1
|
Crawford BI, Talley MJ, Russman J, Riddle J, Torres S, Williams T, Longworth MS. Condensin-mediated restriction of retrotransposable elements facilitates brain development in Drosophila melanogaster. Nat Commun 2024; 15:2716. [PMID: 38548759 PMCID: PMC10978865 DOI: 10.1038/s41467-024-47042-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/18/2024] [Indexed: 04/01/2024] Open
Abstract
Neural stem and progenitor cell (NSPC) maintenance is essential for ensuring that organisms are born with proper brain volumes and head sizes. Microcephaly is a disorder in which babies are born with significantly smaller head sizes and cortical volumes. Mutations in subunits of the DNA organizing complex condensin have been identified in microcephaly patients. However, the molecular mechanisms by which condensin insufficiency causes microcephaly remain elusive. We previously identified conserved roles for condensins in repression of retrotransposable elements (RTEs). Here, we show that condensin subunit knockdown in NSPCs of the Drosophila larval central brain increases RTE expression and mobility which causes cell death, and significantly decreases adult head sizes and brain volumes. These findings suggest that unrestricted RTE expression and activity may lead to improper brain development in condensin insufficient organisms, and lay the foundation for future exploration of causative roles for RTEs in other microcephaly models.
Collapse
Affiliation(s)
- Bert I Crawford
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Mary Jo Talley
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Joshua Russman
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - James Riddle
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Sabrina Torres
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Troy Williams
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Michelle S Longworth
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, 44195, USA.
| |
Collapse
|
2
|
Narita H, Shima T, Iizuka R, Uemura S. N-terminal region of Drosophila melanogaster Argonaute2 forms amyloid-like aggregates. BMC Biol 2023; 21:78. [PMID: 37072852 PMCID: PMC10114355 DOI: 10.1186/s12915-023-01569-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 03/17/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND Argonaute proteins play a central role in RNA silencing by forming protein-small RNA complexes responsible for the silencing process. While most Argonaute proteins have a short N-terminal region, Argonaute2 in Drosophila melanogaster (DmAgo2) harbors a long and unique N-terminal region. Previous in vitro biochemical studies have shown that the loss of this region does not impair the RNA silencing activity of the complex. However, an N-terminal mutant of Drosophila melanogaster has demonstrated abnormal RNA silencing activity. To explore the causes of this discrepancy between in vitro and in vivo studies, we investigated the biophysical properties of the region. The N-terminal region is highly rich in glutamine and glycine residues, which is a well-known property for prion-like domains, a subclass of amyloid-forming peptides. Therefore, the possibility of the N-terminal region functioning as an amyloid was tested. RESULTS Our in silico and biochemical assays demonstrated that the N-terminal region exhibits amyloid-specific properties. The region indeed formed aggregates that were not dissociated even in the presence of sodium dodecyl sulfate. Also, the aggregates enhanced the fluorescence intensity of thioflavin-T, an amyloid detection reagent. The kinetics of the aggregation followed that of typical amyloid formation exhibiting self-propagating activity. Furthermore, we directly visualized the aggregation process of the N-terminal region under fluorescence microscopy and found that the aggregations took fractal or fibril shapes. Together, the results indicate that the N-terminal region can form amyloid-like aggregates. CONCLUSIONS Many other amyloid-forming peptides have been reported to modulate the function of proteins through their aggregation. Therefore, our findings raise the possibility that aggregation of the N-terminal region regulates the RNA silencing activity of DmAgo2.
Collapse
Affiliation(s)
- Haruka Narita
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Tomohiro Shima
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| | - Ryo Iizuka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Sotaro Uemura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
3
|
Yang N, Srivastav SP, Rahman R, Ma Q, Dayama G, Li S, Chinen M, Lei EP, Rosbash M, Lau NC. Transposable element landscapes in aging Drosophila. PLoS Genet 2022; 18:e1010024. [PMID: 35239675 PMCID: PMC8893327 DOI: 10.1371/journal.pgen.1010024] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/10/2022] [Indexed: 11/28/2022] Open
Abstract
Genetic mechanisms that repress transposable elements (TEs) in young animals decline during aging, as reflected by increased TE expression in aged animals. Does increased TE expression during aging lead to more genomic TE copies in older animals? To address this question, we quantified TE Landscapes (TLs) via whole genome sequencing of young and aged Drosophila strains of wild-type and mutant backgrounds. We quantified TLs in whole flies and dissected brains and validated the feasibility of our approach in detecting new TE insertions in aging Drosophila genomes when small RNA and RNA interference (RNAi) pathways are compromised. We also describe improved sequencing methods to quantify extra-chromosomal DNA circles (eccDNAs) in Drosophila as an additional source of TE copies that accumulate during aging. Lastly, to combat the natural progression of aging-associated TE expression, we show that knocking down PAF1, a conserved transcription elongation factor that antagonizes RNAi pathways, may bolster suppression of TEs during aging and extend lifespan. Our study suggests that in addition to a possible influence by different genetic backgrounds, small RNA and RNAi mechanisms may mitigate genomic TL expansion despite the increase in TE transcripts during aging. Transposable elements, also called transposons, are genetic parasites found in all animal genomes. Normally, transposons are compacted away in silent chromatin in young animals. But, as animals age and transposon-silencing defense mechanisms break down, transposon RNAs accumulate to significant levels in old animals like fruit flies. An open question is whether the increased levels of transposon RNAs in older animals also correspond to increased genomic copies of transposons. This study approached this question by sequencing the whole genomes of young and old wild-type and mutant flies lacking a functional RNA interference (RNAi) pathway, which naturally silences transposon RNAs. Although the wild-type flies with intact RNAi activity had little new accumulation of transposon copies, the sequencing approach was able to detect several transposon accumulation occurrences in some RNAi mutants. In addition, we found that some fly transposon families can also accumulate as extra-chromosomal circular DNA copies. Lastly, we showed that genetically augmenting the expression of RNAi factors can counteract the rising transposon RNA levels in aging and promote longevity. This study improves our understanding of the animal host genome relationship with transposons during natural aging processes.
