1
|
Rejaibi R, Guille A, Manai M, Adelaide J, Agavnian E, Jelassi A, Doghri R, Charafe-Jauffret E, Bertucci F, Manai M, Mrad K, Charfi L, Sabatier R. Decoding the pathological and genomic profile of epithelial ovarian cancer. Sci Rep 2024; 14:28573. [PMID: 39562613 PMCID: PMC11577113 DOI: 10.1038/s41598-024-80030-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024] Open
Abstract
Ovarian cancer (OC) is one of the most common cancers in women, with a high mortality rate. Most of published studies have been focused on Caucasian populations, with the need to explore biological features and clinical outcomes of patients from other ethnicities. We described clinical outcome (progression-free survival and overall survival) and biomarkers associated with survival in a cohort of patients with OC from Tunisia. Using immunohistochemistry, we assessed the expression of 14 proteins known to be altered in OC in a cohort of 198 patients. We explored the correlation between protein expression and copy number alteration (CNA) profiles. FIGO stage, menopausal status and mismatch repair deficiency were associated with survival. ERBB2 amplification was correlated with high ERBB2 expression (OR = 69.32, p = 4.03 E-09), and high PDL1 expression was associated to CD274 amplification (OR = 4.97, p = 5.79 E-2). We identified a correlation between survival and exposure to two CNA signatures (MAPK pathway and BRCA-related homologous recombination deficiency). Moreover, Gama-H2AX protein expression was correlated with exposure to a genomic signature associated with homologous recombination deficiency. We observed that OC clinical and pathological characteristics of these patients from Tunisia were similar to those of Caucasian patients. We identified frequent CNA in this population that need to be confirmed in other sets from Africa.
Collapse
Affiliation(s)
- Rim Rejaibi
- Pathology Department, Salah Azaiez Institute, Tunis, 1006, Tunisia
- Biology Department, Laboratory of Mycology, Pathologies and Biomarkers (LR16ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, 2092, Tunisia
- Laboratory of Predictive Oncology, Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix Marseille Université U105, Marseille, France
- Centre de Recherche en Cancérologie de Marseille, ICEP Platform, CRCM, Institut Paoli-Calmettes, Inserm UMR1068, CNRS UMR7258, Aix Marseille Université U105, Marseille, France
| | - Arnaud Guille
- Laboratory of Predictive Oncology, Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix Marseille Université U105, Marseille, France
| | - Maroua Manai
- Laboratory of Predictive Oncology, Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix Marseille Université U105, Marseille, France
- Laboratory of Transmission, Control, and Immunobiology of Infections, LR11IPT02 (LTCII), Tunis-Belvédère, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Jose Adelaide
- Laboratory of Predictive Oncology, Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix Marseille Université U105, Marseille, France
| | - Emilie Agavnian
- Centre de Recherche en Cancérologie de Marseille, ICEP Platform, CRCM, Institut Paoli-Calmettes, Inserm UMR1068, CNRS UMR7258, Aix Marseille Université U105, Marseille, France
| | - Aida Jelassi
- Pathology Department, Salah Azaiez Institute, Tunis, 1006, Tunisia
- Biology Department, Laboratory of Mycology, Pathologies and Biomarkers (LR16ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, 2092, Tunisia
| | - Raoudha Doghri
- Pathology Department, Salah Azaiez Institute, Tunis, 1006, Tunisia
- Laboratory of Precision medicine personalized medicine and oncology investigation, Salah Azaiez Institute, Tunis, Tunisia
| | - Emmanuelle Charafe-Jauffret
- Centre de Recherche en Cancérologie de Marseille, ICEP Platform, CRCM, Institut Paoli-Calmettes, Inserm UMR1068, CNRS UMR7258, Aix Marseille Université U105, Marseille, France
- CRCM, Inserm, CNRS, Institut Paoli-Calmettes, Epithelial Stem Cells and Cancer Lab, Equipe labellisée LIGUE contre le cancer, Aix-Marseille Université, Marseille, France
| | - François Bertucci
- Laboratory of Predictive Oncology, Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix Marseille Université U105, Marseille, France
- Department of Medical Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Mohamed Manai
- Biology Department, Laboratory of Mycology, Pathologies and Biomarkers (LR16ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, 2092, Tunisia
| | - Karima Mrad
- Pathology Department, Salah Azaiez Institute, Tunis, 1006, Tunisia
- Laboratory of Precision medicine personalized medicine and oncology investigation, Salah Azaiez Institute, Tunis, Tunisia
| | - Lamia Charfi
- Pathology Department, Salah Azaiez Institute, Tunis, 1006, Tunisia
- Laboratory of Precision medicine personalized medicine and oncology investigation, Salah Azaiez Institute, Tunis, Tunisia
| | - Renaud Sabatier
- Laboratory of Predictive Oncology, Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix Marseille Université U105, Marseille, France.
- Department of Medical Oncology, Institut Paoli-Calmettes, Marseille, France.
| |
Collapse
|
2
|
Wylie D, Wang X, Yao J, Xu H, Ferrick-Kiddie EA, Iwase T, Krishnamurthy S, Ueno NT, Lambowitz AM. TGIRT-seq of Inflammatory Breast Cancer Tumor and Blood Samples Reveals Widespread Enhanced Transcription Impacting RNA Splicing and Intronic RNAs in Plasma. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.05.26.23290469. [PMID: 37398275 PMCID: PMC10312853 DOI: 10.1101/2023.05.26.23290469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Inflammatory breast cancer (IBC) is the most aggressive and lethal breast cancer subtype but lacks unequivocal genomic differences or robust biomarkers that differentiate it from non-IBC. Here, Thermostable Group II intron Reverse Transcriptase RNA-sequencing (TGIRT-seq) revealed myriad differences in tumor samples, Peripheral Blood Mononuclear Cells (PBMCs), and plasma that distinguished IBC from non-IBC patients and healthy donors across all tested receptor-based subtypes. These included numerous differentially expressed protein-coding gene and non-coding RNAs in all three sample types, a granulocytic immune response in IBC PBMCs, and over-expression of antisense RNAs, suggesting wide-spread enhanced transcription in both IBC tumors and PBMCs. By using TGIRT-seq to quantitate Intron-exon Depth Ratios (IDRs) and mapping reads to both genome and transcriptome reference sequences, we developed methods for parallel analysis of transcriptional and post-transcriptional gene regulation. This analysis identified numerous differentially and non-differentially expressed protein-coding genes in IBC tumors and PBMCs with high IDRs, the latter reflecting rate-limiting RNA splicing that negatively impacts mRNA production. Mirroring gene expression differences in tumors and PBMCs, over-represented protein-coding gene RNAs in IBC patient plasma were largely intronic RNAs, while those in non-IBC patients and healthy donor plasma were largely mRNA fragments. Potential IBC biomarkers in plasma included T-cell receptor pre-mRNAs and intronic, LINE-1, and antisense RNAs. Our findings provide new insights into IBC and set the stage for monitoring disease progression and response to treatment by liquid biopsy. The methods developed for parallel transcriptional and post-transcriptional gene regulation analysis have potentially broad RNA-seq and clinical applications.
Collapse
Affiliation(s)
- Dennis Wylie
- Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, TX 78712
| | - Xiaoping Wang
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
- Inflammatory Breast Cancer Research Program and Clinic, University of Hawai'i Cancer Center, Honolulu, HI 96813
- Cancer Biology Research Program, University of Hawai'i Cancer Center, Honolulu, HI 96813
| | - Jun Yao
- Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, TX 78712
| | - Hengyi Xu
- Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, TX 78712
| | | | - Toshiaki Iwase
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
- Inflammatory Breast Cancer Research Program and Clinic, University of Hawai'i Cancer Center, Honolulu, HI 96813
- Translational Clinical Research Program, University of Hawai'i Cancer Center, Honolulu, HI 96813
| | - Savitri Krishnamurthy
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Naoto T Ueno
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
- Inflammatory Breast Cancer Research Program and Clinic, University of Hawai'i Cancer Center, Honolulu, HI 96813
- Cancer Biology Research Program, University of Hawai'i Cancer Center, Honolulu, HI 96813
- Translational Clinical Research Program, University of Hawai'i Cancer Center, Honolulu, HI 96813
| | - Alan M Lambowitz
- Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
3
|
Bertucci F, Lerebours F, Ceccarelli M, Guille A, Syed N, Finetti P, Adélaïde J, Van Laere S, Goncalves A, Viens P, Birnbaum D, Mamessier E, Callens C, Bedognetti D. Mutational landscape of inflammatory breast cancer. J Transl Med 2024; 22:374. [PMID: 38637846 PMCID: PMC11025259 DOI: 10.1186/s12967-024-05198-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Inflammatory breast cancer (IBC) is the most pro-metastatic form of BC. Better understanding of its enigmatic pathophysiology is crucial. We report here the largest whole-exome sequencing (WES) study of clinical IBC samples. METHODS We retrospectively applied WES to 54 untreated IBC primary tumor samples and matched normal DNA. The comparator samples were 102 stage-matched non-IBC samples from TCGA. We compared the somatic mutational profiles, spectra and signatures, copy number alterations (CNAs), HRD and heterogeneity scores, and frequencies of actionable genomic alterations (AGAs) between IBCs and non-IBCs. The comparisons were adjusted for the molecular subtypes. RESULTS The number of somatic mutations, TMB, and mutational spectra were not different between IBCs and non-IBCs, and no gene was differentially mutated or showed differential frequency of CNAs. Among the COSMIC signatures, only the age-related signature was more frequent in non-IBCs than in IBCs. We also identified in IBCs two new mutational signatures not associated with any environmental exposure, one of them having been previously related to HIF pathway activation. Overall, the HRD score was not different between both groups, but was higher in TN IBCs than TN non-IBCs. IBCs were less frequently classified as heterogeneous according to heterogeneity H-index than non-IBCs (21% vs 33%), and clonal mutations were more frequent and subclonal mutations less frequent in IBCs. More than 50% of patients with IBC harbored at least one high-level of evidence (LOE) AGA (OncoKB LOE 1-2, ESCAT LOE I-II), similarly to patients with non-IBC. CONCLUSIONS We provide the largest mutational landscape of IBC. Only a few subtle differences were identified with non-IBCs. The most clinically relevant one was the higher HRD score in TN IBCs than in TN non-IBCs, whereas the most intriguing one was the smaller intratumor heterogeneity of IBCs.
