1
|
Kwon Y, Lee SJ, Shin YK, Choi JS, Park D, Shin JE. Loss of neuronal βPix isoforms impairs neuronal morphology in the hippocampus and causes behavioral defects. Anim Cells Syst (Seoul) 2025; 29:57-71. [PMID: 39802101 PMCID: PMC11722029 DOI: 10.1080/19768354.2024.2448999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/19/2024] [Accepted: 12/23/2024] [Indexed: 01/16/2025] Open
Abstract
βPix is a guanine nucleotide exchange factor for the Rac1 and Cdc42 small GTPases, which play important roles in dendritic spine morphogenesis by modulating actin cytoskeleton organization. The formation and plasticity of the dendritic spines are essential for normal brain function. Among the alternatively spliced βPix isoforms, βPix-b and βPix-d are expressed specifically in neurons. Our previous studies using cultured hippocampal neurons identified the roles of βPix-b and βPix-d in spine formation and neurite development, respectively. Here, we analyzed the in vivo role of the neuronal βPix isoforms in brain development and function by using βPix neuronal isoform knockout (βPix-NIKO) mice, in which the expression of the βPix-b and βPix-d isoforms is blocked, while the expression of the ubiquitous βPix-a isoform is maintained. Loss of the neuronal βPix isoforms leads to reduced activity of Rac1 and Cdc42, decreased dendritic complexity and spine density, and increased GluN2B and Ca2+/calmodulin-dependent protein kinase IIα expression in the hippocampus. The defects in neurite development, dendritic spine maturation, and synaptic density in cultured βPix-NIKO hippocampal neurons were rescued by the expression of βPix-b or βPix-d. In behavioral studies, βPix-NIKO mice exhibited robust deficits in novel object recognition and decreased anxiety levels. Our findings suggest that neuronal morphogenetic signaling by the neuronal βPix isoforms contributes to normal behaviors.
Collapse
Affiliation(s)
- Younghee Kwon
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seung Joon Lee
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yoon Kyung Shin
- Department of Molecular Neuroscience, College of Medicine, Dong-A University, Busan, Republic of Korea
| | - June-Seek Choi
- Department of Psychology, Korea University, Seoul, Republic of Korea
| | - Dongeun Park
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jung Eun Shin
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Molecular Neuroscience, College of Medicine, Dong-A University, Busan, Republic of Korea
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, Republic of Korea
| |
Collapse
|
2
|
Liu Q, Huang B, Guiberson NGL, Chen S, Zhu D, Ma G, Ma XM, Crittenden JR, Yu J, Graybiel AM, Dawson TM, Dawson VL, Xiong Y. CalDAG-GEFI acts as a guanine nucleotide exchange factor for LRRK2 to regulate LRRK2 function and neurodegeneration. SCIENCE ADVANCES 2024; 10:eadn5417. [PMID: 39576856 PMCID: PMC11584015 DOI: 10.1126/sciadv.adn5417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 10/22/2024] [Indexed: 11/24/2024]
Abstract
Mutations in LRRK2 are the most common genetic cause of Parkinson's disease (PD). LRRK2 protein contains two enzymatic domains: a GTPase (Roc-COR) and a kinase domain. Disease-causing mutations are found in both domains. Now, studies have focused largely on LRRK2 kinase activity, while attention to its GTPase function is limited. LRRK2 is a guanine nucleotide-binding protein, but the mechanism of direct regulation of its GTPase activity remains unclear and its physiological GEF is not known. Here, we identified CalDAG-GEFI (CDGI) as a physiological GEF for LRRK2. CDGI interacts with LRRK2 and increases its GDP to GTP exchange activity. CDGI modulates LRRK2 cellular functions and LRRK2-induced neurodegeneration in both LRRK2 Drosophila and mouse models. Together, this study identified the physiological GEF for LRRK2 and provides strong evidence that LRRK2 GTPase is regulated by GAPs and GEFs. The LRRK2 GTPase, GAP, or GEF activities have the potential to serve as therapeutic targets, which is distinct from the direct LRRK2 kinase inhibition.
Collapse
Affiliation(s)
- Qinfang Liu
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Bingxu Huang
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Noah Guy Lewis Guiberson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shifan Chen
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Dong Zhu
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Gang Ma
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Xin-Ming Ma
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Jill R. Crittenden
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jianzhong Yu
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Ann M. Graybiel
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ted M. Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130, USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130, USA
| | - Valina L. Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130, USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yulan Xiong
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| |
Collapse
|
3
|
Xiong Y, Yu J. LRRK2 in Parkinson's disease: upstream regulation and therapeutic targeting. Trends Mol Med 2024; 30:982-996. [PMID: 39153957 PMCID: PMC11466701 DOI: 10.1016/j.molmed.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 08/19/2024]
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common causes of Parkinson's disease (PD) to date. Dysfunction in LRRK2 enzymatic activities and elevated protein levels are associated with the disease. How is LRRK2 activated, and what downstream molecular and cellular processes does LRRK2 regulate? Addressing these questions is crucial to decipher the disease mechanisms. In this review we focus on the upstream regulations and briefly discuss downstream substrates of LRRK2 as well as the cellular consequences caused by these regulations. Building on these basic findings, we discuss therapeutic strategies targeting LRRK2 and highlight the challenges in clinical trials. We further highlight the important questions that remains to be answered in the LRRK2 field.
Collapse
Affiliation(s)
- Yulan Xiong
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030, USA.
| | - Jianzhong Yu
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
4
|
Sun YM, Gan LH, Peng F, Zhou XY, Chen QS, Liu FT, Tang YL, Wu P, Lu JY, Ge JJ, Yen TC, Zuo CT, Song B, Wu JJ, Wang J. Autosomal dominant Parkinson's disease caused by the recently identified LRRK2 N1437D mutation in a Chinese family: Clinical features, imaging findings, and functional impact. Parkinsonism Relat Disord 2023; 111:105441. [PMID: 37201327 DOI: 10.1016/j.parkreldis.2023.105441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/04/2023] [Accepted: 05/07/2023] [Indexed: 05/20/2023]
Abstract
INTRODUCTION Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of autosomal dominantly inherited Parkinson's disease (PD). Recently, a novel pathogenic variant (N1437D; c.4309A > G; NM_98578) in the LRRK2 gene has been identified in three Chinese families with PD. In this study, we describe a Chinese family with autosomal dominant PD that segregated with the N1437D mutation. A detailed clinical and neuroimaging characterization of the affected family members is reported. We also sought to investigate the functional mechanisms by which the detected mutation could cause PD. METHODS We characterized the clinical and imaging phenotype of a Chinese pedigree with autosomal dominant PD. We searched for a disease-causing mutation by targeted sequencing and multiple ligation-dependent probe amplification. The functional impact of the mutation was investigated in terms of LRRK2 kinase activity, guanosine triphosphate (GTP) binding, and guanosine triphosphatase (GTPase) activity. RESULTS The disease was found to co-segregate with the LRRK2 N1437D mutation. Patients in the pedigree exhibited typical parkinsonism (age at onset: 54.0 ± 5.9 years). One affected family member - who had evidence of abnormal tau accumulation in the occipital lobe on tau PET imaging - developed PD dementia at follow-up. The mutation markedly increased LRRK2 kinase activity and promoted GTP binding, without affecting GTPase activity. CONCLUSIONS This study describes the functional impact of a recently identified LRRK2 mutation, N1437D, that causes autosomal dominant PD in the Chinese population. Further research is necessary to investigate the contribution of this mutation to PD in multiple Asian populations.
Collapse
Affiliation(s)
- Yi-Min Sun
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Lin-Hua Gan
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Fang Peng
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Xin-Yue Zhou
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Qi-Si Chen
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Feng-Tao Liu
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Yi-Lin Tang
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Ping Wu
- PET Center and National Research Center for Aging and Medicine & National Center for Neurological Disorders, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Jia-Ying Lu
- PET Center and National Research Center for Aging and Medicine & National Center for Neurological Disorders, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Jing-Jie Ge
- PET Center and National Research Center for Aging and Medicine & National Center for Neurological Disorders, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China
| | | | - Chuan-Tao Zuo
- PET Center and National Research Center for Aging and Medicine & National Center for Neurological Disorders, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Bin Song
- Department of Neurosurgery, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, 138 Medical College road, Shanghai, 200032, China.
| | - Jian-Jun Wu
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China.
| | - Jian Wang
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China.
| |
Collapse
|
5
|
Ito G, Utsunomiya-Tate N. Overview of the Impact of Pathogenic LRRK2 Mutations in Parkinson's Disease. Biomolecules 2023; 13:biom13050845. [PMID: 37238714 DOI: 10.3390/biom13050845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/25/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a large protein kinase that physiologically phosphorylates and regulates the function of several Rab proteins. LRRK2 is genetically implicated in the pathogenesis of both familial and sporadic Parkinson's disease (PD), although the underlying mechanism is not well understood. Several pathogenic mutations in the LRRK2 gene have been identified, and in most cases the clinical symptoms that PD patients with LRRK2 mutations develop are indistinguishable from those of typical PD. However, it has been shown that the pathological manifestations in the brains of PD patients with LRRK2 mutations are remarkably variable when compared to sporadic PD, ranging from typical PD pathology with Lewy bodies to nigral degeneration with deposition of other amyloidogenic proteins. The pathogenic mutations in LRRK2 are also known to affect the functions and structure of LRRK2, the differences in which may be partly attributable to the variations observed in patient pathology. In this review, in order to help researchers unfamiliar with the field to understand the mechanism of pathogenesis of LRRK2-associated PD, we summarize the clinical and pathological manifestations caused by pathogenic mutations in LRRK2, their impact on the molecular function and structure of LRRK2, and their historical background.
Collapse
Affiliation(s)
- Genta Ito
- Department of Biomolecular Chemistry, Faculty of Pharma-Sciences, Teikyo University, Tokyo 173-8605, Japan
| | - Naoko Utsunomiya-Tate
- Department of Biomolecular Chemistry, Faculty of Pharma-Sciences, Teikyo University, Tokyo 173-8605, Japan
| |
Collapse
|
6
|
Kim J, Daadi EW, Oh T, Daadi ES, Daadi MM. Human Induced Pluripotent Stem Cell Phenotyping and Preclinical Modeling of Familial Parkinson's Disease. Genes (Basel) 2022; 13:1937. [PMID: 36360174 PMCID: PMC9689743 DOI: 10.3390/genes13111937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 12/05/2022] Open
Abstract
Parkinson's disease (PD) is primarily idiopathic and a highly heterogenous neurodegenerative disease with patients experiencing a wide array of motor and non-motor symptoms. A major challenge for understanding susceptibility to PD is to determine the genetic and environmental factors that influence the mechanisms underlying the variations in disease-associated traits. The pathological hallmark of PD is the degeneration of dopaminergic neurons in the substantia nigra pars compacta region of the brain and post-mortem Lewy pathology, which leads to the loss of projecting axons innervating the striatum and to impaired motor and cognitive functions. While the cause of PD is still largely unknown, genome-wide association studies provide evidence that numerous polymorphic variants in various genes contribute to sporadic PD, and 10 to 15% of all cases are linked to some form of hereditary mutations, either autosomal dominant or recessive. Among the most common mutations observed in PD patients are in the genes LRRK2, SNCA, GBA1, PINK1, PRKN, and PARK7/DJ-1. In this review, we cover these PD-related mutations, the use of induced pluripotent stem cells as a disease in a dish model, and genetic animal models to better understand the diversity in the pathogenesis and long-term outcomes seen in PD patients.
