1
|
Casey MJ, Chan PP, Li Q, Zu JF, Jette CA, Kohler M, Myers BR, Stewart RA. A simple and scalable zebrafish model of Sonic hedgehog medulloblastoma. Cell Rep 2024; 43:114559. [PMID: 39078737 PMCID: PMC11404834 DOI: 10.1016/j.celrep.2024.114559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/10/2024] [Accepted: 07/15/2024] [Indexed: 08/07/2024] Open
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor in children and is stratified into three major subgroups. The Sonic hedgehog (SHH) subgroup represents ∼30% of all MB cases and has significant survival disparity depending upon TP53 status. Here, we describe a zebrafish model of SHH MB using CRISPR to create mutant ptch1, the primary genetic driver of human SHH MB. In these animals, tumors rapidly arise in the cerebellum and resemble human SHH MB by histology and comparative onco-genomics. Similar to human patients, MB tumors with loss of both ptch1 and tp53 have aggressive tumor histology and significantly worse survival outcomes. The simplicity and scalability of the ptch1-crispant MB model makes it highly amenable to CRISPR-based genome-editing screens to identify genes required for SHH MB tumor formation in vivo, and here we identify the gene encoding Grk3 kinase as one such target.
Collapse
Affiliation(s)
- Mattie J Casey
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Priya P Chan
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84108, USA; Primary Children's Hospital, Salt Lake City, UT 84113, USA
| | - Qing Li
- High-Throughput Genomics and Cancer Bioinformatics Shared Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Ju-Fen Zu
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Cicely A Jette
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Missia Kohler
- Department of Anatomic Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Benjamin R Myers
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Rodney A Stewart
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
2
|
Casey MJ, Chan PP, Li Q, Jette CA, Kohler M, Myers BR, Stewart RA. A Simple and Scalable Zebrafish Model of Sonic Hedgehog Medulloblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.03.577834. [PMID: 38370799 PMCID: PMC10871209 DOI: 10.1101/2024.02.03.577834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor in children and is stratified into three major subgroups. The Sonic hedgehog (SHH) subgroup represents ~30% of all MB cases and has significant survival disparity depending upon TP53 status. Here, we describe the first zebrafish model of SHH MB using CRISPR to mutate ptch1, the primary genetic driver in human SHH MB. These tumors rapidly arise adjacent to the valvula cerebelli and resemble human SHH MB by histology and comparative genomics. In addition, ptch1-deficient MB tumors with loss of tp53 have aggressive tumor histology and significantly worse survival outcomes, comparable to human patients. The simplicity and scalability of the ptch1 MB model makes it highly amenable to CRISPR-based genome editing screens to identify genes required for SHH MB tumor formation in vivo, and here we identify the grk3 kinase as one such target.
Collapse
Affiliation(s)
- Mattie J. Casey
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Priya P. Chan
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
- Primary Children’s Hospital, Salt Lake City, UT 84113, USA
| | - Qing Li
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Cicely A. Jette
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Missia Kohler
- Department of Anatomic Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Benjamin R. Myers
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Rodney A. Stewart
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
- Lead contact
| |
Collapse
|
3
|
Cerrizuela S, Vega-Lopez GA, Méndez-Maldonado K, Velasco I, Aybar MJ. The crucial role of model systems in understanding the complexity of cell signaling in human neurocristopathies. WIREs Mech Dis 2022; 14:e1537. [PMID: 35023327 DOI: 10.1002/wsbm.1537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 11/07/2022]
Abstract
Animal models are useful to study the molecular, cellular, and morphogenetic mechanisms underlying normal and pathological development. Cell-based study models have emerged as an alternative approach to study many aspects of human embryonic development and disease. The neural crest (NC) is a transient, multipotent, and migratory embryonic cell population that generates a diverse group of cell types that arises during vertebrate development. The abnormal formation or development of the NC results in neurocristopathies (NCPs), which are characterized by a broad spectrum of functional and morphological alterations. The impaired molecular mechanisms that give rise to these multiphenotypic diseases are not entirely clear yet. This fact, added to the high incidence of these disorders in the newborn population, has led to the development of systematic approaches for their understanding. In this article, we have systematically reviewed the ways in which experimentation with different animal and cell model systems has improved our knowledge of NCPs, and how these advances might contribute to the development of better diagnostic and therapeutic tools for the treatment of these pathologies. This article is categorized under: Congenital Diseases > Genetics/Genomics/Epigenetics Congenital Diseases > Stem Cells and Development Congenital Diseases > Molecular and Cellular Physiology Neurological Diseases > Genetics/Genomics/Epigenetics.
Collapse
Affiliation(s)
- Santiago Cerrizuela
- Division of Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina
| | - Guillermo A Vega-Lopez
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Karla Méndez-Maldonado
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Iván Velasco
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Laboratorio de Reprogramación Celular del Instituto de Fisiología Celular, UNAM en el Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Ciudad de México, Mexico
| | - Manuel J Aybar
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| |
Collapse
|
4
|
Burton DF, Boa-Amponsem OM, Dixon MS, Hopkins MJ, Herbin TA, Toney S, Tarpley M, Rodriguez BV, Fish EW, Parnell SE, Cole GJ, Williams KP. Pharmacological activation of the Sonic hedgehog pathway with a Smoothened small molecule agonist ameliorates the severity of alcohol-induced morphological and behavioral birth defects in a zebrafish model of fetal alcohol spectrum disorder. J Neurosci Res 2022; 100:1585-1601. [PMID: 35014067 PMCID: PMC9271529 DOI: 10.1002/jnr.25008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 12/17/2022]
Abstract
Ethanol exposure during the early stages of embryonic development can lead to a range of morphological and behavioral differences termed fetal alcohol spectrum disorders (FASDs). In a zebrafish model, we have shown that acute ethanol exposure at 8-10 hr postfertilization (hpf), a critical time of development, produces birth defects similar to those clinically characterized in FASD. Dysregulation of the Sonic hedgehog (Shh) pathway has been implicated as a molecular basis for many of the birth defects caused by prenatal alcohol exposure. We observed in zebrafish embryos that shh expression was significantly decreased by ethanol exposure at 8-10 hpf, while smo expression was much less affected. Treatment of zebrafish embryos with SAG or purmorphamine, small molecule Smoothened agonists that activate Shh signaling, ameliorated the severity of ethanol-induced developmental malformations including altered eye size and midline brain development. Furthermore, this rescue effect of Smo activation was dose dependent and occurred primarily when treatment was given after ethanol exposure. Markers of Shh signaling (gli1/2) and eye development (pax6a) were restored in embryos treated with SAG post-ethanol exposure. Since embryonic ethanol exposure has been shown to produce later-life neurobehavioral impairments, juvenile zebrafish were examined in the novel tank diving test. Our results further demonstrated that in zebrafish embryos exposed to ethanol, SAG treatment was able to mitigate long-term neurodevelopmental impairments related to anxiety and risk-taking behavior. Our results indicate that pharmacological activation of the Shh pathway at specific developmental timing markedly diminishes the severity of alcohol-induced birth defects.