Collapse
Affiliation(s)
- François Bertucci
- Département d'Oncologie Médicale, Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, 232, Boulevard de Sainte-Marguerite, 13009, Marseille, France.
- Department of Medical Oncology, Institut Paoli-Calmettes, Aix-Marseille Université, Marseille, France.
| | - Florence Lerebours
- Department of Medical Oncology, Institut Curie Saint-Cloud, Paris, France
| | - Michele Ceccarelli
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, USA
- Department of Public Health Sciences, University of Miami, Miami, USA
| | - Arnaud Guille
- Département d'Oncologie Médicale, Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, 232, Boulevard de Sainte-Marguerite, 13009, Marseille, France
| | - Najeeb Syed
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, Wilrijk, Belgium
| | - Pascal Finetti
- Département d'Oncologie Médicale, Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, 232, Boulevard de Sainte-Marguerite, 13009, Marseille, France
| | - José Adélaïde
- Département d'Oncologie Médicale, Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, 232, Boulevard de Sainte-Marguerite, 13009, Marseille, France
| | - Steven Van Laere
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, Wilrijk, Belgium
| | - Anthony Goncalves
- Department of Medical Oncology, Institut Paoli-Calmettes, Aix-Marseille Université, Marseille, France
| | - Patrice Viens
- Department of Medical Oncology, Institut Paoli-Calmettes, Aix-Marseille Université, Marseille, France
| | - Daniel Birnbaum
- Département d'Oncologie Médicale, Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, 232, Boulevard de Sainte-Marguerite, 13009, Marseille, France
| | - Emilie Mamessier
- Département d'Oncologie Médicale, Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, 232, Boulevard de Sainte-Marguerite, 13009, Marseille, France
| | - Céline Callens
- Department of Medical Oncology, Institut Curie Saint-Cloud, Paris, France
| | - Davide Bedognetti
- Tumor Biology and Immunology Laboratory, Research Branch, Sidra Medicine, Doha, Qatar
| |
Collapse
|
4
|
Rypens C, Van Berckelaer C, Berditchevski F, van Dam P, Van Laere S. Deciphering the molecular biology of inflammatory breast cancer through molecular characterization of patient samples and preclinical models. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 384:77-112. [PMID: 38637101 DOI: 10.1016/bs.ircmb.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Inflammatory breast cancer is an aggressive subtype of breast cancer with dismal patient prognosis and a unique clinical presentation. In the past two decades, molecular profiling technologies have been used in order to gain insight into the molecular biology of IBC and to search for possible targets for treatment. Although a gene signature that accurately discriminates between IBC and nIBC patient samples and preclinical models was identified, the overall genomic and transcriptomic differences are small and ambiguous, mainly due to the limited sample sizes of the evaluated patient series and the failure to correct for confounding effects of the molecular subtypes. Nevertheless, data collected over the past 20 years by independent research groups increasingly support the existence of several IBC-specific biological characteristics. In this review, these features are classified as established, emerging and conceptual hallmarks based on the level of evidence reported in the literature. In addition, a synoptic model is proposed that integrates all hallmarks and that can explain how cancer cell intrinsic mechanisms (i.e. NF-κB activation, genomic instability, MYC-addiction, TGF-β resistance, adaptive stress response, chromatin remodeling, epithelial-to-mesenchymal transition) can contribute to the establishment of the dynamic immune microenvironment associated with IBC. It stands to reason that future research projects are needed to further refine (parts of) this model and to investigate its clinical translatability.
Collapse
Affiliation(s)
- Charlotte Rypens
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium; CellCarta N V, Wilrijk, Belgium
| | - Christophe Van Berckelaer
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Fedor Berditchevski
- Institute of Cancer and Genomic Sciences, The University of Birmingham, Birmingham, United Kingdom
| | - Peter van Dam
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium; Multidisciplinary Oncological Centre Antwerp (MOCA), Antwerp University Hospital, Drie Eikenstraat 655, Edegem, Belgium
| | - Steven Van Laere
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
5
|
Boussen H, Berrazaga Y, Sherif Kullab, Manai M, Berrada N, Mejri N, Siala I, Levine PH, Cristofanilli M. Inflammatory breast cancer: Epidemiologic data and therapeutic results. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 384:1-23. [PMID: 38637094 DOI: 10.1016/bs.ircmb.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Since the early description more than a century ago, inflammatory breast cancer (IBC) remains an aggressive disease, with a different geographic repartition, with the highest ones incidence reported in the North of Africa (Tunisia, Algeria, Morocco, and Egypt), and the lowest incidence in Western countries (USA, Europe…). In this study, we reviewed the literature using the Surveillance, Epidemiology, and End Results (SEER) database compared to other published series. We observed that in the high incidence areas (North of Africa) when compared to "classical" breast cancer, IBC was associated to younger age (less than 50 years) with rapid evolution of signs and symptoms (in less than 3 up to 6 months), and more aggressive clinical and histopathological-molecular parameters, due to the predominance of triple-negative and HER2+ subtypes in around 60% of cases. An epidemiologic trend was observed in both high and low incidence areas since the eighties are towards reduction of IBC prevalence. Concerning Tunisia, in comparison with the historical series of the 1980s, the incidence decreased in part by applying more stringent diagnostic criteria but also probably due to a slight improvement of the socio-economic level (SEL). This trend was also observed in the US, due to the efforts of collaborative IBC groups from MD Anderson Cancer Center (MDACC), Duke and IBC patient advocacy groups. Therapeutic results are slightly better due to the standardization of a multidisciplinary approach and the use of combined primary chemotherapy and/or targeted therapies (especially in HER2 positive patients), followed by mastectomy plus radiotherapy. The 5-year overall and disease-free survival is at more than 60%, related to an IBC mortality decrease observed in the cohorts of patients treated in the last decade.
Collapse
Affiliation(s)
- Hamouda Boussen
- Department of Medical Oncology, University Hospital A Mami, Ariana, Tunis, Tunisia; Inflammatory breast cancer international consortium (IBC-IC), New York, NY, United States.
| | - Yosra Berrazaga
- Department of Medical Oncology, University Hospital A Mami, Ariana, Tunis, Tunisia
| | | | - Maroua Manai
- Inflammatory breast cancer international consortium (IBC-IC), New York, NY, United States; Laboratory of Transmission, Control and Immunobiology of Infections, LR11IPT02 (LTCII), Pasteur Institute of Tunis, 13, place Pasteur, BP74, 1002 Tunis-Belvédère, University of Tunis El Manar, Tunis, Tunisia; Department of Medicine, Hematology/Oncology division, Weill Cornell Medicine, New York, NY, United States
| | | | - Nesrine Mejri
- Department of Medical Oncology, University Hospital A Mami, Ariana, Tunis, Tunisia
| | | | - Paul H Levine
- Department of Epidemiology, College of Public Health, University of Nebraska Medical Center, Omaha, NE, United States
| | - Massimo Cristofanilli
- Inflammatory breast cancer international consortium (IBC-IC), New York, NY, United States; Department of Medicine, Hematology/Oncology division, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
6
|
Engin A. Obesity-Associated Breast Cancer: Analysis of Risk Factors and Current Clinical Evaluation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:767-819. [PMID: 39287872 DOI: 10.1007/978-3-031-63657-8_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Several studies show that a significantly stronger association is obvious between increased body mass index (BMI) and higher breast cancer incidence. Additionally, obese and postmenopausal women are at higher risk of all-cause and breast cancer-specific mortality compared with non-obese women with breast cancer. In this context, increased levels of estrogens, excessive aromatization activity of the adipose tissue, overexpression of pro-inflammatory cytokines, insulin resistance, adipocyte-derived adipokines, hypercholesterolemia, and excessive oxidative stress contribute to the development of breast cancer in obese women. Genetic evaluation is an integral part of diagnosis and treatment for patients with breast cancer. Despite trimodality therapy, the four-year cumulative incidence of regional recurrence is significantly higher. Axillary lymph nodes as well as primary lesions have diagnostic, prognostic, and therapeutic significance for the management of breast cancer. In clinical setting, because of the obese population primary lesions and enlarged lymph nodes could be less palpable, the diagnosis may be challenging due to misinterpretation of physical findings. Thereby, a nomogram has been created as the "Breast Imaging Reporting and Data System" (BI-RADS) to increase agreement and decision-making consistency between mammography and ultrasonography (USG) experts. Additionally, the "breast density classification system," "artificial intelligence risk scores," ligand-targeted receptor probes," "digital breast tomosynthesis," "diffusion-weighted imaging," "18F-fluoro-2-deoxy-D-glucose positron emission tomography," and "dynamic contrast-enhanced magnetic resonance imaging (MRI)" are important techniques for the earlier detection of breast cancers and to reduce false-positive results. A high concordance between estrogen receptor (ER) and progesterone receptor (PR) status evaluated in preoperative percutaneous core needle biopsy and surgical specimens is demonstrated. Breast cancer surgery has become increasingly conservative; however, mastectomy may be combined with any axillary procedures, such as sentinel lymph node biopsy (SLNB) and/or axillary lymph node dissection whenever is required. As a rule, SLNB-guided axillary dissection in breast cancer patients who have clinically axillary lymph node-positive to node-negative conversion following neoadjuvant chemotherapy is recommended, because lymphedema is the most debilitating complication after any axillary surgery. There is no clear consensus on the optimal treatment of occult breast cancer, which is much discussed today. Similarly, the current trend in metastatic breast cancer is that the main palliative treatment option is systemic therapy.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
7
|
Hazra A, O’Hara A, Polyak K, Nakhlis F, Harrison BT, Giordano A, Overmoyer B, Lynce F. Copy Number Variation in Inflammatory Breast Cancer. Cells 2023; 12:cells12071086. [PMID: 37048158 PMCID: PMC10093603 DOI: 10.3390/cells12071086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
Identification of a unique genomic biomarker in de novo inflammatory breast cancer (IBC) may provide an insight into the biology of this aggressive disease. The goal of our study was to elucidate biomarkers associated with IBC. We examined breast biopsies collected from Dana–Farber Cancer Institute patients with IBC prior to initiating preoperative systemic treatment (30 samples were examined, of which 14 were eligible). Patients without available biopsies (n = 1), with insufficient tumor epithelial cells (n = 10), or insufficient DNA yield (n = 5) were excluded from the analysis. Molecular subtype and tumor grade were abstracted from a medical records’ review. Ten IBC tumors were estrogen-receptor-positive (ER+) and human epidermal growth factor receptor 2 (HER2)-negative (n = 10 out of 14). Sufficient RNA and DNA were simultaneously extracted from 14 biopsy specimens using the Qiagen AllPrep Kit. RNA was amplified using the Sensation kit and profiled using the Affymetrix Human Transcriptome Array 2.0. DNA was profiled for genome-wide copy number variation (CNV) using the Affymetrix OncoScan Array and analyzed using the Nexus Chromosome Analysis Suite. Among the 14 eligible samples, we first confirmed biological concordance and quality control metrics using replicates and gene expression data. Second, we examined CNVs and gene expression change by IBC subtype. We identified significant CNVs in IBC patients after adjusting for multiple comparisons. Next, to assess whether the CNVs were unique to IBC, we compared the IBC CNV data to fresh-frozen non-IBC CNV data from The Cancer Genome Atlas (n = 388). On chromosome 7p11.2, we identified significant CN gain located at position 58,019,983-58,025,423 in 8 ER+ IBC samples compared to 338 non-IBC ER+ samples (region length: 5440 bp gain and 69,039 bp, False Discovery Rate (FDR) p-value = 3.12 × 10−10) and at position 57,950,944–58,025,423 in 3 TN-IBC samples compared to 50 non-IBC TN samples (74,479 base pair, gain, FDR p-value = 4.27 × 10−5; near the EGFR gene). We also observed significant CN loss on chromosome 21, located at position 9,648,315–9,764,385 (p-value = 4.27 × 10−5). Secondarily, differential gene expression in IBC patients with 7p11.2 CN gain compared to SUM149 were explored after FDR correction for multiple testing (p-value = 0.0016), but the results should be interpreted with caution due to the small sample size. Finally, the data presented are hypothesis-generating. Validation of CNVs that contribute to the unique presentation and biological features associated with IBC in larger datasets may lead to the optimization of treatment strategies.
