1
|
Qi W, Yu Y, Yang C, Wang X, Jiang Y, Zhang L, Yu Z. Nanospheres as the delivery vehicle: novel application of Toxoplasma gondii ribosomal protein S2 in PLGA and chitosan nanospheres against acute toxoplasmosis. Front Immunol 2024; 15:1475280. [PMID: 39416787 PMCID: PMC11480959 DOI: 10.3389/fimmu.2024.1475280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
Toxoplasma gondii (T. gondii) is a zoonotic disease that poses great harm to humans and animals. So far, no effective T. gondii vaccine has been developed to provide fully protection against such parasites. Recently, numerous researches have focused on the use of poly-lactic-co-glycolic acid (PLGA) and chitosan (CS) for the vaccines against T. gondii infections. In this study, we employed PLGA and CS as the vehicles for T. gondii ribosome protein (TgRPS2) delivery. TgRPS2-PLGA and TgRPS2-CS nanospheres were synthesized by double emulsion solvent evaporation and ionic gelation technique as the nano vaccines. Before immunization in animals, the release efficacy and toxicity of the synthesized nanospheres were evaluated in vitro. Then, ICR mice were immunized intramuscularly, and immune protections of the synthesized nanospheres were assessed. The results showed that TgRPS2-PLGA and TgRPS2-CS nanospheres could induce higher levels of IgG and cytokines, activate dendritic cells, and promote the expression of histocompatibility complexes. The splenic lymphocyte proliferation and the enhancement in the proportion of CD4+ and CD8+ T lymphocytes were also observed in immunized animals. In addition, two types of nanospheres could significantly inhabit the replications of T. gondii in cardiac muscles and spleen tissues. All these obtained results in this study demonstrated that the TgRPS2 protein delivered by PLGA or CS nanospheres provided satisfactory immunoprotective effects in resisting T. gondii, and such formulations illustrated potential as prospective preventive agents for toxoplasmosis.
Collapse
Affiliation(s)
- WeiYu Qi
- College of animal science and technology, Ningxia University, Yinchuan, Ningxia, China
| | - YouLi Yu
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Science, Yinchuan, China
| | - ChenChen Yang
- College of animal science and technology, Ningxia University, Yinchuan, Ningxia, China
| | - XiaoJuan Wang
- College of animal science and technology, Ningxia University, Yinchuan, Ningxia, China
| | - YuChen Jiang
- College of animal science and technology, Ningxia University, Yinchuan, Ningxia, China
| | - Li Zhang
- College of animal science and technology, Ningxia University, Yinchuan, Ningxia, China
| | - ZhengQing Yu
- College of animal science and technology, Ningxia University, Yinchuan, Ningxia, China
| |
Collapse
|
2
|
El Bissati K, Krishack PA, Zhou Y, Weber CR, Lykins J, Jankovic D, Edelblum KL, Fraczek L, Grover H, Chentoufi AA, Singh G, Reardon C, Dubey JP, Reed S, Alexander J, Sidney J, Sette A, Shastri N, McLeod R. CD4 + T Cell Responses to Toxoplasma gondii Are a Double-Edged Sword. Vaccines (Basel) 2023; 11:1485. [PMID: 37766162 PMCID: PMC10535856 DOI: 10.3390/vaccines11091485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/26/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
CD4+ T cells have been found to play critical roles in the control of both acute and chronic Toxoplasma infection. Previous studies identified a protective role for the Toxoplasma CD4+ T cell-eliciting peptide AS15 (AVEIHRPVPGTAPPS) in C57BL/6J mice. Herein, we found that immunizing mice with AS15 combined with GLA-SE, a TLR-4 agonist in emulsion adjuvant, can be either helpful in protecting male and female mice at early stages against Type I and Type II Toxoplasma parasites or harmful (lethal with intestinal, hepatic, and spleen pathology associated with a storm of IL6). Introducing the universal CD4+ T cell epitope PADRE abrogates the harmful phenotype of AS15. Our findings demonstrate quantitative and qualitative features of an effective Toxoplasma-specific CD4+ T cell response that should be considered in testing next-generation vaccines against toxoplasmosis. Our results also are cautionary that individual vaccine constituents can cause severe harm depending on the company they keep.
Collapse
Affiliation(s)
- Kamal El Bissati
- Institute of Molecular Engineering, University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Paulette A. Krishack
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA; (P.A.K.); (C.R.W.); (G.S.); (C.R.)
| | - Ying Zhou
- Department of Ophthalmology and Visual Sciences, University of Chicago, Chicago, IL 60637, USA; (Y.Z.); (J.L.); (L.F.); (R.M.)
| | - Christopher R. Weber
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA; (P.A.K.); (C.R.W.); (G.S.); (C.R.)
| | - Joseph Lykins
- Department of Ophthalmology and Visual Sciences, University of Chicago, Chicago, IL 60637, USA; (Y.Z.); (J.L.); (L.F.); (R.M.)
- Department of Emergency Medicine, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02215, USA
| | - Dragana Jankovic
- Immunoparasitology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Karen L. Edelblum
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Center for Immunity and Inflammation, Laboratory Medicine, Department of Pathology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Laura Fraczek
- Department of Ophthalmology and Visual Sciences, University of Chicago, Chicago, IL 60637, USA; (Y.Z.); (J.L.); (L.F.); (R.M.)
| | - Harshita Grover
- Division of Immunology and Pathogenesis, Department of Molecular and Cellular Biology, University of California, Berkeley, CA 94720, USA; (H.G.); (N.S.)
| | - Aziz A. Chentoufi
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa;
| | - Gurminder Singh
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA; (P.A.K.); (C.R.W.); (G.S.); (C.R.)
| | - Catherine Reardon
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA; (P.A.K.); (C.R.W.); (G.S.); (C.R.)
| | - J. P. Dubey
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
| | - Steve Reed
- Infectious Diseases Research Institute, 1616 Eastlake Ave E #400, Seattle, WA 98102, USA;
| | - Jeff Alexander
- PaxVax, 3985-A Sorrento Valley Blvd, San Diego, CA 92121, USA;
| | - John Sidney
- La Jolla Institute of Allergy and Immunology, 9420 Athena Cir, La Jolla, CA 92037, USA; (J.S.); (A.S.)
| | - Alessandro Sette
- La Jolla Institute of Allergy and Immunology, 9420 Athena Cir, La Jolla, CA 92037, USA; (J.S.); (A.S.)
| | - Nilabh Shastri
- Division of Immunology and Pathogenesis, Department of Molecular and Cellular Biology, University of California, Berkeley, CA 94720, USA; (H.G.); (N.S.)
| | - Rima McLeod
- Department of Ophthalmology and Visual Sciences, University of Chicago, Chicago, IL 60637, USA; (Y.Z.); (J.L.); (L.F.); (R.M.)