Collapse
Affiliation(s)
- Derek F Burton
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, North Carolina, USA
| | - Oswald M Boa-Amponsem
- Integrated Biosciences PhD Program, North Carolina Central University, Durham, North Carolina, USA.,Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina, USA
| | - Maria S Dixon
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, North Carolina, USA
| | - Michael J Hopkins
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, North Carolina, USA
| | - Te-Andre Herbin
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, North Carolina, USA
| | - Shiquita Toney
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, North Carolina, USA
| | - Michael Tarpley
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, North Carolina, USA
| | - Blanca V Rodriguez
- Department of Biochemistry, Duke University, Durham, North Carolina, USA
| | - Eric W Fish
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Scott E Parnell
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Gregory J Cole
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina, USA.,Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, North Carolina, USA
| | - Kevin P Williams
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, North Carolina, USA.,Department of Pharmaceutical Sciences, North Carolina Central University, Durham, North Carolina, USA
| |
Collapse
|
5
|
Adusumilli L, Facchinello N, Teh C, Busolin G, Le MTN, Yang H, Beffagna G, Campanaro S, Tam WL, Argenton F, Lim B, Korzh V, Tiso N. miR-7 Controls the Dopaminergic/Oligodendroglial Fate through Wnt/β-catenin Signaling Regulation. Cells 2020; 9:cells9030711. [PMID: 32183236 PMCID: PMC7140713 DOI: 10.3390/cells9030711] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/07/2020] [Accepted: 03/11/2020] [Indexed: 12/23/2022] Open
Abstract
During the development of the central nervous system, the proliferation of neural progenitors and differentiation of neurons and glia are tightly regulated by different transcription factors and signaling cascades, such as the Wnt and Shh pathways. This process takes place in cooperation with several microRNAs, some of which evolutionarily conserved in vertebrates, from teleosts to mammals. We focused our attention on miR-7, as its role in the regulation of cell signaling during neural development is still unclear. Specifically, we used human stem cell cultures and whole zebrafish embryos to study, in vitro and in vivo, the role of miR-7 in the development of dopaminergic (DA) neurons, a cell type primarily affected in Parkinson’s disease. We demonstrated that the zebrafish homologue of miR-7 (miR-7a) is expressed in the forebrain during the development of DA neurons. Moreover, we identified 143 target genes downregulated by miR-7, including the neural fate markers TCF4 and TCF12, as well as the Wnt pathway effector TCF7L2. We then demonstrated that miR-7 negatively regulates the proliferation of DA-progenitors by inhibiting Wnt/β-catenin signaling in zebrafish embryos. In parallel, miR-7 positively regulates Shh signaling, thus controlling the balance between oligodendroglial and DA neuronal cell fates. In summary, this study identifies a new molecular cross-talk between Wnt and Shh signaling pathways during the development of DA-neurons. Being mediated by a microRNA, this mechanism represents a promising target in cell differentiation therapies for Parkinson’s disease.
Collapse
Affiliation(s)
- Lavanya Adusumilli
- Genome Institute of Singapore, A-STAR, Singapore 138672, Singapore; (L.A.); (H.Y.); (W.L.T.)
| | - Nicola Facchinello
- Department of Biology, University of Padova, 35131 Padova, Italy; (N.F.); (G.B.); (G.B.); (S.C.); (F.A.)
| | - Cathleen Teh
- Institute of Molecular and Cell Biology, A-STAR, Singapore 138632, Singapore;
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Giorgia Busolin
- Department of Biology, University of Padova, 35131 Padova, Italy; (N.F.); (G.B.); (G.B.); (S.C.); (F.A.)
| | - Minh TN Le
- Department of Pharmacology, National University of Singapore, Singapore 117559, Singapore;
| | - Henry Yang
- Genome Institute of Singapore, A-STAR, Singapore 138672, Singapore; (L.A.); (H.Y.); (W.L.T.)
| | - Giorgia Beffagna
- Department of Biology, University of Padova, 35131 Padova, Italy; (N.F.); (G.B.); (G.B.); (S.C.); (F.A.)
| | - Stefano Campanaro
- Department of Biology, University of Padova, 35131 Padova, Italy; (N.F.); (G.B.); (G.B.); (S.C.); (F.A.)
| | - Wai Leong Tam
- Genome Institute of Singapore, A-STAR, Singapore 138672, Singapore; (L.A.); (H.Y.); (W.L.T.)
| | - Francesco Argenton
- Department of Biology, University of Padova, 35131 Padova, Italy; (N.F.); (G.B.); (G.B.); (S.C.); (F.A.)
| | - Bing Lim
- Genome Institute of Singapore, A-STAR, Singapore 138672, Singapore; (L.A.); (H.Y.); (W.L.T.)
- Correspondence: (B.L.); (V.K.); (N.T.); Tel.: +1-781-484-7643 (B.L.); +48-22-597-07-65 (V.K.); +39-049-827-6302 (N.T.)
| | - Vladimir Korzh
- Institute of Molecular and Cell Biology, A-STAR, Singapore 138632, Singapore;
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
- Correspondence: (B.L.); (V.K.); (N.T.); Tel.: +1-781-484-7643 (B.L.); +48-22-597-07-65 (V.K.); +39-049-827-6302 (N.T.)
| | - Natascia Tiso
- Department of Biology, University of Padova, 35131 Padova, Italy; (N.F.); (G.B.); (G.B.); (S.C.); (F.A.)