Collapse
Affiliation(s)
- Aditi Hazra
- Division of Preventive Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA
- Inflammatory Breast Cancer Program, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | - Kornelia Polyak
- Inflammatory Breast Cancer Program, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Medical Oncology, Breast Oncology Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Faina Nakhlis
- Inflammatory Breast Cancer Program, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Surgery, Division of Breast Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Beth T. Harrison
- Inflammatory Breast Cancer Program, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Antonio Giordano
- Inflammatory Breast Cancer Program, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Medical Oncology, Breast Oncology Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Beth Overmoyer
- Inflammatory Breast Cancer Program, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Medical Oncology, Breast Oncology Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Filipa Lynce
- Inflammatory Breast Cancer Program, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Medical Oncology, Breast Oncology Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
8
|
Zhang M, Wu K, Wang M, Bai F, Chen H. CASP9 As a Prognostic Biomarker and Promising Drug Target Plays a Pivotal Role in Inflammatory Breast Cancer. Int J Anal Chem 2022; 2022:1043445. [PMID: 36199443 PMCID: PMC9527435 DOI: 10.1155/2022/1043445] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/02/2022] [Accepted: 07/20/2022] [Indexed: 11/18/2022] Open
Abstract
Background Inflammatory breast cancer (IBC) is one of the most rare and aggressive subtypes of primary breast cancer (BC). Our study aimed to explore hub genes related to the pathogenesis of IBC, which could be considered as novel molecular biomarkers for IBC diagnosis and prognosis. Material and Methods. Two datasets from gene expression omnibus database (GEO) were selected. Enrichment analysis and protein-protein interaction (PPI) network for the DEGs were performed. We analyzed the prognostic values of hub genes in the Kaplan-Meier Plotter. Connectivity Map (CMap) and Comparative Toxicogenomics Database (CTD) was used to find candidate small molecules capable to reverse the gene status of IBC. Results 157 DEGs were selected in total. We constructed the PPI network with 154 nodes interconnected by 128 interactions. The KEGG pathway analysis indicated that the DEGs were enriched in apoptosis, pathways in cancer and insulin signaling pathway. PTEN, PSMF1, PSMC6, AURKB, FZR1, CASP9, CASP6, CASP8, BAD, AKR7A2, ZNF24, SSX2IP, SIGLEC1, MS4A4A, and VSIG4 were selected as hub genes based on the high degree of connectivity. Six hub genes (PSMC6, AURKB, CASP9, BAD, ZNF24, and SSX2IP) that were significantly associated with the prognosis of breast cancer. The expression of CASP9 protein was associated with prognosis and immune cells infiltration of breast cancer. CASP9- naringenin (NGE) is expected to be the most promising candidate gene-compound interaction for the treatment of IBC. Conclusion Taken together, CASP9 can be used as a prognostic biomarker and a novel therapeutic target in IBC.
Collapse
Affiliation(s)
- Mingdi Zhang
- Department of Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Kejin Wu
- Department of Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Maoli Wang
- Department of Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Fang Bai
- Department of Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Hongliang Chen
- Department of Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
9
|
Comparative transcriptional analyses of preclinical models and patient samples reveal MYC and RELA driven expression patterns that define the molecular landscape of IBC. NPJ Breast Cancer 2022; 8:12. [PMID: 35042871 PMCID: PMC8766434 DOI: 10.1038/s41523-021-00379-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 12/07/2021] [Indexed: 12/24/2022] Open
Abstract
Inflammatory breast cancer (IBC) is an aggressive disease for which the spectrum of preclinical models was rather limited in the past. More recently, novel cell lines and xenografts have been developed. This study evaluates the transcriptome of an extended series of IBC preclinical models and performed a comparative analysis with patient samples to determine the extent to which the current models recapitulate the molecular characteristics of IBC observed clinically. We demonstrate that the IBC preclinical models are exclusively estrogen receptor (ER)-negative and of the basal-like subtype, which reflects to some extent the predominance of these subtypes in patient samples. The IBC-specific 79-signature we previously reported was retrained and discriminated between IBC and non-IBC preclinical models, but with a relatively high rate of false positive predictions. Further analyses of gene expression profiles revealed important roles for cell proliferation, MYC transcriptional activity, and TNFɑ/NFκB in the biology of IBC. Patterns of MYC expression and transcriptional activity were further explored in patient samples, which revealed interactions with ESR1 expression that are contrasting in IBC and nIBC and notable given the comparatively poor outcomes of ER+ IBC. Our analyses also suggest important roles for NMYC, MXD3, MAX, and MLX in shaping MYC signaling in IBC. Overall, we demonstrate that the IBC preclinical models can be used to unravel cancer cell intrinsic molecular features, and thus constitute valuable research tools. Nevertheless, the current lack of ER-positive IBC models remains a major hurdle, particularly since interactions with the ER pathway appear to be relevant for IBC.
Collapse
|
10
|
Faldoni FLC, Villacis RAR, Canto LM, Fonseca-Alves CE, Cury SS, Larsen SJ, Aagaard MM, Souza CP, Scapulatempo-Neto C, Osório CABT, Baumbach J, Marchi FA, Rogatto SR. Inflammatory Breast Cancer: Clinical Implications of Genomic Alterations and Mutational Profiling. Cancers (Basel) 2020; 12:2816. [PMID: 33007869 PMCID: PMC7650681 DOI: 10.3390/cancers12102816] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammatory breast cancer (IBC) is a rare and aggressive type of breast cancer whose molecular basis is poorly understood. We performed a comprehensive molecular analysis of 24 IBC biopsies naïve of treatment, using a high-resolution microarray platform and targeted next-generation sequencing (105 cancer-related genes). The genes more frequently affected by gains were MYC (75%) and MDM4 (71%), while frequent losses encompassed TP53 (71%) and RB1 (58%). Increased MYC and MDM4 protein expression levels were detected in 18 cases. These genes have been related to IBC aggressiveness, and MDM4 is a potential therapeutic target in IBC. Functional enrichment analysis revealed genes associated with inflammatory regulation and immune response. High homologous recombination (HR) deficiency scores were detected in triple-negative and metastatic IBC cases. A high telomeric allelic imbalance score was found in patients having worse overall survival (OS). The mutational profiling was compared with non-IBC (TCGA, n = 250) and IBC (n = 118) from four datasets, validating our findings. Higher frequency of TP53 and BRCA2 variants were detected compared to non-IBC, while PIKC3A showed similar frequency. Variants in mismatch repair and HR genes were associated with worse OS. Our study provided a framework for improved diagnosis and therapeutic alternatives for this aggressive tumor type.
Collapse
Affiliation(s)
- Flávia L. C. Faldoni
- International Research Center, A.C.Camargo Cancer Center, São Paulo 01508-010, Brazil; (F.L.C.F.); (F.A.M.)
- Department of Clinical Genetics, University Hospital of Southern Denmark, 7100 Vejle, Denmark; (L.M.C.); (M.M.A.)
| | - Rolando A. R. Villacis
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília-UnB, Brasília 70910-900, Brazil;
| | - Luisa M. Canto
- Department of Clinical Genetics, University Hospital of Southern Denmark, 7100 Vejle, Denmark; (L.M.C.); (M.M.A.)
| | - Carlos E. Fonseca-Alves
- Department of Veterinary Surgery and Anesthesiology, School of Veterinary Medicine and Animal Science, São Paulo State University-UNESP, Botucatu 18618-681, Brazil;
| | - Sarah S. Cury
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University-UNESP, Botucatu 18618-689, Brazil;
| | - Simon J. Larsen
- Department of Mathematics and Computer Science, University of Southern Denmark, 5230 Odense, Denmark; (S.J.L.); (J.B.)
| | - Mads M. Aagaard
- Department of Clinical Genetics, University Hospital of Southern Denmark, 7100 Vejle, Denmark; (L.M.C.); (M.M.A.)
| | - Cristiano P. Souza
- Department of Breast and Gynecologic Oncology, Barretos Cancer Hospital, Pio XII Foundation, Barretos 14784-390, Brazil;
| | - Cristovam Scapulatempo-Neto
- Molecular Oncology Research Center, Barretos SP 14784-400, Brazil;
- Diagnósticos da América (DASA), Barueri 01525-001, Brazil
| | | | - Jan Baumbach
- Department of Mathematics and Computer Science, University of Southern Denmark, 5230 Odense, Denmark; (S.J.L.); (J.B.)
