagated in vitro or in a convenient animal model. This review will compare and contrast the most recent strategies developed for the genetic manipulation of Plasmodium falciparum, Plasmodium berghei and Toxoplasma gondii that have taken advantage of the intrinsic features of their respective genomes. Efforts towards the improvement of the transfection efficiencies in malaria parasites, the development of approaches to study essential genes and the elaboration of high-throughput methods for the identification of gene function will be discussed.
Collapse
Affiliation(s)
- Julien Limenitakis
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva, Switzerland.
| | | |
Collapse
|