1
|
Baker JG, Summers RJ. Adrenoceptors: Receptors, Ligands and Their Clinical Uses, Molecular Pharmacology and Assays. Handb Exp Pharmacol 2024; 285:55-145. [PMID: 38926158 DOI: 10.1007/164_2024_713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
The nine G protein-coupled adrenoceptor subtypes are where the endogenous catecholamines adrenaline and noradrenaline interact with cells. Since they are important therapeutic targets, over a century of effort has been put into developing drugs that modify their activity. This chapter provides an outline of how we have arrived at current knowledge of the receptors, their physiological roles and the methods used to develop ligands. Initial studies in vivo and in vitro with isolated organs and tissues progressed to cell-based techniques and the use of cloned adrenoceptor subtypes together with high-throughput assays that allow close examination of receptors and their signalling pathways. The crystal structures of many of the adrenoceptor subtypes have now been determined opening up new possibilities for drug development.
Collapse
Affiliation(s)
- Jillian G Baker
- Cell Signalling, Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, UK.
- Department of Respiratory Medicine, Nottingham University Hospitals NHS Trust, Nottingham, UK.
| | - Roger J Summers
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.
| |
Collapse
|
2
|
Joyce W, Warwicker J, Shiels HA, Perry SF. Evolution and divergence of teleost adrenergic receptors: why sometimes 'the drugs don't work' in fish. J Exp Biol 2023; 226:jeb245859. [PMID: 37823524 DOI: 10.1242/jeb.245859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Adrenaline and noradrenaline, released as hormones and/or neurotransmitters, exert diverse physiological functions in vertebrates, and teleost fishes are widely used as model organisms to study adrenergic regulation; however, such investigations often rely on receptor subtype-specific pharmacological agents (agonists and antagonists; see Glossary) developed and validated in mammals. Meanwhile, evolutionary (phylogenetic and comparative genomic) studies have begun to unravel the diversification of adrenergic receptors (ARs) and reveal that whole-genome duplications and pseudogenization events in fishes results in notable distinctions from mammals in their genomic repertoire of ARs, while lineage-specific gene losses within teleosts have generated significant interspecific variability. In this Review, we visit the evolutionary history of ARs (including α1-, α2- and β-ARs) to highlight the prominent interspecific differences in teleosts, as well as between teleosts and other vertebrates. We also show that structural modelling of teleost ARs predicts differences in ligand binding affinity compared with mammalian orthologs. To emphasize the difficulty of studying the roles of different AR subtypes in fish, we collate examples from the literature of fish ARs behaving atypically compared with standard mammalian pharmacology. Thereafter, we focus on specific case studies of the liver, heart and red blood cells, where our understanding of AR expression has benefited from combining pharmacological approaches with molecular genetics. Finally, we briefly discuss the ongoing advances in 'omics' technologies that, alongside classical pharmacology, will provide abundant opportunities to further explore adrenergic signalling in teleosts.
Collapse
Affiliation(s)
- William Joyce
- Department of Biology - Zoophysiology, Aarhus University, 8000 Aarhus C, Denmark
| | - Jim Warwicker
- Division of Molecular and Cellular Function, Faculty of Biology, Medicine and Health, Manchester Institute of Biotechnology, The University of Manchester, Manchester, M1 7DN, UK
| | - Holly A Shiels
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PL, UK
| | - Steve F Perry
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada, K1N 6N5
| |
Collapse
|
3
|
Su M, Paknejad N, Zhu L, Wang J, Do HN, Miao Y, Liu W, Hite RK, Huang XY. Structures of β 1-adrenergic receptor in complex with Gs and ligands of different efficacies. Nat Commun 2022; 13:4095. [PMID: 35835792 PMCID: PMC9283524 DOI: 10.1038/s41467-022-31823-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/01/2022] [Indexed: 11/09/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) receive signals from ligands with different efficacies, and transduce to heterotrimeric G-proteins to generate different degrees of physiological responses. Previous studies revealed how ligands with different efficacies activate GPCRs. Here, we investigate how a GPCR activates G-proteins upon binding ligands with different efficacies. We report the cryo-EM structures of β1-adrenergic receptor (β1-AR) in complex with Gs (GαsGβ1Gγ2) and a partial agonist or a very weak partial agonist, and compare them to the β1-AR-Gs structure in complex with a full agonist. Analyses reveal similar overall complex architecture, with local conformational differences. Cellular functional studies with mutations of β1-AR residues show effects on the cellular signaling from β1-AR to the cAMP response initiated by the three different ligands, with residue-specific functional differences. Biochemical investigations uncover that the intermediate state complex comprising β1-AR and nucleotide-free Gs is more stable when binding a full agonist than a partial agonist. Molecular dynamics simulations support the local conformational flexibilities and different stabilities among the three complexes. These data provide insights into the ligand efficacy in the activation of GPCRs and G-proteins.