| |
Collapse
|
3
|
Felín MS, Wang K, Moreira A, Grose A, Leahy K, Zhou Y, Clouser FA, Siddiqui M, Leong N, Goodall P, Michalowski M, Ismail M, Christmas M, Schrantz S, Caballero Z, Norero X, Estripeaut D, Ellis D, Raggi C, Castro C, Moossazadeh D, Ramirez M, Pandey A, Ashi K, Dovgin S, Dixon A, Li X, Begeman I, Heichman S, Lykins J, Villalobos-Cerrud D, Fabrega L, Montalvo JLS, Mendivil C, Quijada MR, Fernández-Pirla S, de La Guardia V, Wong D, de Guevara ML, Flores C, Borace J, García A, Caballero N, Rengifo-Herrera C, de Saez MTM, Politis M, Wroblewski K, Karrison T, Ross S, Dogra M, Dhamsania V, Graves N, Kirchberg M, Mathur K, Aue A, Restrepo CM, Llanes A, Guzman G, Rebellon A, Boyer K, Heydemann P, Noble AG, Swisher C, Rabiah P, Withers S, Hull T, Su C, Blair M, Latkany P, Mui E, Vasconcelos-Santos DV, Villareal A, Perez A, Galvis CAN, Montes MV, Perez NIC, Ramirez M, Chittenden C, Wang E, Garcia-López LL, Muñoz-Ortiz J, Rivera-Valdivia N, Bohorquez-Granados MC, de-la-Torre GC, Padrieu G, Hernandez JDV, Celis-Giraldo D, Dávila JAA, Torres E, Oquendo MM, Arteaga-Rivera JY, Nicolae DL, Rzhetsky A, Roizen N, Stillwaggon E, Sawers L, Peyron F, Wallon M, Chapey E, Levigne P, et alFelín MS, Wang K, Moreira A, Grose A, Leahy K, Zhou Y, Clouser FA, Siddiqui M, Leong N, Goodall P, Michalowski M, Ismail M, Christmas M, Schrantz S, Caballero Z, Norero X, Estripeaut D, Ellis D, Raggi C, Castro C, Moossazadeh D, Ramirez M, Pandey A, Ashi K, Dovgin S, Dixon A, Li X, Begeman I, Heichman S, Lykins J, Villalobos-Cerrud D, Fabrega L, Montalvo JLS, Mendivil C, Quijada MR, Fernández-Pirla S, de La Guardia V, Wong D, de Guevara ML, Flores C, Borace J, García A, Caballero N, Rengifo-Herrera C, de Saez MTM, Politis M, Wroblewski K, Karrison T, Ross S, Dogra M, Dhamsania V, Graves N, Kirchberg M, Mathur K, Aue A, Restrepo CM, Llanes A, Guzman G, Rebellon A, Boyer K, Heydemann P, Noble AG, Swisher C, Rabiah P, Withers S, Hull T, Su C, Blair M, Latkany P, Mui E, Vasconcelos-Santos DV, Villareal A, Perez A, Galvis CAN, Montes MV, Perez NIC, Ramirez M, Chittenden C, Wang E, Garcia-López LL, Muñoz-Ortiz J, Rivera-Valdivia N, Bohorquez-Granados MC, de-la-Torre GC, Padrieu G, Hernandez JDV, Celis-Giraldo D, Dávila JAA, Torres E, Oquendo MM, Arteaga-Rivera JY, Nicolae DL, Rzhetsky A, Roizen N, Stillwaggon E, Sawers L, Peyron F, Wallon M, Chapey E, Levigne P, Charter C, De Frias M, Montoya J, Press C, Ramirez R, Contopoulos-Ioannidis D, Maldonado Y, Liesenfeld O, Gomez C, Wheeler K, Holfels E, Frim D, McLone D, Penn R, Cohen W, Zehar S, McAuley J, Limonne D, Houze S, Abraham S, Piarroux R, Tesic V, Beavis K, Abeleda A, Sautter M, El Mansouri B, El Bachir A, Amarir F, El Bissati K, de-la-Torre A, Britton G, Motta J, Ortega-Barria E, Romero IL, Meier P, Grigg M, Gómez-Marín J, Kosagisharaf JR, Llorens XS, Reyes O, McLeod R. Building Programs to Eradicate Toxoplasmosis Part I: Introduction and Overview. CURRENT PEDIATRICS REPORTS 2022; 10:57-92. [PMID: 36034212 PMCID: PMC9395898 DOI: 10.1007/s40124-022-00269-w] [Show More Authors] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/29/2022] [Indexed: 11/08/2022]
Abstract
Purpose of Review Review building of programs to eliminate Toxoplasma infections. Recent Findings Morbidity and mortality from toxoplasmosis led to programs in USA, Panama, and Colombia to facilitate understanding, treatment, prevention, and regional resources, incorporating student work. Summary Studies foundational for building recent, regional approaches/programs are reviewed. Introduction provides an overview/review of programs in Panamá, the United States, and other countries. High prevalence/risk of exposure led to laws mandating testing in gestation, reporting, and development of broad-based teaching materials about Toxoplasma. These were tested for efficacy as learning tools for high-school students, pregnant women, medical students, physicians, scientists, public health officials and general public. Digitized, free, smart phone application effectively taught pregnant women about toxoplasmosis prevention. Perinatal infection care programs, identifying true regional risk factors, and point-of-care gestational screening facilitate prevention and care. When implemented fully across all demographics, such programs present opportunities to save lives, sight, and cognition with considerable spillover benefits for individuals and societies. Supplementary Information The online version contains supplementary material available at 10.1007/s40124-022-00269-w.
Collapse
Affiliation(s)
| | - Kanix Wang
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL USA
| | - Aliya Moreira
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
- Department of Pediatrics Infectious Diseases/Department of Neonatology, Hospital del Niño doctor José Renán Esquivel, Ciudad de Panamá, Panamá
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Andrew Grose
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Karen Leahy
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Ying Zhou
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Fatima Alibana Clouser
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Maryam Siddiqui
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Nicole Leong
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Perpetua Goodall
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | | | - Mahmoud Ismail
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Monica Christmas
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Stephen Schrantz
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Zuleima Caballero
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
| | - Ximena Norero
- Department of Pediatrics Infectious Diseases/Department of Neonatology, Hospital del Niño doctor José Renán Esquivel, Ciudad de Panamá, Panamá
| | - Dora Estripeaut
- Department of Pediatrics Infectious Diseases/Department of Neonatology, Hospital del Niño doctor José Renán Esquivel, Ciudad de Panamá, Panamá
| | - David Ellis
- Department of Pediatrics Infectious Diseases/Department of Neonatology, Hospital del Niño doctor José Renán Esquivel, Ciudad de Panamá, Panamá
| | - Catalina Raggi
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Catherine Castro
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Davina Moossazadeh
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
- Department of Statistics, The University of Chicago, Chicago, IL USA
| | - Margarita Ramirez
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Abhinav Pandey
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Kevin Ashi
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Samantha Dovgin
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
| | - Ashtyn Dixon
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Xuan Li
- Rush University Medical School/Rush University Medical Center, Chicago, IL USA
| | - Ian Begeman
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Sharon Heichman
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Joseph Lykins
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Delba Villalobos-Cerrud
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
| | - Lorena Fabrega
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
| | - José Luis Sanchez Montalvo
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Connie Mendivil
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
| | - Mario R. Quijada
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
| | - Silvia Fernández-Pirla
- Toxoplasmosis Programs and Initiatives in Panamá, Ciudad de Panamá, Panamá
- Academia Interamericana de Panamá, Ciudad de Panamá, Panamá
| | - Valli de La Guardia
- Toxoplasmosis Programs and Initiatives in Panamá, Ciudad de Panamá, Panamá
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
- Hospital Santo Tomás, Ciudad de Panamá, Panamá
| | - Digna Wong
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
| | - Mayrene Ladrón de Guevara
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
- Hospital Santo Tomás, Ciudad de Panamá, Panamá
| | | | | | - Anabel García
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
| | | | - Claudia Rengifo-Herrera
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
- Universidad de Panamá, Ciudad de Panamá, Panamá
| | - Maria Theresa Moreno de Saez
- Department of Pediatrics Infectious Diseases/Department of Neonatology, Hospital del Niño doctor José Renán Esquivel, Ciudad de Panamá, Panamá
| | - Michael Politis
- Toxoplasmosis Programs and Initiatives in Panamá, Ciudad de Panamá, Panamá
| | - Kristen Wroblewski
- Department of Public Health Sciences, The University of Chicago, Chicago, IL USA
| | - Theodore Karrison
- Department of Public Health Sciences, The University of Chicago, Chicago, IL USA
| | - Stephanie Ross
- Rush University Medical School/Rush University Medical Center, Chicago, IL USA
| | - Mimansa Dogra
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Vishan Dhamsania
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Nicholas Graves
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Marci Kirchberg
- The Global Health Center, The University of Chicago, Chicago, IL USA
- Harris School of Public Policy, The University of Chicago, Chicago, IL USA
| | - Kopal Mathur
- The Global Health Center, The University of Chicago, Chicago, IL USA
- Harris School of Public Policy, The University of Chicago, Chicago, IL USA
| | - Ashley Aue
- The Global Health Center, The University of Chicago, Chicago, IL USA
- Harris School of Public Policy, The University of Chicago, Chicago, IL USA
| | - Carlos M. Restrepo
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
| | - Alejandro Llanes
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
| | - German Guzman
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
| | - Arturo Rebellon
- Sanofi Aventis de Panamá S.A., University of South Florida, Ciudad de Panamá, Panamá
| | - Kenneth Boyer
- Rush University Medical School/Rush University Medical Center, Chicago, IL USA
| | - Peter Heydemann