Collapse
Affiliation(s)
- Jeffrey Kim
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
- Cell Systems and Anatomy, San Antonio, TX 78229, USA
| | - Etienne W. Daadi
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Thomas Oh
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Elyas S. Daadi
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Marcel M. Daadi
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
- Cell Systems and Anatomy, San Antonio, TX 78229, USA
- Department of Radiology, Long School of Medicine, University of Texas Health at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
7
|
Jeong A, Auger SA, Maity S, Fredriksen K, Zhong R, Li L, Distefano MD. In Vivo Prenylomic Profiling in the Brain of a Transgenic Mouse Model of Alzheimer's Disease Reveals Increased Prenylation of a Key Set of Proteins. ACS Chem Biol 2022; 17:2863-2876. [PMID: 36109170 PMCID: PMC9799064 DOI: 10.1021/acschembio.2c00486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Dysregulation of protein prenylation has been implicated in many diseases, including Alzheimer's disease (AD). Prenylomic analysis, the combination of metabolic incorporation of an isoprenoid analogue (C15AlkOPP) into prenylated proteins with a bottom-up proteomic analysis, has allowed the identification of prenylated proteins in various cellular models. Here, transgenic AD mice were administered with C15AlkOPP through intracerebroventricular (ICV) infusion over 13 days. Using prenylomic analysis, 36 prenylated proteins were enriched in the brains of AD mice. Importantly, the prenylated forms of 15 proteins were consistently upregulated in AD mice compared to nontransgenic wild-type controls. These results highlight the power of this in vivo metabolic labeling approach to identify multiple post-translationally modified proteins that may serve as potential therapeutic targets for a disease that has proved refractory to treatment thus far. Moreover, this method should be applicable to many other types of protein modifications, significantly broadening its scope.
Collapse
Affiliation(s)
- Angela Jeong
- University of Minnesota, Minneapolis, MN, 55455 USA
| | | | - Sanjay Maity
- University of Minnesota, Minneapolis, MN, 55455 USA
| | | | - Rui Zhong
- University of Minnesota, Minneapolis, MN, 55455 USA
| | - Ling Li
- University of Minnesota, Minneapolis, MN, 55455 USA
| | | |
Collapse
|
8
|
Mai Le N, Li J. Ras-related C3 botulinum toxin substrate 1 role in Pathophysiology of Neurological diseases. BRAIN HEMORRHAGES 2022. [DOI: 10.1016/j.hest.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
9
|
Cogo S, Ho FY, Tosoni E, Tomkins JE, Tessari I, Iannotta L, Montine TJ, Manzoni C, Lewis PA, Bubacco L, Chartier Harlin MC, Taymans JM, Kortholt A, Nichols J, Cendron L, Civiero L, Greggio E. The Roc domain of LRRK2 as a hub for protein-protein interactions: a focus on PAK6 and its impact on RAB phosphorylation. Brain Res 2022; 1778:147781. [PMID: 35016853 DOI: 10.1016/j.brainres.2022.147781] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 12/21/2021] [Accepted: 01/04/2022] [Indexed: 12/17/2022]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) has taken center stage in Parkinson's disease (PD) research as mutations cause familial PD and more common variants increase lifetime risk for disease. One unique feature in LRRK2 is the coexistence of GTPase/Roc (Ras of complex) and kinase catalytic functions, bridged by a COR (C-terminal Of Roc) platform for dimerization. Multiple PD mutations are located within the Roc/GTPase domain and concomitantly lead to defective GTPase activity and augmented kinase activity in cells, supporting a crosstalk between GTPase and kinase domains. In addition, biochemical and structural data highlight the importance of Roc as a molecular switch modulating LRRK2 monomer-to-dimer equilibrium and building the interface for interaction with binding partners. Here we review the effects of PD Roc mutations on LRRK2 function and discuss the importance of Roc as a hub for multiple molecular interactions relevant for the regulation of cytoskeletal dynamics and intracellular trafficking pathways. Among the well-characterized Roc interactors, we focused on the cytoskeletal-related kinase p21-activated kinase 6 (PAK6). We report the affinity between LRRK2-Roc and PAK6 measured by microscale thermophoresis (MST). We further show that PAK6 can modulate LRRK2-mediated phosphorylation of RAB substrates in the presence of LRRK2 wild-type (WT) or the PD G2019S kinase mutant but not when the PD Roc mutation R1441G is expressed. These findings support a mechanism whereby mutations in Roc might affect LRRK2 activity through impaired protein-protein interaction in the cell.
Collapse
Affiliation(s)
- Susanna Cogo
- Department of Biology, University of Padova, Italy.
| | - Franz Y Ho
- Department of Cell Biochemistry, University of Groningen, The Netherlands
| | - Elena Tosoni
- Department of Biology, University of Padova, Italy
| | | | | | | | - Thomas J Montine
- Department of Pathology, Stanford University School of Medicine, USA
| | - Claudia Manzoni
- Department of Pharmacology, University College London School of Pharmacy, UK
| | - Patrick A Lewis
- Royal Veterinary College, London, UK; Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Luigi Bubacco
- Department of Biology, University of Padova, Italy; Centro Studi per la Neurodegenerazione CESNE, University of Padova, Italy
| | | | - Jean-Marc Taymans
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France
| | - Arjan Kortholt
- Department of Cell Biochemistry, University of Groningen, The Netherlands
| | - Jeremy Nichols
- Department of Pathology, Stanford University School of Medicine, USA
| | | | - Laura Civiero
- Department of Biology, University of Padova, Italy; IRCCS San Camillo Hospital, Venice, Italy; Centro Studi per la Neurodegenerazione CESNE, University of Padova, Italy
| | - Elisa Greggio
- Department of Biology, University of Padova, Italy; Centro Studi per la Neurodegenerazione CESNE, University of Padova, Italy.
| |
Collapse
|
10
|
Verma A, Ebanks K, Fok CY, Lewis PA, Bettencourt C, Bandopadhyay R. In silico comparative analysis of LRRK2 interactomes from brain, kidney and lung. Brain Res 2021; 1765:147503. [PMID: 33915162 PMCID: PMC8212912 DOI: 10.1016/j.brainres.2021.147503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/06/2021] [Accepted: 04/23/2021] [Indexed: 01/11/2023]
Abstract
Mutations in LRRK2 are the most frequent cause of familial Parkinson's disease (PD), with common LRRK2 non-coding variants also acting as risk factors for idiopathic PD. Currently, therapeutic agents targeting LRRK2 are undergoing advanced clinical trials in humans, however, it is important to understand the wider implications of LRRK2 targeted treatments given that LRRK2 is expressed in diverse tissues including the brain, kidney and lungs. This presents challenges to treatment in terms of effects on peripheral organ functioning, thus, protein interactors of LRRK2 could be targeted in lieu to optimize therapeutic effects. Herein an in-silico analysis of LRRK2 direct interactors in brain tissue from various brain regionswas conducted along with a comparative analysis of the LRRK2 interactome in the brain, kidney, and lung tissues. This was carried out based on curated protein-protein interaction (PPI) data from protein interaction databases such as HIPPIE, human gene/protein expression databases and Gene ontology (GO) enrichment analysis using Bingo. Seven targets (MAP2K6, MATK, MAPT, PAK6, SH3GL2, CDC42EP3 and CHGB) were found to be viable objectives for LRRK2 based investigations for PD that would have minimal impact on optimal functioning within peripheral organs. Specifically, MAPT, CHGB, PAK6, and SH3GL2 interacted with LRRK2 in the brain and kidney but not in lung tissue whilst LRRK2-MAP2K6 interacted only in the cerebellum and MATK-LRRK2 interaction was absent in kidney tissues. CDC42EP3 expression levels were low in brain tissues compared to kidney/lung. The results of this computational analysis suggest new avenues for experimental investigations towards LRRK2-targeted therapeutics.
Collapse
Affiliation(s)
- Amrita Verma
- Reta Lila Weston Institute of Neurological Studies, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London WC1N 1PJ, United Kingdom
| | - Kirsten Ebanks
- Reta Lila Weston Institute of Neurological Studies, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London WC1N 1PJ, United Kingdom
| | - Chi-Yee Fok
- Reta Lila Weston Institute of Neurological Studies, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London WC1N 1PJ, United Kingdom
| | - Patrick A Lewis
- Royal Veterinary College, Royal College Street, London NW10TV, United Kingdom; Department of Neurodegenerative Disease and Queen Square Brain Bank, UCL Queen Square Institute of Neurology, London WC1N 1PJ, United Kingdom; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
| | - Conceicao Bettencourt
- Department of Neurodegenerative Disease and Queen Square Brain Bank, UCL Queen Square Institute of Neurology, London WC1N 1PJ, United Kingdom
| | - Rina Bandopadhyay
- Reta Lila Weston Institute of Neurological Studies, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London WC1N 1PJ, United Kingdom.
| |
Collapse
|
11
|
Yan X, Li M, Luo Z, Zhao Y, Zhang H, Chen L. VIP Induces Changes in the F-/G-Actin Ratio of Schlemm's Canal Endothelium via LRRK2 Transcriptional Regulation. Invest Ophthalmol Vis Sci 2021; 61:45. [PMID: 32572455 PMCID: PMC7415318 DOI: 10.1167/iovs.61.6.45] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose A previous study reported that vasoactive intestinal peptide (VIP) can regulate the cytoskeleton of Schlemm's canal (SC) endothelium and expand the SC lumen in a rat glaucoma model. In this study, we aimed to investigate the molecular mechanism of VIP on cytoskeleton regulation. Methods During in vivo experiments in rats, leucine-rich repeat kinase 2 (LRRK2) expression and the ratio of F-actin to G-actin (F-/G-actin) surrounding SC were examined by immunofluorescence after the application of VIP. For in vitro experiments in human umbilical vein endothelial cells, both quantitative PCR (qPCR) and western blotting were performed to evaluate Sp1 and LRRK2 expression after the application of VIP (and Sp1/LRRK2 inhibitor). In addition, the F-/G-actin ratio was examined by both immunofluorescence and western blotting after the application of VIP (and LRRK2 inhibitor). Results VIP induced increases in the expression of LRRK2 both in vivo and in vitro and the nuclear translocation of Sp1 in vitro. The application of Sp1 inhibitor abolished the increase in LRRK2 expression induced by VIP in vitro. In addition, VIP changed the F-/G-actin ratio, and this effect was abolished by the LRRK2 inhibitor both in vivo and in vitro. Conclusions VIP increased the expression of LRRK2, and this regulation was due to the nuclear translocation of Sp1. VIP further changed the F-/G-actin ratio and regulated the balance between the stabilization and destabilization of the F-actin architecture. This study elucidates a novel mechanism by which VIP regulates the actin cytoskeleton of SC endothelium via the Sp1–LRRK2 pathway, suggesting a potential novel treatment strategy for glaucoma.