- Correspondence: (B.L.); (V.K.); (N.T.); Tel.: +1-781-484-7643 (B.L.); +48-22-597-07-65 (V.K.); +39-049-827-6302 (N.T.)
| |
Collapse
|
6
|
Tonelli F, Bek JW, Besio R, De Clercq A, Leoni L, Salmon P, Coucke PJ, Willaert A, Forlino A. Zebrafish: A Resourceful Vertebrate Model to Investigate Skeletal Disorders. Front Endocrinol (Lausanne) 2020; 11:489. [PMID: 32849280 PMCID: PMC7416647 DOI: 10.3389/fendo.2020.00489] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
Animal models are essential tools for addressing fundamental scientific questions about skeletal diseases and for the development of new therapeutic approaches. Traditionally, mice have been the most common model organism in biomedical research, but their use is hampered by several limitations including complex generation, demanding investigation of early developmental stages, regulatory restrictions on breeding, and high maintenance cost. The zebrafish has been used as an efficient alternative vertebrate model for the study of human skeletal diseases, thanks to its easy genetic manipulation, high fecundity, external fertilization, transparency of rapidly developing embryos, and low maintenance cost. Furthermore, zebrafish share similar skeletal cells and ossification types with mammals. In the last decades, the use of both forward and new reverse genetics techniques has resulted in the generation of many mutant lines carrying skeletal phenotypes associated with human diseases. In addition, transgenic lines expressing fluorescent proteins under bone cell- or pathway- specific promoters enable in vivo imaging of differentiation and signaling at the cellular level. Despite the small size of the zebrafish, many traditional techniques for skeletal phenotyping, such as x-ray and microCT imaging and histological approaches, can be applied using the appropriate equipment and custom protocols. The ability of adult zebrafish to remodel skeletal tissues can be exploited as a unique tool to investigate bone formation and repair. Finally, the permeability of embryos to chemicals dissolved in water, together with the availability of large numbers of small-sized animals makes zebrafish a perfect model for high-throughput bone anabolic drug screening. This review aims to discuss the techniques that make zebrafish a powerful model to investigate the molecular and physiological basis of skeletal disorders.
Collapse
Affiliation(s)
- Francesca Tonelli
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Jan Willem Bek
- Department of Biomolecular Medicine, Center of Medical Genetics, Ghent University-University Hospital, Ghent, Belgium
| | - Roberta Besio
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Adelbert De Clercq
- Department of Biomolecular Medicine, Center of Medical Genetics, Ghent University-University Hospital, Ghent, Belgium
| | - Laura Leoni
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | - Paul J. Coucke
- Department of Biomolecular Medicine, Center of Medical Genetics, Ghent University-University Hospital, Ghent, Belgium
| | - Andy Willaert
- Department of Biomolecular Medicine, Center of Medical Genetics, Ghent University-University Hospital, Ghent, Belgium
| | - Antonella Forlino
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
- *Correspondence: Antonella Forlino
| |
Collapse
|
7
|
Wan Y, McDole K, Keller PJ. Light-Sheet Microscopy and Its Potential for Understanding Developmental Processes. Annu Rev Cell Dev Biol 2019; 35:655-681. [PMID: 31299171 DOI: 10.1146/annurev-cellbio-100818-125311] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ability to visualize and quantitatively measure dynamic biological processes in vivo and at high spatiotemporal resolution is of fundamental importance to experimental investigations in developmental biology. Light-sheet microscopy is particularly well suited to providing such data, since it offers exceptionally high imaging speed and good spatial resolution while minimizing light-induced damage to the specimen. We review core principles and recent advances in light-sheet microscopy, with a focus on concepts and implementations relevant for applications in developmental biology. We discuss how light-sheet microcopy has helped advance our understanding of developmental processes from single-molecule to whole-organism studies, assess the potential for synergies with other state-of-the-art technologies, and introduce methods for computational image and data analysis. Finally, we explore the future trajectory of light-sheet microscopy, discuss key efforts to disseminate new light-sheet technology, and identify exciting opportunities for further advances.
Collapse
Affiliation(s)
- Yinan Wan
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA;
| | - Katie McDole
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA;
| | - Philipp J Keller
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA;
| |
Collapse
|
8
|
Brandt ZJ, North PN, Link BA. Somatic Mutations of lats2 Cause Peripheral Nerve Sheath Tumors in Zebrafish. Cells 2019; 8:E972. [PMID: 31450674 PMCID: PMC6770745 DOI: 10.3390/cells8090972] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/15/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023] Open
Abstract
The cellular signaling pathways underlying peripheral nerve sheath tumor (PNST) formation are poorly understood. Hippo signaling has been recently implicated in the biology of various cancers, and is thought to function downstream of mutations in the known PNST driver, NF2. Utilizing CRISPR-Cas9 gene editing, we targeted the canonical Hippo signaling kinase Lats2. We show that, while germline deletion leads to early lethality, targeted somatic mutations of zebrafish lats2 leads to peripheral nerve sheath tumor formation. These peripheral nerve sheath tumors exhibit high levels of Hippo effectors Yap and Taz, suggesting that dysregulation of these transcriptional co-factors drives PNST formation in this model. These data indicate that somatic lats2 deletion in zebrafish can serve as a powerful experimental platform to probe the mechanisms of PNST formation and progression.
Collapse
Affiliation(s)
- Zachary J Brandt
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Paula N North
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Brian A Link
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
9
|
Knickmeyer MD, Mateo JL, Eckert P, Roussa E, Rahhal B, Zuniga A, Krieglstein K, Wittbrodt J, Heermann S. TGFβ-facilitated optic fissure fusion and the role of bone morphogenetic protein antagonism. Open Biol 2019; 8:rsob.170134. [PMID: 29593116 PMCID: PMC5881030 DOI: 10.1098/rsob.170134] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 03/02/2018] [Indexed: 12/25/2022] Open
Abstract
The optic fissure is a transient gap in the developing vertebrate eye, which must be closed as development proceeds. A persisting optic fissure, coloboma, is a major cause for blindness in children. Although many genes have been linked to coloboma, the process of optic fissure fusion is still little appreciated, especially on a molecular level. We identified a coloboma in mice with a targeted inactivation of transforming growth factor β2 (TGFβ2). Notably, here the optic fissure margins must have touched, however failed to fuse. Transcriptomic analyses indicated an effect on remodelling of the extracellular matrix (ECM) as an underlying mechanism. TGFβ signalling is well known for its effect on ECM remodelling, but it is at the same time often inhibited by bone morphogenetic protein (BMP) signalling. Notably, we also identified two BMP antagonists among the downregulated genes. For further functional analyses we made use of zebrafish, in which we found TGFβ ligands expressed in the developing eye, and the ligand binding receptor in the optic fissure margins where we also found active TGFβ signalling and, notably, also gremlin 2b (grem2b) and follistatin a (fsta), homologues of the regulated BMP antagonists. We hypothesized that TGFβ is locally inducing expression of BMP antagonists within the margins to relieve the inhibition from its regulatory capacity regarding ECM remodelling. We tested our hypothesis and found that induced BMP expression is sufficient to inhibit optic fissure fusion, resulting in coloboma. Our findings can likely be applied also to other fusion processes, especially when TGFβ signalling or BMP antagonism is involved, as in fusion processes during orofacial development.