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Fabio A. Marchi
- International Research Center, A.C.Camargo Cancer Center, São Paulo 01508-010, Brazil; (F.L.C.F.); (F.A.M.)
| | - Silvia R. Rogatto
- Department of Clinical Genetics, University Hospital of Southern Denmark, 7100 Vejle, Denmark; (L.M.C.); (M.M.A.)
- Institute of Regional Health Research, University of Southern Denmark, 500 Odense, Denmark
| |
Collapse
|
11
|
Prognostic Impact of Stromal Immune Infiltration before and after Neoadjuvant Chemotherapy (NAC) in Triple Negative Inflammatory Breast Cancers (TNIBC) Treated with Dose-Dense Dose-Intense NAC. Cancers (Basel) 2020; 12:cancers12092657. [PMID: 32957722 PMCID: PMC7565432 DOI: 10.3390/cancers12092657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/20/2022] Open
Abstract
Inflammatory breast cancers are very aggressive, and among them, triple negative breast cancer (TNBC) has the worst prognosis. While many studies have investigated the association between tumor-infiltrating lymphocytes (TIL) before neoadjuvant chemotherapy (NAC) and outcome in TNBC, the impact of post-NAC TIL and TIL variation in triple negative inflammatory breast cancer (TNIBC) outcome is unknown. Between January 2010 to December 2018, all patients with TNIBC seen at the breast disease unit (Saint-Louis Hospital) were treated with dose-dense dose-intense NAC. The main objective of the study was to determine factors associated with event-free survival (EFS), particularly pathological complete response (pCR), pre- and post-NAC TIL, delta TIL and post-NAC lymphovascular invasion (LVI). After univariate analysis, post-NAC LVI (HR 2.06; CI 1.13-3.74; p = 0.02), high post-NAC TIL (HR 1.81; CI 1.07-3.06; p = 0.03) and positive delta TIL (HR 2.20; CI 1.36-3.52; p = 0.001) were significantly associated with impaired EFS. After multivariate analysis, only a positive TIL variation remained negatively associated with EFS (HR 1.88; CI 1.05-3.35; p = 0.01). TNIBC patients treated with intensive NAC who present TIL enrichment after NAC have a high risk of relapse, which could be used as a prognostic marker in TNIBC and could help to choose adjuvant post-NAC treatment.
Collapse
|
12
|
Lerebours F, Vacher S, Guinebretiere JM, Rondeau S, Caly M, Gentien D, Van Laere S, Bertucci F, de la Grange P, Bièche L, Liang X, Callens C. Hemoglobin overexpression and splice signature as new features of inflammatory breast cancer? J Adv Res 2020; 28:77-85. [PMID: 33364047 PMCID: PMC7753232 DOI: 10.1016/j.jare.2020.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/30/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022] Open
Abstract
Introduction Inflammatory Breast Cancer (IBC) is the most aggressive form of breast carcinoma characterized by rapid onset of inflammatory signs and its molecular fingerprint has not yet been elucidated. Objectives The objective of this study was to detect both gene expression levels and alternate RNA splice variants specific for IBC. Methods W e performed splice-sensitive array profiling using Affymetrix Exon Array and quantitative RT-PCR analyses in 177 IBC compared to 183 non-IBC. We also assessed the prognostic value of the identified candidate genes and splice variants. Results A 5-splice signature (HSPA8, RPL10, RPL4, DIDO1 and EVL) was able to distinguish IBC from non-IBC tumors (p<10-7). This splice signature was associated with poor metastasis-free survival in hormone receptor-negative non-IBC (p=0.02), but had no prognostic value in IBC. PAM analysis of dysregulated genes in IBC compared to non-IBC identified a 10-gene signature highly predictive of IBC phenotype and conferring a poor prognosis in non-IBC. The genes most commonly upregulated in IBC were 3 hemoglobin genes able to reliably discriminate IBC from non-IBC (p<10-4). Hb protein expression in epithelial breast tumor cells was confirmed by immunohistochemistry. Conclusion IBC has a specific spliced transcript profile and is characterized by hemoglobin gene overexpression that should be investigated in further functional studies.
Collapse
Affiliation(s)
- F Lerebours
- Département d'Oncologie Médicale, Institut Curie-Hôpital René Huguenin, Saint-Cloud, France
| | - S Vacher
- Service de Génétique, Unité de Pharmacogénomique, Institut Curie, Université Paris Sciences et Lettres, Paris, France
| | - J M Guinebretiere
- Département de Biopathologie, Institut Curie-Hôpital René Huguenin, Saint-Cloud, France
| | - S Rondeau
- Service de Génétique, Unité de Pharmacogénomique, Institut Curie, Université Paris Sciences et Lettres, Paris, France
| | - M Caly
- Département de Biopathologie, Institut Curie-Hôpital René Huguenin, Saint-Cloud, France
| | - D Gentien
- Plateforme de Génomique, Département de Recherche Translationnelle, Institut Curie, Université Paris Sciences et Lettres, Paris, France
| | - S Van Laere
- Translational Cancer Research Unit Antwerp, General Hospital Sint Augustinus, Wilrijk, Belgium
| | - F Bertucci
- Département d'Oncologie Médicale, Institut Paoli-Calmettes, Marseille, France
| | | | - L Bièche
- Service de Génétique, Unité de Pharmacogénomique, Institut Curie, Université Paris Sciences et Lettres, Paris, France.,INSERM U1016, Paris Descartes University, Faculty of Pharmaceutical and Biological Sciences, Paris, France
| | - X Liang
- Service de Génétique, Unité de Pharmacogénomique, Institut Curie, Université Paris Sciences et Lettres, Paris, France.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - C Callens
- Service de Génétique, Unité de Pharmacogénomique, Institut Curie, Université Paris Sciences et Lettres, Paris, France
| |
Collapse
|
13
|
Wu J, Lv Q, Huang H, Zhu M, Meng D. Screening and Identification of Key Biomarkers in Inflammatory Breast Cancer Through Integrated Bioinformatic Analyses. Genet Test Mol Biomarkers 2020; 24:484-491. [PMID: 32598242 DOI: 10.1089/gtmb.2020.0047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background: Inflammatory breast cancer (IBC) is a rare type of breast cancer with poor prognoses, moreover its pathogenesis is not entirely clear. The aim of this study was to identify key genes of IBC, which might serve as diagnostic biomarkers and/or therapeutic targets. Methods: Two microarray datasets, GSE23720 and GSE45581, were obtained from the Gene Expression Omnibus database, and a differential expression analysis was performed. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted to understand the potential biological functions of the differentially expressed genes (DEGs). Next, a protein-protein interaction (PPI) network was constructed and visualized by Cytoscape. Functional modules and hub genes were screened using MCODE and cytohubba plug-ins, and the Cancer Genome Atlas survival analysis along with quantitative reverse transcriptional polymerase chain reactions of clinical samples was used to validate the effect that the hub genes have on IBC. Results: A total of 215 DEGs were identified, consisting of 105 upregulated and 110 downregulated genes. GO and KEGG analyses showed that the enriched terms and pathways were mainly associated with cell cycle, proliferation, drug metabolism, and oncogenesis. From the PPI network, we identified six hub genes, including Cell Division Cycle 45 (CDC45), Polo Like Kinase 1 (PLK1), BUB1 Mitotic Checkpoint Serine/Threonine Kinase B (BUB1B), Cell Division Cycle 20 (CDC20), Aurora Kinase A (AURKA), and Mitotic Arrest Deficient 2 Like 1 (MAD2L1). The survival analyses and expression validation studies verified the robustness of these hub genes. Conclusion: This study provides new insights into the understanding of the molecular mechanisms of IBC; in addition, the identified hub genes may serve as potential targets for diagnosis and treatment.
Collapse
Affiliation(s)
- Junqiang Wu
- Department of Breast Surgery, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Qing Lv
- Department of Breast Surgery, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Hu Huang
- Department of Breast Surgery, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Mingjie Zhu
- Department of Breast Surgery, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Dong Meng
- Department of Breast Surgery, The Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
14
|
Lv Q, Liu Y, Huang H, Zhu M, Wu J, Meng D. Identification of Potential Key Genes and Pathways for Inflammatory Breast Cancer Based on GEO and TCGA Databases. Onco Targets Ther 2020; 13:5541-5550. [PMID: 32606769 PMCID: PMC7305851 DOI: 10.2147/ott.s255300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/18/2020] [Indexed: 11/23/2022] Open
Abstract
Introduction Inflammatory breast cancer (IBC) is a rare type of breast cancer with poor prognosis, and the pathogenesis of this life-threatening disease is yet to be fully elucidated. This study aims to identify key genes of IBC, which could be potential diagnostic or therapeutic targets. Methods Four datasets GSE5847, GSE22597, GSE23720, and GSE45581 were downloaded from the Gene Expression Omnibus (GEO) and differential expression analysis was performed. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted to understand the potential bio-functions of the differentially expressed genes (DEGs). Protein-protein interaction (PPI) network was constructed for functional modules analysis and hub genes identification, and TCGA survival analysis and qRT-PCR of clinical samples were used to further explore and validate the effect of hub genes on IBC. Results A total of 114 DEGs were identified from the GEO datasets. GO and KEGG analyses showed that the DEGs were mainly enriched in oncogenesis and cell adhesion. From the PPI network, we screened out five hub genes, including PTPRC, IL6, SELL, CD40, and SPN. Survival analysis and expression validation verified the robustness of the hub genes. Discussion The present study provides new insight into the understanding of IBC pathogenesis and the identified hub genes may serve as potential targets for diagnosis and treatment.