- Rush University Medical School/Rush University Medical Center, Chicago, IL USA
| | - A. Gwendolyn Noble
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Charles Swisher
- Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | | | - Shawn Withers
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Teri Hull
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Chunlei Su
- Department of Microbiology, The University of Tennessee, Knoxville, TN USA
| | - Michael Blair
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Paul Latkany
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Ernest Mui
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | | | - Alcibiades Villareal
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
| | - Ambar Perez
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
| | | | | | | | - Morgan Ramirez
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
| | - Cy Chittenden
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
| | - Edward Wang
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
| | | | - Juliana Muñoz-Ortiz
- Grupo de Investigación en Neurociencias, Universidad del Rosario, Bogotá, Colombia
| | | | | | | | - Guillermo Padrieu
- The University of South Florida College of Public Health, Tampa, FL USA
| | | | | | | | | | | | | | - Dan L. Nicolae
- Department of Statistics, The University of Chicago, Chicago, IL USA
| | - Andrey Rzhetsky
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL USA
| | - Nancy Roizen
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | | | - Larry Sawers
- Department of Economics, American University, Washington, D.C. USA
| | - Francois Peyron
- Institut des agents infectieux, Hôpital de la Croix-Rousse, Lyon, France
| | - Martine Wallon
- Institut des agents infectieux, Hôpital de la Croix-Rousse, Lyon, France
| | - Emanuelle Chapey
- Institut des agents infectieux, Hôpital de la Croix-Rousse, Lyon, France
| | - Pauline Levigne
- Institut des agents infectieux, Hôpital de la Croix-Rousse, Lyon, France
| | | | | | - Jose Montoya
- Remington Specialty Laboratory, Palo Alto, CA USA
| | - Cindy Press
- Remington Specialty Laboratory, Palo Alto, CA USA
| | | | - Despina Contopoulos-Ioannidis
- Department of Pediatrics, Division of Infectious Diseases, Stanford University College of Medicine, Stanford, CA USA
| | - Yvonne Maldonado
- Department of Pediatrics, Division of Infectious Diseases, Stanford University College of Medicine, Stanford, CA USA
| | | | - Carlos Gomez
- Department of Pediatrics, Division of Infectious Diseases, Stanford University College of Medicine, Stanford, CA USA
| | - Kelsey Wheeler
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
| | - Ellen Holfels
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - David Frim
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - David McLone
- Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Richard Penn
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - William Cohen
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
| | - Samantha Zehar
- Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - James McAuley
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | | | - Sandrine Houze
- Laboratory of Parasitologie, Bichat-Claude Bernard Hospital, Paris, France
| | - Sylvie Abraham
- Laboratory of Parasitologie, Bichat-Claude Bernard Hospital, Paris, France
| | | | - Vera Tesic
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Kathleen Beavis
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Ana Abeleda
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Mari Sautter
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | | | | | - Fatima Amarir
- Faculty of Sciences Ain Chock, University Hassan II, Casablanca, Morocco
| | - Kamal El Bissati
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- INH, Rabat, Morocco
| | | | - Gabrielle Britton
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
- Member of the Sistema Nacional de investigadores de Panamá (SNI), Ciudad de Panamá, Panama
| | - Jorge Motta
- Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT), Ciudad de Panamá, Panamá
| | - Eduardo Ortega-Barria
- Member of the Sistema Nacional de investigadores de Panamá (SNI), Ciudad de Panamá, Panama
- Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT), Ciudad de Panamá, Panamá
- GSK Vaccines, Panamá, Panamá
| | - Isabel Luz Romero
- Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT), Ciudad de Panamá, Panamá
| | - Paul Meier
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Michael Grigg
- Molecular Parasitology, NIAID, NIH, Bethesda, MD USA
| | | | - Jagannatha Rao Kosagisharaf
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
- Member of the Sistema Nacional de investigadores de Panamá (SNI), Ciudad de Panamá, Panama
| | - Xavier Sáez Llorens
- Department of Pediatrics Infectious Diseases/Department of Neonatology, Hospital del Niño doctor José Renán Esquivel, Ciudad de Panamá, Panamá
- Member of the Sistema Nacional de investigadores de Panamá (SNI), Ciudad de Panamá, Panama
| | - Osvaldo Reyes
- Hospital Santo Tomás, Ciudad de Panamá, Panamá
- Universidad de Panamá, Ciudad de Panamá, Panamá
- Member of the Sistema Nacional de investigadores de Panamá (SNI), Ciudad de Panamá, Panama
| | - Rima McLeod
- Toxoplasmosis Programs and Initiatives in Panamá, Ciudad de Panamá, Panamá
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL USA
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
- Toxoplasmosis Center, The University of Chicago and Toxoplasmosis Research Institute, Chicago, IL USA
- Department of Pediatrics, Division of Infectious Diseases, The University of Chicago, Chicago, IL USA
| |
Collapse
|
4
|
Felín MS, Wang K, Moreira A, Grose A, Leahy K, Zhou Y, Clouser FA, Siddiqui M, Leong N, Goodall P, Michalowski M, Ismail M, Christmas M, Schrantz S, Caballero Z, Norero X, Estripeaut D, Ellis D, Raggi C, Castro C, Moossazadeh D, Ramirez M, Pandey A, Ashi K, Dovgin S, Dixon A, Li X, Begeman I, Heichman S, Lykins J, Villalobos-Cerrud D, Fabrega L, Montalvo JLS, Mendivil C, Quijada MR, Fernández-Pirla S, de La Guardia V, Wong D, de Guevara ML, Flores C, Borace J, García A, Caballero N, Rengifo-Herrera C, de Saez MTM, Politis M, Ross S, Dogra M, Dhamsania V, Graves N, Kirchberg M, Mathur K, Aue A, Restrepo CM, Llanes A, Guzman G, Rebellon A, Boyer K, Heydemann P, Noble AG, Swisher C, Rabiah P, Withers S, Hull T, Frim D, McLone D, Su C, Blair M, Latkany P, Mui E, Vasconcelos-Santos DV, Villareal A, Perez A, Galvis CAN, Montes MV, Perez NIC, Ramirez M, Chittenden C, Wang E, Garcia-López LL, Padrieu G, Muñoz-Ortiz J, Rivera-Valdivia N, Bohorquez-Granados MC, de-la-Torre GC, Hernandez JDV, Celis-Giraldo D, Dávila JAA, Torres E, Oquendo MM, Arteaga-Rivera JY, Nicolae DL, Rzhetsky A, Roizen N, Stillwaggon E, Sawers L, Peyron F, Wallon M, Chapey E, Levigne P, et alFelín MS, Wang K, Moreira A, Grose A, Leahy K, Zhou Y, Clouser FA, Siddiqui M, Leong N, Goodall P, Michalowski M, Ismail M, Christmas M, Schrantz S, Caballero Z, Norero X, Estripeaut D, Ellis D, Raggi C, Castro C, Moossazadeh D, Ramirez M, Pandey A, Ashi K, Dovgin S, Dixon A, Li X, Begeman I, Heichman S, Lykins J, Villalobos-Cerrud D, Fabrega L, Montalvo JLS, Mendivil C, Quijada MR, Fernández-Pirla S, de La Guardia V, Wong D, de Guevara ML, Flores C, Borace J, García A, Caballero N, Rengifo-Herrera C, de Saez MTM, Politis M, Ross S, Dogra M, Dhamsania V, Graves N, Kirchberg M, Mathur K, Aue A, Restrepo CM, Llanes A, Guzman G, Rebellon A, Boyer K, Heydemann P, Noble AG, Swisher C, Rabiah P, Withers S, Hull T, Frim D, McLone D, Su C, Blair M, Latkany P, Mui E, Vasconcelos-Santos DV, Villareal A, Perez A, Galvis CAN, Montes MV, Perez NIC, Ramirez M, Chittenden C, Wang E, Garcia-López LL, Padrieu G, Muñoz-Ortiz J, Rivera-Valdivia N, Bohorquez-Granados MC, de-la-Torre GC, Hernandez JDV, Celis-Giraldo D, Dávila JAA, Torres E, Oquendo MM, Arteaga-Rivera JY, Nicolae DL, Rzhetsky A, Roizen N, Stillwaggon E, Sawers L, Peyron F, Wallon M, Chapey E, Levigne P, Charter C, De Frias M, Montoya J, Press C, Ramirez R, Contopoulos-Ioannidis D, Maldonado Y, Liesenfeld O, Gomez C, Wheeler K, Zehar S, McAuley J, Limonne D, Houze S, Abraham S, Piarroux R, Tesic V, Beavis K, Abeleda A, Sautter M, El Mansouri B, El Bachir A, Amarir F, El Bissati K, Holfels E, Frim D, McLone D, Penn R, Cohen W, de-la-Torre A, Britton G, Motta J, Ortega-Barria E, Romero IL, Meier P, Grigg M, Gómez-Marín J, Kosagisharaf JR, Llorens XS, Reyes O, McLeod R. Building Programs to Eradicate Toxoplasmosis Part IV: Understanding and Development of Public Health Strategies and Advances "Take a Village". CURRENT PEDIATRICS REPORTS 2022; 10:125-154. [PMID: 35991908 PMCID: PMC9379243 DOI: 10.1007/s40124-022-00268-x] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/29/2022] [Indexed: 11/12/2022]
Abstract
Purpose of Review Review international efforts to build a global public health initiative focused on toxoplasmosis with spillover benefits to save lives, sight, cognition and motor function benefiting maternal and child health. Recent Findings Multiple countries' efforts to eliminate toxoplasmosis demonstrate progress and context for this review and new work. Summary Problems with potential solutions proposed include accessibility of accurate, inexpensive diagnostic testing, pre-natal screening and facilitating tools, missed and delayed neonatal diagnosis, restricted access, high costs, delays in obtaining medicines emergently, delayed insurance pre-approvals and high medicare copays taking considerable physician time and effort, harmful shortcuts being taken in methods to prepare medicines in settings where access is restricted, reluctance to perform ventriculoperitoneal shunts promptly when needed without recognition of potential benefit, access to resources for care, especially for marginalized populations, and limited use of recent advances in management of neurologic and retinal disease which can lead to good outcomes. Supplementary Information The online version contains supplementary material available at 10.1007/s40124-022-00268-x.