Collapse
|
12
|
Pathological Functions of LRRK2 in Parkinson's Disease. Cells 2020; 9:cells9122565. [PMID: 33266247 PMCID: PMC7759975 DOI: 10.3390/cells9122565] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
Mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) are common genetic risk factors for both familial and sporadic Parkinson’s disease (PD). Pathogenic mutations in LRRK2 have been shown to induce changes in its activity, and abnormal increase in LRRK2 kinase activity is thought to contribute to PD pathology. The precise molecular mechanisms underlying LRRK2-associated PD pathology are far from clear, however the identification of LRRK2 substrates and the elucidation of cellular pathways involved suggest a role of LRRK2 in microtubule dynamics, vesicular trafficking, and synaptic transmission. Moreover, LRRK2 is associated with pathologies of α-synuclein, a major component of Lewy bodies (LBs). Evidence from various cellular and animal models supports a role of LRRK2 in the regulation of aggregation and propagation of α-synuclein. Here, we summarize our current understanding of how pathogenic mutations dysregulate LRRK2 and discuss the possible mechanisms leading to neurodegeneration.
Collapse
|
13
|
Gloeckner CJ, Porras P. Guilt-by-Association - Functional Insights Gained From Studying the LRRK2 Interactome. Front Neurosci 2020; 14:485. [PMID: 32508578 PMCID: PMC7251075 DOI: 10.3389/fnins.2020.00485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022] Open
Abstract
The Parkinson's disease-associated Leucine-rich repeat kinase 2 (LRRK2) is a complex multi-domain protein belonging to the Roco protein family, a unique group of G-proteins. Variants of this gene are associated with an increased risk of Parkinson's disease. Besides its well-characterized enzymatic activities, conferred by its GTPase and kinase domains, and a central dimerization domain, it contains four predicted repeat domains, which are, based on their structure, commonly involved in protein-protein interactions (PPIs). In the past decades, tremendous progress has been made in determining comprehensive interactome maps for the human proteome. Knowledge of PPIs has been instrumental in assigning functions to proteins involved in human disease and helped to understand the connectivity between different disease pathways and also significantly contributed to the functional understanding of LRRK2. In addition to an increased kinase activity observed for proteins containing PD-associated variants, various studies helped to establish LRRK2 as a large scaffold protein in the interface between cytoskeletal dynamics and the vesicular transport. This review first discusses a number of specific LRRK2-associated PPIs for which a functional consequence can at least be speculated upon, and then considers the representation of LRRK2 protein interactions in public repositories, providing an outlook on open research questions and challenges in this field.
Collapse
Affiliation(s)
- Christian Johannes Gloeckner
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Center for Ophthalmology, Institute for Ophthalmic Research, Core Facility for Medical Bioanalytics, University of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Pablo Porras
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cherry Hinton, United Kingdom
| |
Collapse
|
14
|
Berwick DC, Heaton GR, Azeggagh S, Harvey K. LRRK2 Biology from structure to dysfunction: research progresses, but the themes remain the same. Mol Neurodegener 2019; 14:49. [PMID: 31864390 PMCID: PMC6925518 DOI: 10.1186/s13024-019-0344-2] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/07/2019] [Indexed: 12/12/2022] Open
Abstract
Since the discovery of leucine-rich repeat kinase 2 (LRRK2) as a protein that is likely central to the aetiology of Parkinson’s disease, a considerable amount of work has gone into uncovering its basic cellular function. This effort has led to the implication of LRRK2 in a bewildering range of cell biological processes and pathways, and probable roles in a number of seemingly unrelated medical conditions. In this review we summarise current knowledge of the basic biochemistry and cellular function of LRRK2. Topics covered include the identification of phosphorylation substrates of LRRK2 kinase activity, in particular Rab proteins, and advances in understanding the activation of LRRK2 kinase activity via dimerisation and association with membranes, especially via interaction with Rab29. We also discuss biochemical studies that shed light on the complex LRRK2 GTPase activity, evidence of roles for LRRK2 in a range of cell signalling pathways that are likely cell type specific, and studies linking LRRK2 to the cell biology of organelles. The latter includes the involvement of LRRK2 in autophagy, endocytosis, and processes at the trans-Golgi network, the endoplasmic reticulum and also key microtubule-based cellular structures. We further propose a mechanism linking LRRK2 dimerisation, GTPase function and membrane recruitment with LRRK2 kinase activation by Rab29. Together these data paint a picture of a research field that in many ways is moving forward with great momentum, but in other ways has not changed fundamentally. Many key advances have been made, but very often they seem to lead back to the same places.
Collapse
Affiliation(s)
- Daniel C Berwick
- School of Health, Life and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK.
| | - George R Heaton
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Sonia Azeggagh
- School of Health, Life and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Kirsten Harvey
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK.
| |
Collapse
|
15
|
Wauters L, Terheyden S, Gilsbach BK, Leemans M, Athanasopoulos PS, Guaitoli G, Wittinghofer A, Gloeckner CJ, Versées W, Kortholt A. Biochemical and kinetic properties of the complex Roco G-protein cycle. Biol Chem 2019; 399:1447-1456. [PMID: 30067506 DOI: 10.1515/hsz-2018-0227] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022]
Abstract
Roco proteins have come into focus after mutations in the gene coding for the human Roco protein Leucine-rich repeat kinase 2 (LRRK2) were discovered to be one of the most common genetic causes of late onset Parkinson's disease. Roco proteins are characterized by a Roc domain responsible for GTP binding and hydrolysis, followed by a COR dimerization device. The regulation and function of this RocCOR domain tandem is still not completely understood. To fully biochemically characterize Roco proteins, we performed a systematic survey of the kinetic properties of several Roco protein family members, including LRRK2. Together, our results show that Roco proteins have a unique G-protein cycle. Our results confirm that Roco proteins have a low nucleotide affinity in the micromolar range and thus do not strictly depend on G-nucleotide exchange factors. Measurement of multiple and single turnover reactions shows that neither Pi nor GDP release are rate-limiting, while this is the case for the GAP-mediated GTPase reaction of some small G-proteins like Ras and for most other high affinity Ras-like proteins, respectively. The KM values of the reactions are in the range of the physiological GTP concentration, suggesting that LRRK2 functioning might be regulated by the cellular GTP level.
Collapse
Affiliation(s)
- Lina Wauters
- VIB-VUB Center for Structural Biology, Pleinlaan 2, B-1050 Brussels, Belgium.,Department of Cell Biochemistry, University of Groningen, Groningen NL-9747 AG, The Netherlands.,Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Susanne Terheyden
- Department of Cell Biochemistry, University of Groningen, Groningen NL-9747 AG, The Netherlands.,Structural Biology Group, Max-Planck Institute of Molecular Physiology, D-44227 Dortmund, Germany
| | - Bernd K Gilsbach
- German Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Str. 23, D-72076 Tübingen, Germany
| | - Margaux Leemans
- VIB-VUB Center for Structural Biology, Pleinlaan 2, B-1050 Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | | | - Giambattista Guaitoli
- German Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Str. 23, D-72076 Tübingen, Germany
| | - Alfred Wittinghofer
- Structural Biology Group, Max-Planck Institute of Molecular Physiology, D-44227 Dortmund, Germany
| | - Christian Johannes Gloeckner
- German Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Str. 23, D-72076 Tübingen, Germany.,University of Tübingen, Institute for Ophthalmic Research, Center for Ophthalmology, D-72076 Tübingen, Germany
| | - Wim Versées
- VIB-VUB Center for Structural Biology, Pleinlaan 2, B-1050 Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Arjan Kortholt
- Department of Cell Biochemistry, University of Groningen, Groningen NL-9747 AG, The Netherlands
| |
Collapse
|
16
|
Wauters L, Versées W, Kortholt A. Roco Proteins: GTPases with a Baroque Structure and Mechanism. Int J Mol Sci 2019; 20:ijms20010147. [PMID: 30609797 PMCID: PMC6337361 DOI: 10.3390/ijms20010147] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/21/2018] [Accepted: 12/25/2018] [Indexed: 01/05/2023] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are a common cause of genetically inherited Parkinson’s Disease (PD). LRRK2 is a large, multi-domain protein belonging to the Roco protein family, a family of GTPases characterized by a central RocCOR (Ras of complex proteins/C-terminal of Roc) domain tandem. Despite the progress in characterizing the GTPase function of Roco proteins, there is still an ongoing debate concerning the working mechanism of Roco proteins in general, and LRRK2 in particular. This review consists of two parts. First, an overview is given of the wide evolutionary range of Roco proteins, leading to a variety of physiological functions. The second part focusses on the GTPase function of the RocCOR domain tandem central to the action of all Roco proteins, and progress in the understanding of its structure and biochemistry is discussed and reviewed. Finally, based on the recent work of our and other labs, a new working hypothesis for the mechanism of Roco proteins is proposed.
Collapse
Affiliation(s)
- Lina Wauters
- VIB-VUB Center for Structural Biology, Pleinlaan 2, B-1050 Brussels, Belgium.
- Department of Cell Biochemistry, University of Groningen, NL-9747 AG Groningen, The Netherlands.
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium.
| | - Wim Versées
- VIB-VUB Center for Structural Biology, Pleinlaan 2, B-1050 Brussels, Belgium.
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium.
| | - Arjan Kortholt
- Department of Cell Biochemistry, University of Groningen, NL-9747 AG Groningen, The Netherlands.
| |
Collapse
|
17
|
Roco Proteins and the Parkinson's Disease-Associated LRRK2. Int J Mol Sci 2018; 19:ijms19124074. [PMID: 30562929 PMCID: PMC6320773 DOI: 10.3390/ijms19124074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/11/2018] [Accepted: 12/14/2018] [Indexed: 02/08/2023] Open
Abstract
Small G-proteins are structurally-conserved modules that function as molecular on-off switches. They function in many different cellular processes with differential specificity determined by the unique effector-binding surfaces, which undergo conformational changes during the switching action. These switches are typically standalone monomeric modules that form transient heterodimers with specific effector proteins in the 'on' state, and cycle to back to the monomeric conformation in the 'off' state. A new class of small G-proteins called "Roco" was discovered about a decade ago; this class is distinct from the typical G-proteins in several intriguing ways. Their switch module resides within a polypeptide chain of a large multi-domain protein, always adjacent to a unique domain called COR, and its effector kinase often resides within the same polypeptide. As such, the mechanisms of action of the Roco G-proteins are likely to differ from those of the typical G-proteins. Understanding these mechanisms is important because aberrant activity in the human Roco protein LRRK2 is associated with the pathogenesis of Parkinson's disease. This review provides an update on the current state of our understanding of the Roco G-proteins and the prospects of targeting them for therapeutic purposes.