Collapse
Affiliation(s)
- Minfei Su
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY, 10065, USA
| | - Navid Paknejad
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Lan Zhu
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Jinan Wang
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66047, USA
| | - Hung Nguyen Do
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66047, USA
| | - Yinglong Miao
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66047, USA
| | - Wei Liu
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Richard K Hite
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Xin-Yun Huang
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY, 10065, USA.
| |
Collapse
|
4
|
Alegre KO, Paknejad N, Su M, Lou JS, Huang J, Jordan KD, Eng ET, Meyerson JR, Hite RK, Huang XY. Structural basis and mechanism of activation of two different families of G proteins by the same GPCR. Nat Struct Mol Biol 2021; 28:936-944. [PMID: 34759376 DOI: 10.1038/s41594-021-00679-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 09/30/2021] [Indexed: 01/14/2023]
Abstract
The β1-adrenergic receptor (β1-AR) can activate two families of G proteins. When coupled to Gs, β1-AR increases cardiac output, and coupling to Gi leads to decreased responsiveness in myocardial infarction. By comparative structural analysis of turkey β1-AR complexed with either Gi or Gs, we investigate how a single G-protein-coupled receptor simultaneously signals through two G proteins. We find that, although the critical receptor-interacting C-terminal α5-helices on Gαi and Gαs interact similarly with β1-AR, the overall interacting modes between β1-AR and G proteins vary substantially. Functional studies reveal the importance of the differing interactions and provide evidence that the activation efficacy of G proteins by β1-AR is determined by the entire three-dimensional interaction surface, including intracellular loops 2 and 4 (ICL2 and ICL4).
Collapse
Affiliation(s)
- Kamela O Alegre
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Navid Paknejad
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Minfei Su
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Jian-Shu Lou
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Jianyun Huang
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Kelsey D Jordan
- Simons Electron Microscopy Center, National Resource for Automated Molecular Microscopy, New York Structural Biology Center, New York, NY, USA
| | - Edward T Eng
- Simons Electron Microscopy Center, National Resource for Automated Molecular Microscopy, New York Structural Biology Center, New York, NY, USA
| | - Joel R Meyerson
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Richard K Hite
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Xin-Yun Huang
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY, USA.
| |
Collapse
|
5
|
Xu X, Kaindl J, Clark MJ, Hübner H, Hirata K, Sunahara RK, Gmeiner P, Kobilka BK, Liu X. Binding pathway determines norepinephrine selectivity for the human β 1AR over β 2AR. Cell Res 2021; 31:569-579. [PMID: 33093660 PMCID: PMC8089101 DOI: 10.1038/s41422-020-00424-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/28/2020] [Indexed: 01/29/2023] Open
Abstract
Beta adrenergic receptors (βARs) mediate physiologic responses to the catecholamines epinephrine and norepinephrine released by the sympathetic nervous system. While the hormone epinephrine binds β1AR and β2AR with similar affinity, the smaller neurotransmitter norepinephrine is approximately tenfold selective for the β1AR. To understand the structural basis for this physiologically important selectivity, we solved the crystal structures of the human β1AR bound to an antagonist carazolol and different agonists including norepinephrine, epinephrine and BI-167107. Structural comparison revealed that the catecholamine-binding pockets are identical between β1AR and β2AR, but the extracellular vestibules have different shapes and electrostatic properties. Metadynamics simulations and mutagenesis studies revealed that these differences influence the path norepinephrine takes to the orthosteric pocket and contribute to the different association rates and thus different affinities.