Collapse
Affiliation(s)
- Qing Lv
- Department of Breast Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Yansong Liu
- Department of Breast Surgery, Tumor Hospital of Mudanjiang City, Mudanjiang, Heilongjiang, People's Republic of China
| | - Hu Huang
- Department of Breast Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Mingjie Zhu
- Department of Breast Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Junqiang Wu
- Department of Breast Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Dong Meng
- Department of Breast Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| |
Collapse
|
15
|
Wong KK, Hussain FA. TRPM4 is overexpressed in breast cancer associated with estrogen response and epithelial-mesenchymal transition gene sets. PLoS One 2020; 15:e0233884. [PMID: 32484822 PMCID: PMC7266295 DOI: 10.1371/journal.pone.0233884] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 05/14/2020] [Indexed: 12/24/2022] Open
Abstract
Ion channels form an important class of drug targets in malignancies. Transient receptor potential cation channel subfamily M member 4 (TRPM4) plays oncological roles in various solid tumors. Herein, we examined TRPM4 protein expression profile by immunohistochemistry (IHC) in breast cancer cases compared with normal breast ducts, its association with clinico-demographical parameters, and its potential function in breast cancers by Gene Set Enrichment Analysis (GSEA). Data-mining demonstrated that TRPM4 transcript levels were significantly higher in The Cancer Genome Atlas series of breast cancer cases (n = 1,085) compared with normal breast tissues (n = 112) (p = 1.03 x 10−11). Our IHC findings in tissue microarrays showed that TRPM4 protein was overexpressed in breast cancers (n = 83/99 TRPM4+; 83.8%) compared with normal breast ducts (n = 5/10 TRPM4+; 50%) (p = 0.022). Higher TRPM4 expression (median frequency cut-off) was significantly associated with higher lymph node status (N1-N2 vs N0; p = 0.024) and higher stage (IIb-IIIb vs I-IIa; p = 0.005). GSEA evaluation in three independent gene expression profiling (GEP) datasets of breast cancer cases (GSE54002, n = 417; GSE20685, n = 327; GSE23720, n = 197) demonstrated significant association of TRPM4 transcript expression with estrogen response and epithelial-mesenchymal transition (EMT) gene sets (p<0.01 and false discovery rate<0.05). These gene sets were not enriched in GEP datasets of normal breast epithelium cases (GSE10797, n = 5; GSE9574, n = 15; GSE20437, n = 18). In conclusion, TRPM4 protein expression is upregulated in breast cancers associated with worse clinico-demographical parameters, and TRPM4 potentially regulates estrogen receptor signaling and EMT progression in breast cancer.
Collapse
Affiliation(s)
- Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- * E-mail:
| | - Faezahtul Arbaeyah Hussain
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
16
|
Epigenetics in Inflammatory Breast Cancer: Biological Features and Therapeutic Perspectives. Cells 2020; 9:cells9051164. [PMID: 32397183 PMCID: PMC7291154 DOI: 10.3390/cells9051164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/25/2020] [Accepted: 04/30/2020] [Indexed: 12/12/2022] Open
Abstract
Evidence has emerged implicating epigenetic alterations in inflammatory breast cancer (IBC) origin and progression. IBC is a rare and rapidly progressing disease, considered the most aggressive type of breast cancer (BC). At clinical presentation, IBC is characterized by diffuse erythema, skin ridging, dermal lymphatic invasion, and peau d'orange aspect. The widespread distribution of the tumor as emboli throughout the breast and intra- and intertumor heterogeneity is associated with its poor prognosis. In this review, we highlighted studies documenting the essential roles of epigenetic mechanisms in remodeling chromatin and modulating gene expression during mammary gland differentiation and the development of IBC. Compiling evidence has emerged implicating epigenetic changes as a common denominator linking the main risk factors (socioeconomic status, environmental exposure to endocrine disruptors, racial disparities, and obesity) with IBC development. DNA methylation changes and their impact on the diagnosis, prognosis, and treatment of IBC are also described. Recent studies are focusing on the use of histone deacetylase inhibitors as promising epigenetic drugs for treating IBC. All efforts must be undertaken to unravel the epigenetic marks that drive this disease and how this knowledge could impact strategies to reduce the risk of IBC development and progression.
Collapse
|
17
|
Bertucci F, Rypens C, Finetti P, Guille A, Adélaïde J, Monneur A, Carbuccia N, Garnier S, Dirix P, Gonçalves A, Vermeulen P, Debeb BG, Wang X, Dirix L, Ueno NT, Viens P, Cristofanilli M, Chaffanet M, Birnbaum D, Van Laere S. NOTCH and DNA repair pathways are more frequently targeted by genomic alterations in inflammatory than in non-inflammatory breast cancers. Mol Oncol 2020; 14:504-519. [PMID: 31854063 PMCID: PMC7053236 DOI: 10.1002/1878-0261.12621] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/06/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022] Open
Abstract
Inflammatory breast cancer (IBC) is the most pro‐metastatic form of breast cancer. Better understanding of its pathophysiology and identification of actionable genetic alterations (AGAs) are crucial to improve systemic treatment. We aimed to define the DNA profiles of IBC vs noninflammatory breast cancer (non‐IBC) clinical samples in terms of copy number alterations (CNAs), mutations, and AGAs. We applied targeted next‐generation sequencing (tNGS) and array‐comparative genomic hybridization (aCGH) to 57 IBC and 50 non‐IBC samples and pooled these data with four public datasets profiled using NGS and aCGH, leading to a total of 101 IBC and 2351 non‐IBC untreated primary tumors. The respective percentages of each molecular subtype [hormone receptor‐positive (HR+)/HER2−, HER2+, and triple‐negative] were 68%, 15%, and 17% in non‐IBC vs 25%, 35%, and 40% in IBC. The comparisons were adjusted for both the molecular subtypes and the American Joint Committee on Cancer (AJCC) stage. The 10 most frequently altered genes in IBCs were TP53 (63%), HER2/ERBB2 (30%), MYC (27%), PIK3CA (21%), BRCA2 (14%), CCND1 (13%), GATA3 (13%), NOTCH1 (12%), FGFR1 (11%), and ARID1A (10%). The tumor mutational burden was higher in IBC than in non‐IBC. We identified 96 genes with an alteration frequency (p < 5% and q < 20%) different between IBC and non‐IBC, independently from the molecular subtypes and AJCC stage; 95 were more frequently altered in IBC, including TP53, genes involved in the DNA repair (BRCA2) and NOTCH pathways, and one (PIK3CA) was more frequently altered in non‐IBC. Ninety‐seven percent of IBCs displayed at least one AGA. This percentage was higher than in non‐IBC (87%), notably for drugs targeting DNA repair, NOTCH signaling, and CDK4/6, whose pathways were more frequently altered (DNA repair) or activated (NOTCH and CDK4/6) in IBC than in non‐IBC. The genomic landscape of IBC is different from that of non‐IBC. Enriched AGAs in IBC may explain its aggressiveness and provide clinically relevant targets.
Collapse
Affiliation(s)
- François Bertucci
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, France.,Département d'Oncologie Médicale, Institut Paoli-Calmettes, Marseille, France
| | - Charlotte Rypens
- Translational Cancer Research Unit and Center for Oncological Research (CORE), Faculty of Medicine and Health Sciences, GZA Hospitals Sint-Augustinus and University of Antwerp Wilrijk, Antwerp, Belgium
| | - Pascal Finetti
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, France
| | - Arnaud Guille
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, France
| | - José Adélaïde
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, France
| | - Audrey Monneur
- Département d'Oncologie Médicale, Institut Paoli-Calmettes, Marseille, France
| | - Nadine Carbuccia
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, France
| | - Séverine Garnier
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, France
| | - Piet Dirix
- Translational Cancer Research Unit and Center for Oncological Research (CORE), Faculty of Medicine and Health Sciences, GZA Hospitals Sint-Augustinus and University of Antwerp Wilrijk, Antwerp, Belgium
| | - Anthony Gonçalves
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, France.,Département d'Oncologie Médicale, Institut Paoli-Calmettes, Marseille, France
| | - Peter Vermeulen
- Translational Cancer Research Unit and Center for Oncological Research (CORE), Faculty of Medicine and Health Sciences, GZA Hospitals Sint-Augustinus and University of Antwerp Wilrijk, Antwerp, Belgium
| | - Bisrat G Debeb
- MD Anderson Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaoping Wang
- MD Anderson Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luc Dirix
- Translational Cancer Research Unit and Center for Oncological Research (CORE), Faculty of Medicine and Health Sciences, GZA Hospitals Sint-Augustinus and University of Antwerp Wilrijk, Antwerp, Belgium
| | - Naoto T Ueno
- MD Anderson Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Patrice Viens
- Département d'Oncologie Médicale, Institut Paoli-Calmettes, Marseille, France
| | - Massimo Cristofanilli
- Division of Hematology and Oncology, Robert H Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Max Chaffanet
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, France
| | - Daniel Birnbaum
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, France
| | - Steven Van Laere
- Translational Cancer Research Unit and Center for Oncological Research (CORE), Faculty of Medicine and Health Sciences, GZA Hospitals Sint-Augustinus and University of Antwerp Wilrijk, Antwerp, Belgium
| |
Collapse
|
18
|
Newton R, Wernisch L. A meta-analysis of multiple matched aCGH/expression cancer datasets reveals regulatory relationships and pathway enrichment of potential oncogenes. PLoS One 2019; 14:e0213221. [PMID: 31335867 PMCID: PMC6650054 DOI: 10.1371/journal.pone.0213221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/05/2019] [Indexed: 12/12/2022] Open
Abstract
The copy numbers of genes in cancer samples are often highly disrupted and form a natural amplification/deletion experiment encompassing multiple genes. Matched array comparative genomics and transcriptomics datasets from such samples can be used to predict inter-chromosomal gene regulatory relationships. Previously we published the database METAMATCHED, comprising the results from such an analysis of a large number of publically available cancer datasets. Here we investigate genes in the database which are unusual in that their copy number exhibits consistent heterogeneous disruption in a high proportion of the cancer datasets. We assess the potential relevance of these genes to the pathology of the cancer samples, in light of their predicted regulatory relationships and enriched biological pathways. A network-based method was used to identify enriched pathways from the genes’ inferred targets. The analysis predicts both known and new regulator-target interactions and pathway memberships. We examine examples in detail, in particular the gene POGZ, which is disrupted in many of the cancer datasets and has an unusually large number of predicted targets, from which the network analysis predicts membership of cancer related pathways. The results suggest close involvement in known cancer pathways of genes exhibiting consistent heterogeneous copy number disruption. Further experimental work would clarify their relevance to tumor biology. The results of the analysis presented in the database METAMATCHED, and included here as an R archive file, constitute a large number of predicted regulatory relationships and pathway memberships which we anticipate will be useful in informing such experiments.