Collapse
|
18
|
Chen ML, Wu RM. LRRK 2 gene mutations in the pathophysiology of the ROCO domain and therapeutic targets for Parkinson's disease: a review. J Biomed Sci 2018; 25:52. [PMID: 29903014 PMCID: PMC6000924 DOI: 10.1186/s12929-018-0454-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/31/2018] [Indexed: 01/13/2023] Open
Abstract
Parkinson’s disease (PD) is the most common movement disorder and manifests as resting tremor, rigidity, bradykinesia, and postural instability. Pathologically, PD is characterized by selective loss of dopaminergic neurons in the substantia nigra and the formation of intracellular inclusions containing α-synuclein and ubiquitin called Lewy bodies. Consequently, a remarkable deficiency of dopamine in the striatum causes progressive disability of motor function. The etiology of PD remains uncertain. Genetic variability in leucine-rich repeat kinase 2 (LRRK2) is the most common genetic cause of sporadic and familial PD. LRRK2 encodes a large protein containing three catalytic and four protein-protein interaction domains. Patients with LRRK2 mutations exhibit a clinical and pathological phenotype indistinguishable from sporadic PD. Recent studies have shown that pathological mutations of LRRK2 can reduce the rate of guanosine triphosphate (GTP) hydrolysis, increase kinase activity and GTP binding activity, and subsequently cause cell death. The process of cell death involves several signaling pathways, including the autophagic–lysosomal pathway, intracellular trafficking, mitochondrial dysfunction, and the ubiquitin–proteasome system. This review summarizes the cellular function and pathophysiology of LRRK2 ROCO domain mutations in PD and the perspective of therapeutic approaches.
Collapse
Affiliation(s)
- Meng-Ling Chen
- Department of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Da-an Dist, Taipei City, 10617, Taiwan.,Department of Neurology, College of Medicine, National Taiwan University Hospital, National Taiwan University, No. 7, Chung-Shan South Road, Zhongzheng Dist, Taipei City, 10002, Taiwan
| | - Ruey-Meei Wu
- Department of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Da-an Dist, Taipei City, 10617, Taiwan. .,Department of Neurology, College of Medicine, National Taiwan University Hospital, National Taiwan University, No. 7, Chung-Shan South Road, Zhongzheng Dist, Taipei City, 10002, Taiwan.
| |
Collapse
|
19
|
Blanca Ramírez M, Lara Ordóñez AJ, Fdez E, Madero-Pérez J, Gonnelli A, Drouyer M, Chartier-Harlin MC, Taymans JM, Bubacco L, Greggio E, Hilfiker S. GTP binding regulates cellular localization of Parkinson's disease-associated LRRK2. Hum Mol Genet 2018; 26:2747-2767. [PMID: 28453723 PMCID: PMC5886193 DOI: 10.1093/hmg/ddx161] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 04/21/2017] [Indexed: 01/24/2023] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) comprise the most common cause of familial Parkinson's disease (PD), and sequence variants modify risk for sporadic PD. Previous studies indicate that LRRK2 interacts with microtubules (MTs) and alters MT-mediated vesicular transport processes. However, the molecular determinants within LRRK2 required for such interactions have remained unknown. Here, we report that most pathogenic LRRK2 mutants cause relocalization of LRRK2 to filamentous structures which colocalize with a subset of MTs, and an identical relocalization is seen upon pharmacological LRRK2 kinase inhibition. The pronounced colocalization with MTs does not correlate with alterations in LRRK2 kinase activity, but rather with increased GTP binding. Synthetic mutations which impair GTP binding, as well as LRRK2 GTP-binding inhibitors profoundly interfere with the abnormal localization of both pathogenic mutant as well as kinase-inhibited LRRK2. Conversely, addition of a non-hydrolyzable GTP analog to permeabilized cells enhances the association of pathogenic or kinase-inhibited LRRK2 with MTs. Our data elucidate the mechanism underlying the increased MT association of select pathogenic LRRK2 mutants or of pharmacologically kinase-inhibited LRRK2, with implications for downstream MT-mediated transport events.
Collapse
Affiliation(s)
- Marian Blanca Ramírez
- Institute of Parasitology and Biomedicine 'López-Neyra', Consejo Superior de Investigaciones Científicas (CSIC), 18016 Granada, Spain
| | - Antonio Jesús Lara Ordóñez
- Institute of Parasitology and Biomedicine 'López-Neyra', Consejo Superior de Investigaciones Científicas (CSIC), 18016 Granada, Spain
| | - Elena Fdez
- Institute of Parasitology and Biomedicine 'López-Neyra', Consejo Superior de Investigaciones Científicas (CSIC), 18016 Granada, Spain
| | - Jesús Madero-Pérez
- Institute of Parasitology and Biomedicine 'López-Neyra', Consejo Superior de Investigaciones Científicas (CSIC), 18016 Granada, Spain
| | - Adriano Gonnelli
- Department of Biology, University of Padova, Padova 35121, Italy
| | - Matthieu Drouyer
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France.,Inserm, UMR-S 1172 Early Stages of Parkinson's Disease Team, F-59000 Lille, France
| | - Marie-Christine Chartier-Harlin
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France.,Inserm, UMR-S 1172 Early Stages of Parkinson's Disease Team, F-59000 Lille, France
| | - Jean-Marc Taymans
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France.,Inserm, UMR-S 1172 Early Stages of Parkinson's Disease Team, F-59000 Lille, France
| | - Luigi Bubacco
- Department of Biology, University of Padova, Padova 35121, Italy
| | - Elisa Greggio
- Department of Biology, University of Padova, Padova 35121, Italy
| | - Sabine Hilfiker
- Institute of Parasitology and Biomedicine 'López-Neyra', Consejo Superior de Investigaciones Científicas (CSIC), 18016 Granada, Spain
| |
Collapse
|
20
|
Zhou W, Li X, Premont RT. Expanding functions of GIT Arf GTPase-activating proteins, PIX Rho guanine nucleotide exchange factors and GIT-PIX complexes. J Cell Sci 2017; 129:1963-74. [PMID: 27182061 DOI: 10.1242/jcs.179465] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The GIT proteins, GIT1 and GIT2, are GTPase-activating proteins (inactivators) for the ADP-ribosylation factor (Arf) small GTP-binding proteins, and function to limit the activity of Arf proteins. The PIX proteins, α-PIX and β-PIX (also known as ARHGEF6 and ARHGEF7, respectively), are guanine nucleotide exchange factors (activators) for the Rho family small GTP-binding protein family members Rac1 and Cdc42. Through their multi-domain structures, GIT and PIX proteins can also function as signaling scaffolds by binding to numerous protein partners. Importantly, the constitutive association of GIT and PIX proteins into oligomeric GIT-PIX complexes allows these two proteins to function together as subunits of a larger structure that coordinates two distinct small GTP-binding protein pathways and serves as multivalent scaffold for the partners of both constituent subunits. Studies have revealed the involvement of GIT and PIX proteins, and of the GIT-PIX complex, in numerous fundamental cellular processes through a wide variety of mechanisms, pathways and signaling partners. In this Commentary, we discuss recent findings in key physiological systems that exemplify current understanding of the function of this important regulatory complex. Further, we draw attention to gaps in crucial information that remain to be filled to allow a better understanding of the many roles of the GIT-PIX complex in health and disease.
Collapse
Affiliation(s)
- Wu Zhou
- Department of Medicine, College of Medicine and Health, Lishui University, Lishui 323000, China
| | - Xiaobo Li
- Department of Computer Science and Technology, College of Engineering and Design, Lishui University, Lishui 323000, China
| | - Richard T Premont
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
21
|
Mechanisms of LRRK2-dependent neurodegeneration: role of enzymatic activity and protein aggregation. Biochem Soc Trans 2017; 45:163-172. [PMID: 28202670 DOI: 10.1042/bst20160264] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/13/2016] [Accepted: 10/17/2016] [Indexed: 01/16/2023]
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most common cause of familial Parkinson's disease (PD) with autosomal dominant inheritance. Accordingly, LRRK2 has emerged as a promising therapeutic target for disease modification in PD. Since the first discovery of LRRK2 mutations some 12 years ago, LRRK2 has been the subject of intense investigation. It has been established that LRRK2 can function as a protein kinase, with many putative substrates identified, and can also function as a GTPase that may serve in part to regulate kinase activity. Familial mutations influence both of these enzymatic activities, suggesting that they may be important for the development of PD. Many LRRK2 models have been established to understand the pathogenic effects and mechanisms of familial mutations. Here, we provide a focused discussion of the evidence supporting a role for kinase and GTPase activity in mediating the pathogenic effects of familial LRRK2 mutations in different model systems, with an emphasis on rodent models of PD. We also critically discuss the contribution and relevance of protein aggregation, namely of α-synuclein and tau-proteins, which are known to form aggregates in PD brains harboring LRRK2 mutations, to neurodegeneration in LRRK2 rodent models. We aim to provide a clear and unbiased review of some of the key mechanisms that are important for LRRK2-dependent neurodegeneration in PD.
Collapse
|
22
|
The unconventional G-protein cycle of LRRK2 and Roco proteins. Biochem Soc Trans 2017; 44:1611-1616. [PMID: 27913669 DOI: 10.1042/bst20160224] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/09/2016] [Accepted: 09/16/2016] [Indexed: 12/14/2022]
Abstract
Mutations in the human leucine-rich repeat kinase 2 (LRRK2) are the most frequent cause of hereditary Parkinson's disease (PD). LRRK2 belongs to the Roco family of proteins, which are characterized by the presence of a Ras of complex proteins domain (Roc), a C-terminal of Roc domain (COR) and a kinase domain. Despite intensive research, much remains unknown about activity and the effect of PD-associated mutations. Recent biochemical and structural studies suggest that LRRK2 and Roco proteins are noncanonical G-proteins that do not depend on guanine nucleotide exchange factors or GTPase-activating proteins for activation. In this review, we will discuss the unusual G-protein cycle of LRRK2 in the context of the complex intramolecular LRRK2 activation mechanism.