Collapse
Affiliation(s)
- Nachen Yang
- Boston University School of Medicine, Department of Biochemistry, Boston, Massachusetts, United States of America
| | - Satyam P. Srivastav
- Boston University School of Medicine, Department of Biochemistry, Boston, Massachusetts, United States of America
| | - Reazur Rahman
- Brandeis University, Department of Biology and Howard Hughes Medical Institute, Waltham, Massachusetts, United States of America
| | - Qicheng Ma
- Boston University School of Medicine, Department of Biochemistry, Boston, Massachusetts, United States of America
| | - Gargi Dayama
- Boston University School of Medicine, Department of Biochemistry, Boston, Massachusetts, United States of America
| | - Sizheng Li
- Boston University School of Medicine, Department of Biochemistry, Boston, Massachusetts, United States of America
| | - Madoka Chinen
- Nuclear Organization and Gene Expression Section, NIDDK, NIH, Bethesda, Maryland, United States of America
| | - Elissa P. Lei
- Nuclear Organization and Gene Expression Section, NIDDK, NIH, Bethesda, Maryland, United States of America
| | - Michael Rosbash
- Brandeis University, Department of Biology and Howard Hughes Medical Institute, Waltham, Massachusetts, United States of America
| | - Nelson C. Lau
- Boston University School of Medicine, Department of Biochemistry, Boston, Massachusetts, United States of America
- Boston University Genome Science Institute, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
4
|
Moussian B, Casadei N. Identification and Functional Characterization of Argonaute (Ago) Proteins in Insect Genomes. Methods Mol Biol 2022; 2360:9-17. [PMID: 34495503 DOI: 10.1007/978-1-0716-1633-8_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
RNA processing is a vital process in all organisms. In eukaryotes, the RNA induced silencing complex (RISC) mediates this function during development and physiological processes and, at least in arthropods, during RNA-viral infections. Argonaute-like RNA-binding proteins are central components of this complex. RNA-based insecticides are gaining more and more a central role in pest control. Understanding of the underlying molecular mechanisms including Ago-like proteins is crucial in designing powerful, species-specific and environmental-friendly insecticides. This chapter describes a protocol for identification and genetic functional analyses of insect Ago-like proteins in the fruit fly Drosophila melanogaster that serves as a living test tube.
Collapse
Affiliation(s)
| | - Nicolas Casadei
- Universitätsklinikum Tübingen, Institute for Medical Genetics and Applied Genomics, Tübingen, Germany
| |
Collapse
|
5
|
Cooper AM, Silver K, Zhang J, Park Y, Zhu KY. Molecular mechanisms influencing efficiency of RNA interference in insects. PEST MANAGEMENT SCIENCE 2019; 75:18-28. [PMID: 29931761 DOI: 10.1002/ps.5126] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 05/21/2023]
Abstract
RNA interference (RNAi) is an endogenous, sequence-specific gene-silencing mechanism elicited by small RNA molecules. RNAi is a powerful reverse genetic tool, and is currently being utilized for managing insects and viruses. Widespread implementation of RNAi-based pest management strategies is currently hindered by inefficient and highly variable results when different insect species, strains, developmental stages, tissues, and genes are targeted. Mechanistic studies have shown that double-stranded ribonucleases (dsRNases), endosomal entrapment, deficient function of the core machinery, and inadequate immune stimulation contribute to limited RNAi efficiency. However, a comprehensive understanding of the molecular mechanisms limiting RNAi efficiency remains elusive. Recent advances in dsRNA stability in physiological tissues, dsRNA internalization into cells, the composition and function of the core RNAi machinery, as well as small-interfering RNA/double-stranded RNA amplification and spreading mechanisms are reviewed to establish a global understanding of the obstacles impeding wider understanding of RNAi mechanisms in insects. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Kristopher Silver
- Department of Entomology, Kansas State University, Manhattan, KS, USA
| | - Jianzhen Zhang
- Department of Entomology, Kansas State University, Manhattan, KS, USA
- Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS, USA
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
6
|
Harbison ST, Kumar S, Huang W, McCoy LJ, Smith KR, Mackay TFC. Genome-Wide Association Study of Circadian Behavior in Drosophila melanogaster. Behav Genet 2018; 49:60-82. [PMID: 30341464 PMCID: PMC6326971 DOI: 10.1007/s10519-018-9932-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/04/2018] [Indexed: 12/31/2022]
Abstract
Circadian rhythms influence physiological processes from sleep–wake cycles to body temperature and are controlled by highly conserved cycling molecules. Although the mechanistic basis of the circadian clock has been known for decades, the extent to which circadian rhythms vary in nature and the underlying genetic basis for that variation is not well understood. We measured circadian period (Ʈ) and rhythmicity index in the Drosophila Genetic Reference Panel (DGRP) and observed extensive genetic variation in both. Seven DGRP lines had sexually dimorphic arrhythmicity and one line had an exceptionally long Ʈ. Genome-wide analyses identified 584 polymorphisms in 268 genes. We observed differences among transcripts for nine genes predicted to interact among themselves and canonical clock genes in the long period line and a control. Mutations/RNAi knockdown targeting these genes also affected circadian behavior. Our observations reveal that complex genetic interactions influence high levels of variation in circadian phenotypes.
Collapse
Affiliation(s)
- Susan T Harbison
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA. .,Laboratory of Systems Genetics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA. .,Laboratory of Systems Genetics, National Heart Lung and Blood Institute, Building 10, Room 7D13, 10 Center Drive, Bethesda, MD, 20892-1640, USA.
| | - Shailesh Kumar
- Laboratory of Systems Genetics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wen Huang
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.,Genetics Program and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, USA.,Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Lenovia J McCoy
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Kirklin R Smith
- Laboratory of Systems Genetics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Trudy F C Mackay
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.,Genetics Program and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, USA.,Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC, 29646, USA
| |
Collapse
|
7
|
Davis-Vogel C, Van Allen B, Van Hemert JL, Sethi A, Nelson ME, Sashital DG. Identification and comparison of key RNA interference machinery from western corn rootworm, fall armyworm, and southern green stink bug. PLoS One 2018; 13:e0203160. [PMID: 30183751 PMCID: PMC6124762 DOI: 10.1371/journal.pone.0203160] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 08/15/2018] [Indexed: 12/18/2022] Open
Abstract
RNA interference (RNAi)-based technology shows great potential for use in agriculture, particularly for management of costly insect pests. In the decade since the insecticidal effects of environmentally-introduced RNA were first reported, this treatment has been applied to several types of insect pests. Through the course of those efforts, it has become apparent that different insects exhibit a range of sensitivity to environmentally-introduced RNAs. The variation in responses across insect is not well-understood, with differences in the underlying RNAi mechanisms being one explanation. This study evaluates eight proteins among three agricultural pests whose responses to environmental RNAi are known to differ: western corn rootworm (Diabrotica virgifera virgifera), fall armyworm (Spodoptera frugiperda), and southern green stink bug (Nezara viridula). These proteins have been identified in various organisms as centrally involved in facilitating the microRNA- and small interfering-RNA-mediated interference responses. Various bioinformatics tools, as well as gene expression profiling, were used to identify and evaluate putative homologues for characteristics that may contribute to the differing responses of these insects, such as the absence of critical functional domains within expressed sequences, the absence of entire gene sequences, or unusually low or undetectable expression of critical genes. Though many similarities were observed, the number of isoforms and expression levels of double-stranded RNA-binding and argonaute proteins varied across insect. Differences among key RNAi machinery genes of these three pests may impact the function of their RNAi pathways, and therefore, their respective responses to exogenous RNAs.