Collapse
Affiliation(s)
| | - Kanix Wang
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL USA
| | - Aliya Moreira
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
- Department of Pediatrics Infectious Diseases/Department of Neonatology, Hospital del Niño doctor José Renán Esquivel, Ciudad de Panama, Panama
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Andrew Grose
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Karen Leahy
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Ying Zhou
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Fatima Alibana Clouser
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Maryam Siddiqui
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Nicole Leong
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Perpetua Goodall
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | | | - Mahmoud Ismail
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Monica Christmas
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Stephen Schrantz
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Zuleima Caballero
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
| | - Ximena Norero
- Department of Pediatrics Infectious Diseases/Department of Neonatology, Hospital del Niño doctor José Renán Esquivel, Ciudad de Panama, Panama
| | - Dora Estripeaut
- Department of Pediatrics Infectious Diseases/Department of Neonatology, Hospital del Niño doctor José Renán Esquivel, Ciudad de Panama, Panama
| | - David Ellis
- Department of Pediatrics Infectious Diseases/Department of Neonatology, Hospital del Niño doctor José Renán Esquivel, Ciudad de Panama, Panama
| | - Catalina Raggi
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Catherine Castro
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Davina Moossazadeh
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
- Department of Statistics, The University of Chicago, Chicago, IL USA
| | - Margarita Ramirez
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Abhinav Pandey
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Kevin Ashi
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Samantha Dovgin
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
| | - Ashtyn Dixon
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Xuan Li
- Rush University Medical School/Rush University Medical Center, Chicago, IL USA
| | - Ian Begeman
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Sharon Heichman
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Joseph Lykins
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Delba Villalobos-Cerrud
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
| | - Lorena Fabrega
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
| | - José Luis Sanchez Montalvo
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Connie Mendivil
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
| | - Mario R. Quijada
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
| | - Silvia Fernández-Pirla
- Toxoplasmosis Programs and Initiatives in Panama, Ciudad de Panama, Panama
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
- Academia Interamericana de Panama, Ciudad de Panama, Panama
| | - Valli de La Guardia
- Toxoplasmosis Programs and Initiatives in Panama, Ciudad de Panama, Panama
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
- Hospital Santo Tomás, Ciudad de Panama, Panama
- Hospital San Miguel Arcángel, Ciudad de Panama, Panama
| | - Digna Wong
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
| | - Mayrene Ladrón de Guevara
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
- Hospital Santo Tomás, Ciudad de Panama, Panama
| | | | | | - Anabel García
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
| | | | - Claudia Rengifo-Herrera
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
- Universidad de Panama, Ciudad de Panama, Panama
| | - Maria Theresa Moreno de Saez
- Department of Pediatrics Infectious Diseases/Department of Neonatology, Hospital del Niño doctor José Renán Esquivel, Ciudad de Panama, Panama
| | - Michael Politis
- Toxoplasmosis Programs and Initiatives in Panama, Ciudad de Panama, Panama
| | - Stephanie Ross
- Rush University Medical School/Rush University Medical Center, Chicago, IL USA
| | - Mimansa Dogra
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Vishan Dhamsania
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Global Health Center Capstone Program, The University of Chicago, Chicago, IL USA
| | - Nicholas Graves
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Global Health Center Capstone Program, The University of Chicago, Chicago, IL USA
| | - Marci Kirchberg
- Global Health Center Capstone Program, The University of Chicago, Chicago, IL USA
- Harris School of Public Policy, The University of Chicago, Chicago, IL USA
| | - Kopal Mathur
- Global Health Center Capstone Program, The University of Chicago, Chicago, IL USA
- Harris School of Public Policy, The University of Chicago, Chicago, IL USA
| | - Ashley Aue
- The Global Health Center, The University of Chicago, Chicago, IL USA
- Harris School of Public Policy, The University of Chicago, Chicago, IL USA
| | - Carlos M. Restrepo
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
| | - Alejandro Llanes
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
| | - German Guzman
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
| | - Arturo Rebellon
- Sanofi Aventis de Panama S.A., University of South Florida, Ciudad de Panama, Panama
| | - Kenneth Boyer
- Rush University Medical School/Rush University Medical Center, Chicago, IL USA
| | - Peter Heydemann
- Rush University Medical School/Rush University Medical Center, Chicago, IL USA
| | - A. Gwendolyn Noble
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Charles Swisher
- Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | | | - Shawn Withers
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Teri Hull
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - David Frim
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - David McLone
- Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Chunlei Su
- Department of Microbiology, The University of Tennessee, Knoxville, TN USA
| | - Michael Blair
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Paul Latkany
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Ernest Mui
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | | | - Alcibiades Villareal
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
| | - Ambar Perez
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
| | | | | | | | - Morgan Ramirez
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
| | - Cy Chittenden
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
| | - Edward Wang
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
| | | | - Guillermo Padrieu
- The University of South Florida College of Public Health, Tampa, FL USA
| | - Juliana Muñoz-Ortiz
- Grupo de Investigación en Neurociencias, Universidad del Rosario, Bogotá, Colombia
| | | | | | | | | | | | | | | | | | | | - Dan L Nicolae
- Department of Statistics, The University of Chicago, Chicago, IL USA
| | - Andrey Rzhetsky
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL USA
| | - Nancy Roizen
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | | | - Larry Sawers
- Department of Economics, American University, Washington, DC USA
| | - Francois Peyron
- Institut des agents infectieux, Hôpital de la Croix-Rousse, Lyon, France
| | - Martine Wallon
- Institut des agents infectieux, Hôpital de la Croix-Rousse, Lyon, France
| | - Emanuelle Chapey
- Institut des agents infectieux, Hôpital de la Croix-Rousse, Lyon, France
| | - Pauline Levigne
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- Institut des agents infectieux, Hôpital de la Croix-Rousse, Lyon, France
| | | | | | - Jose Montoya
- Remington Specialty Laboratory, Palo Alto, CA USA
| | - Cindy Press
- Remington Specialty Laboratory, Palo Alto, CA USA
| | | | - Despina Contopoulos-Ioannidis
- Department of Pediatrics, Division of Infectious Diseases, Stanford University College of Medicine, Stanford, CA USA
| | - Yvonne Maldonado
- Department of Pediatrics, Division of Infectious Diseases, Stanford University College of Medicine, Stanford, CA USA
| | | | - Carlos Gomez
- Department of Pediatrics, Division of Infectious Diseases, Stanford University College of Medicine, Stanford, CA USA
| | - Kelsey Wheeler
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
| | - Samantha Zehar
- Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - James McAuley
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | | | - Sandrine Houze
- Laboratory of Parasitologie, Bichat-Claude Bernard Hopital, Paris, France
| | - Sylvie Abraham
- Laboratory of Parasitologie, Bichat-Claude Bernard Hopital, Paris, France
| | | | - Vera Tesic
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Kathleen Beavis
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Ana Abeleda
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Mari Sautter
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | | | | | - Fatima Amarir
- Faculty of Sciences Ain Chock, University Hassan II, Casablanca, Morocco
| | - Kamal El Bissati
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- INH, Rabat, Morocco
| | - Ellen Holfels
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - David Frim
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - David McLone
- Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Richard Penn
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - William Cohen
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
| | | | - Gabrielle Britton
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
- Sistema Nacional de investigadores de Panama (SNI), Panama, Panama
| | - Jorge Motta
- Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT), Ciudad de Panama, Panama
| | - Eduardo Ortega-Barria
- Sistema Nacional de investigadores de Panama (SNI), Panama, Panama
- Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT), Ciudad de Panama, Panama
- GSK Vaccines, Panama, Panama
| | - Isabel Luz Romero
- Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT), Ciudad de Panama, Panama
| | - Paul Meier
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | | | | | - Jagannatha Rao Kosagisharaf
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
- Sistema Nacional de investigadores de Panama (SNI), Panama, Panama
| | - Xavier Sáez Llorens
- Department of Pediatrics Infectious Diseases/Department of Neonatology, Hospital del Niño doctor José Renán Esquivel, Ciudad de Panama, Panama
- Sistema Nacional de investigadores de Panama (SNI), Panama, Panama
| | - Osvaldo Reyes
- Hospital Santo Tomás, Ciudad de Panama, Panama
- Universidad de Panama, Ciudad de Panama, Panama
- Sistema Nacional de investigadores de Panama (SNI), Panama, Panama
| | - Rima McLeod
- Toxoplasmosis Programs and Initiatives in Panama, Ciudad de Panama, Panama
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL USA
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
- Toxoplasmosis Center, The University of Chicago and Toxoplasmosis Research Institute, Chicago, IL USA
- Department of Pediatrics (Infectious Diseases), The University of Chicago, Chicago, IL USA
| |
Collapse
|
5
|
Mévélec MN, Lakhrif Z, Dimier-Poisson I. Key Limitations and New Insights Into the Toxoplasma gondii Parasite Stage Switching for Future Vaccine Development in Human, Livestock, and Cats. Front Cell Infect Microbiol 2020; 10:607198. [PMID: 33324583 PMCID: PMC7724089 DOI: 10.3389/fcimb.2020.607198] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/19/2020] [Indexed: 12/19/2022] Open
Abstract
Toxoplasmosis is a parasitic disease affecting human, livestock and cat. Prophylactic strategies would be ideal to prevent infection. In a One Health vaccination approach, the objectives would be the prevention of congenital disease in both women and livestock, prevention/reduction of T. gondii tissue cysts in food-producing animals; and oocyst shedding in cats. Over the last few years, an explosion of strategies for vaccine development, especially due to the development of genetic-engineering technologies has emerged. The field of vaccinology has been exploring safer vaccines by the generation of recombinant immunogenic proteins, naked DNA vaccines, and viral/bacterial recombinants vectors. These strategies based on single- or few antigens, are less efficacious than recombinant live-attenuated, mostly tachyzoite T. gondii vaccine candidates. Reflections on the development of an anti-Toxoplasma vaccine must focus not only on the appropriate route of administration, capable of inducing efficient immune response, but also on the choice of the antigen (s) of interest and the associated delivery systems. To answer these questions, the choice of the animal model is essential. If mice helped in understanding the protection mechanisms, the data obtained cannot be directly transposed to humans, livestock and cats. Moreover, effectiveness vaccines should elicit strong and protective humoral and cellular immune responses at both local and systemic levels against the different stages of the parasite. Finally, challenge protocols should use the oral route, major natural route of infection, either by feeding tissue cysts or oocysts from different T. gondii strains. Effective Toxoplasma vaccines depend on our understanding of the (1) protective host immune response during T. gondii invasion and infection in the different hosts, (2) manipulation and modulation of host immune response to ensure survival of the parasites able to evade and subvert host immunity, (3) molecular mechanisms that define specific stage development. This review presents an overview of the key limitations for the development of an effective vaccine and highlights the contributions made by recent studies on the mechanisms behind stage switching to offer interesting perspectives for vaccine development.