Collapse
|
23
|
|
24
|
Nguyen APT, Moore DJ. Understanding the GTPase Activity of LRRK2: Regulation, Function, and Neurotoxicity. ADVANCES IN NEUROBIOLOGY 2017; 14:71-88. [PMID: 28353279 DOI: 10.1007/978-3-319-49969-7_4] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most frequent cause of Parkinson's disease (PD) with late-onset and autosomal-dominant inheritance. LRRK2 belongs to the ROCO superfamily of proteins, characterized by a Ras-of-complex (Roc) GTPase domain in tandem with a C-terminal-of-Roc (COR) domain. LRRK2 also contains a protein kinase domain adjacent to the Roc-COR tandem domain in addition to multiple repeat domains. Disease-causing familial mutations cluster within the Roc-COR tandem and kinase domains of LRRK2, where they act to either impair GTPase activity or enhance kinase activity. Familial LRRK2 mutations share in common the capacity to induce neuronal toxicity in cultured cells. While the contribution of the frequent G2019S mutation, located within the kinase domain, to kinase activity and neurotoxicity has been extensively investigated, the contribution of GTPase activity has received less attention. The GTPase domain has been shown to play an important role in regulating kinase activity, in dimerization, and in mediating the neurotoxic effects of LRRK2. Accordingly, the GTPase domain has emerged as a potential therapeutic target for inhibiting the pathogenic effects of LRRK2 mutations. Many important mechanisms remain to be elucidated, including how the GTPase cycle of LRRK2 is regulated, whether GTPase effectors exist for LRRK2, and how GTPase activity contributes to the overall functional output of LRRK2. In this review, we discuss the importance of the GTPase domain for LRRK2-linked PD focusing in particular on its regulation, function, and contribution to neurotoxic mechanisms.
Collapse
Affiliation(s)
- An Phu Tran Nguyen
- Center for Neurodegenerative Science, Van Andel Research Institute, 333 Bostwick Ave NE, Grand Rapids, MI, 49503, USA
| | - Darren J Moore
- Center for Neurodegenerative Science, Van Andel Research Institute, 333 Bostwick Ave NE, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
25
|
L'RRK de Triomphe: a solution for LRRK2 GTPase activity? Biochem Soc Trans 2016; 44:1625-1634. [DOI: 10.1042/bst20160240] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 09/15/2016] [Accepted: 09/23/2016] [Indexed: 01/01/2023]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a central protein in the pathogenesis of Parkinson's disease (PD), yet its normal function has proved stubbornly hard to elucidate. Even though it remains unclear how pathogenic mutations affect LRRK2 to cause PD, recent findings provide increasing cause for optimism. We summarise here the developing consensus over the effect of pathogenic mutations in the Ras of complex proteins and C-terminal of Roc domains on LRRK2 GTPase activity. This body of work has been greatly reinforced by our own study of the protective R1398H variant contained within the LRRK2 GTPase domain. Collectively, data point towards the pathogenicity of GTP-bound LRRK2 and strengthen a working model for LRRK2 GTPase function as a GTPase activated by dimerisation. Together with the identification of the protective R1398H variant as a valuable control for pathogenic mutations, we have no doubt that these triumphs for the LRRK2 field will accelerate research towards resolving LRRK2 function and towards new treatments for PD.
Collapse
|
26
|
Chang KH, Chen CM, Lin CH, Chang WT, Jiang PR, Hsiao YC, Wu YR, Lee-Chen GJ. Functional properties of LRRK2 mutations in Taiwanese Parkinson disease. J Formos Med Assoc 2016; 116:197-204. [PMID: 27423549 DOI: 10.1016/j.jfma.2016.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/12/2016] [Accepted: 04/28/2016] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND/PURPOSE Leucine-rich repeat kinase 2 (LRRK2) is a large protein encoding multiple functional domains. Mutations within different LRRK2 domains have been considered to be involved in the development of Parkinson disease by different mechanisms. Our previous study found three LRRK2 mutations-p.R767H, p.S885N, and p.R1441H-in Taiwanese patients with Parkinson disease. METHODS We evaluated the functional properties of LRRK2 p.R767H, p.S885N, and p.R1441H mutations by overexpressing them in human embryonic kidney 293 and neuroblastoma SK-N-SH cells. The common p.G2019S mutation in the kinase domain was included for comparison. RESULTS In 293 cells, overexpressed p.R1441H-but not p.R767H, p.S885N, or p.G2019-increased GTP binding affinity to prolong the active state. Overexpressed p.R1441H and p.G2019S generated inclusions in 293 cells. In SK-N-SH cells, the α-synuclein was coexpressed with wild type as well as mutated p.R767H, p.S885N, p.R1441H, and p.G2019 LRRK2 proteins. Part of the perinuclear inclusions formed by p.R1441H and p.G2019S were colocalized with α-synuclein. Additionally, p.S885N and p.R1441H mutations caused reduced interaction between LRRK2 and ARHGEF7, a putative guanine nucleotide exchange factor for LRRK2, whereas this interaction was well preserved in p.R767H and p.G2019S mutations. CONCLUSION Our study suggests that p.R1441H protein facilitates the formation of intracellular inclusions, compromises GTP hydrolysis by increasing its affinity for GTP, and reduces its interaction with ARHGEF7.
Collapse
Affiliation(s)
- Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital-Linkou Medical Center, Chang Gung University College of Medicine, Taipei 10507, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital-Linkou Medical Center, Chang Gung University College of Medicine, Taipei 10507, Taiwan
| | - Chih-Hsin Lin
- Department of Neurology, Chang Gung Memorial Hospital-Linkou Medical Center, Chang Gung University College of Medicine, Taipei 10507, Taiwan
| | - Wen-Teng Chang
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Pei-Ru Jiang
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Ya-Chin Hsiao
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Yih-Ru Wu
- Department of Neurology, Chang Gung Memorial Hospital-Linkou Medical Center, Chang Gung University College of Medicine, Taipei 10507, Taiwan.
| | - Guey-Jen Lee-Chen
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan.
| |
Collapse
|
27
|
Brettle M, Patel S, Fath T. Tropomyosins in the healthy and diseased nervous system. Brain Res Bull 2016; 126:311-323. [PMID: 27298153 DOI: 10.1016/j.brainresbull.2016.06.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 12/25/2022]
Abstract
Regulation of the actin cytoskeleton is dependent on a plethora of actin-associated proteins in all eukaryotic cells. The family of tropomyosins plays a key role in controlling the function of several of these actin-associated proteins and their access to actin filaments. In order to understand the regulation of the actin cytoskeleton in highly dynamic subcellular compartments of neurons such as growth cones of developing neurons and the synaptic compartment of mature neurons, it is pivotal to decipher the functional role of tropomyosins in the nervous system. In this review, we will discuss the current understanding and recent findings on the regulation of the actin cytoskeleton by tropomyosins and potential implication that this has for the dysregulation of the actin cytoskeleton in neurological diseases.
Collapse
Affiliation(s)
- Merryn Brettle
- Neurodegeneration and Repair Unit, School of Medical Sciences, University of New South Wales, 2052 Sydney, New South Wales, Australia
| | - Shrujna Patel
- Neurodegeneration and Repair Unit, School of Medical Sciences, University of New South Wales, 2052 Sydney, New South Wales, Australia
| | - Thomas Fath
- Neurodegeneration and Repair Unit, School of Medical Sciences, University of New South Wales, 2052 Sydney, New South Wales, Australia.
| |
Collapse
|
28
|
Abstract
Mutations in LRRK2 are associated with inherited Parkinson's disease (PD) in a large number of families, and the genetic locus containing the LRRK2 gene contains a risk factor for sporadic PD. The LRRK2 protein contains several domains that suggest a role in cellular signaling, including a kinase domain. It is also clear that LRRK2 interacts, either physically or genetically, with several other important proteins implicated in PD, suggesting that LRRK2 may be a central player in the pathways that underlie parkinsonism. As such, LRRK2 has been proposed to be a plausible target for therapeutic intervention, with kinase inhibition being pursued most actively. However, there are still several fundamental aspects of LRRK2 biology and function that remain unresolved at this time. This review will focus on the key questions of normal function of LRRK2 and how this might be related to the pathophysiology of PD.
Collapse
|
29
|
Taymans JM, Greggio E. LRRK2 Kinase Inhibition as a Therapeutic Strategy for Parkinson's Disease, Where Do We Stand? Curr Neuropharmacol 2016; 14:214-25. [PMID: 26517051 PMCID: PMC4857626 DOI: 10.2174/1570159x13666151030102847] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/17/2015] [Accepted: 06/17/2015] [Indexed: 12/17/2022] Open
Abstract
One of the most promising therapeutic targets for potential disease-modifying treatment of Parkinson's disease (PD) is leucine-rich repeat kinase 2 (LRRK2). Specifically, targeting LRRK2's kinase function has generated a lot of interest from both industry and academia. This work has yielded several published studies showing the feasibility of developing potent, selective and brain permeable LRRK2 kinase inhibitors. The availability of these experimental drugs is contributing to filling in the gaps in our knowledge on the safety and efficacy of LRRK2 kinase inhibition. Recent studies of LRRK2 kinase inhibition in preclinical models point to potential undesired effects in peripheral tissues such as lung and kidney. Also, while strategies are now emerging to measure target engagement of LRRK2 inhibitors, there remains an important need to expand efficacy studies in preclinical models of progressive PD. Future work in the LRRK2 inhibition field must therefore be directed towards developing molecules and treatment regimens which demonstrate efficacy in mammalian models of disease in conditions where safety liabilities are reduced to a minimum.
Collapse
Affiliation(s)
- Jean-Marc Taymans
- Jean-Pierre Aubert Research Center, UMR-S1172,rue Polonovski - 1 place de Verdun, 59045 Lille, France.
| | - Elisa Greggio
- Department of Biology, University of Padova, 35131, Padova, Italy.
| |
Collapse
|
30
|
Wallings R, Manzoni C, Bandopadhyay R. Cellular processes associated with LRRK2 function and dysfunction. FEBS J 2015; 282:2806-26. [PMID: 25899482 PMCID: PMC4522467 DOI: 10.1111/febs.13305] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/23/2015] [Accepted: 04/20/2015] [Indexed: 02/07/2023]
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2)-encoding gene are the most common cause of monogenic Parkinson's disease. The identification of LRRK2 polymorphisms associated with increased risk for sporadic Parkinson's disease, as well as the observation that LRRK2-Parkinson's disease has a pathological phenotype that is almost indistinguishable from the sporadic form of disease, suggested LRRK2 as the culprit to provide understanding for both familial and sporadic Parkinson's disease cases. LRRK2 is a large protein with both GTPase and kinase functions. Mutations segregating with Parkinson's disease reside within the enzymatic core of LRRK2, suggesting that modification of its activity impacts greatly on disease onset and progression. Although progress has been made since its discovery in 2004, there is still much to be understood regarding LRRK2's physiological and neurotoxic properties. Unsurprisingly, given the presence of multiple enzymatic domains, LRRK2 has been associated with a diverse set of cellular functions and signalling pathways including mitochondrial function, vesicle trafficking together with endocytosis, retromer complex modulation and autophagy. This review discusses the state of current knowledge on the role of LRRK2 in health and disease with discussion of potential substrates of phosphorylation and functional partners with particular emphasis on signalling mechanisms. In addition, the use of immune cells in LRRK2 research and the role of oxidative stress as a regulator of LRRK2 activity and cellular function are also discussed.