Collapse
Affiliation(s)
- Courtney Davis-Vogel
- Research and Development, DuPont Pioneer, Johnston, Iowa, United States of America
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Brandon Van Allen
- Research and Development, DuPont Pioneer, Johnston, Iowa, United States of America
| | - John L. Van Hemert
- Research and Development, DuPont Pioneer, Johnston, Iowa, United States of America
| | - Amit Sethi
- Research and Development, DuPont Pioneer, Johnston, Iowa, United States of America
| | - Mark E. Nelson
- Research and Development, DuPont Pioneer, Johnston, Iowa, United States of America
| | - Dipali G. Sashital
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| |
Collapse
|
8
|
Abstract
This review explores the presence and functions of polyglutamine (polyQ) in viral proteins. In mammals, mutations in polyQ segments (and CAG repeats at the nucleotide level) have been linked to neural disorders and ataxias. PolyQ regions in normal human proteins have documented functional roles, in transcription factors and, more recently, in regulating autophagy. Despite the high frequency of polyQ repeats in eukaryotic genomes, little attention has been given to the presence or possible role of polyQ sequences in virus genomes. A survey described here revealed that polyQ repeats occur rarely in RNA viruses, suggesting that they have detrimental effects on virus replication at the nucleotide or protein level. However, there have been sporadic reports of polyQ segments in potyviruses and in reptilian nidoviruses (among the largest RNA viruses known). Conserved polyQ segments are found in the regulatory control proteins of many DNA viruses. Variable length polyQ tracts are found in proteins that contribute to transmissibility (cowpox A-type inclusion protein (ATI)) and control of latency (herpes viruses). New longer-read sequencing methods, using original biological samples, should reveal more details on the presence and functional role of polyQ in viruses, as well as the nucleotide regions that encode them. Given the known toxic effects of polyQ repeats, the role of these segments in neurovirulent and tumorigenic viruses should be further explored.
Collapse
|
9
|
Abstract
The power and ease of Drosophila genetics and the medical relevance of mosquito-transmitted viruses have made dipterans important model organisms in antiviral immunology. Studies of virus-host interactions at the molecular and population levels have illuminated determinants of resistance to virus infection. Here, we review the sources and nature of variation in antiviral immunity and virus susceptibility in model dipteran insects, specifically the fruit fly Drosophila melanogaster and vector mosquitoes of the genera Aedes and Culex. We first discuss antiviral immune mechanisms and describe the virus-specificity of these responses. In the following sections, we review genetic and microbiota-dependent variation in antiviral immunity. In the final sections, we explore less well-studied sources of variation, including abiotic factors, sexual dimorphism, infection history, and endogenous viral elements. We borrow from work on other pathogen types and non-dipteran species when it parallels or complements studies in dipterans. Understanding natural variation in virus-host interactions may lead to the identification of novel restriction factors and immune mechanisms and shed light on the molecular determinants of vector competence.
Collapse
Affiliation(s)
- William H Palmer
- Institute of Evolutionary Biology and Centre for Infection, Evolution and Immunity, University of Edinburgh, Edinburgh EH9 3FL UK.
| | - Finny S Varghese
- Department of Medical Microbiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, P.O. Box 9101, Nijmegen 6500 HB, The Netherlands.
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands.
| | - Ronald P van Rij
- Department of Medical Microbiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, P.O. Box 9101, Nijmegen 6500 HB, The Netherlands.
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands.
| |
Collapse
|
10
|
Mongelli V, Saleh MC. Bugs Are Not to Be Silenced: Small RNA Pathways and Antiviral Responses in Insects. Annu Rev Virol 2017; 3:573-589. [PMID: 27741406 DOI: 10.1146/annurev-virology-110615-042447] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Like every other organism on Earth, insects are infected with viruses, and they rely on RNA interference (RNAi) mechanisms to circumvent viral infections. A remarkable characteristic of RNAi is that it is both broadly acting, because it is triggered by double-stranded RNA molecules derived from virtually any virus, and extremely specific, because it targets only the particular viral sequence that initiated the process. Reviews covering the different facets of the RNAi antiviral immune response in insects have been published elsewhere. In this review, we build a framework to guide future investigation. We focus on the remaining questions and avenues of research that need to be addressed to move the field forward, including issues such as the activity of viral suppressors of RNAi, comparative genomics, the development of detailed maps of the subcellular localization of viral replication complexes with the RNAi machinery, and the regulation of the antiviral RNAi response.
Collapse
Affiliation(s)
- Vanesa Mongelli
- Viruses and RNA Interference Unit, Department of Virology, CNRS UMR 3569, Institut Pasteur, 75724 Paris Cedex 15, France;
| | - Maria-Carla Saleh
- Viruses and RNA Interference Unit, Department of Virology, CNRS UMR 3569, Institut Pasteur, 75724 Paris Cedex 15, France;
| |
Collapse
|
11
|
Lewis SH, Webster CL, Salmela H, Obbard DJ. Repeated Duplication of Argonaute2 Is Associated with Strong Selection and Testis Specialization in Drosophila. Genetics 2016; 204:757-769. [PMID: 27535930 PMCID: PMC5068860 DOI: 10.1534/genetics.116.192336] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/12/2016] [Indexed: 11/18/2022] Open
Abstract
Argonaute2 (Ago2) is a rapidly evolving nuclease in the Drosophila melanogaster RNA interference (RNAi) pathway that targets viruses and transposable elements in somatic tissues. Here we reconstruct the history of Ago2 duplications across the D. obscura group and use patterns of gene expression to infer new functional specialization. We show that some duplications are old, shared by the entire species group, and that losses may be common, including previously undetected losses in the lineage leading to D. pseudoobscura We find that while the original (syntenic) gene copy has generally retained the ancestral ubiquitous expression pattern, most of the novel Ago2 paralogs have independently specialized to testis-specific expression. Using population genetic analyses, we show that most testis-specific paralogs have significantly lower genetic diversity than the genome-wide average. This suggests recent positive selection in three different species, and model-based analyses provide strong evidence of recent hard selective sweeps in or near four of the six D. pseudoobscura Ago2 paralogs. We speculate that the repeated evolution of testis specificity in obscura group Ago2 genes, combined with their dynamic turnover and strong signatures of adaptive evolution, may be associated with highly derived roles in the suppression of transposable elements or meiotic drive. Our study highlights the lability of RNAi pathways, even within well-studied groups such as Drosophila, and suggests that strong selection may act quickly after duplication in RNAi pathways, potentially giving rise to new and unknown RNAi functions in nonmodel species.