Collapse
Affiliation(s)
- Xinyu Xu
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084 China ,School of Medicine, Tsinghua University, Beijing, 100084 China
| | - Jonas Kaindl
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich–Alexander University Erlangen–Nürnberg, Nikolaus-Fiebiger-Straße 10, Erlangen, 91058 Germany
| | - Mary J. Clark
- Department of Pharmacology, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093 USA
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich–Alexander University Erlangen–Nürnberg, Nikolaus-Fiebiger-Straße 10, Erlangen, 91058 Germany
| | - Kunio Hirata
- Advanced Photon Technology Division, Research Infrastructure Group, SR Life Science Instrumentation Unit, RIKEN/SPring-8 Center, 1-1-1 Kouto Sayo-cho Sayo-gun, Hyogo, 679-5148 Japan ,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 Japan
| | - Roger K. Sunahara
- Department of Pharmacology, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093 USA
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich–Alexander University Erlangen–Nürnberg, Nikolaus-Fiebiger-Straße 10, Erlangen, 91058 Germany
| | - Brian K. Kobilka
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084 China ,School of Medicine, Tsinghua University, Beijing, 100084 China ,Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Xiangyu Liu
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084 China ,School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084 China
| |
Collapse
|
6
|
Soave M, Cseke G, Hutchings CJ, Brown AJH, Woolard J, Hill SJ. A monoclonal antibody raised against a thermo-stabilised β 1-adrenoceptor interacts with extracellular loop 2 and acts as a negative allosteric modulator of a sub-set of β 1-adrenoceptors expressed in stable cell lines. Biochem Pharmacol 2017; 147:38-54. [PMID: 29102678 PMCID: PMC5770334 DOI: 10.1016/j.bcp.2017.10.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 10/31/2017] [Indexed: 11/30/2022]
Abstract
Recent interest has focused on antibodies that can discriminate between different receptor conformations. Here we have characterised the effect of a monoclonal antibody (mAb3), raised against a purified thermo-stabilised turkey β1-adrenoceptor (β1AR-m23 StaR), on β1-ARs expressed in CHO-K1 or HEK 293 cells. Immunohistochemical and radioligand-binding studies demonstrated that mAb3 was able to bind to ECL2 of the tβ1-AR, but not its human homologue. Specific binding of mAb3 to tβ1-AR was inhibited by a peptide based on the turkey, but not the human, ECL2 sequence. Studies with [3H]-CGP 12177 demonstrated that mAb3 prevented the binding of orthosteric ligands to a subset (circa 40%) of turkey β1-receptors expressed in both CHO K1 and HEK 293 cells. MAb3 significantly reduced the maximum specific binding capacity of [3H]-CGP-12177 without influencing its binding affinity. Substitution of ECL2 of tβ1-AR with its human equivalent, or mutation of residues D186S, P187D, Q188E prevented the inhibition of [3H]-CGP 12177 binding by mAb3. MAb3 also elicited a negative allosteric effect on agonist-stimulated cAMP responses. The identity of the subset of turkey β1-adrenoceptors influenced by mAb3 remains to be established but mAb3 should become an important tool to investigate the nature of β1-AR conformational states and oligomeric complexes.
Collapse
Affiliation(s)
- Mark Soave
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Gabriella Cseke
- Heptares Therapeutics Ltd., Bio Park, Welwyn Garden City AL7 3AX, UK
| | | | | | - Jeanette Woolard
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK.
| | - Stephen J Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK.
| |
Collapse
|
7
|
Mo W, Michel MC, Lee XW, Kaumann AJ, Molenaar P. The β 3 -adrenoceptor agonist mirabegron increases human atrial force through β 1 -adrenoceptors: an indirect mechanism? Br J Pharmacol 2017; 174:2706-2715. [PMID: 28574581 DOI: 10.1111/bph.13897] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 05/21/2017] [Accepted: 05/30/2017] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND AND PURPOSE Mirabegron has been classified as a β3 -adrenoceptor agonist approved for overactive bladder syndrome. We investigated possible cardiac effects of mirabegron in the absence or presence of β-adrenoceptor subtype antagonists. In view of its phenylethanolamine structure, we investigated whether mirabegron has indirect sympathomimetic activity by using neuronal uptake blockers. EXPERIMENTAL APPROACH Right atrial trabeculae, from non-failing hearts, were paced and contractile force measured at 37°C. Single concentrations of mirabegron were added in the absence or presence of the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX), β3 (L-748,337), β1 (CGP 20712A), β2 (ICI 118,551) -adrenoceptor antagonists, neuronal uptake inhibitors desipramine or phenoxybenzamine. KEY RESULTS Mirabegron significantly increased contractile force in human right atrium (1 μM, 7.6 ± 2.6%, n = 7; 10 μM, 10.2 ± 1.5%, n = 22 compared with (-)-isoprenaline P < 0.05). In the presence of IBMX, mirabegron (10 μM) caused a greater contraction. L-748,337 (100 nM) had no effect on the increase in contractile force caused by mirabegron (10 μM). In contrast, mirabegron (10 μM) reduced contractile force in the presence of CGP 20712A, which was not affected by L-748,337 (100 nM) or ICI 118,551 (50 nM). Mirabegron (10 μM) also reduced contractile force in the presence of desipramine or phenoxybenzamine. CONCLUSIONS AND IMPLICATIONS Mirabegron increases human atrial force through β1 - but not β3 -adrenoceptors. Desipramine and phenoxybenzamine block neuronal uptake and conceivably prevent mirabegron from releasing noradrenaline. A non-specific cardiodepressant effect is not mediated through β3 (or β2 )-adrenoceptors, consistent with lack of β3 -adrenoceptor function on human atrial contractility.