Collapse
Affiliation(s)
- Rebecca Wallings
- Reta Lila Weston Institute of Neurological Studies and Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Claudia Manzoni
- School of Pharmacy, University of Reading, UK.,UCL Institute of Neurology, London, UK
| | - Rina Bandopadhyay
- Reta Lila Weston Institute of Neurological Studies and Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| |
Collapse
|
31
|
Abstract
Mutations in leucine-rich-repeat kinase 2 (LRRK2) are the most frequent cause of late-onset Parkinson's disease (PD). LRRK2 belongs to the Roco family of proteins which share a conserved Ras-like G-domain (Roc) and a C-terminal of Roc (COR) domain tandem. The nucleotide state of small G-proteins is strictly controlled by guanine-nucleotide-exchange factors (GEFs) and GTPase-activating proteins (GAPs). Because of contradictory structural and biochemical data, the regulatory mechanism of the LRRK2 Roc G-domain and the RocCOR tandem is still under debate. In the present study, we solved the first nucleotide-bound Roc structure and used LRRK2 and bacterial Roco proteins to characterize the RocCOR function in more detail. Nucleotide binding induces a drastic structural change in the Roc/COR domain interface, a region strongly implicated in patients with an LRRK2 mutation. Our data confirm previous assumptions that the C-terminal subdomain of COR functions as a dimerization device. We show that the dimer formation is independent of nucleotide. The affinity for GDP/GTP is in the micromolar range, the result of which is high dissociation rates in the s-1 range. Thus Roco proteins are unlikely to need GEFs to achieve activation. Monomeric LRRK2 and Roco G-domains have a similar low GTPase activity to small G-proteins. We show that GTPase activity in bacterial Roco is stimulated by the nucleotide-dependent dimerization of the G-domain within the complex. We thus propose that the Roco proteins do not require GAPs to stimulate GTP hydrolysis but stimulate each other by one monomer completing the catalytic machinery of the other.
Collapse
|
32
|
Garcia-Miralles M, Coomaraswamy J, Häbig K, Herzig MC, Funk N, Gillardon F, Maisel M, Jucker M, Gasser T, Galter D, Biskup S. No dopamine cell loss or changes in cytoskeleton function in transgenic mice expressing physiological levels of wild type or G2019S mutant LRRK2 and in human fibroblasts. PLoS One 2015; 10:e0118947. [PMID: 25830304 PMCID: PMC4382199 DOI: 10.1371/journal.pone.0118947] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 01/14/2015] [Indexed: 11/25/2022] Open
Abstract
Mutations within the LRRK2 gene have been identified in Parkinson’s disease (PD) patients and have been implicated in the dysfunction of several cellular pathways. Here, we explore how pathogenic mutations and the inhibition of LRRK2 kinase activity affect cytoskeleton dynamics in mouse and human cell systems. We generated and characterized a novel transgenic mouse model expressing physiological levels of human wild type and G2019S-mutant LRRK2. No neuronal loss or neurodegeneration was detected in midbrain dopamine neurons at the age of 12 months. Postnatal hippocampal neurons derived from transgenic mice showed no alterations in the seven parameters examined concerning neurite outgrowth sampled automatically on several hundred neurons using high content imaging. Treatment with the kinase inhibitor LRRK2-IN-1 resulted in no significant changes in the neurite outgrowth. In human fibroblasts we analyzed whether pathogenic LRRK2 mutations change cytoskeleton functions such as cell adhesion. To this end we compared the adhesion characteristics of human skin fibroblasts derived from six PD patients carrying one of three different pathogenic LRRK2 mutations and from four age-matched control individuals. The mutant LRRK2 variants as well as the inhibition of LRRK2 kinase activity did not reveal any significant cell adhesion differences in cultured fibroblasts. In summary, our results in both human and mouse cell systems suggest that neither the expression of wild type or mutant LRRK2, nor the inhibition of LRRK2 kinase activity affect neurite complexity and cellular adhesion.
Collapse
Affiliation(s)
- Marta Garcia-Miralles
- Department of Neurodegeneration, Hertie-Institute for Clinical Brain Research and DZNE, German Center for Neurodegenerative Diseases, 72076 Tuebingen, Germany
| | - Janaky Coomaraswamy
- Department of Cellular Neurology, Hertie-Institute for Clinical Brain Research and DZNE, German Center for Neurodegenerative Diseases, 72076 Tuebingen, Germany
| | - Karina Häbig
- Department of Medical Genetics and Applied Genomics, Institute of Human Genetics, University of Tuebingen, 72076 Tuebingen, Germany
| | - Martin C. Herzig
- Department of Cellular Neurology, Hertie-Institute for Clinical Brain Research and DZNE, German Center for Neurodegenerative Diseases, 72076 Tuebingen, Germany
| | - Natalja Funk
- Department of Neurodegeneration, Hertie-Institute for Clinical Brain Research and DZNE, German Center for Neurodegenerative Diseases, 72076 Tuebingen, Germany
| | - Frank Gillardon
- Boehringer Ingelheim Pharma GmbH & Co. KG, CNS Research, 88397 Biberach an der Riss, Germany
| | - Martina Maisel
- Department of Neurodegeneration, Hertie-Institute for Clinical Brain Research and DZNE, German Center for Neurodegenerative Diseases, 72076 Tuebingen, Germany
| | - Mathias Jucker
- Department of Cellular Neurology, Hertie-Institute for Clinical Brain Research and DZNE, German Center for Neurodegenerative Diseases, 72076 Tuebingen, Germany
| | - Thomas Gasser
- Department of Neurodegeneration, Hertie-Institute for Clinical Brain Research and DZNE, German Center for Neurodegenerative Diseases, 72076 Tuebingen, Germany
| | - Dagmar Galter
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Saskia Biskup
- Department of Neurodegeneration, Hertie-Institute for Clinical Brain Research and DZNE, German Center for Neurodegenerative Diseases, 72076 Tuebingen, Germany
- * E-mail:
| |
Collapse
|
33
|
Porras P, Duesbury M, Fabregat A, Ueffing M, Orchard S, Gloeckner CJ, Hermjakob H. A visual review of the interactome of LRRK2: Using deep-curated molecular interaction data to represent biology. Proteomics 2015; 15:1390-404. [PMID: 25648416 PMCID: PMC4415485 DOI: 10.1002/pmic.201400390] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 01/15/2015] [Accepted: 01/29/2015] [Indexed: 02/04/2023]
Abstract
Molecular interaction databases are essential resources that enable access to a wealth of information on associations between proteins and other biomolecules. Network graphs generated from these data provide an understanding of the relationships between different proteins in the cell, and network analysis has become a widespread tool supporting –omics analysis. Meaningfully representing this information remains far from trivial and different databases strive to provide users with detailed records capturing the experimental details behind each piece of interaction evidence. A targeted curation approach is necessary to transfer published data generated by primarily low-throughput techniques into interaction databases. In this review we present an example highlighting the value of both targeted curation and the subsequent effective visualization of detailed features of manually curated interaction information. We have curated interactions involving LRRK2, a protein of largely unknown function linked to familial forms of Parkinson's disease, and hosted the data in the IntAct database. This LRRK2-specific dataset was then used to produce different visualization examples highlighting different aspects of the data: the level of confidence in the interaction based on orthogonal evidence, those interactions found under close-to-native conditions, and the enzyme–substrate relationships in different in vitro enzymatic assays. Finally, pathway annotation taken from the Reactome database was overlaid on top of interaction networks to bring biological functional context to interaction maps.
Collapse
Affiliation(s)
- Pablo Porras
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK
| | | | | | | | | | | | | |
Collapse
|
34
|
Phosphorylation of LRRK2 by casein kinase 1α regulates trans-Golgi clustering via differential interaction with ARHGEF7. Nat Commun 2014; 5:5827. [PMID: 25500533 PMCID: PMC4268884 DOI: 10.1038/ncomms6827] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 11/10/2014] [Indexed: 12/29/2022] Open
Abstract
LRRK2, a gene relevant to Parkinson's disease, encodes a scaffolding protein with both GTPase and kinase activities. LRRK2 protein is itself phosphorylated and therefore subject to regulation by cell signaling but the kinase(s) responsible for this event have not been definitively identified. Here, using an unbiased siRNA kinome screen, we identify and validate casein kinase 1α (CK1α) as being responsible for LRRK2 phosphorylation, including in the adult mouse striatum. We further show that LRRK2 recruitment to TGN46-positive Golgi-derived vesicles is modulated by constitutive LRRK2 phosphorylation by CK1α. These effects are mediated by differential protein interactions of LRRK2 with a guanine nucleotide exchange factor, ARHGEF7. These pathways are therefore likely involved in the physiological maintenance of the Golgi in cells, which may play a role in the pathogenesis of Parkinson's disease.
Collapse
|
35
|
Waschbüsch D, Michels H, Strassheim S, Ossendorf E, Kessler D, Gloeckner CJ, Barnekow A. LRRK2 transport is regulated by its novel interacting partner Rab32. PLoS One 2014; 9:e111632. [PMID: 25360523 PMCID: PMC4216093 DOI: 10.1371/journal.pone.0111632] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 09/29/2014] [Indexed: 11/18/2022] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a multi-domain 280 kDa protein that is linked to Parkinson's disease (PD). Mutations especially in the GTPase and kinase domains of LRRK2 are the most common causes of heritable PD and are also found in sporadic forms of PD. Although the cellular function of LRRK2 is largely unknown there is increasing evidence that these mutations cause cell death due to autophagic dysfunction and mitochondrial damage. Here, we demonstrate a novel mechanism of LRRK2 binding and transport, which involves the small GTPases Rab32 and Rab38. Rab32 and its closest homologue Rab38 are known to organize the trans-Golgi network and transport of key enzymes in melanogenesis, whereas their function in non-melanogenic cells is still not well understood. Cellular processes such as autophagy, mitochondrial dynamics, phagocytosis or inflammatory processes in the brain have previously been linked to Rab32. Here, we demonstrate that Rab32 and Rab38, but no other GTPase tested, directly interact with LRRK2. GFP-Trap analyses confirmed the interaction of Rab32 with the endogenous LRRK2. In yeast two-hybrid experiments we identified a predicted coiled-coil motif containing region within the aminoterminus of LRRK2 as the possible interacting domain. Fluorescence microscopy demonstrated a co-localization of Rab32 and LRRK2 at recycling endosomes and transport vesicles, while overexpression of a constitutively active mutant of Rab32 led to an increased co-localization with Rab7/9 positive perinuclear late endosomes/MVBs. Subcellular fractionation experiments supported the novel role of Rab32 in LRRK2 late endosomal transport and sorting in the cell. Thus, Rab32 may regulate the physiological functions of LRRK2.