Collapse
Affiliation(s)
- Samuel H Lewis
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories, EH9 3FL, United Kingdom
| | - Claire L Webster
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories, EH9 3FL, United Kingdom
| | - Heli Salmela
- Department of Biosciences, Centre of Excellence in Biological Interactions, University of Helsinki, Finland
| | - Darren J Obbard
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories, EH9 3FL, United Kingdom Centre for Immunity, Infection and Evolution, University of Edinburgh, Ashworth Laboratories, EH9 3FL, United Kingdom
| |
Collapse
|
12
|
Palmer WH, Obbard DJ. Variation and Evolution in the Glutamine-Rich Repeat Region of Drosophila Argonaute-2. G3 (BETHESDA, MD.) 2016; 6:2563-72. [PMID: 27317784 PMCID: PMC4978909 DOI: 10.1534/g3.116.031880] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/10/2016] [Indexed: 01/06/2023]
Abstract
RNA interference pathways mediate biological processes through Argonaute-family proteins, which bind small RNAs as guides to silence complementary target nucleic acids . In insects and crustaceans Argonaute-2 silences viral nucleic acids, and therefore acts as a primary effector of innate antiviral immunity. Although the function of the major Argonaute-2 domains, which are conserved across most Argonaute-family proteins, are known, many invertebrate Argonaute-2 homologs contain a glutamine-rich repeat (GRR) region of unknown function at the N-terminus . Here we combine long-read amplicon sequencing of Drosophila Genetic Reference Panel (DGRP) lines with publicly available sequence data from many insect species to show that this region evolves extremely rapidly and is hyper-variable within species. We identify distinct GRR haplotype groups in Drosophila melanogaster, and suggest that one of these haplotype groups has recently risen to high frequency in a North American population. Finally, we use published data from genome-wide association studies of viral resistance in D. melanogaster to test whether GRR haplotypes are associated with survival after virus challenge. We find a marginally significant association with survival after challenge with Drosophila C Virus in the DGRP, but we were unable to replicate this finding using lines from the Drosophila Synthetic Population Resource panel.
Collapse
Affiliation(s)
- William H Palmer
- Institute of Evolutionary Biology and Centre for Infection, Evolution and Immunity, University of Edinburgh, EH9 3FL UK
| | - Darren J Obbard
- Institute of Evolutionary Biology and Centre for Infection, Evolution and Immunity, University of Edinburgh, EH9 3FL UK
| |
Collapse
|
13
|
Schmidts I, Böttcher R, Mirkovic-Hösle M, Förstemann K. Homology directed repair is unaffected by the absence of siRNAs in Drosophila melanogaster. Nucleic Acids Res 2016; 44:8261-71. [PMID: 27353331 PMCID: PMC5041469 DOI: 10.1093/nar/gkw570] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 06/14/2016] [Indexed: 12/28/2022] Open
Abstract
Small interfering RNAs (siRNAs) defend the organism against harmful transcripts from exogenous (e.g. viral) or endogenous (e.g. transposons) sources. Recent publications describe the production of siRNAs induced by DNA double-strand breaks (DSB) in Neurospora crassa, Arabidopsis thaliana, Drosophila melanogaster and human cells, which suggests a conserved function. A current hypothesis is that break-induced small RNAs ensure efficient homologous recombination (HR). However, biogenesis of siRNAs is often intertwined with other small RNA species, such as microRNAs (miRNAs), which complicates interpretation of experimental results. In Drosophila, siRNAs are produced by Dcr-2 while miRNAs are processed by Dcr-1. Thus, it is possible to probe siRNA function without miRNA deregulation. We therefore examined DNA double-strand break repair after perturbation of siRNA biogenesis in cultured Drosophila cells as well as mutant flies. Our assays comprised reporters for the single-strand annealing pathway, homologous recombination and sensitivity to the DSB-inducing drug camptothecin. We could not detect any repair defects caused by the lack of siRNAs derived from the broken DNA locus. Since production of these siRNAs depends on local transcription, they may thus participate in RNA metabolism-an established function of siRNAs-rather than DNA repair.
Collapse
Affiliation(s)
- Ines Schmidts
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 25, D-81377, München, Germany
| | - Romy Böttcher
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 25, D-81377, München, Germany
| | - Milijana Mirkovic-Hösle
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 25, D-81377, München, Germany
| | - Klaus Förstemann
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 25, D-81377, München, Germany
| |
Collapse
|
14
|
Dallaire A, Simard MJ. The implication of microRNAs and endo-siRNAs in animal germline and early development. Dev Biol 2016; 416:18-25. [PMID: 27287880 DOI: 10.1016/j.ydbio.2016.06.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/31/2016] [Accepted: 06/06/2016] [Indexed: 01/13/2023]
Abstract
Germ cells provide maternal mRNAs that are stored in the oocyte, and later translated at a specific time of development. In this context, gene regulation depends mainly on post-transcriptional mechanisms that contribute to keep maternal transcripts in a stable and translationally silent state. In recent years, small non-coding RNAs, such as microRNAs have emerged as key post-transcriptional regulators of gene expression. microRNAs control the translation efficiency and/or stability of targeted mRNAs. microRNAs are present in animal germ cells and maternally inherited microRNAs are abundant in early embryos. However, it is not known how microRNAs control the stability and translation of maternal transcripts. In this review, we will discuss the implication of germline microRNAs in regulating animal oogenesis and early embryogenesis as well as compare their roles with endo-siRNAs, small RNA species that share key molecular components with the microRNA pathway.
Collapse
Affiliation(s)
- Alexandra Dallaire
- St-Patrick Research Group in Basic Oncology, Centre Hospitalier Universitaire de Québec-Université Laval Research Centre (Hôtel-Dieu de Québec), Quebec City, Québec, Canada G1R 2J6; Laval University Cancer Research Centre, Quebec City, Québec, Canada G1R 2J6
| | - Martin J Simard
- St-Patrick Research Group in Basic Oncology, Centre Hospitalier Universitaire de Québec-Université Laval Research Centre (Hôtel-Dieu de Québec), Quebec City, Québec, Canada G1R 2J6; Laval University Cancer Research Centre, Quebec City, Québec, Canada G1R 2J6.
| |
Collapse
|
15
|
Lewis SH, Salmela H, Obbard DJ. Duplication and Diversification of Dipteran Argonaute Genes, and the Evolutionary Divergence of Piwi and Aubergine. Genome Biol Evol 2016; 8:507-18. [PMID: 26868596 PMCID: PMC4824172 DOI: 10.1093/gbe/evw018] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Genetic studies of Drosophila melanogaster have provided a paradigm for RNA interference (RNAi) in arthropods, in which the microRNA and antiviral pathways are each mediated by a single Argonaute (Ago1 and Ago2) and germline suppression of transposable elements is mediated by a trio of Piwi-subfamily Argonaute proteins (Ago3, Aub, and Piwi). Without a suitable evolutionary context, deviations from this can be interpreted as derived or idiosyncratic. Here we analyze the evolution of Argonaute genes across the genomes and transcriptomes of 86 Dipteran species, showing that variation in copy number can occur rapidly, and that there is constant flux in some RNAi mechanisms. The lability of the RNAi pathways is illustrated by the divergence of Aub and Piwi (182-156 Ma), independent origins of multiple Piwi-family genes in Aedes mosquitoes (less than 25Ma), and the recent duplications of Ago2 and Ago3 in the tsetse fly Glossina morsitans. In each case the tissue specificity of these genes has altered, suggesting functional divergence or innovation, and consistent with the action of dynamic selection pressures across the Argonaute gene family. We find there are large differences in evolutionary rates and gene turnover between pathways, and that paralogs of Ago2, Ago3, and Piwi/Aub show contrasting rates of evolution after duplication. This suggests that Argonautes undergo frequent evolutionary expansions that facilitate functional divergence.