Collapse
Affiliation(s)
- Weilan Mo
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Qld, Australia.,Northside Clinical School of Medicine, The University of Queensland, The Prince Charles Hospital, Brisbane, Qld, Australia.,Critical Care Research Group, The Prince Charles Hospital, Brisbane, Qld, Australia
| | - Martin C Michel
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
| | - Xiang Wen Lee
- Northside Clinical School of Medicine, The University of Queensland, The Prince Charles Hospital, Brisbane, Qld, Australia
| | - Alberto J Kaumann
- Departamento de Farmacología, Facultad de Medicina, Universidad de Murcia, Campus de Espinardo, Murcia, Spain
| | - Peter Molenaar
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Qld, Australia.,Northside Clinical School of Medicine, The University of Queensland, The Prince Charles Hospital, Brisbane, Qld, Australia.,Critical Care Research Group, The Prince Charles Hospital, Brisbane, Qld, Australia
| |
Collapse
|
8
|
Ligand occupancy in crystal structure of β1-adrenergic G protein-coupled receptor. Nat Struct Mol Biol 2016; 22:941-2. [PMID: 26643842 DOI: 10.1038/nsmb.3130] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Sato T, Baker J, Warne T, Brown GA, Leslie AGW, Congreve M, Tate CG. Pharmacological Analysis and Structure Determination of 7-Methylcyanopindolol-Bound β1-Adrenergic Receptor. Mol Pharmacol 2015; 88:1024-34. [PMID: 26385885 PMCID: PMC4658595 DOI: 10.1124/mol.115.101030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/17/2015] [Indexed: 11/22/2022] Open
Abstract
Comparisons between structures of the β1-adrenergic receptor (AR) bound to either agonists, partial agonists, or weak partial agonists led to the proposal that rotamer changes of Ser(5.46), coupled to a contraction of the binding pocket, are sufficient to increase the probability of receptor activation. (RS)-4-[3-(tert-butylamino)-2-hydroxypropoxy]-1H-indole-2-carbonitrile (cyanopindolol) is a weak partial agonist of β1AR and, based on the hypothesis above, we predicted that the addition of a methyl group to form 4-[(2S)-3-(tert-butylamino)-2-hydroxypropoxy]-7-methyl-1H-indole-2-carbonitrile (7-methylcyanopindolol) would dramatically reduce its efficacy. An eight-step synthesis of 7-methylcyanopindolol was developed and its pharmacology was analyzed. 7-Methylcyanopindolol bound with similar affinity to cyanopindolol to both β1AR and β2AR. As predicted, the efficacy of 7-methylcyanopindolol was reduced significantly compared with cyanopindolol, acting as a very weak partial agonist of turkey β1AR and an inverse agonist of human β2AR. The structure of 7-methylcyanopindolol-bound β1AR was determined to 2.4-Å resolution and found to be virtually identical to the structure of cyanopindolol-bound β1AR. The major differences in the orthosteric binding pocket are that it has expanded by 0.3 Å in 7-methylcyanopindolol-bound β1AR and the hydroxyl group of Ser(5.46) is positioned 0.8 Å further from the ligand, with respect to the position of the Ser(5.46) side chain in cyanopindolol-bound β1AR. Thus, the molecular basis for the reduction in efficacy of 7-methylcyanopindolol compared with cyanopindolol may be regarded as the opposite of the mechanism proposed for the increase in efficacy of agonists compared with antagonists.