Collapse
Affiliation(s)
- Max D Knickmeyer
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg D-79104, Germany.,Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, Freiburg D-79104, Germany
| | - Juan L Mateo
- Departamento de Informática, Universidad de Oviedo, Jesús Arias de Velasco, Oviedo 33005, Spain
| | - Priska Eckert
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg D-79104, Germany.,Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, Freiburg D-79104, Germany
| | - Eleni Roussa
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg D-79104, Germany
| | - Belal Rahhal
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg D-79104, Germany
| | - Aimee Zuniga
- Developmental Genetics, University of Basel Medical School, Basel CH-4058, Switzerland
| | - Kerstin Krieglstein
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg D-79104, Germany
| | | | - Stephan Heermann
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg D-79104, Germany
| |
Collapse
|
10
|
Otis JP, Shen MC, Caldwell BA, Reyes Gaido OE, Farber SA. Dietary cholesterol and apolipoprotein A-I are trafficked in endosomes and lysosomes in the live zebrafish intestine. Am J Physiol Gastrointest Liver Physiol 2019; 316:G350-G365. [PMID: 30629468 PMCID: PMC6415739 DOI: 10.1152/ajpgi.00080.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Difficulty in imaging the vertebrate intestine in vivo has hindered our ability to model nutrient and protein trafficking from both the lumenal and basolateral aspects of enterocytes. Our goal was to use live confocal imaging to increase understanding of intestinal trafficking of dietary cholesterol and apolipoprotein A-I (APOA-I), the main structural component of high-density lipoproteins. We developed a novel assay to visualize live dietary cholesterol trafficking in the zebrafish intestine by feeding TopFluor-cholesterol (TF-cholesterol), a fluorescent cholesterol analog, in a lipid-rich, chicken egg yolk feed. Quantitative microscopy of transgenic zebrafish expressing fluorescently tagged protein markers of early, recycling, and late endosomes/lysosomes provided the first evidence, to our knowledge, of cholesterol transport in the intestinal endosomal-lysosomal trafficking system. To study APOA-I dynamics, transgenic zebrafish expressing an APOA-I fluorescent fusion protein (APOA-I-mCherry) from tissue-specific promoters were created. These zebrafish demonstrated that APOA-I-mCherry derived from the intestine accumulated in the liver and vice versa. Additionally, intracellular APOA-I-mCherry localized to endosomes and lysosomes in the intestine and liver. Moreover, live imaging demonstrated that APOA-I-mCherry colocalized with dietary TF-cholesterol in enterocytes, and this colocalization increased with feeding time. This study provides a new set of tools for the study of cellular lipid biology and elucidates a key role for endosomal-lysosomal trafficking of intestinal cholesterol and APOA-I. NEW & NOTEWORTHY A fluorescent cholesterol analog was fed to live, translucent larval zebrafish to visualize intracellular cholesterol and apolipoprotein A-I (APOA-I) trafficking. With this model intestinal endosomal-lysosomal cholesterol trafficking was observed for the first time. A new APOA-I fusion protein (APOA-I-mCherry) expressed from tissue-specific promoters was secreted into the circulation and revealed that liver-derived APOA-I-mCherry accumulates in the intestine and vice versa. Intestinal, intracellular APOA-I-mCherry was observed in endosomes and lysosomes and colocalized with dietary cholesterol.
Collapse
Affiliation(s)
- Jessica P. Otis
- 1Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland
| | - Meng-Chieh Shen
- 1Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland
| | - Blake A. Caldwell
- 1Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland
| | - Oscar E. Reyes Gaido
- 1Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland,2Department of Biology, Johns Hopkins University, Baltimore, Maryland
| | - Steven A. Farber
- 1Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland,2Department of Biology, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
11
|
Bergen DJM, Kague E, Hammond CL. Zebrafish as an Emerging Model for Osteoporosis: A Primary Testing Platform for Screening New Osteo-Active Compounds. Front Endocrinol (Lausanne) 2019; 10:6. [PMID: 30761080 PMCID: PMC6361756 DOI: 10.3389/fendo.2019.00006] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/09/2019] [Indexed: 12/16/2022] Open
Abstract
Osteoporosis is metabolic bone disease caused by an altered balance between bone anabolism and catabolism. This dysregulated balance is responsible for fragile bones that fracture easily after minor falls. With an aging population, the incidence is rising and as yet pharmaceutical options to restore this imbalance is limited, especially stimulating osteoblast bone-building activity. Excitingly, output from large genetic studies on people with high bone mass (HBM) cases and genome wide association studies (GWAS) on the population, yielded new insights into pathways containing osteo-anabolic players that have potential for drug target development. However, a bottleneck in development of new treatments targeting these putative osteo-anabolic genes is the lack of animal models for rapid and affordable testing to generate functional data and that simultaneously can be used as a compound testing platform. Zebrafish, a small teleost fish, are increasingly used in functional genomics and drug screening assays which resulted in new treatments in the clinic for other diseases. In this review we outline the zebrafish as a powerful model for osteoporosis research to validate potential therapeutic candidates, describe the tools and assays that can be used to study bone homeostasis, and affordable (semi-)high-throughput compound testing.
Collapse
Affiliation(s)
- Dylan J. M. Bergen
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, Southmead Hospital, University of Bristol, Bristol, United Kingdom
| | - Erika Kague
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
| | - Chrissy L. Hammond
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
12
|
Lyons DD, Philibert DA, Zablocki T, Qin R, Huang R, Gamal El-Din M, Tierney KB. Assessment of raw and ozonated oil sands process-affected water exposure in developing zebrafish: Associating morphological changes with gene expression. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 241:959-968. [PMID: 30029330 DOI: 10.1016/j.envpol.2018.02.092] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/17/2018] [Accepted: 02/04/2018] [Indexed: 06/08/2023]
Abstract
With the ever-increasing amounts of oil sands process-affected water (OSPW) accumulating from Canada's oil sands operations, its eventual release must be considered. As OSPW has been found to be both acutely and chronically toxic to aquatic organisms, remediation processes must be developed to lower its toxicity. Ozone treatment is currently being studied as a tool to facilitate the removal of organic constituents associated with toxicity. Biomarkers (e.g. gene expression) are commonly used when studying the effects of environmental contaminants, however, they are not always indicative of adverse effects at the whole organism level. In this study, we assessed the effects of OSPW exposure on developing zebrafish by linking gene expression to relevant cellular and whole organism level endpoints. We also investigated whether or not ozone treatment decreased biomarkers and any associated toxicity observed from OSPW exposure. The concentrations of classical naphthenic acids in the raw and ozonated OSPW used in this study were 16.9 mg/L and 0.6 mg/L, respectively. Ozone treatment reduced the total amount of naphthenic acids (NAs) in the OSPW sample by 92%. We found that exposure to both raw and ozonated OSPW had no effect on the survival of zebrafish embryos. The expression levels of biotransformation genes CYP1A and CYP1B were induced by raw OSPW exposure, with CYP1B being more highly expressed than CYP1A. In contrast, ozonated OSPW exposure did not increase the expression of CYP1A and only slightly induced CYP1B. A decrease in cardiac development and function genes (NKX2.5 and APT2a2a) was not associates with large changes in heart rate, arrhythmia or heart size. We did not find any indications of craniofacial abnormalities or of increased occurrence of apoptotic cells. Overall, our study found that OSPW was not overtly toxic to zebrafish embryos.