Collapse
Affiliation(s)
- Samuel H Lewis
- Institute of Evolutionary Biology, University of Edinburgh, United Kingdom Present Address: Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH
| | - Heli Salmela
- Department of Biosciences, Centre of Excellence in Biological Interactions, University of Helsinki, Helsinki, Finland
| | - Darren J Obbard
- Institute of Evolutionary Biology, University of Edinburgh, United Kingdom Centre for Immunity, Infection and Evolution, University of Edinburgh, United Kingdom
| |
Collapse
|
16
|
Cao C, Magwire MM, Bayer F, Jiggins FM. A Polymorphism in the Processing Body Component Ge-1 Controls Resistance to a Naturally Occurring Rhabdovirus in Drosophila. PLoS Pathog 2016; 12:e1005387. [PMID: 26799957 PMCID: PMC4723093 DOI: 10.1371/journal.ppat.1005387] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 12/17/2015] [Indexed: 12/30/2022] Open
Abstract
Hosts encounter an ever-changing array of pathogens, so there is continual selection for novel ways to resist infection. A powerful way to understand how hosts evolve resistance is to identify the genes that cause variation in susceptibility to infection. Using high-resolution genetic mapping we have identified a naturally occurring polymorphism in a gene called Ge-1 that makes Drosophila melanogaster highly resistant to its natural pathogen Drosophila melanogaster sigma virus (DMelSV). By modifying the sequence of the gene in transgenic flies, we identified a 26 amino acid deletion in the serine-rich linker region of Ge-1 that is causing the resistance. Knocking down the expression of the susceptible allele leads to a decrease in viral titre in infected flies, indicating that Ge-1 is an existing restriction factor whose antiviral effects have been increased by the deletion. Ge-1 plays a central role in RNA degradation and the formation of processing bodies (P bodies). A key effector in antiviral immunity, the RNAi induced silencing complex (RISC), localises to P bodies, but we found that Ge-1-based resistance is not dependent on the small interfering RNA (siRNA) pathway. However, we found that Decapping protein 1 (DCP1) protects flies against sigma virus. This protein interacts with Ge-1 and commits mRNA for degradation by removing the 5’ cap, suggesting that resistance may rely on this RNA degradation pathway. The serine-rich linker domain of Ge-1 has experienced strong selection during the evolution of Drosophila, suggesting that this gene may be under long-term selection by viruses. These findings demonstrate that studying naturally occurring polymorphisms that increase resistance to infections enables us to identify novel forms of antiviral defence, and support a pattern of major effect polymorphisms controlling resistance to viruses in Drosophila. Hosts and their pathogens are engaged in a never-ending arms race, and hosts must continually evolve new defences to protect themselves from infection. In the fruit fly Drosophila melanogaster we show that virus resistance can evolve through a single mutation. In flies that are highly resistant to a naturally occurring virus called sigma virus we identified a deletion in the protein-coding region of a gene called Ge-1. We experimentally confirmed that this was the cause of resistance by deleting this region in transgenic flies. Furthermore, we show that even the susceptible allele of Ge-1 helps protect flies against the virus, suggesting that this mutation has made an existing antiviral defence more effective. Ge-1 plays a central role in RNA degradation in regions of the cytoplasm called P bodies, and our results suggest that this pathway has been recruited during evolution to protect D. melanogaster against sigma virus. The protein domain that contains the deletion has experienced strong selection during its evolution, suggesting that it may be involved in an ongoing arms race with viruses.
Collapse
Affiliation(s)
- Chuan Cao
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| | - Michael M. Magwire
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Florian Bayer
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Francis M. Jiggins
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
17
|
Abstract
Small RNAs, 21-24 nucleotides in length, are non-coding RNAs found in most multicellular organisms, as well as in some viruses. There are three main types of small RNAs including microRNA (miRNA), small-interfering RNA (siRNA), and piwi-interacting RNA (piRNA). Small RNAs play key roles in the genetic regulation of eukaryotes; at least 50% of all eukaryote genes are the targets of small RNAs. In recent years, studies have shown that some unique small RNAs are involved in the immune response of crustaceans, leading to lower or higher immune responses to infections and diseases. SiRNAs could be used as therapy for virus infection. In this review, we provide an overview of the diverse roles of small RNAs in the immune defense mechanisms of crustaceans.
Collapse
Affiliation(s)
- Yaodong He
- Ocean College, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Chenyu Ju
- Collaborative Innovation Center of Deep-sea Biology and College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Xiaobo Zhang
- Collaborative Innovation Center of Deep-sea Biology and College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China.
| |
Collapse
|
18
|
Welte MA. As the fat flies: The dynamic lipid droplets of Drosophila embryos. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1156-85. [PMID: 25882628 DOI: 10.1016/j.bbalip.2015.04.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 03/31/2015] [Accepted: 04/06/2015] [Indexed: 01/09/2023]
Abstract
Research into lipid droplets is rapidly expanding, and new cellular and organismal roles for these lipid-storage organelles are continually being discovered. The early Drosophila embryo is particularly well suited for addressing certain questions in lipid-droplet biology and combines technical advantages with unique biological phenomena. This review summarizes key features of this experimental system and the techniques available to study it, in order to make it accessible to researchers outside this field. It then describes the two topics most heavily studied in this system, lipid-droplet motility and protein sequestration on droplets, discusses what is known about the molecular players involved, points to open questions, and compares the results from Drosophila embryo studies to what it is known about lipid droplets in other systems.
Collapse
Affiliation(s)
- Michael A Welte
- Department of Biology University of Rochester, RC Box 270211, 317 Hutchison Hall, Rochester, NY 14627, USA.
| |
Collapse
|
19
|
Wen J, Duan H, Bejarano F, Okamura K, Fabian L, Brill JA, Bortolamiol-Becet D, Martin R, Ruby JG, Lai EC. Adaptive regulation of testis gene expression and control of male fertility by the Drosophila hairpin RNA pathway. [Corrected]. Mol Cell 2014; 57:165-78. [PMID: 25544562 DOI: 10.1016/j.molcel.2014.11.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 09/26/2014] [Accepted: 11/20/2014] [Indexed: 11/18/2022]
Abstract
Although endogenous siRNAs (endo-siRNAs) have been described in many species, still little is known about their endogenous utility. Here, we show that Drosophila hairpin RNAs (hpRNAs) generate an endo-siRNA class with predominant expression in testes. Although hpRNAs are universally recently evolved, we identify highly complementary protein-coding targets for all hpRNAs. Importantly, we find broad evidence for evolutionary divergences that preferentially maintain compensatory pairing between hpRNAs and targets, serving as first evidence for adaptive selection for siRNA-mediated target regulation in metazoans. We demonstrate organismal impact of hpRNA activity, since knockout of hpRNA1 derepresses its target ATP synthase-β in testes and compromises spermatogenesis and male fertility. Moreover, we reveal surprising male-specific impact of RNAi factors on germ cell development and fertility, consistent with testis-directed function of the hpRNA pathway. Finally, the collected hpRNA loci chronicle an evolutionary timeline that reflects their origins from prospective target genes, mirroring a strategy described for plant miRNAs.