Collapse
Affiliation(s)
- Tomomi Sato
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom (T.S., T.W., A.G.W.L., C.G.T.); Heptares Therapeutics Ltd, Welwyn Garden City, United Kingdom (G.A.B., M.C.); School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom (J.B.); KEK High Energy Accelerator Research Organization, Institute of Materials Structure Science, Structural Biology Research Center, Tsukuba, Japan (T.S.)
| | - Jillian Baker
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom (T.S., T.W., A.G.W.L., C.G.T.); Heptares Therapeutics Ltd, Welwyn Garden City, United Kingdom (G.A.B., M.C.); School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom (J.B.); KEK High Energy Accelerator Research Organization, Institute of Materials Structure Science, Structural Biology Research Center, Tsukuba, Japan (T.S.)
| | - Tony Warne
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom (T.S., T.W., A.G.W.L., C.G.T.); Heptares Therapeutics Ltd, Welwyn Garden City, United Kingdom (G.A.B., M.C.); School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom (J.B.); KEK High Energy Accelerator Research Organization, Institute of Materials Structure Science, Structural Biology Research Center, Tsukuba, Japan (T.S.)
| | - Giles A Brown
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom (T.S., T.W., A.G.W.L., C.G.T.); Heptares Therapeutics Ltd, Welwyn Garden City, United Kingdom (G.A.B., M.C.); School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom (J.B.); KEK High Energy Accelerator Research Organization, Institute of Materials Structure Science, Structural Biology Research Center, Tsukuba, Japan (T.S.)
| | - Andrew G W Leslie
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom (T.S., T.W., A.G.W.L., C.G.T.); Heptares Therapeutics Ltd, Welwyn Garden City, United Kingdom (G.A.B., M.C.); School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom (J.B.); KEK High Energy Accelerator Research Organization, Institute of Materials Structure Science, Structural Biology Research Center, Tsukuba, Japan (T.S.)
| | - Miles Congreve
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom (T.S., T.W., A.G.W.L., C.G.T.); Heptares Therapeutics Ltd, Welwyn Garden City, United Kingdom (G.A.B., M.C.); School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom (J.B.); KEK High Energy Accelerator Research Organization, Institute of Materials Structure Science, Structural Biology Research Center, Tsukuba, Japan (T.S.)
| | - Christopher G Tate
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom (T.S., T.W., A.G.W.L., C.G.T.); Heptares Therapeutics Ltd, Welwyn Garden City, United Kingdom (G.A.B., M.C.); School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom (J.B.); KEK High Energy Accelerator Research Organization, Institute of Materials Structure Science, Structural Biology Research Center, Tsukuba, Japan (T.S.)
| |
Collapse
|
10
|
GPCR crystal structures: Medicinal chemistry in the pocket. Bioorg Med Chem 2015; 23:3880-906. [DOI: 10.1016/j.bmc.2014.12.034] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/12/2014] [Accepted: 12/16/2014] [Indexed: 12/20/2022]
|
11
|
Imbrogno S, Gattuso A, Mazza R, Angelone T, Cerra MC. β3 -AR and the vertebrate heart: a comparative view. Acta Physiol (Oxf) 2015; 214:158-75. [PMID: 25809182 DOI: 10.1111/apha.12493] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/04/2014] [Accepted: 03/16/2015] [Indexed: 01/13/2023]
Abstract
Recent cardiovascular research showed that, together with β1- and β2-adrenergic receptors (ARs), β3-ARs contribute to the catecholamine (CA)-dependent control of the heart. β3-ARs structure, function and ligands were investigated in mammals because of their applicative potential in human cardiovascular diseases. Only recently, the concept of a β3-AR-dependent cardiac modulation was extended to non-mammalian vertebrates, although information is still scarce and fragmentary. β3-ARs were structurally described in fish, showing a closer relationship to mammalian β1-AR than β2-AR. Functional β3-ARs are present in the cardiac tissue of teleosts and amphibians. As in mammals, activation of these receptors elicits a negative modulation of the inotropic performance through the involvement of the endothelium endocardium (EE), Gi/0 proteins and the nitric oxide (NO) signalling. This review aims to comparatively analyse data from literature on β3-ARs in mammals, with those on teleosts and amphibians. The purpose is to highlight aspects of uniformity and diversity of β3-ARs structure, ligands activity, function and signalling cascades throughout vertebrates. This may provide new perspectives aimed to clarify the biological relevance of β3-ARs in the context of the nervous and humoral control of the heart and its functional plasticity.