Collapse
Affiliation(s)
- Dieter Waschbüsch
- Department of Experimental Tumorbiology, Westfälische Wilhelms University Muenster, Muenster, Germany
- * E-mail:
| | - Helen Michels
- Department of Experimental Tumorbiology, Westfälische Wilhelms University Muenster, Muenster, Germany
| | - Swantje Strassheim
- Department of Experimental Tumorbiology, Westfälische Wilhelms University Muenster, Muenster, Germany
| | - Edith Ossendorf
- Department of Experimental Tumorbiology, Westfälische Wilhelms University Muenster, Muenster, Germany
| | - Daniel Kessler
- Department of Experimental Tumorbiology, Westfälische Wilhelms University Muenster, Muenster, Germany
| | - Christian Johannes Gloeckner
- Research Unit Protein Science, Helmholtz Zentrum München, Neuherberg, Germany
- Medical Proteome Center, Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Angelika Barnekow
- Department of Experimental Tumorbiology, Westfälische Wilhelms University Muenster, Muenster, Germany
| |
Collapse
|
36
|
Martin I, Kim JW, Dawson VL, Dawson TM. LRRK2 pathobiology in Parkinson's disease. J Neurochem 2014; 131:554-65. [PMID: 25251388 DOI: 10.1111/jnc.12949] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/14/2014] [Accepted: 09/16/2014] [Indexed: 12/11/2022]
Abstract
Mutations in the catalytic Roc-COR and kinase domains of leucine-rich repeat kinase 2 (LRRK2) are a common cause of familial Parkinson's disease (PD). LRRK2 mutations cause PD with age-related penetrance and clinical features identical to late-onset sporadic PD. Biochemical studies support an increase in LRRK2 kinase activity and a decrease in GTPase activity for kinase domain and Roc-COR mutations, respectively. Strong evidence exists that LRRK2 toxicity is kinase dependent leading to extensive efforts to identify selective and brain-permeable LRRK2 kinase inhibitors for clinical development. Cell and animal models of PD indicate that LRRK2 mutations affect vesicular trafficking, autophagy, protein synthesis, and cytoskeletal function. Although some of these biological functions are affected consistently by most disease-linked mutations, others are not and it remains currently unclear how mutations that produce variable effects on LRRK2 biochemistry and function all commonly result in the degeneration and death of dopamine neurons. LRRK2 is typically present in Lewy bodies and its toxicity in mammalian models appears to be dependent on the presence of α-synuclein, which is elevated in human iPS-derived dopamine neurons from patients harboring LRRK2 mutations. Here, we summarize biochemical and functional studies of LRRK2 and its mutations and focus on aberrant vesicular trafficking and protein synthesis as two leading mechanisms underlying LRRK2-linked disease.
Collapse
Affiliation(s)
- Ian Martin
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
37
|
Caesar M, Felk S, Aasly JO, Gillardon F. Changes in actin dynamics and F-actin structure both in synaptoneurosomes of LRRK2(R1441G) mutant mice and in primary human fibroblasts of LRRK2(G2019S) mutation carriers. Neuroscience 2014; 284:311-324. [PMID: 25301747 DOI: 10.1016/j.neuroscience.2014.09.070] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 09/01/2014] [Accepted: 09/02/2014] [Indexed: 12/13/2022]
Abstract
Converging evidence suggests that the Parkinson's disease-linked leucine-rich repeat kinase 2 (LRRK2) modulates cellular function by regulating actin dynamics. In the present study we investigate the role of LRRK2 in functional synaptic terminals of adult LRRK2-knockout and LRRK2(R1441G)-transgenic mice as well as in primary fibroblasts of LRRK2(G2019S) mutation carriers. We show that lack of LRRK2 decreases and overexpression of mutant LRRK2 age-dependently increases the effect of the actin depolymerizing agent Latrunculin A (LatA) on the synaptic cytoskeleton. Similarly, endogenous mutant LRRK2 increases sensitivity to LatA in primary fibroblasts. Under basal conditions however, these fibroblasts show an increase in F-actin bundles and a decrease in filopodial length which can be rescued by LatA treatment. Our data suggest that LRRK2 alters actin dynamics and F-actin structure both in brain neurons and skin fibroblasts. We hypothesize that increased F-actin bundling represents a compensatory mechanism to protect F-actin from the depolymerizing effect of mutant LRRK2 under basal conditions. Our data further indicate that LRRK2-dependent changes in the cytoskeleton might have functional consequences on postsynaptic NMDA receptor localization.
Collapse
Affiliation(s)
- M Caesar
- Boehringer Ingelheim Pharma GmbH & Co. KG, CNS Diseases Research, Biberach an der Riss, Germany.
| | - S Felk
- Boehringer Ingelheim Pharma GmbH & Co. KG, CNS Diseases Research, Biberach an der Riss, Germany
| | - J O Aasly
- St. Olav's University Hospital, Department of Neurology, Trondheim, Norway
| | - F Gillardon
- Boehringer Ingelheim Pharma GmbH & Co. KG, CNS Diseases Research, Biberach an der Riss, Germany.
| |
Collapse
|
38
|
Rudenko IN, Cookson MR. Heterogeneity of leucine-rich repeat kinase 2 mutations: genetics, mechanisms and therapeutic implications. Neurotherapeutics 2014; 11:738-50. [PMID: 24957201 PMCID: PMC4391379 DOI: 10.1007/s13311-014-0284-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Variation within and around the leucine-rich repeat kinase 2 (LRRK2) gene is associated with familial and sporadic Parkinson's disease (PD). Here, we discuss the prevalence of LRRK2 substitutions in different populations and their association with PD, as well as molecular and cellular mechanisms of pathologically relevant LRRK2 mutations. Kinase activation was proposed as a universal molecular mechanism for all pathogenic LRRK2 mutations, but later reports revealed heterogeneity in the effect of mutations on different activities of LRRK2. One mutation (G2019S) increases kinase activity, whereas mutations in the Ras of complex proteins (ROC)-C-terminus of ROC (COR) bidomain impair the GTPase function of LRRK2. Some risk factor variants, including G2385R in the WD40 domain, actually decrease the kinase activity of LRRK2. We suggest a model where LRRK2 mutations exert different molecular mechanisms but interfere with normal cellular function of LRRK2 at different levels of the same downstream pathway. Finally, we discuss the current state of therapeutic approaches for LRRK2-related PD.
Collapse
Affiliation(s)
- Iakov N. Rudenko
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892 USA
| | - Mark R. Cookson
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
39
|
Novel insights into the neurobiology underlying LRRK2-linked Parkinson's disease. Neuropharmacology 2014; 85:45-56. [DOI: 10.1016/j.neuropharm.2014.05.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 04/16/2014] [Accepted: 05/10/2014] [Indexed: 01/08/2023]
|
40
|
Genetic, structural, and molecular insights into the function of ras of complex proteins domains. ACTA ACUST UNITED AC 2014; 21:809-18. [PMID: 24981771 PMCID: PMC4104024 DOI: 10.1016/j.chembiol.2014.05.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/13/2014] [Accepted: 05/28/2014] [Indexed: 11/22/2022]
Abstract
Ras of complex proteins (ROC) domains were identified in 2003 as GTP binding modules in large multidomain proteins from Dictyostelium discoideum. Research into the function of these domains exploded with their identification in a number of proteins linked to human disease, including leucine-rich repeat kinase 2 (LRRK2) and death-associated protein kinase 1 (DAPK1) in Parkinson’s disease and cancer, respectively. This surge in research has resulted in a growing body of data revealing the role that ROC domains play in regulating protein function and signaling pathways. In this review, recent advances in the structural information available for proteins containing ROC domains, along with insights into enzymatic function and the integration of ROC domains as molecular switches in a cellular and organismal context, are explored.
Collapse
|
41
|
Lack of correlation between the kinase activity of LRRK2 harboring kinase-modifying mutations and its phosphorylation at Ser910, 935, and Ser955. PLoS One 2014; 9:e97988. [PMID: 24836358 PMCID: PMC4024040 DOI: 10.1371/journal.pone.0097988] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 04/27/2014] [Indexed: 01/01/2023] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is extensively phosphorylated in cells within a region amino-terminal to the leucine-rich repeat domain. Since phosphorylation in this region of LRRK2, including Ser910, Ser935, Ser955, and Ser973, is significantly downregulated upon treatment with inhibitors of LRRK2, it has been hypothesized that signaling pathways downstream of the kinase activity of LRRK2 are involved in regulating the phosphorylation of LRRK2, although the precise mechanism has remained unknown. Here we examined the effects of LRRK2 inhibitors on the phosphorylation state at Ser910, Ser935, and Ser955 in a series of kinase-inactive mutants of LRRK2. We found that the responses of LRRK2 to the inhibitors varied among mutants, in a manner not consistent with the above-mentioned hypothesis. Notably, one of the kinase-inactive mutants, T2035A LRRK2, underwent phosphorylation, as well as the inhibitor-induced dephosphorylation, at Ser910, Ser935, and Ser955, to a similar extent to those observed with wild-type LRRK2. These results suggest that the kinase activity of LRRK2 is not involved in the common mechanism of inhibitor-induced dephosphorylation of LRRK2.
Collapse
|
42
|
Mills RD, Mulhern TD, Liu F, Culvenor JG, Cheng HC. Prediction of the Repeat Domain Structures and Impact of Parkinsonism-Associated Variations on Structure and Function of all Functional Domains of Leucine-Rich Repeat Kinase 2 (LRRK2). Hum Mutat 2014; 35:395-412. [DOI: 10.1002/humu.22515] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 01/08/2014] [Indexed: 12/20/2022]
Affiliation(s)
- Ryan D. Mills
- Department of Biochemistry and Molecular Biology; Bio21 Molecular Science and Biotechnology Institute; University of Melbourne; Parkville Victoria Australia
| | - Terrence D. Mulhern
- Department of Biochemistry and Molecular Biology; Bio21 Molecular Science and Biotechnology Institute; University of Melbourne; Parkville Victoria Australia
| | - Fei Liu
- Department of Chemistry & Biomolecular Sciences; Macquarie University; NSW Australia
| | - Janetta G. Culvenor
- Department of Pathology; University of Melbourne; Parkville Victoria Australia
| | - Heung-Chin Cheng
- Department of Biochemistry and Molecular Biology; Bio21 Molecular Science and Biotechnology Institute; University of Melbourne; Parkville Victoria Australia
| |
Collapse
|
43
|
Häbig K, Gellhaar S, Heim B, Djuric V, Giesert F, Wurst W, Walter C, Hentrich T, Riess O, Bonin M. LRRK2 guides the actin cytoskeleton at growth cones together with ARHGEF7 and Tropomyosin 4. Biochim Biophys Acta Mol Basis Dis 2013; 1832:2352-67. [DOI: 10.1016/j.bbadis.2013.09.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 08/06/2013] [Accepted: 09/16/2013] [Indexed: 11/27/2022]
|
44
|
Stafa K, Tsika E, Moser R, Musso A, Glauser L, Jones A, Biskup S, Xiong Y, Bandopadhyay R, Dawson VL, Dawson TM, Moore DJ. Functional interaction of Parkinson's disease-associated LRRK2 with members of the dynamin GTPase superfamily. Hum Mol Genet 2013; 23:2055-77. [PMID: 24282027 PMCID: PMC3959816 DOI: 10.1093/hmg/ddt600] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mutations in LRRK2 cause autosomal dominant Parkinson's disease (PD). LRRK2 encodes a multi-domain protein containing GTPase and kinase domains, and putative protein–protein interaction domains. Familial PD mutations alter the GTPase and kinase activity of LRRK2 in vitro. LRRK2 is suggested to regulate a number of cellular pathways although the underlying mechanisms are poorly understood. To explore such mechanisms, it has proved informative to identify LRRK2-interacting proteins, some of which serve as LRRK2 kinase substrates. Here, we identify common interactions of LRRK2 with members of the dynamin GTPase superfamily. LRRK2 interacts with dynamin 1–3 that mediate membrane scission in clathrin-mediated endocytosis and with dynamin-related proteins that mediate mitochondrial fission (Drp1) and fusion (mitofusins and OPA1). LRRK2 partially co-localizes with endosomal dynamin-1 or with mitofusins and OPA1 at mitochondrial membranes. The subcellular distribution and oligomeric complexes of dynamin GTPases are not altered by modulating LRRK2 in mouse brain, whereas mature OPA1 levels are reduced in G2019S PD brains. LRRK2 enhances mitofusin-1 GTP binding, whereas dynamin-1 and OPA1 serve as modest substrates of LRRK2-mediated phosphorylation in vitro. While dynamin GTPase orthologs are not required for LRRK2-induced toxicity in yeast, LRRK2 functionally interacts with dynamin-1 and mitofusin-1 in cultured neurons. LRRK2 attenuates neurite shortening induced by dynamin-1 by reducing its levels, whereas LRRK2 rescues impaired neurite outgrowth induced by mitofusin-1 potentially by reversing excessive mitochondrial fusion. Our study elucidates novel functional interactions of LRRK2 with dynamin-superfamily GTPases that implicate LRRK2 in the regulation of membrane dynamics important for endocytosis and mitochondrial morphology.