Collapse
Affiliation(s)
- Jiayu Wen
- Sloan-Kettering Institute, Department of Developmental Biology, 1275 York Ave, Box 252, New York, NY 10065, USA
| | - Hong Duan
- Sloan-Kettering Institute, Department of Developmental Biology, 1275 York Ave, Box 252, New York, NY 10065, USA
| | - Fernando Bejarano
- Sloan-Kettering Institute, Department of Developmental Biology, 1275 York Ave, Box 252, New York, NY 10065, USA
| | - Katsutomo Okamura
- Sloan-Kettering Institute, Department of Developmental Biology, 1275 York Ave, Box 252, New York, NY 10065, USA
| | - Lacramioara Fabian
- Cell Biology Program, The Hospital for Sick Children, PGCRL, 686 Bay Street, Room 15.9716, Toronto, ON M5G 0A4, Canada
| | - Julie A Brill
- Cell Biology Program, The Hospital for Sick Children, PGCRL, 686 Bay Street, Room 15.9716, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Diane Bortolamiol-Becet
- Sloan-Kettering Institute, Department of Developmental Biology, 1275 York Ave, Box 252, New York, NY 10065, USA
| | - Raquel Martin
- Sloan-Kettering Institute, Department of Developmental Biology, 1275 York Ave, Box 252, New York, NY 10065, USA
| | - J Graham Ruby
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Eric C Lai
- Sloan-Kettering Institute, Department of Developmental Biology, 1275 York Ave, Box 252, New York, NY 10065, USA.
| |
Collapse
|
20
|
Xu D, Liu W, Alvarez A, Huang T. Cellular immune responses against viral pathogens in shrimp. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 47:287-297. [PMID: 25111591 DOI: 10.1016/j.dci.2014.08.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/04/2014] [Accepted: 08/06/2014] [Indexed: 06/03/2023]
Abstract
Shrimp is one of the most important commercial marine species worldwide; however, viral diseases threaten the healthy development of shrimp aquaculture. In order to develop efficient control strategies against viral diseases, researchers have begun focusing increasing attention to the molecular mechanism of shrimp innate immunity. Although knowledge of shrimp humoral immunity has grown significantly in recent years, very little information is available about the cell-mediated immune responses. Several cellular processes such as phagocytosis, apoptosis, and RNA interference critical in cellular immune response play a significant role in endogenous antiviral activity in shrimp. In this review, we summarize the emerging research and highlight key mediators of cellular immune response to viral pathogens.
Collapse
Affiliation(s)
- Dandan Xu
- Institute of Cell Biology, Zhejiang University, Hangzhou 310058, China
| | - Weifeng Liu
- Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Angel Alvarez
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Tianzhi Huang
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China; The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, USA..
| |
Collapse
|
21
|
van Mierlo JT, Overheul GJ, Obadia B, van Cleef KWR, Webster CL, Saleh MC, Obbard DJ, van Rij RP. Novel Drosophila viruses encode host-specific suppressors of RNAi. PLoS Pathog 2014; 10:e1004256. [PMID: 25032815 PMCID: PMC4102588 DOI: 10.1371/journal.ppat.1004256] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 06/03/2014] [Indexed: 12/24/2022] Open
Abstract
The ongoing conflict between viruses and their hosts can drive the co-evolution between host immune genes and viral suppressors of immunity. It has been suggested that an evolutionary ‘arms race’ may occur between rapidly evolving components of the antiviral RNAi pathway of Drosophila and viral genes that antagonize it. We have recently shown that viral protein 1 (VP1) of Drosophila melanogaster Nora virus (DmelNV) suppresses Argonaute-2 (AGO2)-mediated target RNA cleavage (slicer activity) to antagonize antiviral RNAi. Here we show that viral AGO2 antagonists of divergent Nora-like viruses can have host specific activities. We have identified novel Nora-like viruses in wild-caught populations of D. immigrans (DimmNV) and D. subobscura (DsubNV) that are 36% and 26% divergent from DmelNV at the amino acid level. We show that DimmNV and DsubNV VP1 are unable to suppress RNAi in D. melanogaster S2 cells, whereas DmelNV VP1 potently suppresses RNAi in this host species. Moreover, we show that the RNAi suppressor activity of DimmNV VP1 is restricted to its natural host species, D. immigrans. Specifically, we find that DimmNV VP1 interacts with D. immigrans AGO2, but not with D. melanogaster AGO2, and that it suppresses slicer activity in embryo lysates from D. immigrans, but not in lysates from D. melanogaster. This species-specific interaction is reflected in the ability of DimmNV VP1 to enhance RNA production by a recombinant Sindbis virus in a host-specific manner. Our results emphasize the importance of analyzing viral RNAi suppressor activity in the relevant host species. We suggest that rapid co-evolution between RNA viruses and their hosts may result in host species-specific activities of RNAi suppressor proteins, and therefore that viral RNAi suppressors could be host-specificity factors. Viruses and their hosts can engage in an evolutionary arms race. Viruses may select for hosts with more effective immune responses, whereas the immune response of the host may select for viruses that evade the immune system. These viral counter-defenses may in turn drive adaptations in host immune genes. A potential outcome of this perpetual cycle is that the interaction between virus and host becomes more specific. In insects, the host antiviral RNAi machinery exerts strong evolutionary pressure that has led to the evolution of viral proteins that can antagonize the RNAi response. We have identified novel viruses that infect different fruit fly species and we show that the RNAi suppressor proteins of these viruses can be specific to their host. Furthermore, we show that these proteins can enhance virus replication in a host-specific manner. These results are in line with the hypothesis that virus-host co-evolution shapes the genomes of both virus and host. Moreover, our results suggest that RNAi suppressor proteins have the potential to determine host specificity of viruses.
Collapse
Affiliation(s)
- Joël T. van Mierlo
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Gijs J. Overheul
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Benjamin Obadia
- Institut Pasteur, Viruses and RNA interference Unit and Centre National de la Recherche Scientifique, UMR 3569, Paris, France
| | - Koen W. R. van Cleef
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Claire L. Webster
- Institute of Evolutionary Biology and Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | - Maria-Carla Saleh
- Institut Pasteur, Viruses and RNA interference Unit and Centre National de la Recherche Scientifique, UMR 3569, Paris, France
| | - Darren J. Obbard
- Institute of Evolutionary Biology and Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail: (DJO); (RPvR)
| | - Ronald P. van Rij
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
- * E-mail: (DJO); (RPvR)
| |
Collapse
|
22
|
Hain D, Langlands A, Sonnenberg HC, Bailey C, Bullock SL, Müller HAJ. The Drosophila MAST kinase Drop out is required to initiate membrane compartmentalisation during cellularisation and regulates dynein-based transport. Development 2014; 141:2119-30. [PMID: 24803657 PMCID: PMC4011086 DOI: 10.1242/dev.104711] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cellularisation of the Drosophila syncytial blastoderm embryo into the polarised blastoderm epithelium provides an excellent model with which to determine how cortical plasma membrane asymmetry is generated during development. Many components of the molecular machinery driving cellularisation have been identified, but cell signalling events acting at the onset of membrane asymmetry are poorly understood. Here we show that mutations in drop out (dop) disturb the segregation of membrane cortical compartments and the clustering of E-cadherin into basal adherens junctions in early cellularisation. dop is required for normal furrow formation and controls the tight localisation of furrow canal proteins and the formation of F-actin foci at the incipient furrows. We show that dop encodes the single Drosophila homologue of microtubule-associated Ser/Thr (MAST) kinases. dop interacts genetically with components of the dynein/dynactin complex and promotes dynein-dependent transport in the embryo. Loss of dop function reduces phosphorylation of Dynein intermediate chain, suggesting that dop is involved in regulating cytoplasmic dynein activity through direct or indirect mechanisms. These data suggest that Dop impinges upon the initiation of furrow formation through developmental regulation of cytoplasmic dynein.