Collapse
Affiliation(s)
| | - Zineb Lakhrif
- Team BioMAP, Université de Tours, INRAE, ISP, Tours, France
| | | |
Collapse
|
6
|
Bar Routaray C, Bhor R, Bai S, Kadam NS, Jagtap S, Doshi PJ, Sundar S, Sawant S, Kulkarni MJ, Pai K. SWATH-MS based quantitative proteomics analysis to evaluate the antileishmanial effect of Commiphora wightii- Guggul and Amphotericin B on a clinical isolate of Leishmania donovani. J Proteomics 2020; 223:103800. [DOI: 10.1016/j.jprot.2020.103800] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 12/15/2022]
|
7
|
McPhillie MJ, Zhou Y, Hickman MR, Gordon JA, Weber CR, Li Q, Lee PJ, Amporndanai K, Johnson RM, Darby H, Woods S, Li ZH, Priestley RS, Ristroph KD, Biering SB, El Bissati K, Hwang S, Hakim FE, Dovgin SM, Lykins JD, Roberts L, Hargrave K, Cong H, Sinai AP, Muench SP, Dubey JP, Prud'homme RK, Lorenzi HA, Biagini GA, Moreno SN, Roberts CW, Antonyuk SV, Fishwick CWG, McLeod R. Potent Tetrahydroquinolone Eliminates Apicomplexan Parasites. Front Cell Infect Microbiol 2020; 10:203. [PMID: 32626661 PMCID: PMC7311950 DOI: 10.3389/fcimb.2020.00203] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/16/2020] [Indexed: 12/29/2022] Open
Abstract
Apicomplexan infections cause substantial morbidity and mortality, worldwide. New, improved therapies are needed. Herein, we create a next generation anti-apicomplexan lead compound, JAG21, a tetrahydroquinolone, with increased sp3-character to improve parasite selectivity. Relative to other cytochrome b inhibitors, JAG21 has improved solubility and ADMET properties, without need for pro-drug. JAG21 significantly reduces Toxoplasma gondii tachyzoites and encysted bradyzoites in vitro, and in primary and established chronic murine infections. Moreover, JAG21 treatment leads to 100% survival. Further, JAG21 is efficacious against drug-resistant Plasmodium falciparum in vitro. Causal prophylaxis and radical cure are achieved after P. berghei sporozoite infection with oral administration of a single dose (2.5 mg/kg) or 3 days treatment at reduced dose (0.625 mg/kg/day), eliminating parasitemia, and leading to 100% survival. Enzymatic, binding, and co-crystallography/pharmacophore studies demonstrate selectivity for apicomplexan relative to mammalian enzymes. JAG21 has significant promise as a pre-clinical candidate for prevention, treatment, and cure of toxoplasmosis and malaria.
Collapse
Affiliation(s)
| | - Ying Zhou
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL, United States
| | - Mark R. Hickman
- Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - James A. Gordon
- School of Chemistry, The University of Leeds, Leeds, United Kingdom
| | | | - Qigui Li
- Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Patty J. Lee
- Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Kangsa Amporndanai
- Department of Biochemistry and Systems Biology, Faculty of Health and Life Sciences, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Liverpool, United Kingdom
| | - Rachel M. Johnson
- School of Biomedical Sciences, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, The University of Leeds, Leeds, United Kingdom
| | - Heather Darby
- School of Chemistry, The University of Leeds, Leeds, United Kingdom
| | - Stuart Woods
- Strathclyde Institute of Pharmacy and Biomedical Sciences, The University of Strathclyde, Glasgow, United Kingdom
| | - Zhu-hong Li
- Department of Cellular Biology, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
| | - Richard S. Priestley
- Department of Tropical Disease Biology, Research Center for Drugs and Diagnostics, The Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Kurt D. Ristroph
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, United States
| | - Scott B. Biering
- Department of Pathology, The University of Chicago, Chicago, IL, United States
| | - Kamal El Bissati
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL, United States
| | - Seungmin Hwang
- Department of Pathology, The University of Chicago, Chicago, IL, United States
| | - Farida Esaa Hakim
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL, United States
| | - Sarah M. Dovgin
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL, United States
| | - Joseph D. Lykins
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL, United States
| | - Lucy Roberts
- Strathclyde Institute of Pharmacy and Biomedical Sciences, The University of Strathclyde, Glasgow, United Kingdom
| | - Kerrie Hargrave
- Strathclyde Institute of Pharmacy and Biomedical Sciences, The University of Strathclyde, Glasgow, United Kingdom
| | - Hua Cong
- School of Chemistry, The University of Leeds, Leeds, United Kingdom
| | - Anthony P. Sinai
- Microbiology, Immunology and Molecular Genetics, The University of Kentucky College of Medicine, Lexington, KY, United States
| | - Stephen P. Muench
- School of Biomedical Sciences, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, The University of Leeds, Leeds, United Kingdom
| | - Jitender P. Dubey
- Animal Parasitic Diseases Laboratory (APDL), USDA-ARS, Beltsville, MD, United States
| | - Robert K. Prud'homme
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, United States
| | - Hernan A. Lorenzi
- Department of Infectious Diseases, J Craig Venter Institute, Rockville, MD, United States
| | - Giancarlo A. Biagini
- Department of Tropical Disease Biology, Research Center for Drugs and Diagnostics, The Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Silvia N. Moreno
- Department of Cellular Biology, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
| | - Craig W. Roberts
- Strathclyde Institute of Pharmacy and Biomedical Sciences, The University of Strathclyde, Glasgow, United Kingdom
| | - Svetlana V. Antonyuk
- Department of Biochemistry and Systems Biology, Faculty of Health and Life Sciences, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Liverpool, United Kingdom
| | | | - Rima McLeod
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL, United States
- Department of Pediatrics (Infectious Diseases), Institute of Genomics, Genetics, and Systems Biology, Global Health Center, Toxoplasmosis Center, CHeSS, The College, University of Chicago, Chicago, IL, United States
| |
Collapse
|
8
|
Abstract
Toxoplasma gondii is a common veterinary and human pathogen that persists as latent bradyzoite forms within infected hosts. The ability of the parasite to interconvert between tachyzoite and bradyzoite is key for pathogenesis of toxoplasmosis, particularly in immunocompromised individuals. The transition between tachyzoites and bradyzoites is epigenetically regulated and coupled to the cell cycle. Recent epigenomic studies have begun to elucidate the chromatin states associated with developmental switches in T. gondii. Evidence is also emerging that AP2 transcription factors both activate and repress the bradyzoite developmental program. Further studies are needed to understand the mechanisms by which T. gondii transduces environmental signals to coordinate the epigenetic and transcriptional machinery that are responsible for tachyzoite-bradyzoite interconversion.
Collapse
Affiliation(s)
- Kami Kim
- Department of Internal Medicine, Division of Infectious Diseases and International Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, USA.,Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida 33612, USA;
| |
Collapse
|
9
|
The Microbiome Activates CD4 T-cell-mediated Immunity to Compensate for Increased Intestinal Permeability. Cell Mol Gastroenterol Hepatol 2017; 4:285-297. [PMID: 28795125 PMCID: PMC5540699 DOI: 10.1016/j.jcmgh.2017.06.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/05/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND & AIMS Despite a prominent association, chronic intestinal barrier loss is insufficient to induce disease in human subjects or experimental animals. We hypothesized that compensatory mucosal immune activation might protect individuals with increased intestinal permeability from disease. We used a model in which intestinal barrier loss is triggered by intestinal epithelial-specific expression of constitutively active myosin light chain kinase (CA-MLCK). Here we asked whether constitutive tight junction barrier loss impacts susceptibility to enteric pathogens. METHODS Acute or chronic Toxoplasma gondii or Salmonella typhimurium infection was assessed in CA-MLCK transgenic or wild-type mice. Germ-free mice or those lacking specific immune cell populations were used to investigate the effect of microbial-activated immunity on pathogen translocation in the context of increased intestinal permeability. RESULTS Acute T gondii and S typhimurium translocation across the epithelial barrier was reduced in CA-MLCK mice. This protection was due to enhanced mucosal immune activation that required CD4+ T cells and interleukin 17A but not immunoglobulin A. The protective mucosal immune activation in CA-MLCK mice depended on segmented filamentous bacteria (SFB), because protection against early S typhimurium invasion was lost in germ-free CA-MLCK mice but could be restored by conventionalization with SFB-containing, not SFB-deficient, microbiota. In contrast, chronic S typhimurium infection was more severe in CA-MLCK mice, suggesting that despite activation of protective mucosal immunity, barrier defects ultimately result in enhanced disease progression. CONCLUSIONS Increased epithelial tight junction permeability synergizes with commensal bacteria to promote intestinal CD4+ T-cell expansion and interleukin 17A production that limits enteric pathogen invasion.