Collapse
Affiliation(s)
- Danielle D Lyons
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada.
| | - Danielle A Philibert
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Taylor Zablocki
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Rui Qin
- Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Rongfu Huang
- Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Mohamed Gamal El-Din
- Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Keith B Tierney
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada; School of Public Health, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| |
Collapse
|
13
|
Rogers CD, Nie S. Specifying neural crest cells: From chromatin to morphogens and factors in between. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2018; 7:e322. [PMID: 29722151 PMCID: PMC6215528 DOI: 10.1002/wdev.322] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 12/16/2022]
Abstract
Neural crest (NC) cells are a stem-like multipotent population of progenitor cells that are present in vertebrate embryos, traveling to various regions in the developing organism. Known as the "fourth germ layer," these cells originate in the ectoderm between the neural plate (NP), which will become the brain and spinal cord, and nonneural tissues that will become the skin and the sensory organs. NC cells can differentiate into more than 30 different derivatives in response to the appropriate signals including, but not limited to, craniofacial bone and cartilage, sensory nerves and ganglia, pigment cells, and connective tissue. The molecular and cellular mechanisms that control the induction and specification of NC cells include epigenetic control, multiple interactive and redundant transcriptional pathways, secreted signaling molecules, and adhesion molecules. NC cells are important not only because they transform into a wide variety of tissue types, but also because their ability to detach from their epithelial neighbors and migrate throughout developing embryos utilizes mechanisms similar to those used by metastatic cancer cells. In this review, we discuss the mechanisms required for the induction and specification of NC cells in various vertebrate species, focusing on the roles of early morphogenesis, cell adhesion, signaling from adjacent tissues, and the massive transcriptional network that controls the formation of these amazing cells. This article is categorized under: Nervous System Development > Vertebrates: General Principles Gene Expression and Transcriptional Hierarchies > Regulatory Mechanisms Gene Expression and Transcriptional Hierarchies > Gene Networks and Genomics Signaling Pathways > Cell Fate Signaling.
Collapse
Affiliation(s)
- Crystal D. Rogers
- Department of Biology, College of Science and Mathematics, California State University Northridge, Northridge, California
| | - Shuyi Nie
- School of Biological Sciences and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
14
|
Aman AJ, Fulbright AN, Parichy DM. Wnt/β-catenin regulates an ancient signaling network during zebrafish scale development. eLife 2018; 7:37001. [PMID: 30014845 PMCID: PMC6072442 DOI: 10.7554/elife.37001] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/21/2018] [Indexed: 12/24/2022] Open
Abstract
Understanding how patterning influences cell behaviors to generate three dimensional morphologies is a central goal of developmental biology. Additionally, comparing these regulatory mechanisms among morphologically diverse tissues allows for rigorous testing of evolutionary hypotheses. Zebrafish skin is endowed with a coat of precisely patterned bony scales. We use in-toto live imaging during scale development and manipulations of cell signaling activity to elucidate core features of scale patterning and morphogenesis. These analyses show that scale development requires the concerted activity of Wnt/β-catenin, Ectodysplasin (Eda) and Fibroblast growth factor (Fgf) signaling. This regulatory module coordinates Hedgehog (HH) dependent collective cell migration during epidermal invagination, a cell behavior not previously implicated in skin appendage morphogenesis. Our analyses demonstrate the utility of zebrafish scale development as a tractable system in which to elucidate mechanisms of developmental patterning and morphogenesis, and suggest a single, ancient origin of skin appendage patterning mechanisms in vertebrates.
Collapse
Affiliation(s)
- Andrew J Aman
- Department of Biology and Department of Cell Biology, University of Virginia, Charlottesville, United States
| | - Alexis N Fulbright
- Department of Biology and Department of Cell Biology, University of Virginia, Charlottesville, United States
| | - David M Parichy
- Department of Biology and Department of Cell Biology, University of Virginia, Charlottesville, United States
| |
Collapse
|
15
|
Affiliation(s)
- Seth M. Weinberg
- Department of Oral Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Anthropology, University of Pittsburgh, Pittsburgh, Pennsylvania, United Staes of America
- * E-mail:
| | - Robert Cornell
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa, United States America
| | - Elizabeth J. Leslie
- Department of Human Genetics, Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
16
|
Dynamic Tissue Rearrangements during Vertebrate Eye Morphogenesis: Insights from Fish Models. J Dev Biol 2018; 6:jdb6010004. [PMID: 29615553 PMCID: PMC5875564 DOI: 10.3390/jdb6010004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 02/22/2018] [Accepted: 02/27/2018] [Indexed: 12/16/2022] Open
Abstract
Over the last thirty years, fish models, such as the zebrafish and medaka, have become essential to pursue developmental studies and model human disease. Community efforts have led to the generation of wide collections of mutants, a complete sequence of their genomes, and the development of sophisticated genetic tools, enabling the manipulation of gene activity and labelling and tracking of specific groups of cells during embryonic development. When combined with the accessibility and optical clarity of fish embryos, these approaches have made of them an unbeatable model to monitor developmental processes in vivo and in real time. Over the last few years, live-imaging studies in fish have provided fascinating insights into tissue morphogenesis and organogenesis. This review will illustrate the advantages of fish models to pursue morphogenetic studies by highlighting the findings that, in the last decade, have transformed our understanding of eye morphogenesis.
Collapse
|
17
|
Bergen DJM, Stevenson NL, Skinner REH, Stephens DJ, Hammond CL. The Golgi matrix protein giantin is required for normal cilia function in zebrafish. Biol Open 2017; 6:1180-1189. [PMID: 28546340 PMCID: PMC5576078 DOI: 10.1242/bio.025502] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The Golgi is essential for glycosylation of newly synthesised proteins including almost all cell-surface and extracellular matrix proteoglycans. Giantin, encoded by the golgb1 gene, is a member of the golgin family of proteins that reside within the Golgi stack, but its function remains elusive. Loss of function of giantin in rats causes osteochondrodysplasia; knockout mice show milder defects, notably a cleft palate. In vitro, giantin has been implicated in Golgi organisation, biosynthetic trafficking, and ciliogenesis. Here we show that loss of function of giantin in zebrafish, using either morpholino or knockout techniques, causes defects in cilia function. Giantin morphants have fewer cilia in the neural tube and those remaining are longer. Mutants have the same number of cilia in the neural tube but these cilia are also elongated. Scanning electron microscopy shows that loss of giantin results in an accumulation of material at the ciliary tip, consistent with a loss of function of retrograde intraflagellar transport. Mutants show milder defects than morphants consistent with adaptation to loss of giantin. Summary: Morpholino knockdown of Golgb1/giantin leads to a severe cilopathy phenotype twinned with longer, misshapen cilia. Stable mutants have a very mild phenotype, indicative of compensation, but still have longer cilia.