Collapse
Affiliation(s)
- Daniel Hain
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | | | | | | | | | | |
Collapse
|
23
|
Nayak A, Tassetto M, Kunitomi M, Andino R. RNA Interference-Mediated Intrinsic Antiviral Immunity in Invertebrates. Curr Top Microbiol Immunol 2013; 371:183-200. [DOI: 10.1007/978-3-642-37765-5_7] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
24
|
Huang T, Zhang X. Contribution of the argonaute-1 isoforms to invertebrate antiviral defense. PLoS One 2012; 7:e50581. [PMID: 23209784 PMCID: PMC3510085 DOI: 10.1371/journal.pone.0050581] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 10/23/2012] [Indexed: 01/10/2023] Open
Abstract
Argonaute (Ago) protein, the central component of the RNA interference (RNAi) pathway, plays important roles in host innate antiviral immunity. Most organisms harbor a large number of different Ago proteins and isoforms; however, the roles of Ago isoforms in immune defense against pathogens remain unclear. In the present study, three Argonaute-1 (Ago1) isoforms, termed Ago1A, Ago1B, and Ago1C, were found in Marsupenaeus japonicus shrimp. Quantitative real-time PCR (polymerase chain reaction) revealed that isoforms Ago1A and Ago1B containing an insertion sequence in the PIWI domain, were significantly up-regulated in lymphoid organ and hemolymph, and also upon white spot syndrome virus (WSSV) challenge, indicating the involvement of Ago1A and Ago1B in antiviral immunity. The results showed that silencing of Ago1A with a sequence-specific siRNA led to a significant increase of WSSV loads. It was revealed that knockdown of Ago1B mRNA by 37-70% resulted in higher virus loads in shrimp. However, upon silencing Ago1B by more than 85%, a two-fold increase in Ago1A mRNA was observed but viral load was the same as untreated controls challenged with WSSV, suggesting that the simultaneous up-regulation of Ago1A might compensate for the loss of Ago1B. These data indicated that Ago1A played more important roles in the antiviral immune response than Ago1B. The simultaneous inhibition of Ago1A and Ago1B resulted in a greater increase in viral loads than Ago1A or Ago1B alone, indicating that Ago1A and Ago1B isoforms were involved in shrimp antiviral immunity. It was revealed that Ago1C had no effect on virus infection. Therefore, the current study presented the first report on the contribution of Ago isoforms in the invertebrate defense against virus infection.
Collapse
Affiliation(s)
- Tianzhi Huang
- Key Laboratory of Conservation Biology for Endangered Wildlife of Ministry of Education, Zhejiang University, Hangzhou, China
| | | |
Collapse
|
25
|
The DNA virus Invertebrate iridescent virus 6 is a target of the Drosophila RNAi machinery. Proc Natl Acad Sci U S A 2012; 109:E3604-13. [PMID: 23151511 DOI: 10.1073/pnas.1207213109] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RNA viruses in insects are targets of an RNA interference (RNAi)-based antiviral immune response, in which viral replication intermediates or viral dsRNA genomes are processed by Dicer-2 (Dcr-2) into viral small interfering RNAs (vsiRNAs). Whether dsDNA virus infections are controlled by the RNAi pathway remains to be determined. Here, we analyzed the role of RNAi in DNA virus infection using Drosophila melanogaster infected with Invertebrate iridescent virus 6 (IIV-6) as a model. We show that Dcr-2 and Argonaute-2 mutant flies are more sensitive to virus infection, suggesting that vsiRNAs contribute to the control of DNA virus infection. Indeed, small RNA sequencing of IIV-6-infected WT and RNAi mutant flies identified abundant vsiRNAs that were produced in a Dcr-2-dependent manner. We observed a highly uneven distribution with strong clustering of vsiRNAs to small defined regions (hotspots) and modest coverage at other regions (coldspots). vsiRNAs mapped in similar proportions to both strands of the viral genome, suggesting that long dsRNA derived from convergent overlapping transcripts serves as a substrate for Dcr-2. In agreement, strand-specific RT-PCR and Northern blot analyses indicated that antisense transcripts are produced during infection. Moreover, we show that vsiRNAs are functional in silencing reporter constructs carrying fragments of the IIV-6 genome. Together, our data indicate that RNAi provides antiviral defense against dsDNA viruses in animals. Thus, RNAi is the predominant antiviral defense mechanism in insects that provides protection against all major classes of viruses.
Collapse
|
26
|
van Mierlo JT, Bronkhorst AW, Overheul GJ, Sadanandan SA, Ekström JO, Heestermans M, Hultmark D, Antoniewski C, van Rij RP. Convergent evolution of argonaute-2 slicer antagonism in two distinct insect RNA viruses. PLoS Pathog 2012; 8:e1002872. [PMID: 22916019 PMCID: PMC3420963 DOI: 10.1371/journal.ppat.1002872] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 07/08/2012] [Indexed: 12/05/2022] Open
Abstract
RNA interference (RNAi) is a major antiviral pathway that shapes evolution of RNA viruses. We show here that Nora virus, a natural Drosophila pathogen, is both a target and suppressor of RNAi. We detected viral small RNAs with a signature of Dicer-2 dependent small interfering RNAs in Nora virus infected Drosophila. Furthermore, we demonstrate that the Nora virus VP1 protein contains RNAi suppressive activity in vitro and in vivo that enhances pathogenicity of recombinant Sindbis virus in an RNAi dependent manner. Nora virus VP1 and the viral suppressor of RNAi of Cricket paralysis virus (1A) antagonized Argonaute-2 (AGO2) Slicer activity of RNA induced silencing complexes pre-loaded with a methylated single-stranded guide strand. The convergent evolution of AGO2 suppression in two unrelated insect RNA viruses highlights the importance of AGO2 in antiviral defense. Multi-cellular organisms require a potent immune response to ensure survival under the ongoing assault by microbial pathogens. Co-evolution of virus and host shapes the genome of both pathogen and host. Using Drosophila melanogaster as a model, we study virus-host interactions in infections by Nora virus, a non-lethal natural pathogen of fruit flies. Insects depend on the RNA interference (RNAi) pathway for antiviral defense. A hallmark of the antiviral RNAi response is the production of viral small RNAs during infection. We detected Nora virus small RNAs during infection of Drosophila, demonstrating that Nora virus is a target of the antiviral RNAi pathway. Furthermore, we show that Nora virus viral protein 1 (VP1) inhibits the catalytic activity of Argonaute-2, a key protein of the RNAi pathway. The 1A protein of Cricket paralysis virus suppresses RNAi via a similar mechanism. Importantly, whereas Nora virus persistently infects Drosophila, Cricket paralysis virus induces a lethal infection. Our findings thus indicate that two distantly related viruses independently evolved an RNAi suppressor protein that targets the Argonaute-2 protein. Altogether, our results emphasize the critical role of Argonaute-2 in insect antiviral defense, both in lethal and persistent infections.