Collapse
Affiliation(s)
- S. Imbrogno
- Department of Biology, Ecology and Earth Sciences; University of Calabria; Arcavacata di Rende Italy
| | - A. Gattuso
- Department of Biology, Ecology and Earth Sciences; University of Calabria; Arcavacata di Rende Italy
| | - R. Mazza
- Department of Biology, Ecology and Earth Sciences; University of Calabria; Arcavacata di Rende Italy
| | - T. Angelone
- Department of Biology, Ecology and Earth Sciences; University of Calabria; Arcavacata di Rende Italy
- National Institute of Cardiovascular Research; Bologna Italy
| | - M. C. Cerra
- Department of Biology, Ecology and Earth Sciences; University of Calabria; Arcavacata di Rende Italy
- National Institute of Cardiovascular Research; Bologna Italy
| |
Collapse
|
12
|
Soriano-Ursúa MA, Trujillo-Ferrara JG, Arias-Montaño JA, Villalobos-Molina R. Insights into a defined secondary binding region on β-adrenoceptors and putative roles in ligand binding and drug design. MEDCHEMCOMM 2015; 6:991-1002. [DOI: 10.1039/c5md00011d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Putative roles of a secondary binding region shared among beta-adrenoceptors.
Collapse
Affiliation(s)
- M. A. Soriano-Ursúa
- Posgraduate and Research Section
- Escuela Superior de Medicina
- Instituto Politécnico Nacional
- Mexico City
- Mexico
| | - J. G. Trujillo-Ferrara
- Posgraduate and Research Section
- Escuela Superior de Medicina
- Instituto Politécnico Nacional
- Mexico City
- Mexico
| | - J. A. Arias-Montaño
- Departamento de Fisiología
- Biofísica y Neurociencias. Centro de Investigación y de Estudios Avanzados del IPN
- Mexico City
- Mexico
| | - R. Villalobos-Molina
- Unidad de Investigación en Biomedicina
- Facultad de Estudios Superiores Iztacala
- Universidad Nacional Autónoma de México
- Tlalnepantla
- Mexico
| |
Collapse
|
13
|
Fretwell LV, Woolard J. Cardiovascular responses to retigabine in conscious rats--under normotensive and hypertensive conditions. Br J Pharmacol 2014; 169:1279-89. [PMID: 23581476 DOI: 10.1111/bph.12203] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 03/08/2013] [Accepted: 03/22/2013] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Retigabine is a recently approved antiepileptic agent which activates Kv7.2-7.5 potassium channels. It is emerging that these channels have an important role in vascular regulation, but the vascular effects of retigabine in the conscious state are unknown. Hence, in the present study we assessed the regional haemodynamic responses to retigabine in conscious rats. EXPERIMENTAL APPROACH Male Sprague Dawley rats were chronically instrumented with pulsed Doppler flow probes to measure regional haemodynamic responses to retigabine under control conditions and during acute hypertension induced by infusion of angiotensin II and arginine vasopressin. Further experiments were performed, using the β-adrenoceptor antagonists CGP 20712A, ICI 118551 and propranolol, to elucidate the roles of β-adrenoceptors in the responses to retigabine in vivo and in vitro. KEY RESULTS Under normotensive conditions, retigabine induced dose-dependent hypotension and hindquarters vasodilatation, with small, transient renal and mesenteric vasodilatations. In the acutely hypertensive state, the renal and mesenteric, but not hindquarters, vasodilatations were enhanced. The response of the hindquarters vascular bed to retigabine was mediated, in part, by β₂-adrenoceptors. However, in vitro experiments confirmed that retigabine did not act as a β-adrenoceptor agonist. CONCLUSIONS AND IMPLICATIONS We demonstrated that retigabine causes regionally specific vasodilatations, which are different under normotensive and hypertensive conditions, and are, in part, mediated by β₂-adrenoceptors in some vascular beds but not in others. These results broadly support previous findings and further indicate that Kv7 channels are a potential therapeutic target for the treatment of vascular diseases associated with inappropriate vasoconstriction.