Collapse
Key Words
- Barrier Function
- CA-MLCK, constitutively active myosin light chain kinase
- CD4 T Cell
- CFU, colony-forming unit
- GF, germ-free
- IL, interleukin
- Ig, immunoglobulin
- LP, lamina propria
- Microbiota
- Mucosal Immunity
- SEM, standard error of the mean
- SFB, segmented filamentous bacteria
- SPF, specific pathogen–free
- Salmonella
- Tight Junction
- WT, wild-type
Collapse
|
10
|
Wang ZX, Zhou CX, Elsheikha HM, He S, Zhou DH, Zhu XQ. Proteomic Differences between Developmental Stages of Toxoplasma gondii Revealed by iTRAQ-Based Quantitative Proteomics. Front Microbiol 2017. [PMID: 28626452 PMCID: PMC5454076 DOI: 10.3389/fmicb.2017.00985] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Toxoplasma gondii has a complex two-host life-cycle between intermediate host and definitive host. Understanding proteomic variations across the life-cycle stages of T. gondii may improve the understanding of molecular adaption mechanism of T. gondii across life-cycle stages, and should have implications for the development of new treatment and prevention interventions against T. gondii infection. Here, we utilized LC–MS/MS coupled with iTRAQ labeling technology to identify differentially expressed proteins (DEPs) specific to tachyzoite (T), bradyzoites-containing cyst (C) and sporulated oocyst (O) stages of the cyst-forming T. gondii Prugniuad (Pru) strain. A total of 6285 proteins were identified in the three developmental stages of T. gondii. Our analysis also revealed 875, 656, and 538 DEPs in O vs. T, T vs. C, and C vs. O, respectively. The up- and down-regulated proteins were analyzed by Gene Ontology enrichment, KEGG pathway and STRING analyses. Some virulence-related factors and ribosomal proteins exhibited distinct expression patterns across the life-cycle stages. The virulence factors expressed in sporulated oocysts and the number of up-regulated virulence factors in the cyst stage were about twice as many as in tachyzoites. Of the 79 ribosomal proteins identified in T. gondii, the number of up-regulated ribosomal proteins was 33 and 46 in sporulated oocysts and cysts, respectively, compared with tachyzoites. These results support the hypothesis that oocyst and cystic stages are able to adapt to adverse environmental conditions and selection pressures induced by the host's immune response, respectively. These findings have important implications for understanding of the developmental biology of T. gondii, which may facilitate the discovery of novel therapeutic targets to better control toxoplasmosis.
Collapse
Affiliation(s)
- Ze-Xiang Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural SciencesLanzhou, China
| | - Chun-Xue Zhou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural SciencesLanzhou, China.,National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural UniversityBeijing, China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of NottinghamLoughborough, United Kingdom
| | - Shuai He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural SciencesLanzhou, China.,College of Animal Science and Technology, Anhui Agricultural UniversityHefei, China
| | - Dong-Hui Zhou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural SciencesLanzhou, China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural SciencesLanzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China
| |
Collapse
|
11
|
McPhillie M, Zhou Y, El Bissati K, Dubey J, Lorenzi H, Capper M, Lukens AK, Hickman M, Muench S, Verma SK, Weber CR, Wheeler K, Gordon J, Sanders J, Moulton H, Wang K, Kim TK, He Y, Santos T, Woods S, Lee P, Donkin D, Kim E, Fraczek L, Lykins J, Esaa F, Alibana-Clouser F, Dovgin S, Weiss L, Brasseur G, Wirth D, Kent M, Hood L, Meunieur B, Roberts CW, Hasnain SS, Antonyuk SV, Fishwick C, McLeod R. New paradigms for understanding and step changes in treating active and chronic, persistent apicomplexan infections. Sci Rep 2016; 6:29179. [PMID: 27412848 PMCID: PMC4944145 DOI: 10.1038/srep29179] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/31/2016] [Indexed: 12/24/2022] Open
Abstract
Toxoplasma gondii, the most common parasitic infection of human brain and eye, persists across lifetimes, can progressively damage sight, and is currently incurable. New, curative medicines are needed urgently. Herein, we develop novel models to facilitate drug development: EGS strain T. gondii forms cysts in vitro that induce oocysts in cats, the gold standard criterion for cysts. These cysts highly express cytochrome b. Using these models, we envisioned, and then created, novel 4-(1H)-quinolone scaffolds that target the cytochrome bc1 complex Qi site, of which, a substituted 5,6,7,8-tetrahydroquinolin-4-one inhibits active infection (IC50, 30 nM) and cysts (IC50, 4 μM) in vitro, and in vivo (25 mg/kg), and drug resistant Plasmodium falciparum (IC50, <30 nM), with clinically relevant synergy. Mutant yeast and co-crystallographic studies demonstrate binding to the bc1 complex Qi site. Our results have direct impact on improving outcomes for those with toxoplasmosis, malaria, and ~2 billion persons chronically infected with encysted bradyzoites.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Amanda K Lukens
- Harvard School of Public Health, Boston, Massachusetts, USA
- The Broad Institute, Boston, Massachusetts, USA
| | - Mark Hickman
- Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | | | | | | | | | | | | | | | - Kai Wang
- Institute for Systems Biology, Seattle, Washington, USA
| | - Taek-Kyun Kim
- Institute for Systems Biology, Seattle, Washington, USA
| | - Yuqing He
- Institute for Systems Biology, Seattle, Washington, USA
| | - Tatiana Santos
- Albert Einstein College of Medicine, Bronx, New York, USA
| | | | - Patty Lee
- Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - David Donkin
- Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Eric Kim
- Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | | | | | | | | | | | - Louis Weiss
- Albert Einstein College of Medicine, Bronx, New York, USA
| | | | - Dyann Wirth
- Harvard School of Public Health, Boston, Massachusetts, USA
- The Broad Institute, Boston, Massachusetts, USA
| | | | - Leroy Hood
- Institute for Systems Biology, Seattle, Washington, USA
| | - Brigitte Meunieur
- Institute for Integrative Biology of the Cell (12BC), Gif-sur-Yvette, France
| | | | | | | | | | | |
Collapse
|
12
|
Zhang NZ, Wang M, Xu Y, Petersen E, Zhu XQ. Recent advances in developing vaccines against Toxoplasma gondii: an update. Expert Rev Vaccines 2015; 14:1609-21. [PMID: 26467840 DOI: 10.1586/14760584.2015.1098539] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Toxoplasma gondii, a significant public health risk, is able to infect almost all warm-blooded animals including humans, and it results in economic losses in production animals. In the last three years, a large number of vaccination experiments have been performed to control T. gondii infection, with the target of limiting the acute infection and reducing or eliminating tissue cysts in the intermediate hosts. In this paper, we summarize the latest results of the veterinary vaccines against T. gondii infection since 2013. Immunization with live-attenuated whole organisms of non-reverting mutants has been shown to induce remarkably potent immune responses associated with control of acute and chronic toxoplasmosis. The non-cyst-forming mutants are promising new tools for the development of veterinary vaccines against T. gondii infection.
Collapse
Affiliation(s)
- Nian-Zhang Zhang
- a State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute , Chinese Academy of Agricultural Sciences , Lanzhou , PR China
| | - Meng Wang
- a State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute , Chinese Academy of Agricultural Sciences , Lanzhou , PR China
| | - Ying Xu
- a State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute , Chinese Academy of Agricultural Sciences , Lanzhou , PR China.,b Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine , China Agricultural University , Beijing , PR China
| | - Eskild Petersen
- c Department of Infectious Diseases, Clinical Institute, Faculty of Health Sciences , Aarhus University , Aarhus , Denmark
| | - Xing-Quan Zhu
- a State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute , Chinese Academy of Agricultural Sciences , Lanzhou , PR China
| |
Collapse
|
13
|
Edelblum KL, Singh G, Odenwald MA, Lingaraju A, El Bissati K, McLeod R, Sperling AI, Turner JR. γδ Intraepithelial Lymphocyte Migration Limits Transepithelial Pathogen Invasion and Systemic Disease in Mice. Gastroenterology 2015; 148:1417-26. [PMID: 25747597 PMCID: PMC4685713 DOI: 10.1053/j.gastro.2015.02.053] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 02/16/2015] [Accepted: 02/21/2015] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Intraepithelial lymphocytes that express the γδ T-cell receptor (γδ IELs) limit pathogen translocation across the intestinal epithelium by unknown mechanisms. We investigated whether γδ IEL migration and interaction with epithelial cells promote mucosal barrier maintenance during enteric infection. METHODS Salmonella typhimurium or Toxoplasma gondii were administered to knockout (KO) mice lacking either the T cell receptor δ chain (Tcrd) or CD103, or control TcrdEGFP C57BL/6 reporter mice. Intravital microscopy was used to visualize migration of green fluorescent protein (GFP)-tagged γδ T cells within the small intestinal mucosa of mice infected with DsRed-labeled S typhimurium. Mixed bone marrow chimeras were generated to assess the effects of γδ IEL migration on early pathogen invasion and chronic systemic infection. RESULTS Morphometric analyses of intravital video microscopy data showed that γδ IELs rapidly localized to and remained near epithelial cells in direct contact with bacteria. Within 1 hour, greater numbers of T gondii or S typhimurium were present within mucosae of mice with migration-defective occludin KO γδ T cells, compared with controls. Pathogen invasion in Tcrd KO mice was quantitatively similar to that in mice with occludin-deficient γδ T cells, whereas invasion in CD103 KO mice, which have increased migration of γδ T cells into the lateral intercellular space, was reduced by 63%. Consistent with a role of γδ T-cell migration in early host defense, systemic salmonellosis developed more rapidly and with greater severity in mice with occludin-deficient γδ IELs, relative to those with wild-type or CD103 KO γδ IELs. CONCLUSIONS In mice, intraepithelial migration to epithelial cells in contact with pathogens is essential to γδ IEL surveillance and immediate host defense. γδ IEL occludin is required for early surveillance that limits systemic disease.