Collapse
Affiliation(s)
- Dylan J M Bergen
- Cell Biology Laboratories, School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK.,School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Nicola L Stevenson
- Cell Biology Laboratories, School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Roderick E H Skinner
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - David J Stephens
- Cell Biology Laboratories, School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Christina L Hammond
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
18
|
Ahi EP. Signalling pathways in trophic skeletal development and morphogenesis: Insights from studies on teleost fish. Dev Biol 2016; 420:11-31. [PMID: 27713057 DOI: 10.1016/j.ydbio.2016.10.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 10/02/2016] [Accepted: 10/03/2016] [Indexed: 12/12/2022]
Abstract
During the development of the vertebrate feeding apparatus, a variety of complicated cellular and molecular processes participate in the formation and integration of individual skeletal elements. The molecular mechanisms regulating the formation of skeletal primordia and their development into specific morphological structures are tightly controlled by a set of interconnected signalling pathways. Some of these pathways, such as Bmp, Hedgehog, Notch and Wnt, are long known for their pivotal roles in craniofacial skeletogenesis. Studies addressing the functional details of their components and downstream targets, the mechanisms of their interactions with other signals as well as their potential roles in adaptive morphological divergence, are currently attracting considerable attention. An increasing number of signalling pathways that had previously been described in different biological contexts have been shown to be important in the regulation of jaw skeletal development and morphogenesis. In this review, I provide an overview of signalling pathways involved in trophic skeletogenesis emphasizing studies of the most species-rich group of vertebrates, the teleost fish, which through their evolutionary history have undergone repeated episodes of spectacular trophic diversification.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Institute of Zoology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria; Institute of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland.
| |
Collapse
|
19
|
Signore IA, Jerez C, Figueroa D, Suazo J, Marcelain K, Cerda O, Colombo Flores A. Inhibition of the 3-hydroxy-3-methyl-glutaryl-CoA reductase induces orofacial defects in zebrafish. ACTA ACUST UNITED AC 2016; 106:814-830. [PMID: 27488927 DOI: 10.1002/bdra.23546] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/13/2016] [Accepted: 06/22/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Orofacial clefts (OFCs) are common birth defects, which include a range of disorders with a complex etiology affecting formation of craniofacial structures. Some forms of syndromic OFCs are produced by defects in the cholesterol pathway. The principal enzyme of the cholesterol pathway is the 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR). Our aim is to study whether defects of HMGCR function would produce orofacial malformation similar to those found in disorders of cholesterol synthesis. METHODS We used zebrafish hmgcrb mutants and HMGCR inhibition assay using atorvastatin during early and late stages of orofacial morphogenesis in zebrafish. To describe craniofacial phenotypes, we stained cartilage and bone and performed in situ hybridization using known craniofacial markers. Also, we visualized neural crest cell migration in a transgenic fish. RESULTS Our results showed that mutants displayed loss of cartilage and diminished orofacial outgrowth, and in some cases palatal cleft. Late treatments with statin show a similar phenotype. Affected-siblings displayed a moderate phenotype, whereas early-treated embryos had a minor cleft. We found reduced expression of the downstream component of Sonic Hedgehog-signaling gli1 in ventral brain, oral ectoderm, and pharyngeal endoderm in mutants and in late atorvastatin-treated embryos. CONCLUSION Our results suggest that HMGCR loss-of-function primarily affects postmigratory cranial neural crest cells through abnormal Sonic Hedgehog signaling, probably induced by reduction in metabolites of the cholesterol pathway. Malformation severity correlates with the grade of HMGCR inhibition, developmental stage of its disruption, and probably with availability of maternal lipids. Together, our results might help to understand the spectrum of orofacial phenotypes found in cholesterol synthesis disorders. Birth Defects Research (Part A) 106:814-830, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Iskra A Signore
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Instituto de Filosofía y Ciencias de la Complejidad (IFICC), Santiago, Chile
| | - Carolina Jerez
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Diego Figueroa
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - José Suazo
- Institute for Research in Dental Sciences, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Katherine Marcelain
- Programa de Genética Humana, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Oscar Cerda
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Alicia Colombo Flores
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile. .,Servicio de Anatomía Patológica, Hospital Clínico de la Universidad de Chile, Santiago, Chile.
| |
Collapse
|
20
|
Abstract
The formation of the face and skull involves a complex series of developmental events mediated by cells derived from the neural crest, endoderm, mesoderm, and ectoderm. Although vertebrates boast an enormous diversity of adult facial morphologies, the fundamental signaling pathways and cellular events that sculpt the nascent craniofacial skeleton in the embryo have proven to be highly conserved from fish to man. The zebrafish Danio rerio, a small freshwater cyprinid fish from eastern India, has served as a popular model of craniofacial development since the 1990s. Unique strengths of the zebrafish model include a simplified skeleton during larval stages, access to rapidly developing embryos for live imaging, and amenability to transgenesis and complex genetics. In this chapter, we describe the anatomy of the zebrafish craniofacial skeleton; its applications as models for the mammalian jaw, middle ear, palate, and cranial sutures; the superior imaging technology available in fish that has provided unprecedented insights into the dynamics of facial morphogenesis; the use of the zebrafish to decipher the genetic underpinnings of craniofacial biology; and finally a glimpse into the most promising future applications of zebrafish craniofacial research.
Collapse
|
21
|
Cortes M, Liu SY, Kwan W, Alexa K, Goessling W, North TE. Accumulation of the Vitamin D Precursor Cholecalciferol Antagonizes Hedgehog Signaling to Impair Hemogenic Endothelium Formation. Stem Cell Reports 2015; 5:471-9. [PMID: 26365513 PMCID: PMC4624955 DOI: 10.1016/j.stemcr.2015.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 08/08/2015] [Accepted: 08/08/2015] [Indexed: 01/25/2023] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) are born from hemogenic endothelium in the dorsal aorta. Specification of this hematopoietic niche is regulated by a signaling axis using Hedgehog (Hh) and Notch, which culminates in expression of Runx1 in the ventral wall of the artery. Here, we demonstrate that the vitamin D precursor cholecalciferol (D3) modulates HSPC production by impairing hemogenic vascular niche formation. Accumulation of D3 through exogenous treatment or inhibition of Cyp2r1, the enzyme required for D3 25-hydroxylation, results in Hh pathway antagonism marked by loss of Gli-reporter activation, defects in vascular niche identity, and reduced HSPCs. Mechanistic studies indicated the effect was specific to D3, and not active 1,25-dihydroxy vitamin D3, acting on the extracellular sterol-binding domain of Smoothened. These findings highlight a direct impact of inefficient vitamin D synthesis on cell fate commitment and maturation in Hh-regulated tissues, which may have implications beyond hemogenic endothelium specification.