Collapse
Affiliation(s)
- Richard Newton
- MRC Biostatistics Unit, Cambridge University, Cambridge, United Kingdom
- * E-mail:
| | - Lorenz Wernisch
- MRC Biostatistics Unit, Cambridge University, Cambridge, United Kingdom
| |
Collapse
|
19
|
Qi Y, Wang X, Kong X, Zhai J, Fang Y, Guan X, Wang J. Expression signatures and roles of microRNAs in inflammatory breast cancer. Cancer Cell Int 2019; 19:23. [PMID: 30733644 PMCID: PMC6357482 DOI: 10.1186/s12935-018-0709-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 12/11/2018] [Indexed: 12/21/2022] Open
Abstract
Inflammatory breast cancer (IBC) is an infrequent but aggressive manifestation of breast cancer, which accounts for 2-4% of all breast cancer cases but responsible for 7-10% of breast cancer-related deaths, and with a 20-30% 10-year overall survival compared with 80% for patients with non-IBC with an unordinary phenotype, whose molecular mechanisms are still largely unknown to date. Discovering and identifying novel bio-markers responsible for diagnosis and therapeutic targets is a pressing need. MicroRNAs are a class of small non-coding RNAs that are capable to post-transcriptionally regulate gene expression of genes by targeting mRNAs, exerting vital and tremendous affects in numerous malignancy-related biological processes, including cell apoptosis, metabolism, proliferation and differentiation. In this study, we review present and high-quality evidences regarding the potential applications of inflammatory breast cancer associated microRNAs for diagnosis and prognosis of this lethal disease.
Collapse
Affiliation(s)
- Yihang Qi
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Xiangyu Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
- Department of Laboratory Medicine, Mayo Clinic, Rochester, MN 55902 USA
| | - Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Jie Zhai
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Yi Fang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Xiaoxiang Guan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| |
Collapse
|
20
|
Loi M, Dunant A, Ghith S, Cascales-Garcia AM, Mazouni C, Pistilli B, Mathieu MC, Deutsch E, Arriagada R, Rivera S. Clinical Response to Induction Chemotherapy Predicts Outcome after Combined-Modality Therapy in Inflammatory Breast Cancer. Cancer Invest 2019; 37:29-38. [PMID: 30656969 DOI: 10.1080/07357907.2018.1564325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
PURPOSE To assess predictors of outcome in a cohort of Inflammatory Breast Cancer (IBC) patients receiving induction chemotherapy followed by local treatment. METHODS We retrospectively reviewed 95 non-metastatic IBC patient files. RESULTS Complete clinical response (cCR) was obtained in 15 (16%) patients. Median follow up was 13.4 years (IC95%: 10.4-14.6). Loco-regional control (LC), disease-free survival (DFS), and overall survival (OS) at 5 years were 85%, 41%, and 55%, respectively; cCR was associated with better DFS and OS in multivariate analyses adjusted for age (p = 0.02). CONCLUSIONS Clinical response to upfront chemotherapy predicts the outcome of patients affected by IBC.
Collapse
Affiliation(s)
- Mauro Loi
- a Department of Radiation Oncology , Institut Gustave Roussy , Villejuif , France.,b Department of Radiation Oncology , Erasmus MC , Rotterdam , The Netherlands
| | - Ariane Dunant
- c Biostatistics and Epidemiology Unit , Institut Gustave Roussy , Villejuif , France
| | - Sahar Ghith
- a Department of Radiation Oncology , Institut Gustave Roussy , Villejuif , France
| | | | - Chafika Mazouni
- d Department of Surgery, Surgical Oncology Unit , Institut Gustave Roussy , Villejuif , France
| | - Barbara Pistilli
- e Departments of Cancer Medicine and Breast Oncology , Institut Gustave Roussy , Villejuif , France
| | | | - Eric Deutsch
- a Department of Radiation Oncology , Institut Gustave Roussy , Villejuif , France
| | - Rodrigo Arriagada
- a Department of Radiation Oncology , Institut Gustave Roussy , Villejuif , France.,g Oncology Pathology Department , Karolinska Institutet , Stockholm , Sweden
| | - Sofia Rivera
- a Department of Radiation Oncology , Institut Gustave Roussy , Villejuif , France
| |
Collapse
|
21
|
Agrin has a pathological role in the progression of oral cancer. Br J Cancer 2018; 118:1628-1638. [PMID: 29872149 PMCID: PMC6008410 DOI: 10.1038/s41416-018-0135-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/26/2018] [Accepted: 05/09/2018] [Indexed: 12/27/2022] Open
Abstract
Background The extracellular matrix modulates the hallmarks of cancer. Here we examined the role of agrin—a member of this matrix—in progression of oral squamous cell carcinoma (OSCC). Methods We evaluated the immunohistochemical expression of agrin in OSCC and dysplasias. Benign lesions were used as control. In subsequent experiments, we investigated whether the silencing of agrin interferes with tumour expansion both in vitro as well as in vivo. To gain insights into the role of agrin, we identified its protein network (interactome) using mass spectrometry-based proteomics and bioinformatics. Finally, we evaluated the clinical relevance of agrin interactome. Results Agrin was elevated in malignant and premalignant lesions. Further, we show that agrin silencing interferes with cancer cell motility, proliferation, invasion, colony and tumour spheroid formation, and it also reduces the phosphorylation of FAK, ERK and cyclin D1 proteins in OSCC cells. In orthotopic model, agrin silencing reduces tumour aggressiveness, like vascular and neural invasion. From a clinical perspective, agrin contextual hubs predict a poor clinical prognosis related with overall survival. Conclusions Altogether, our results demonstrate that agrin is a histological marker for the progression of oral cancer and is a strong therapeutic target candidate for both premalignant and OSCC lesions.
Collapse
|
22
|
Manai M, Thomassin-Piana J, Gamoudi A, Finetti P, Lopez M, Eghozzi R, Ayadi S, Lamine OB, Manai M, Rahal K, Charafe-Jauffret E, Jacquemier J, Viens P, Birnbaum D, Boussen H, Chaffanet M, Bertucci F. MARCKS protein overexpression in inflammatory breast cancer. Oncotarget 2018; 8:6246-6257. [PMID: 28009981 PMCID: PMC5351628 DOI: 10.18632/oncotarget.14057] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/14/2016] [Indexed: 12/21/2022] Open
Abstract
Background Inflammatory breast cancer (IBC) is the most aggressive form of locally-advanced breast cancer. Identification of new therapeutic targets is crucial. We previously reported MARCKS mRNA overexpression in IBC in the largest transcriptomics study reported to date. Here, we compared MARCKS protein expression in IBC and non-IBC samples, and searched for correlations between protein expression and clinicopathological features. Results Tumor samples showed heterogeneity with respect to MARCKS staining: 18% were scored as MARCKS-positive (stained cells ≥ 1%) and 82% as MARCKS-negative. MARCKS expression was more frequent in IBC (36%) than in non-IBC (11%; p = 1.4E−09), independently from molecular subtypes and other clinicopathological variables. We found a positive correlation between protein and mRNA expression in the 148/502 samples previously analyzed for MARCKS mRNA expression. MARCKS protein expression was associated with other poor-prognosis features in the whole series of samples such as clinical axillary lymph node or metastatic extension, high pathological grade, ER-negativity, PR-negativity, HER2-positivity, and triple-negative and HER2+ statutes. In IBC, MARCKS expression was the sole tested variable associated with poor MFS. Materials and Methods We retrospectively analyzed MARCKS protein expression by immunohistochemistry in 502 tumors, including 133 IBC and 369 non-IBC, from Tunisian and French patients. All samples were pre-therapeutic clinical samples. We searched for correlations between MARCKS expression and clinicopathological features including the IBC versus non-IBC phenotype and metastasis-free survival (MFS). Conclusions MARCKS overexpression might in part explain the poor prognosis of IBC. As an oncogene associated with poor MFS, MARCKS might represent a new potential therapeutic target in IBC.
Collapse
Affiliation(s)
- Maroua Manai
- Département d'Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, Aix Marseille Université, Marseille, France.,Département de Biologie, Unité de Biochimie et Biologie Moléculaire, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunisie.,Département d'Oncologie Médicale, Institut Salah Azaiez, Tunis, Tunisie.,Service d'Oncologie Médicale, Hôpital l'Ariana, Tunis, Tunisie
| | | | - Amor Gamoudi
- Département d'Oncologie Médicale, Institut Salah Azaiez, Tunis, Tunisie
| | - Pascal Finetti
- Département d'Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, Aix Marseille Université, Marseille, France
| | - Marc Lopez
- Département d'Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, Aix Marseille Université, Marseille, France
| | - Radhia Eghozzi
- Département d'Oncologie Médicale, Institut Salah Azaiez, Tunis, Tunisie
| | - Sinda Ayadi
- Département d'Oncologie Médicale, Institut Salah Azaiez, Tunis, Tunisie
| | - Olfa Ben Lamine
- Département d'Oncologie Médicale, Institut Salah Azaiez, Tunis, Tunisie
| | - Mohamed Manai
- Département de Biologie, Unité de Biochimie et Biologie Moléculaire, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunisie
| | - Khaled Rahal
- Département d'Oncologie Médicale, Institut Salah Azaiez, Tunis, Tunisie
| | - Emmanuelle Charafe-Jauffret
- Département de Bio-Pathologie, Institut Paoli-Calmettes, Marseille, France.,UFR de Médecine, Aix Marseille Université, Marseille, France
| | | | - Patrice Viens
- UFR de Médecine, Aix Marseille Université, Marseille, France.,Département d'Oncologie Médicale, Institut Paoli-Calmettes, Marseille, France
| | - Daniel Birnbaum
- Département d'Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, Aix Marseille Université, Marseille, France
| | - Hamouda Boussen
- Département de Biologie, Unité de Biochimie et Biologie Moléculaire, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunisie.,Service d'Oncologie Médicale, Hôpital l'Ariana, Tunis, Tunisie
| | - Max Chaffanet
- Département d'Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, Aix Marseille Université, Marseille, France
| | - François Bertucci
- Département d'Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, Aix Marseille Université, Marseille, France.,UFR de Médecine, Aix Marseille Université, Marseille, France.,Département d'Oncologie Médicale, Institut Paoli-Calmettes, Marseille, France
| |
Collapse
|
23
|
Gonçalves A, Bertucci F, Guille A, Garnier S, Adelaide J, Carbuccia N, Cabaud O, Finetti P, Brunelle S, Piana G, Tomassin-Piana J, Paciencia M, Lambaudie E, Popovici C, Sabatier R, Tarpin C, Provansal M, Extra JM, Eisinger F, Sobol H, Viens P, Lopez M, Ginestier C, Charafe-Jauffret E, Chaffanet M, Birnbaum D. Targeted NGS, array-CGH, and patient-derived tumor xenografts for precision medicine in advanced breast cancer: a single-center prospective study. Oncotarget 2018; 7:79428-79441. [PMID: 27765906 PMCID: PMC5346725 DOI: 10.18632/oncotarget.12714] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 09/29/2016] [Indexed: 12/30/2022] Open
Abstract
Background Routine feasibility and clinical impact of genomics-based tumor profiling in advanced breast cancer (aBC) remains to be determined. We conducted a pilot study to evaluate whether precision medicine could be prospectively implemented for aBC patients in a single center and to examine whether patient-derived tumor xenografts (PDX) could be obtained in this population. Results Thirty-four aBC patients were included. Actionable targets were found in 28 patients (82%). A targeted therapy could be proposed to 22 patients (64%), either through a clinical trial (n=15) and/or using already registered drugs (n=21). Ten patients (29%) eventually received targeted treatment, 2 of them deriving clinical benefit. Of 22 patients subjected to mouse implantation, 10 had successful xenografting (45%), mostly in triple-negative aBC. Methods aBC patients accessible to tumor biopsy were prospectively enrolled at the Institut Paoli-Calmettes in the BC-BIO study (ClinicalTrials.gov, NCT01521676). Genomic profiling was established by whole-genome array comparative genomic hybridization (aCGH) and targeted next-generation sequencing (NGS) of 365 candidate cancer genes. For a subset of patients, a sample of fresh tumor was orthotopically implanted in humanized cleared fat pads of NSG mice for establishing PDX. Conclusions Precision medicine can be implemented in a single center in the context of clinical practice and may allow genomic-driven treatment in approximately 30% of aBC patients. PDX may be obtained in a significant fraction of cases.