Collapse
Affiliation(s)
- L V Fretwell
- Institute of Cell Signalling, Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | | |
Collapse
|
14
|
Baker JG, Proudman RGW, Hill SJ. Identification of key residues in transmembrane 4 responsible for the secondary, low-affinity conformation of the human β1-adrenoceptor. Mol Pharmacol 2014; 85:811-29. [PMID: 24608857 PMCID: PMC4132118 DOI: 10.1124/mol.114.091587] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 03/07/2014] [Indexed: 11/22/2022] Open
Abstract
The β1-adrenoceptor exists in two agonist conformations/states: 1) a high-affinity state where responses to catecholamines and other agonists (e.g., cimaterol) are potently inhibited by β1-adrenoceptor antagonists, and 2) a low-affinity secondary conformation where agonist responses, particularly CGP12177 [(-)-4-(3-tert-butylamino-2-hydroxypropoxy)-benzimidazol-2-one] are relatively resistant to inhibition by β1-adrenoceptor antagonists. Although both states have been demonstrated in many species (including human), the precise nature of the secondary state is unknown and does not occur in the closely related β2-adrenoceptor. Here, using site-directed mutagenesis and functional measurements of production of a cyclic AMP response element upstream of a secreted placental alkaline phosphatase reporter gene and accumulation of (3)H-cAMP, we examined the pharmacological consequences of swapping transmembrane (TM) regions of the human β1- and β2-adrenoceptors, followed by single point mutations, to determine the key residues involved in the β1-adrenoceptor secondary conformation. We found that TM4 (particularly amino acids L195 and W199) had a major role in the generation of the secondary β1-adrenoceptor conformation. Thus, unlike at the human β1-wild-type adrenoceptor, at β1-TM4 mutant receptors, cimaterol and CGP12177 responses were both potently inhibited by antagonists. CGP12177 acted as a simple partial agonist with similar KB and EC50 values in the β1-TM4 but not β1-wild-type receptors. Furthermore pindolol switched from a biphasic concentration response at human β1-wild-type adrenoceptors to a monophasic concentration response in the β1-TM4 mutant receptors. Mutation of these amino acids to those found in the β2-adrenoceptor (L195Q and W199Y), or mutation of a single residue (W199D) in the human β1-adrenoceptor thus abolished this secondary conformation and created a β1-adrenoceptor with only one high-affinity agonist conformation.
Collapse
Affiliation(s)
- Jillian G Baker
- Cell Signalling, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | | | | |
Collapse
|
15
|
Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Spedding M, Peters JA, Harmar AJ. The Concise Guide to PHARMACOLOGY 2013/14: G protein-coupled receptors. Br J Pharmacol 2013; 170:1459-581. [PMID: 24517644 PMCID: PMC3892287 DOI: 10.1111/bph.12445] [Citation(s) in RCA: 509] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. G protein-coupled receptors are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, ion channels, catalytic receptors, nuclear hormone receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates.
Collapse
Affiliation(s)
- Stephen PH Alexander
- School of Life Sciences, University of Nottingham Medical SchoolNottingham, NG7 2UH, UK
| | - Helen E Benson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Elena Faccenda
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Adam J Pawson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Joanna L Sharman
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | | | - John A Peters
- Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of DundeeDundee, DD1 9SY, UK
| | - Anthony J Harmar
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| |
Collapse
|
16
|
Kooistra AJ, Roumen L, Leurs R, de Esch IJ, de Graaf C. From Heptahelical Bundle to Hits from the Haystack. Methods Enzymol 2013; 522:279-336. [DOI: 10.1016/b978-0-12-407865-9.00015-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
17
|
Brueckner F, Piscitelli CL, Tsai CJ, Standfuss J, Deupi X, Schertler GFX. Structure of β-adrenergic receptors. Methods Enzymol 2013; 520:117-51. [PMID: 23332698 DOI: 10.1016/b978-0-12-391861-1.00006-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
β-Adrenergic receptors (βARs) control key physiological functions by transducing signals encoded in catecholamine hormones and neurotransmitters to activate intracellular signaling pathways. As members of the large family of G protein-coupled receptors (GPCRs), βARs have a seven-transmembrane helix topology and signal via G protein- and arrestin-dependent pathways. Until 2007, three-dimensional structural information of GPCRs activated by diffusible ligands, including βARs, was limited to homology models that used the related photoreceptor rhodopsin as a template. Over many years, several labs have developed strategies that have finally allowed the structures of the turkey β(1)AR and the human β(2)AR to be determined experimentally. The challenges to overcome included heterologous receptor overexpression, design of stabilized and crystallizable modified receptor constructs, ligand-affinity purification of active receptor and the development of novel techniques in crystallization and microcrystallography. The structures of βARs in complex with inverse agonists, antagonists, and agonists have revealed the binding mode of ligands with different efficacies, have allowed to obtain insights into ligand selectivity, and have provided better templates for drug design. Also, the structures of β(2)AR in complex with a G protein and a G protein-mimicking nanobody have provided important insights into the mechanism of receptor activation and G protein coupling. This chapter summarizes the strategies and methods that have been successfully applied to the structural studies of βARs. These are exemplified with detailed protocols toward the structure determination of stabilized turkey β(1)AR-ligand complexes. We also discuss the spectacular insights into adrenergic receptor function that were obtained from the structures.