Collapse
Affiliation(s)
- Klodjan Stafa
- Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Luerman GC, Nguyen C, Samaroo H, Loos P, Xi H, Hurtado-Lorenzo A, Needle E, Stephen Noell G, Galatsis P, Dunlop J, Geoghegan KF, Hirst WD. Phosphoproteomic evaluation of pharmacological inhibition of leucine-rich repeat kinase 2 reveals significant off-target effects of LRRK-2-IN-1. J Neurochem 2013; 128:561-76. [PMID: 24117733 DOI: 10.1111/jnc.12483] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/27/2013] [Accepted: 10/02/2013] [Indexed: 12/11/2022]
Abstract
Genetic mutations in leucine-rich repeat kinase 2 (LRRK2) have been linked to autosomal dominant Parkinson's disease. The most prevalent mutation, G2019S, results in enhanced LRRK2 kinase activity that potentially contributes to the etiology of Parkinson's disease. Consequently, disease progression is potentially mediated by poorly characterized phosphorylation-dependent LRRK2 substrate pathways. To address this gap in knowledge, we transduced SH-SY5Y neuroblastoma cells with LRRK2 G2019S via adenovirus, then determined quantitative changes in the phosphoproteome upon LRRK2 kinase inhibition (LRRK2-IN-1 treatment) using stable isotope labeling of amino acids in culture combined with phosphopeptide enrichment and LC-MS/MS analysis. We identified 776 phosphorylation sites that were increased or decreased at least 50% in response to LRRK2-IN-1 treatment, including sites on proteins previously known to associate with LRRK2. Bioinformatic analysis of those phosphoproteins suggested a potential role for LRRK2 kinase activity in regulating pro-inflammatory responses and neurite morphology, among other pathways. In follow-up experiments, LRRK2-IN-1 inhibited lipopolysaccharide-induced tumor necrosis factor alpha (TNFα) and C-X-C motif chemokine 10 (CXCL10) levels in astrocytes and also enhanced multiple neurite characteristics in primary neuronal cultures. However, LRRK2-IN-1 had almost identical effects in primary glial and neuronal cultures from LRRK2 knockout mice. These data suggest LRRK2-IN-1 may inhibit pathways of perceived LRRK2 pathophysiological function independently of LRRK2 highlighting the need to use multiple pharmacological tools and genetic approaches in studies determining LRRK2 function.
Collapse
Affiliation(s)
- Gregory C Luerman
- Pfizer Global Research & Development, Neuroscience Research Unit, Cambridge, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
LRRK2 phosphorylates Snapin and inhibits interaction of Snapin with SNAP-25. Exp Mol Med 2013; 45:e36. [PMID: 23949442 PMCID: PMC3789260 DOI: 10.1038/emm.2013.68] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 05/20/2013] [Accepted: 06/10/2013] [Indexed: 01/17/2023] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a gene that, upon mutation, causes autosomal-dominant familial Parkinson's disease (PD). Yeast two-hybrid screening revealed that Snapin, a SNAP-25 (synaptosomal-associated protein-25) interacting protein, interacts with LRRK2. An in vitro kinase assay exhibited that Snapin is phosphorylated by LRRK2. A glutathione-S-transferase (GST) pull-down assay showed that LRRK2 may interact with Snapin via its Ras-of-complex (ROC) and N-terminal domains, with no significant difference on interaction of Snapin with LRRK2 wild type (WT) or its pathogenic mutants. Further analysis by mutation study revealed that Threonine 117 of Snapin is one of the sites phosphorylated by LRRK2. Furthermore, a Snapin T117D phosphomimetic mutant decreased its interaction with SNAP-25 in the GST pull-down assay. SNAP-25 is a component of the SNARE (Soluble NSF Attachment protein REceptor) complex and is critical for the exocytosis of synaptic vesicles. Incubation of rat brain lysate with recombinant Snapin T117D, but not WT, protein caused decreased interaction of synaptotagmin with the SNARE complex based on a co-immunoprecipitation assay. We further found that LRRK2-dependent phosphorylation of Snapin in the hippocampal neurons resulted in a decrease in the number of readily releasable vesicles and the extent of exocytotic release. Combined, these data suggest that LRRK2 may regulate neurotransmitter release via control of Snapin function by inhibitory phosphorylation.
Collapse
|
47
|
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2, PARK8, OMIM 607060) gene represent the most common known cause of hereditary Parkinson's disease (PD) with late-onset and dominant inheritance. LRRK2 protein is composed of multiple domains including two distinct enzymatic domains, a kinase and a Ras-of-complex (Roc) GTPase, connected by a C-terminal-of-Roc (COR) domain, and belongs to the ROCO protein family. Disease-causing mutations located in the kinase domain enhance kinase activity (i.e., G2019S) whereas mutations clustering within the Roc-COR tandem domain impair GTPase activity (i.e., R1441C/G and Y1699C). Familial LRRK2 mutations commonly induce neuronal toxicity that, at least for the frequent G2019S variant, is dependent on kinase activity. The contribution of GTPase activity to LRRK2-dependent neuronal toxicity is not yet clear. Therefore, both GTPase and kinase activity may be important for mediating neurodegeneration in PD due to familial LRRK2 mutations. At present, the physiological function of LRRK2 in the mammalian brain and the regulation of its enzymatic activity are incompletely understood. In this review, we focus on the GTPase domain of LRRK2 and discuss the recent advances in elucidating its function and its interplay with the kinase domain for the regulation of LRRK2 activity and toxicity. GTPase activity is an important feature of LRRK2 biology and pathophysiology and represents an underexplored yet potentially tractable therapeutic target for treating LRRK2-associated PD.
Collapse
Affiliation(s)
- Elpida Tsika
- Laboratory of Molecular Neurodegenerative Research; Brain Mind Institute; School of Life Sciences; Ecole Polytechnique Fédérale de Lausanne (EPFL); Lausanne, Switzerland
| | - Darren J Moore
- Laboratory of Molecular Neurodegenerative Research; Brain Mind Institute; School of Life Sciences; Ecole Polytechnique Fédérale de Lausanne (EPFL); Lausanne, Switzerland
| |
Collapse
|
48
|
Abstract
LRRK2 (leucine-rich repeat kinase 2) is a large protein encoding multiple functional domains, including two catalytically active domains, a kinase and a GTPase domain. The LRRK2 GTPase belongs to the Ras-GTPase superfamily of GTPases, more specifically to the ROC (Ras of complex proteins) subfamily. Studies with recombinant LRRK2 protein purified from eukaryotic cells have confirmed that LRRK2 binds guanine nucleotides and catalyses the hydrolysis of GTP to GDP. LRRK2 is linked to PD (Parkinson's disease) and GTPase activity is impaired for several PD mutants located in the ROC and COR (C-terminal of ROC) domains, indicating that it is involved in PD pathogenesis. Ras family GTPases are known to function as molecular switches, and several studies have explored this possibility for LRRK2. These studies show that there is interplay between the LRRK2 GTPase function and its kinase function, with most data pointing towards a role for the kinase domain as an upstream regulator of ROC. The GTPase function is therefore a pivotal functionality within the LRRK2-mediated signalling cascade which includes partners encoded by other LRRK2 domains as well as other cellular signalling partners. The present review examines what is known of the enzymatic properties of the LRRK2 GTPase, the interplay between ROC and other LRRK2 domains, and the interplay between ROC and other cellular proteins with the dual goal to understand how LRRK2 GTPase affects cellular functions and point to future research venues.
Collapse
|
49
|
Abstract
Mutations in the LRRK2 (leucine-rich repeat kinase 2) gene are the most frequent genetic cause of PD (Parkinson's disease), and these mutations play important roles in sporadic PD. The LRRK2 protein contains GTPase and kinase domains and several protein-protein interaction domains. The kinase and GTPase activity of LRRK2 seem to be important in regulating LRRK2-dependent cellular signalling pathways. LRRK2's GTPase and kinase domains may reciprocally regulate each other to direct LRRK2's ultimate function. Although most LRRK2 investigations are centred on LRRK2's kinase activity, the present review focuses on the function of LRRK2's GTPase activity in LRRK2 physiology and pathophysiology.
Collapse
|
50
|
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene represent the most common cause of familial Parkinson's disease (PD), whereas common variation at the LRRK2 locus is associated with an increased risk of idiopathic PD. Considerable progress has been made toward understanding the biological functions of LRRK2 and the molecular mechanisms underlying the pathogenic effects of disease-associated mutations. The development of neuronal culture models and transgenic or viral-based rodent models have proved useful for identifying a number of emerging pathways implicated in LRRK2-dependent neuronal damage, including the microtubule network, actin cytoskeleton, autophagy, mitochondria, vesicular trafficking, and protein quality control. However, many important questions remain to be posed and answered. Elucidating the molecular mechanisms and pathways underlying LRRK2-mediated neurodegeneration is critical for the identification of new molecular targets for therapeutic intervention in PD. In this review we discuss recent advances and unanswered questions in understanding the pathophysiology of LRRK2.
Collapse
|