Collapse
Affiliation(s)
- Anthony Gonçalves
- Department of Medical Oncology, Institut Paoli-Calmettes, Marseille, France.,Aix Marseille Univ, CNRS U7258, INSERM U1068, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - François Bertucci
- Department of Medical Oncology, Institut Paoli-Calmettes, Marseille, France.,Aix Marseille Univ, CNRS U7258, INSERM U1068, Institut Paoli-Calmettes, CRCM, Marseille, France.,Department of Molecular Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Arnaud Guille
- Aix Marseille Univ, CNRS U7258, INSERM U1068, Institut Paoli-Calmettes, CRCM, Marseille, France.,Department of Molecular Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Severine Garnier
- Aix Marseille Univ, CNRS U7258, INSERM U1068, Institut Paoli-Calmettes, CRCM, Marseille, France.,Department of Molecular Oncology, Institut Paoli-Calmettes, Marseille, France
| | - José Adelaide
- Aix Marseille Univ, CNRS U7258, INSERM U1068, Institut Paoli-Calmettes, CRCM, Marseille, France.,Department of Molecular Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Nadine Carbuccia
- Aix Marseille Univ, CNRS U7258, INSERM U1068, Institut Paoli-Calmettes, CRCM, Marseille, France.,Department of Molecular Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Oliver Cabaud
- Aix Marseille Univ, CNRS U7258, INSERM U1068, Institut Paoli-Calmettes, CRCM, Marseille, France.,Department of Molecular Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Pascal Finetti
- Aix Marseille Univ, CNRS U7258, INSERM U1068, Institut Paoli-Calmettes, CRCM, Marseille, France.,Department of Molecular Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Serge Brunelle
- Department of Imaging, Institut Paoli-Calmettes, Marseille, France
| | - Gilles Piana
- Department of Imaging, Institut Paoli-Calmettes, Marseille, France
| | | | - Maria Paciencia
- Department of Biopathology, Institut Paoli-Calmettes, Marseille, France
| | - Eric Lambaudie
- Department of Surgical Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Cornel Popovici
- Aix Marseille Univ, CNRS U7258, INSERM U1068, Institut Paoli-Calmettes, CRCM, Marseille, France.,Department of Oncogenetics, Institut Paoli-Calmettes, Marseille, France
| | - Renaud Sabatier
- Department of Medical Oncology, Institut Paoli-Calmettes, Marseille, France.,Aix Marseille Univ, CNRS U7258, INSERM U1068, Institut Paoli-Calmettes, CRCM, Marseille, France.,Department of Molecular Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Carole Tarpin
- Department of Medical Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Magali Provansal
- Department of Medical Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Jean-Marc Extra
- Department of Medical Oncology, Institut Paoli-Calmettes, Marseille, France
| | - François Eisinger
- Aix Marseille Univ, CNRS U7258, INSERM U1068, Institut Paoli-Calmettes, CRCM, Marseille, France.,Department of Oncogenetics, Institut Paoli-Calmettes, Marseille, France
| | - Hagay Sobol
- Aix Marseille Univ, CNRS U7258, INSERM U1068, Institut Paoli-Calmettes, CRCM, Marseille, France.,Department of Oncogenetics, Institut Paoli-Calmettes, Marseille, France
| | - Patrice Viens
- Department of Medical Oncology, Institut Paoli-Calmettes, Marseille, France.,Aix Marseille Univ, CNRS U7258, INSERM U1068, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Marc Lopez
- Aix Marseille Univ, CNRS U7258, INSERM U1068, Institut Paoli-Calmettes, CRCM, Marseille, France.,Department of Molecular Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Christophe Ginestier
- Aix Marseille Univ, CNRS U7258, INSERM U1068, Institut Paoli-Calmettes, CRCM, Marseille, France.,Department of Molecular Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Emmanuelle Charafe-Jauffret
- Aix Marseille Univ, CNRS U7258, INSERM U1068, Institut Paoli-Calmettes, CRCM, Marseille, France.,Department of Molecular Oncology, Institut Paoli-Calmettes, Marseille, France.,Department of Biopathology, Institut Paoli-Calmettes, Marseille, France
| | - Max Chaffanet
- Aix Marseille Univ, CNRS U7258, INSERM U1068, Institut Paoli-Calmettes, CRCM, Marseille, France.,Department of Molecular Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Daniel Birnbaum
- Aix Marseille Univ, CNRS U7258, INSERM U1068, Institut Paoli-Calmettes, CRCM, Marseille, France.,Department of Molecular Oncology, Institut Paoli-Calmettes, Marseille, France
| |
Collapse
|
24
|
Comparative genomic analysis of primary tumors and metastases in breast cancer. Oncotarget 2017; 7:27208-19. [PMID: 27028851 PMCID: PMC5053643 DOI: 10.18632/oncotarget.8349] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/14/2016] [Indexed: 12/20/2022] Open
Abstract
Personalized medicine uses genomic information for selecting therapy in patients with metastatic cancer. An issue is the optimal tissue source (primary tumor or metastasis) for testing. We compared the DNA copy number and mutational profiles of primary breast cancers and paired metastases from 23 patients using whole-genome array-comparative genomic hybridization and next-generation sequencing of 365 “cancer-associated” genes. Primary tumors and metastases harbored copy number alterations (CNAs) and mutations common in breast cancer and showed concordant profiles. The global concordance regarding CNAs was shown by clustering and correlation matrix, which showed that each metastasis correlated more strongly with its paired tumor than with other samples. Genes with recurrent amplifications in breast cancer showed 100% (ERBB2, FGFR1), 96% (CCND1), and 88% (MYC) concordance for the amplified/non-amplified status. Among all samples, 499 mutations were identified, including 39 recurrent (AKT1, ERBB2, PIK3CA, TP53) and 460 non-recurrent variants. The tumors/metastases concordance of variants was 75%, higher for recurrent (92%) than for non-recurrent (73%) variants. Further mutational discordance came from very different variant allele frequencies for some variants. We showed that the chosen targeted therapy in two clinical trials of personalized medicine would be concordant in all but one patient (96%) when based on the molecular profiling of tumor and paired metastasis. Our results suggest that the genotyping of primary tumor may be acceptable to guide systemic treatment if the metastatic sample is not obtainable. However, given the rare but potentially relevant divergences for some actionable driver genes, the profiling of metastatic sample is recommended.
Collapse
|
25
|
Kairov U, Cantini L, Greco A, Molkenov A, Czerwinska U, Barillot E, Zinovyev A. Determining the optimal number of independent components for reproducible transcriptomic data analysis. BMC Genomics 2017; 18:712. [PMID: 28893186 PMCID: PMC5594474 DOI: 10.1186/s12864-017-4112-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 09/04/2017] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Independent Component Analysis (ICA) is a method that models gene expression data as an action of a set of statistically independent hidden factors. The output of ICA depends on a fundamental parameter: the number of components (factors) to compute. The optimal choice of this parameter, related to determining the effective data dimension, remains an open question in the application of blind source separation techniques to transcriptomic data. RESULTS Here we address the question of optimizing the number of statistically independent components in the analysis of transcriptomic data for reproducibility of the components in multiple runs of ICA (within the same or within varying effective dimensions) and in multiple independent datasets. To this end, we introduce ranking of independent components based on their stability in multiple ICA computation runs and define a distinguished number of components (Most Stable Transcriptome Dimension, MSTD) corresponding to the point of the qualitative change of the stability profile. Based on a large body of data, we demonstrate that a sufficient number of dimensions is required for biological interpretability of the ICA decomposition and that the most stable components with ranks below MSTD have more chances to be reproduced in independent studies compared to the less stable ones. At the same time, we show that a transcriptomics dataset can be reduced to a relatively high number of dimensions without losing the interpretability of ICA, even though higher dimensions give rise to components driven by small gene sets. CONCLUSIONS We suggest a protocol of ICA application to transcriptomics data with a possibility of prioritizing components with respect to their reproducibility that strengthens the biological interpretation. Computing too few components (much less than MSTD) is not optimal for interpretability of the results. The components ranked within MSTD range have more chances to be reproduced in independent studies.