Collapse
Affiliation(s)
- Mauricio Cortes
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Sarah Y Liu
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Wanda Kwan
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Kristen Alexa
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Wolfram Goessling
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Trista E North
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
22
|
Mich JK, Payumo AY, Rack PG, Chen JK. In vivo imaging of Hedgehog pathway activation with a nuclear fluorescent reporter. PLoS One 2014; 9:e103661. [PMID: 25068273 PMCID: PMC4113417 DOI: 10.1371/journal.pone.0103661] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 07/04/2014] [Indexed: 12/31/2022] Open
Abstract
The Hedgehog (Hh) pathway is essential for embryonic development and tissue regeneration, and its dysregulation can lead to birth defects and tumorigenesis. Understanding how this signaling mechanism contributes to these processes would benefit from an ability to visualize Hedgehog pathway activity in live organisms, in real time, and with single-cell resolution. We report here the generation of transgenic zebrafish lines that express nuclear-localized mCherry fluorescent protein in a Gli transcription factor-dependent manner. As demonstrated by chemical and genetic perturbations, these lines faithfully report Hedgehog pathway state in individual cells and with high detection sensitivity. They will be valuable tools for studying dynamic Gli-dependent processes in vertebrates and for identifying new chemical and genetic regulators of the Hh pathway.
Collapse
Affiliation(s)
- John K. Mich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America. Current address: Children's Research Institute, University of Texas-Southwestern Medical Center, Dallas, Texas, United States of America
| | - Alexander Y. Payumo
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Paul G. Rack
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - James K. Chen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
23
|
Benato F, Colletti E, Skobo T, Moro E, Colombo L, Argenton F, Dalla Valle L. A living biosensor model to dynamically trace glucocorticoid transcriptional activity during development and adult life in zebrafish. Mol Cell Endocrinol 2014; 392:60-72. [PMID: 24796658 DOI: 10.1016/j.mce.2014.04.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 04/24/2014] [Accepted: 04/24/2014] [Indexed: 11/18/2022]
Abstract
Glucocorticoids (GCs) modulate many cellular processes through the binding of the glucocorticoid receptor (GR) to specific responsive elements located upstream of the transcription starting site or within an intron of GC target genes. Here we describe a transgenic fish line harboring a construct with nine GC-responsive elements (GREs) upstream of a reporter (EGFP) coding sequence. Transgenic fish exhibit strong fluorescence in many known GC-responsive organs. Moreover, its enhanced sensitivity allowed the discovery of novel GC-responsive tissue compartments, such as fin, eyes, and otic vesicles. Long-term persistence of transgene expression is seen during adult stages in several organs. Pharmacological and genetic analysis demonstrates that the transgenic line is highly responsive to drug administration and molecular manipulation. Moreover, reporter expression is sensitively and dynamically modulated by the photoperiod, thus proving that these fish are an in vivo valuable platform to explore GC responsiveness to both endogenous and exogenous stimuli.
Collapse
Affiliation(s)
- Francesca Benato
- Department of Biology, University of Padua, via U. Bassi 58/B, 35131 Padua, Italy
| | - Elisa Colletti
- Department of Biology, University of Padua, via U. Bassi 58/B, 35131 Padua, Italy
| | - Tatjana Skobo
- Department of Biology, University of Padua, via U. Bassi 58/B, 35131 Padua, Italy
| | - Enrico Moro
- Department of Molecular Medicine, University of Padua, via U. Bassi 58/B, 35131 Padua, Italy
| | - Lorenzo Colombo
- Department of Biology, University of Padua, via U. Bassi 58/B, 35131 Padua, Italy
| | - Francesco Argenton
- Department of Biology, University of Padua, via U. Bassi 58/B, 35131 Padua, Italy.
| | - Luisa Dalla Valle
- Department of Biology, University of Padua, via U. Bassi 58/B, 35131 Padua, Italy.
| |
Collapse
|
24
|
Basu S, Sachidanandan C. Zebrafish: a multifaceted tool for chemical biologists. Chem Rev 2013; 113:7952-80. [PMID: 23819893 DOI: 10.1021/cr4000013] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Sandeep Basu
- Council of Scientific and Industrial Research-Institute of Genomics & Integrative Biology (CSIR-IGIB) , South Campus, New Delhi 110025, India
| | | |
Collapse
|
25
|
Ramel MC, Hill CS. The ventral to dorsal BMP activity gradient in the early zebrafish embryo is determined by graded expression of BMP ligands. Dev Biol 2013; 378:170-82. [PMID: 23499658 PMCID: PMC3899928 DOI: 10.1016/j.ydbio.2013.03.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 02/26/2013] [Accepted: 03/04/2013] [Indexed: 12/26/2022]
Abstract
In the early zebrafish embryo, a ventral to dorsal gradient of bone morphogenetic protein (BMP) activity is established, which is essential for the specification of cell fates along this axis. To visualise and mechanistically determine how this BMP activity gradient forms, we have used a transgenic zebrafish line that expresses monomeric red fluorescent protein (mRFP) under the control of well-characterised BMP responsive elements. We demonstrate that mRFP expression in this line faithfully reports BMP and GDF signalling at both early and late stages of development. Taking advantage of the unstable nature of mRFP transcripts, we use in situ hybridisation to reveal the dynamic spatio-temporal pattern of BMP activity and establish the timing and sequence of events that lead to the formation of the BMP activity gradient. We show that the BMP transcriptional activity gradient is established between 30% and 40% epiboly stages and that it is preceded by graded mRNA expression of the BMP ligands. Both Dharma and FGF signalling contribute to graded bmp transcription during these early stages and it is subsequently maintained through autocrine BMP signalling. We show that BMP2B protein is also expressed in a gradient as early as blastula stages, but do not find any evidence of diffusion of this BMP to generate the BMP transcriptional activity gradient. Thus, in contrast to diffusion/transport-based models of BMP gradient formation in Drosophila, our results indicate that the establishment of the BMP activity gradient in early zebrafish embryos is determined by graded expression of the BMP ligands.