Collapse
Affiliation(s)
- Florian Brueckner
- Laboratory of Biomolecular Research, Paul Scherrer Institut, Villigen PSI, Switzerland
| | | | | | | | | | | |
Collapse
|
18
|
Selvam B, Wereszczynski J, Tikhonova IG. Comparison of dynamics of extracellular accesses to the β(1) and β(2) adrenoceptors binding sites uncovers the potential of kinetic basis of antagonist selectivity. Chem Biol Drug Des 2012; 80:215-26. [PMID: 22530954 DOI: 10.1111/j.1747-0285.2012.01390.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
From the molecular mechanism of antagonist unbinding in the β(1) and β(2) adrenoceptors investigated by steered molecular dynamics, we attempt to provide further possibilities of ligand subtype and subspecies selectivity. We have simulated unbinding of β(1)-selective Esmolol and β(2)-selective ICI-118551 from both receptors to the extracellular environment and found distinct molecular features of unbinding. By calculating work profiles, we show different preference in antagonist unbinding pathways between the receptors, in particular, perpendicular to the membrane pathway is favourable in the β(1) adrenoceptor, whereas the lateral pathway involving helices 5, 6 and 7 is preferable in the β(2) adrenoceptor. The estimated free energy change of unbinding based on the preferable pathway correlates with the experimental ligand selectivity. We then show that the non-conserved K347 (6.58) appears to facilitate in guiding Esmolol to the extracellular surface via hydrogen bonds in the β(1) adrenoceptor. In contrast, hydrophobic and aromatic interactions dominate in driving ICI-118551 through the easiest pathway in the β(2) adrenoceptor. We show how our study can stimulate design of selective antagonists and discuss other possible molecular reasons of ligand selectivity, involving sequential binding of agonists and glycosylation of the receptor extracellular surface.
Collapse
Affiliation(s)
- Balaji Selvam
- Molecular Therapeutics, School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast BT9 7BL, UK
| | | | | |
Collapse
|
19
|
Baker JG, Proudman RGW, Tate CG. The pharmacological effects of the thermostabilising (m23) mutations and intra and extracellular (β36) deletions essential for crystallisation of the turkey β-adrenoceptor. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2011; 384:71-91. [PMID: 21547538 PMCID: PMC3116118 DOI: 10.1007/s00210-011-0648-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 04/18/2011] [Indexed: 11/30/2022]
Abstract
The X-ray crystal structure of the turkey β-adrenoceptor has recently been determined. However, mutations were introduced into the native receptor that was essential for structure determination. These may cause alterations to the receptor pharmacology. It is therefore essential to understand the effects of these mutations on the pharmacological characteristics of the receptor. This study examined the pharmacological effects of both the m23 mutations and the β36 deletions, both alone and then in combination in the β36-m23 mutant used in the crystallisation and structure determination of the turkey β-adrenoceptor. Stable CHO-K1 cell lines were made of each of the receptor mutants and the affinity and efficacy of ligands assessed by (3)H-CGP 12177 whole cell ligand binding, (3)H-cAMP accumulation, and CRE-SPAP gene transcription assays. The m23 mutations reduced affinity for agonists, partial agonists and neutral antagonists by about tenfold whilst the β36 deletions alone had no effect on ligand affinity. Both sets of changes appeared to reduce the agonist activation of the receptor. Both the m23 and the β36 receptors retained two active agonist-induced receptor conformations similar to that of the original tβtrunc receptor. The combined β36-m23 receptor bound ligands with similar affinity to the m23 receptor; however, agonist activation was only observed with a few agonists including the catecholamines. Although the combination of mutations severely reduced the activation ability, the final crystallised receptor (β36-m23) was still a fully functional receptor capable of binding agonist and antagonist ligands and activating intracellular agonist responses.
Collapse
Affiliation(s)
- Jillian G Baker
- Institute of Cell Signalling, C Floor Medical School, University of Nottingham, Queen's Medical Centre, UK.
| | | | | |
Collapse
|