Collapse
Affiliation(s)
| | | | | | | | - Kamal El Bissati
- Department of Ophthalmology and Visual Sciences and Department of Pediatrics, The University of Chicago
| | - Rima McLeod
- Department of Ophthalmology and Visual Sciences and Department of Pediatrics, The University of Chicago
| | - Anne I. Sperling
- Department of Medicine, The University of Chicago,Section of Pulmonary and Critical Care, The University of Chicago
| | - Jerrold R. Turner
- Department of Pathology, The University of Chicago,Department of Medicine, The University of Chicago
| |
Collapse
|
14
|
Crannell ZA, Rohrman B, Richards-Kortum R. Development of a quantitative recombinase polymerase amplification assay with an internal positive control. J Vis Exp 2015:52620. [PMID: 25867513 PMCID: PMC4401391 DOI: 10.3791/52620] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
It was recently demonstrated that recombinase polymerase amplification (RPA), an isothermal amplification platform for pathogen detection, may be used to quantify DNA sample concentration using a standard curve. In this manuscript, a detailed protocol for developing and implementing a real-time quantitative recombinase polymerase amplification assay (qRPA assay) is provided. Using HIV-1 DNA quantification as an example, the assembly of real-time RPA reactions, the design of an internal positive control (IPC) sequence, and co-amplification of the IPC and target of interest are all described. Instructions and data processing scripts for the construction of a standard curve using data from multiple experiments are provided, which may be used to predict the concentration of unknown samples or assess the performance of the assay. Finally, an alternative method for collecting real-time fluorescence data with a microscope and a stage heater as a step towards developing a point-of-care qRPA assay is described. The protocol and scripts provided may be used for the development of a qRPA assay for any DNA target of interest.
Collapse
|
15
|
Croken MM, Ma Y, Markillie LM, Taylor RC, Orr G, Weiss LM, Kim K. Distinct Strains of Toxoplasma gondii Feature Divergent Transcriptomes Regardless of Developmental Stage. PLoS One 2014; 9:e111297. [PMID: 25393307 PMCID: PMC4230917 DOI: 10.1371/journal.pone.0111297] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 09/19/2014] [Indexed: 11/18/2022] Open
Affiliation(s)
- Matthew McKnight Croken
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Yanfen Ma
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Lye Meng Markillie
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Ronald C. Taylor
- Computational Biology and Bioinformatics Group, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Galya Orr
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Louis M. Weiss
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail: (LMW); (KK)
| | - Kami Kim
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail: (LMW); (KK)
| |
Collapse
|
16
|
Mouveaux T, Oria G, Werkmeister E, Slomianny C, Fox BA, Bzik DJ, Tomavo S. Nuclear glycolytic enzyme enolase of Toxoplasma gondii functions as a transcriptional regulator. PLoS One 2014; 9:e105820. [PMID: 25153525 PMCID: PMC4143315 DOI: 10.1371/journal.pone.0105820] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 07/28/2014] [Indexed: 01/07/2023] Open
Abstract
Apicomplexan parasites including Toxoplasma gondii have complex life cycles within different hosts and their infectivity relies on their capacity to regulate gene expression. However, little is known about the nuclear factors that regulate gene expression in these pathogens. Here, we report that T. gondii enolase TgENO2 is targeted to the nucleus of actively replicating parasites, where it specifically binds to nuclear chromatin in vivo. Using a ChIP-Seq technique, we provide evidence for TgENO2 enrichment at the 5′ untranslated gene regions containing the putative promoters of 241 nuclear genes. Ectopic expression of HA-tagged TgENO1 or TgENO2 led to changes in transcript levels of numerous gene targets. Targeted disruption of TgENO1 gene results in a decrease in brain cyst burden of chronically infected mice and in changes in transcript levels of several nuclear genes. Complementation of this knockout mutant with ectopic TgENO1-HA fully restored normal transcript levels. Our findings reveal that enolase functions extend beyond glycolytic activity and include a direct role in coordinating gene regulation in T. gondii.
Collapse
Affiliation(s)
- Thomas Mouveaux
- Center for Infection and Immunity of Lille, CNRS UMR 8204, INSERM U 1019, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| | - Gabrielle Oria
- Center for Infection and Immunity of Lille, CNRS UMR 8204, INSERM U 1019, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| | - Elisabeth Werkmeister
- Center for Infection and Immunity of Lille, CNRS UMR 8204, INSERM U 1019, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| | - Christian Slomianny
- Laboratory of Cell Physiology, INSERM U 1003, Université Lille Nord de France, Villeneuve d'Ascq, France
| | - Barbara A. Fox
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - David J. Bzik
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Stanislas Tomavo
- Center for Infection and Immunity of Lille, CNRS UMR 8204, INSERM U 1019, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
- * E-mail:
| |
Collapse
|
17
|
|
18
|
Suvorova ES, Radke JB, Ting LM, Vinayak S, Alvarez CA, Kratzer S, Kim K, Striepen B, White MW. A nucleolar AAA-NTPase is required for parasite division. Mol Microbiol 2013; 90:338-55. [PMID: 23964771 DOI: 10.1111/mmi.12367] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2013] [Indexed: 01/02/2023]
Abstract
Apicomplexa division involves several distinct phases shared with other eukaryote cell cycles including a gap period (G1) prior to chromosome synthesis, although how progression through the parasite cell cycle is controlled is not understood. Here we describe a cell cycle mutant that reversibly arrests in the G1 phase. The defect in this mutant was mapped by genetic complementation to a gene encoding a novel AAA-ATPase/CDC48 family member called TgNoAP1. TgNoAP1 is tightly regulated and expressed in the nucleolus during the G1/S phases. A tyrosine to a cysteine change upstream of the second AAA+ domain in the temperature sensitive TgNoAP1 allele leads to conditional protein instability, which is responsible for rapid cell cycle arrest and a primary defect in 28S rRNA processing as confirmed by knock-in of the mutation back into the parent genome. The interaction of TgNoAP1 with factors of the snoRNP and R2TP complexes indicates this protein has a role in pre-rRNA processing. This is a novel role for a cdc48-related chaperone protein and indicates that TgNoAP1 may be part of a dynamic mechanism that senses the health of the parasite protein machinery at the initial steps of ribosome biogenesis and conveys that information to the parasite cell cycle checkpoint controls.
Collapse
Affiliation(s)
- Elena S Suvorova
- Departments of Molecular Medicine & Global Health, University of South Florida, Tampa, FL, 33612, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Chromatin modifications, epigenetics, and how protozoan parasites regulate their lives. Trends Parasitol 2012; 28:202-13. [PMID: 22480826 DOI: 10.1016/j.pt.2012.02.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 02/21/2012] [Accepted: 02/29/2012] [Indexed: 12/19/2022]
Abstract
Chromatin structure plays a vital role in epigenetic regulation of protozoan parasite gene expression. Epigenetic gene regulation impacts upon parasite virulence, differentiation and cell-cycle control. Recent work in many laboratories has elucidated the functions of proteins that regulate parasite gene expression by chemical modification of constituent nucleosomes. A major focus of investigation has been the characterization of post-translational modifications (PTMs) of histones and the identification of the enzymes responsible. Despite conserved features and specificity common to all eukaryotes, parasite enzymes involved in chromatin modification have unique functions that regulate unique aspects of parasite biology.
Collapse
|
20
|
Novel N-benzoyl-2-hydroxybenzamide disrupts unique parasite secretory pathway. Antimicrob Agents Chemother 2012; 56:2666-82. [PMID: 22354304 DOI: 10.1128/aac.06450-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Toxoplasma gondii is a protozoan parasite that can damage the human brain and eyes. There are no curative medicines. Herein, we describe our discovery of N-benzoyl-2-hydroxybenzamides as a class of compounds effective in the low nanomolar range against T. gondii in vitro and in vivo. Our lead compound, QQ-437, displays robust activity against the parasite and could be useful as a new scaffold for development of novel and improved inhibitors of T. gondii. Our genome-wide investigations reveal a specific mechanism of resistance to N-benzoyl-2-hydroxybenzamides mediated by adaptin-3β, a large protein from the secretory protein complex. N-Benzoyl-2-hydroxybenzamide-resistant clones have alterations of their secretory pathway, which traffics proteins to micronemes, rhoptries, dense granules, and acidocalcisomes/plant-like vacuole (PLVs). N-Benzoyl-2-hydroxybenzamide treatment also alters micronemes, rhoptries, the contents of dense granules, and, most markedly, acidocalcisomes/PLVs. Furthermore, QQ-437 is active against chloroquine-resistant Plasmodium falciparum. Our studies reveal a novel class of compounds that disrupts a unique secretory pathway of T. gondii, with the potential to be used as scaffolds in the search for improved compounds to treat the devastating diseases caused by apicomplexan parasites.
Collapse
|
21
|
Milligan-Myhre KC, Rooney PJ, Knoll LJ. Examination of a virulence mutant uncovers the ribosome biogenesis regulatory protein of Toxoplasma gondii. J Parasitol 2011; 97:1173-7. [PMID: 21736491 DOI: 10.1645/ge-2741.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Several insertional mutants identified in a screen for Toxoplasma gondii that were defective in establishing a chronic infection had a common site of plasmid insertion. This insertion site was determined to be 43 bp upstream of the transcription initiation site of a gene whose predicted product has homology to ribosome biogenesis regulatory protein Rrs1p, an essential protein required for ribosome biogenesis in Saccharomyces cerevisiae. Northern blot analysis of this locus, termed TgRRS1 , showed that in the C3 mutant, the full-length transcript is down-regulated and at least 1 new smaller transcript is present. Restoration of the intact predicted promoter and locus to TgRRS1 insertional mutant strain C3 did not restore brain cyst formation to the levels of the parent strain. Epitope-tagged TgRRS1 was found to localize to the parasite nucleolus, in an area corresponding to the granular component region. TgRRS1 can serve as a marker for the sub-nucleolar granular component region of T. gondii.