Collapse
Affiliation(s)
- Joël T. van Mierlo
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, Nijmegen Institute for Infection, Inflammation and Immunity, Nijmegen, The Netherlands
| | - Alfred W. Bronkhorst
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, Nijmegen Institute for Infection, Inflammation and Immunity, Nijmegen, The Netherlands
| | - Gijs J. Overheul
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, Nijmegen Institute for Infection, Inflammation and Immunity, Nijmegen, The Netherlands
| | | | | | - Marco Heestermans
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, Nijmegen Institute for Infection, Inflammation and Immunity, Nijmegen, The Netherlands
| | - Dan Hultmark
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Institute of Biomedical Technology, University of Tampere, Tampere, Finland
| | - Christophe Antoniewski
- Drosophila Genetics and Epigenetics, Université Pierre et Marie Curie Paris VI, CNRS UMR 7622 - Biologie du Développement, Paris, France
| | - Ronald P. van Rij
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, Nijmegen Institute for Infection, Inflammation and Immunity, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
27
|
Abstract
A major role of the RNAi pathway in Schizosaccharomyces pombe is to nucleate heterochromatin, but it remains unclear whether this mechanism is conserved. To address this question in Drosophila, we performed genome-wide localization of Argonaute2 (AGO2) by chromatin immunoprecipitation (ChIP)-seq in two different embryonic cell lines and found that AGO2 localizes to euchromatin but not heterochromatin. This localization pattern is further supported by immunofluorescence staining of polytene chromosomes and cell lines, and these studies also indicate that a substantial fraction of AGO2 resides in the nucleus. Intriguingly, AGO2 colocalizes extensively with CTCF/CP190 chromatin insulators but not with genomic regions corresponding to endogenous siRNA production. Moreover, AGO2, but not its catalytic activity or Dicer-2, is required for CTCF/CP190-dependent Fab-8 insulator function. AGO2 interacts physically with CTCF and CP190, and depletion of either CTCF or CP190 results in genome-wide loss of AGO2 chromatin association. Finally, mutation of CTCF, CP190, or AGO2 leads to reduction of chromosomal looping interactions, thereby altering gene expression. We propose that RNAi-independent recruitment of AGO2 to chromatin by insulator proteins promotes the definition of transcriptional domains throughout the genome.
Collapse
|
28
|
Longdon B, Hadfield JD, Webster CL, Obbard DJ, Jiggins FM. Host phylogeny determines viral persistence and replication in novel hosts. PLoS Pathog 2011; 7:e1002260. [PMID: 21966271 PMCID: PMC3178573 DOI: 10.1371/journal.ppat.1002260] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 07/25/2011] [Indexed: 12/11/2022] Open
Abstract
Pathogens switching to new hosts can result in the emergence of new infectious diseases, and determining which species are likely to be sources of such host shifts is essential to understanding disease threats to both humans and wildlife. However, the factors that determine whether a pathogen can infect a novel host are poorly understood. We have examined the ability of three host-specific RNA-viruses (Drosophila sigma viruses from the family Rhabdoviridae) to persist and replicate in 51 different species of Drosophilidae. Using a novel analytical approach we found that the host phylogeny could explain most of the variation in viral replication and persistence between different host species. This effect is partly driven by viruses reaching a higher titre in those novel hosts most closely related to the original host. However, there is also a strong effect of host phylogeny that is independent of the distance from the original host, with viral titres being similar in groups of related hosts. Most of this effect could be explained by variation in general susceptibility to all three sigma viruses, as there is a strong phylogenetic correlation in the titres of the three viruses. These results suggest that the source of new emerging diseases may often be predictable from the host phylogeny, but that the effect may be more complex than simply causing most host shifts to occur between closely related hosts. Emerging infectious diseases such as SARS, HIV and swine-origin influenza have all been recently acquired by humans from other species. Understanding the reasons why parasites jump between different host species is essential to allow us to predict future threats and understand the causes of disease emergence. Here we ask how host-relatedness might determine when host-shifts can occur in the most important group of emerging diseases—RNA viruses. We show that the relationship between host species is the primary factor in determining a virus's ability to persist and replicate in a novel host following exposure. This can be broken down into two components. Firstly, species closely related to the virus's natural host are more susceptible than distantly related species. Secondly, independent of the distance effect, groups of closely related host species have similar levels of susceptibility. This has important implications for our understanding of disease-emergence, and until now the only large-scale studies of viruses have been correlative rather than experimental. We also found groups of related species that are susceptible to these viruses but are distantly related to the natural hosts, which may explain why viruses sometimes jump between distantly related species.
Collapse
Affiliation(s)
- Ben Longdon
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Labs, Edinburgh, United Kingdom.
| | | | | | | | | |
Collapse
|
29
|
Yu YV, Li Z, Rizzo NP, Einstein J, Welte MA. Targeting the motor regulator Klar to lipid droplets. BMC Cell Biol 2011; 12:9. [PMID: 21349165 PMCID: PMC3051913 DOI: 10.1186/1471-2121-12-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 02/24/2011] [Indexed: 11/24/2022] Open
Abstract
Background In Drosophila, the transport regulator Klar displays tissue-specific localization: In photoreceptors, it is abundant on the nuclear envelope; in early embryos, it is absent from nuclei, but instead present on lipid droplets. Differential targeting of Klar appears to be due to isoform variation. Droplet targeting, in particular, has been suggested to occur via a variant C-terminal region, the LD domain. Although the LD domain is necessary and sufficient for droplet targeting in cultured cells, lack of specific reagents had made it previously impossible to analyze its role in vivo. Results Here we describe a new mutant allele of klar with a lesion specifically in the LD domain; this lesion abolishes both droplet localization of Klar and the ability of Klar to regulate droplet motion. It does not disrupt Klar's function for nuclear migration in photoreceptors. Using a GFP-LD fusion, we show that the LD domain is not only necessary but also sufficient for droplet targeting in vivo; it mediates droplet targeting in embryos, in ovaries, and in a number of somatic tissues. Conclusions Our analysis demonstrates that droplet targeting of Klar occurs via a cis-acting sequence and generates a new tool for monitoring lipid droplets in living tissues of Drosophila.
Collapse
Affiliation(s)
- Yanxun V Yu
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | | | | | | | | |
Collapse
|