Collapse
Affiliation(s)
| | - Caroline S. Hill
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London, WC2A 3LY, United Kingdom
| |
Collapse
|
26
|
Moro E, Vettori A, Porazzi P, Schiavone M, Rampazzo E, Casari A, Ek O, Facchinello N, Astone M, Zancan I, Milanetto M, Tiso N, Argenton F. Generation and application of signaling pathway reporter lines in zebrafish. Mol Genet Genomics 2013; 288:231-42. [PMID: 23674148 PMCID: PMC3664755 DOI: 10.1007/s00438-013-0750-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 05/02/2013] [Indexed: 12/22/2022]
Abstract
In the last years, we have seen the emergence of different tools that have changed the face of biology from a simple modeling level to a more systematic science. The transparent zebrafish embryo is one of the living models in which, after germline transformation with reporter protein-coding genes, specific fluorescent cell populations can be followed at single-cell resolution. The genetically modified embryos, larvae and adults, resulting from the transformation, are individuals in which time lapse analysis, digital imaging quantification, FACS sorting and next-generation sequencing can be performed in specific times and tissues. These multifaceted genetic and cellular approaches have permitted to dissect molecular interactions at the subcellular, intercellular, tissue and whole-animal level, thus allowing integration of cellular and developmental genetics with molecular imaging in the resulting frame of modern biology. In this review, we describe a new step in the zebrafish road to system biology, based on the use of transgenic biosensor animals expressing fluorescent proteins under the control of signaling pathway-responsive cis-elements. In particular, we provide here the rationale and details of this powerful tool, trying to focus on its huge potentialities in basic and applied research, while also discussing limits and potential technological evolutions of this approach.
Collapse
Affiliation(s)
- Enrico Moro
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/b, 35131 Padua, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Shen MC, Ozacar AT, Osgood M, Boeras C, Pink J, Thomas J, Kohtz JD, Karlstrom R. Heat-shock-mediated conditional regulation of hedgehog/gli signaling in zebrafish. Dev Dyn 2013; 242:539-49. [PMID: 23441066 DOI: 10.1002/dvdy.23955] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Revised: 12/16/2012] [Accepted: 01/14/2013] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Hedgehog (Hh) signaling is required for embryogenesis and continues to play key roles postembryonically in many tissues, influencing growth, stem cell proliferation, and tumorigenesis. Systems for conditional regulation of Hh signaling facilitate the study of these postembryonic Hh functions. RESULTS We used the hsp70l promoter to generated three heat-shock-inducible transgenic lines that activate Hh signaling and one line that represses Hh signaling. Heat-shock activation of these transgenes appropriately recapitulates early embryonic loss or gain of Hh function phenotypes. Hh signaling remains activated 24 hr after heat shock in the Tg(hsp70l:shha-EGFP) and Tg(hsp70l:dnPKA-BGFP) lines, while a single heat shock of the Tg(hsp70l:gli1-EGFP) or Tg(hsp70l:gli2aDR-EGFP) lines results in a 6- to 12-hr pulse of Hh signal activation or inactivation, respectively. Using both in situ hybridization and quantitative polymerase chain reaction, we show that these lines can be used to manipulate Hh signaling through larval and juvenile stages. A ptch2 promoter element was used to generate new reporter lines that allow clear visualization of Hh responding cells throughout the life cycle, including graded Hh responses in the embryonic central nervous system. CONCLUSIONS These zebrafish transgenic lines provide important new experimental tools to study the embryonic and postembryonic roles of Hh signaling.
Collapse
Affiliation(s)
- Meng-Chieh Shen
- Department of Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Terriente J, Pujades C. Use of Zebrafish Embryos for Small Molecule Screening Related to Cancer. Dev Dyn 2013. [DOI: 10.1002/dvdy.23912] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Javier Terriente
- Department of Experimental and Health Sciences; Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona; PRBB; Barcelona; Spain
| | - Cristina Pujades
- Department of Experimental and Health Sciences; Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona; PRBB; Barcelona; Spain
| |
Collapse
|
29
|
Loucks E, Ahlgren S. Assessing teratogenic changes in a zebrafish model of fetal alcohol exposure. J Vis Exp 2012. [PMID: 22453686 PMCID: PMC3460571 DOI: 10.3791/3704] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Fetal alcohol syndrome (FAS) is a severe manifestation of embryonic exposure to ethanol. It presents with characteristic defects to the face and organs, including mental retardation due to disordered and damaged brain development. Fetal alcohol spectrum disorder (FASD) is a term used to cover a continuum of birth defects that occur due to maternal alcohol consumption, and occurs in approximately 4% of children born in the United States. With 50% of child-bearing age women reporting consumption of alcohol, and half of all pregnancies being unplanned, unintentional exposure is a continuing issue. In order to best understand the damage produced by ethanol, plus produce a model with which to test potential interventions, we developed a model of developmental ethanol exposure using the zebrafish embryo. Zebrafish are ideal for this kind of teratogen study. Each pair lays hundreds of eggs, which can then be collected without harming the adult fish. The zebrafish embryo is transparent and can be readily imaged with any number of stains. Analysis of these embryos after exposure to ethanol at different doses and times of duration and application shows that the gross developmental defects produced by ethanol are consistent with the human birth defect. Described here are the basic techniques used to study and manipulate the zebrafish FAS model.
Collapse
Affiliation(s)
- Evyn Loucks
- Program in Developmental Biology, Children's Memorial Research Center, Northwestern University, USA
| | | |
Collapse
|
30
|
Hammond CL, Moro E. Using transgenic reporters to visualize bone and cartilage signaling during development in vivo. Front Endocrinol (Lausanne) 2012; 3:91. [PMID: 22826703 PMCID: PMC3399225 DOI: 10.3389/fendo.2012.00091] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 07/03/2012] [Indexed: 01/11/2023] Open
Abstract
Green fluorescent protein was first used as a marker of protein expression in vivo 18 years ago, heralding the beginning of what became known as the Green Revolution. Since then, there has been an explosion in the number of transgenic lines in existence, and these transgenic tools are now being applied to skeletal research. Advances in transgenesis are also leading to increasing use of new model organisms for studying skeletogenesis. Such new models include the small teleosts zebrafish and medaka, which due to their optical translucency offer imaging possibilities in the live animals. In this review, we will introduce a number of recent advances in genetic engineering and transgenesis and the new genetic tools that are currently being developed. We will provide examples of how zebrafish and medaka transgenic lines are helping us to understand the behavior of skeletal cells in vivo. Finally, we will discuss future prospects for the application of transgenic technology to skeletal research.
Collapse
Affiliation(s)
- Chrissy L. Hammond
- Departments of Biochemistry, Physiology and Pharmacology, University of Bristol, Bristol, UK
- *Correspondence: Chrissy L. Hammond, Departments of Biochemistry, Physiology and Pharmacology, Medical Sciences, University of Bristol, University Walk, BS8 1TD Bristol, UK. e-mail:
| | - Enrico Moro
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|