Collapse
|
22
|
Olguin-Lamas A, Madec E, Hovasse A, Werkmeister E, Callebaut I, Slomianny C, Delhaye S, Mouveaux T, Schaeffer-Reiss C, Van Dorsselaer A, Tomavo S. A novel Toxoplasma gondii nuclear factor TgNF3 is a dynamic chromatin-associated component, modulator of nucleolar architecture and parasite virulence. PLoS Pathog 2011; 7:e1001328. [PMID: 21483487 PMCID: PMC3068996 DOI: 10.1371/journal.ppat.1001328] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 03/01/2011] [Indexed: 01/13/2023] Open
Abstract
In Toxoplasma gondii, cis-acting elements present in promoter sequences of genes that are stage-specifically regulated have been described. However, the nuclear factors that bind to these cis-acting elements and regulate promoter activities have not been identified. In the present study, we performed affinity purification, followed by proteomic analysis, to identify nuclear factors that bind to a stage-specific promoter in T. gondii. This led to the identification of several nuclear factors in T. gondii including a novel factor, designated herein as TgNF3. The N-terminal domain of TgNF3 shares similarities with the N-terminus of yeast nuclear FK506-binding protein (FKBP), known as a histone chaperone regulating gene silencing. Using anti-TgNF3 antibodies, HA-FLAG and YFP-tagged TgNF3, we show that TgNF3 is predominantly a parasite nucleolar, chromatin-associated protein that binds specifically to T. gondii gene promoters in vivo. Genome-wide analysis using chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) identified promoter occupancies by TgNF3. In addition, TgNF3 has a direct role in transcriptional control of genes involved in parasite metabolism, transcription and translation. The ectopic expression of TgNF3 in the tachyzoites revealed dynamic changes in the size of the nucleolus, leading to a severe attenuation of virulence in vivo. We demonstrate that TgNF3 physically interacts with H3, H4 and H2A/H2B assembled into bona fide core and nucleosome-associated histones. Furthermore, TgNF3 interacts specifically to histones in the context of stage-specific gene silencing of a promoter that lacks active epigenetic acetylated histone marks. In contrast to virulent tachyzoites, which express the majority of TgNF3 in the nucleolus, the protein is exclusively located in the cytoplasm of the avirulent bradyzoites. We propose a model where TgNF3 acts essentially to coordinate nucleolus and nuclear functions by modulating nucleosome activities during the intracellular proliferation of the virulent tachyzoites of T. gondii. Apicomplexa including Toxoplasma gondii are responsible for a variety of deadly infections. These intracellular parasites have complex life cycles within different hosts and their infectivity relies on their capacity to regulate gene expression in response to different environments. However, to date, little is known about nuclear factors that regulate their gene expression. Here, we have characterized parasite nuclear factors that bind to a stage-specific promoter. We identified several nuclear factors including a novel factor, designated herein as TgNF3. The N-terminal domain of TgNF3 shares similarities with the N-terminus of yeast nuclear FK506-binding protein (FKBP), known as a histone chaperone regulating gene silencing. We show that TgNF3 is predominantly a nucleolar, chromatin-associated protein that specifically binds to T. gondii nucleosome-associated histones and promoters. Genome-wide analysis identified promoter occupancies by TgNF3 and we demonstrated a direct role for this factor in transcriptional control of genes involved in parasite metabolism, transcription and translation. Ectopic expression of TgNF3 induces dynamic changes in the size of the nucleolus, and a severe attenuation of parasite virulence in vivo. In avirulent bradyzoites, TgNF3 is found exclusively in the cytoplasm, suggesting a potential role in regulating nucleolar and nuclear functions in the virulent tachyzoites of T. gondii.
Collapse
Affiliation(s)
- Alejandro Olguin-Lamas
- Center for Infection and Immunity of Lille, CNRS UMR 8204, INSERM U 1019, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique, CNRS UMR 8576, UGSF, Université de Lille 1, Villeneuve d'Ascq, France
| | - Edwige Madec
- Centre National de la Recherche Scientifique, CNRS UMR 8576, UGSF, Université de Lille 1, Villeneuve d'Ascq, France
| | - Agnes Hovasse
- Laboratoire de Spectrométrie de Masse Bioorganique, IPHC, CNRS UMR 7178, Université de Strasbourg, Strasbourg, France
| | - Elisabeth Werkmeister
- Center for Infection and Immunity of Lille, CNRS UMR 8204, INSERM U 1019, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| | - Isabelle Callebaut
- Centre National de la Recherche Scientifique, Universités Pierre et Marie Curie-Paris 6 et Denis Diderot-Paris 7, UMR7590, Paris, France
| | - Christian Slomianny
- Laboratoire de Physiologie Cellulaire, INSERM U1003, Université de Lille 1, Villeneuve d'Ascq, France
| | - Stephane Delhaye
- Center for Infection and Immunity of Lille, CNRS UMR 8204, INSERM U 1019, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique, CNRS UMR 8576, UGSF, Université de Lille 1, Villeneuve d'Ascq, France
| | - Thomas Mouveaux
- Center for Infection and Immunity of Lille, CNRS UMR 8204, INSERM U 1019, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique, CNRS UMR 8576, UGSF, Université de Lille 1, Villeneuve d'Ascq, France
| | - Christine Schaeffer-Reiss
- Laboratoire de Spectrométrie de Masse Bioorganique, IPHC, CNRS UMR 7178, Université de Strasbourg, Strasbourg, France
| | - Alain Van Dorsselaer
- Laboratoire de Spectrométrie de Masse Bioorganique, IPHC, CNRS UMR 7178, Université de Strasbourg, Strasbourg, France
| | - Stanislas Tomavo
- Center for Infection and Immunity of Lille, CNRS UMR 8204, INSERM U 1019, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique, CNRS UMR 8576, UGSF, Université de Lille 1, Villeneuve d'Ascq, France
- * E-mail:
| |
Collapse
|
23
|
Cong H, Mui EJ, Witola WH, Sidney J, Alexander J, Sette A, Maewal A, McLeod R. Human immunome, bioinformatic analyses using HLA supermotifs and the parasite genome, binding assays, studies of human T cell responses, and immunization of HLA-A*1101 transgenic mice including novel adjuvants provide a foundation for HLA-A03 restricted CD8+T cell epitope based, adjuvanted vaccine protective against Toxoplasma gondii. Immunome Res 2010; 6:12. [PMID: 21129215 PMCID: PMC3009956 DOI: 10.1186/1745-7580-6-12] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 12/03/2010] [Indexed: 11/17/2022] Open
Abstract
Background Toxoplasmosis causes loss of life, cognitive and motor function, and sight. A vaccine is greatly needed to prevent this disease. The purpose of this study was to use an immmunosense approach to develop a foundation for development of vaccines to protect humans with the HLA-A03 supertype. Three peptides had been identified with high binding scores for HLA-A03 supertypes using bioinformatic algorhythms, high measured binding affinity for HLA-A03 supertype molecules, and ability to elicit IFN-γ production by human HLA-A03 supertype peripheral blood CD8+ T cells from seropositive but not seronegative persons. Results Herein, when these peptides were administered with the universal CD4+T cell epitope PADRE (AKFVAAWTLKAAA) and formulated as lipopeptides, or administered with GLA-SE either alone, or with Pam2Cys added, we found we successfully created preparations that induced IFN-γ and reduced parasite burden in HLA-A*1101(an HLA-A03 supertype allele) transgenic mice. GLA-SE is a novel emulsified synthetic TLR4 ligand that is known to facilitate development of T Helper 1 cell (TH1) responses. Then, so our peptides would include those expressed in tachyzoites, bradyzoites and sporozoites from both Type I and II parasites, we used our approaches which had identified the initial peptides. We identified additional peptides using bioinformatics, binding affinity assays, and study of responses of HLA-A03 human cells. Lastly, we found that immunization of HLA-A*1101 transgenic mice with all the pooled peptides administered with PADRE, GLA-SE, and Pam2Cys is an effective way to elicit IFN-γ producing CD8+ splenic T cells and protection. Immunizations included the following peptides together: KSFKDILPK (SAG1224-232); AMLTAFFLR (GRA6164-172); RSFKDLLKK (GRA7134-142); STFWPCLLR (SAG2C13-21); SSAYVFSVK(SPA250-258); and AVVSLLRLLK(SPA89-98). This immunization elicited robust protection, measured as reduced parasite burden using a luciferase transfected parasite, luciferin, this novel, HLA transgenic mouse model, and imaging with a Xenogen camera. Conclusions Toxoplasma gondii peptides elicit HLA-A03 restricted, IFN-γ producing, CD8+ T cells in humans and mice. These peptides administered with adjuvants reduce parasite burden in HLA-A*1101 transgenic mice. This work provides a foundation for immunosense based vaccines. It also defines novel adjuvants for newly identified peptides for vaccines to prevent toxoplasmosis in those with HLA-A03 supertype alleles.
Collapse
Affiliation(s)
- Hua Cong
- Departments of Surgery (Ophthalmology and Visual Sciences) and Pediatrics (Infectious Disease), Committees on Immunology, Molecular Medicine, and Genetics, Institute of Genomics and Systems Biology, and The College, The University of Chicago, Chicago, Illinois 60637, USA.
| | | | | | | | | | | | | | | |
Collapse
|