Collapse
Affiliation(s)
- Ulykbek Kairov
- Laboratory of bioinformatics and computational systems biology, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Laura Cantini
- Institut Curie, PSL Research University, INSERM U900, Mines ParisTech, Paris, France
| | - Alessandro Greco
- Institut Curie, PSL Research University, INSERM U900, Mines ParisTech, Paris, France
| | - Askhat Molkenov
- Laboratory of bioinformatics and computational systems biology, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Urszula Czerwinska
- Institut Curie, PSL Research University, INSERM U900, Mines ParisTech, Paris, France
| | - Emmanuel Barillot
- Institut Curie, PSL Research University, INSERM U900, Mines ParisTech, Paris, France
| | - Andrei Zinovyev
- Institut Curie, PSL Research University, INSERM U900, Mines ParisTech, Paris, France
| |
Collapse
|
26
|
Costa R, Santa-Maria CA, Rossi G, Carneiro BA, Chae YK, Gradishar WJ, Giles FJ, Cristofanilli M. Developmental therapeutics for inflammatory breast cancer: Biology and translational directions. Oncotarget 2017; 8:12417-12432. [PMID: 27926493 PMCID: PMC5355355 DOI: 10.18632/oncotarget.13778] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/07/2016] [Indexed: 12/16/2022] Open
Abstract
Inflammatory breast cancer (IBC) is a rare and aggressive form of breast cancer, which accounts for approximately 3% of cases of breast malignancies. Diagnosis relies largely on its clinical presentation, and despite a characteristic phenotype, underlying molecular mechanisms are poorly understood. Unique clinical presentation indicates that IBC is a distinct clinical and biological entity when compared to non-IBC. Biological understanding of non-IBC has been extrapolated into IBC and targeted therapies for HER2 positive (HER2+) and hormonal receptor positive non-IBC led to improved patient outcomes in the recent years. This manuscript reviews recent discoveries related to the underlying biology of IBC, clinical progress to date and suggests rational approaches for investigational therapies.
Collapse
Affiliation(s)
- Ricardo Costa
- Developmental Therapeutics Program, Division of Hematology/Oncology, Feinberg School of Medicine, Chicago, United States of America
| | - Cesar A Santa-Maria
- Developmental Therapeutics Program, Division of Hematology/Oncology, Feinberg School of Medicine, Chicago, United States of America.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, United States of America
| | - Giovanna Rossi
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, United States of America
| | - Benedito A Carneiro
- Developmental Therapeutics Program, Division of Hematology/Oncology, Feinberg School of Medicine, Chicago, United States of America.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, United States of America
| | - Young Kwang Chae
- Developmental Therapeutics Program, Division of Hematology/Oncology, Feinberg School of Medicine, Chicago, United States of America.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, United States of America
| | - William J Gradishar
- Developmental Therapeutics Program, Division of Hematology/Oncology, Feinberg School of Medicine, Chicago, United States of America.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, United States of America
| | - Francis J Giles
- Developmental Therapeutics Program, Division of Hematology/Oncology, Feinberg School of Medicine, Chicago, United States of America.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, United States of America
| | - Massimo Cristofanilli
- Developmental Therapeutics Program, Division of Hematology/Oncology, Feinberg School of Medicine, Chicago, United States of America.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, United States of America
| |
Collapse
|
27
|
Stecklein SR, Reddy JP, Wolfe AR, Lopez MS, Fouad TM, Debeb BG, Ueno NT, Brewster AM, Woodward WA. Lack of Breastfeeding History in Parous Women with Inflammatory Breast Cancer Predicts Poor Disease-Free Survival. J Cancer 2017; 8:1726-1732. [PMID: 28819368 PMCID: PMC5556634 DOI: 10.7150/jca.20095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/09/2017] [Indexed: 12/13/2022] Open
Abstract
Purpose: Breastfeeding alters the breast microenvironment, and several lines of evidence suggest the breast microenvironment contributes to the clinical phenotype of inflammatory breast cancer. We investigated breastfeeding history as a modifier of locoregional recurrence (LRR), distant metastasis (DM), disease-free survival (DFS), and overall survival (OS) in parous women with inflammatory breast cancer. Methods: Parous women with inflammatory breast cancer were identified from a prospective registry at The University of Texas MD Anderson Cancer Center. We compared patient and tumor characteristics, LRR, DM, DFS, and OS patients with (BF+) and without (BF-) a history of breastfeeding. Results: Eighty-two patients were included. At a median follow-up of 50 months, BF+ patients had significantly lower risk of LRR (9.0% vs. 23.6%; p=0.01), a lower risk of DM (26.8% vs. 53.8%; p=0.008), and better DFS (73.1% vs. 48.1%; p=0.006) than BF- patients. On multivariate analysis, BF+ history was associated with significantly lower risk of DM (hazard ratio 0.38, 95% confidence interval 0.15-0.97; p=0.04) and better DFS (hazard ratio 0.37, 95% confidence interval 0.15-0.93; p=0.04) after adjusting for established predictive and prognostic variables. The prognostic significance of breastfeeding may be most pronounced in women with triple-negative IBC. Conclusion: A lack of breastfeeding history in parous women with inflammatory breast cancer may predict worse prognosis. We speculate that breastfeeding-induced alterations in the breast microenvironment may alter the aggressiveness of inflammatory breast cancer.
Collapse
Affiliation(s)
| | | | | | | | - Tamer M Fouad
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America.,Department of Medical Oncology, National Cancer Institute, Cairo University, Cairo, Egypt
| | | | - Naoto T Ueno
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America.,Morgan Welch Inflammatory Breast Cancer Research Program and Clinic
| | - Abenaa M Brewster
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America.,Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Wendy A Woodward
- Department of Radiation Oncology.,Morgan Welch Inflammatory Breast Cancer Research Program and Clinic
| |
Collapse
|
28
|
Woodward WA. Inflammatory breast cancer: unique biological and therapeutic considerations. Lancet Oncol 2016; 16:e568-e576. [PMID: 26545845 DOI: 10.1016/s1470-2045(15)00146-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 06/29/2015] [Accepted: 07/06/2015] [Indexed: 12/29/2022]
Abstract
Through the concerted efforts of many patients, health-care providers, legislators, and other supporters, the past decade has seen the development of the first clinics dedicated to the care of patients with inflammatory breast cancer in the USA and other countries. Together with social networking, advocacy, and education, a few specialised centres have had substantial increases in patient numbers (in some cases ten times higher), which has further expanded the community of science and advocacy and increased the understanding of the disease process. Although inflammatory breast cancer is considered rare, constituting only 2-4% of breast cancer cases, poor prognosis means that patients with the disease account for roughly 10% of breast cancer mortality annually in the USA. I propose that the unique presentation of inflammatory breast cancer might require specific, identifiable changes in the breast parenchyma that occur before the tumour-initiating event. This would make the breast tissue itself a tumour-promoting medium that should be treated as a component of the pathology in multidisciplinary treatment and should be further studied for complementary targets to inhibit the pathobiology that is specific to inflammatory breast cancer.
Collapse
Affiliation(s)
- Wendy A Woodward
- Department of Radiation Oncology and MD Anderson Morgan Welch Inflammatory Breast Cancer Clinic and Research Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
29
|
Gao X. Penalized weighted low-rank approximation for robust recovery of recurrent copy number variations. BMC Bioinformatics 2015; 16:407. [PMID: 26652207 PMCID: PMC4676147 DOI: 10.1186/s12859-015-0835-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/23/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Copy number variation (CNV) analysis has become one of the most important research areas for understanding complex disease. With increasing resolution of array-based comparative genomic hybridization (aCGH) arrays, more and more raw copy number data are collected for multiple arrays. It is natural to realize the co-existence of both recurrent and individual-specific CNVs, together with the possible data contamination during the data generation process. Therefore, there is a great need for an efficient and robust statistical model for simultaneous recovery of both recurrent and individual-specific CNVs. RESULT We develop a penalized weighted low-rank approximation method (WPLA) for robust recovery of recurrent CNVs. In particular, we formulate multiple aCGH arrays into a realization of a hidden low-rank matrix with some random noises and let an additional weight matrix account for those individual-specific effects. Thus, we do not restrict the random noise to be normally distributed, or even homogeneous. We show its performance through three real datasets and twelve synthetic datasets from different types of recurrent CNV regions associated with either normal random errors or heavily contaminated errors. CONCLUSION Our numerical experiments have demonstrated that the WPLA can successfully recover the recurrent CNV patterns from raw data under different scenarios. Compared with two other recent methods, it performs the best regarding its ability to simultaneously detect both recurrent and individual-specific CNVs under normal random errors. More importantly, the WPLA is the only method which can effectively recover the recurrent CNVs region when the data is heavily contaminated.
Collapse
Affiliation(s)
- Xiaoli Gao
- Department of Mathematics and Statistics, University of North Carolina at Greensboro, 1400 Spring Garden St, Greensoboro, NC, USA.
| |
Collapse
|
30
|
Putcha P, Yu J, Rodriguez-Barrueco R, Saucedo-Cuevas L, Villagrasa P, Murga-Penas E, Quayle SN, Yang M, Castro V, Llobet-Navas D, Birnbaum D, Finetti P, Woodward WA, Bertucci F, Alpaugh ML, Califano A, Silva J. HDAC6 activity is a non-oncogene addiction hub for inflammatory breast cancers. Breast Cancer Res 2015; 17:149. [PMID: 26643555 PMCID: PMC4672555 DOI: 10.1186/s13058-015-0658-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/25/2015] [Indexed: 01/13/2023] Open
Abstract
INTRODUCTION Inflammatory breast cancer (IBC) is the most lethal form of breast cancers with a 5-year survival rate of only 40 %. Despite its lethality, IBC remains poorly understood which has greatly limited its therapeutic management. We thus decided to utilize an integrative functional genomic strategy to identify the Achilles' heel of IBC cells. METHODS We have pioneered the development of genetic tools as well as experimental and analytical strategies to perform RNAi-based loss-of-function studies at a genome-wide level. Importantly, we and others have demonstrated that these functional screens are able to identify essential functions linked to certain cancer phenotypes. Thus, we decided to use this approach to identify IBC specific sensitivities. RESULTS We identified and validated HDAC6 as a functionally necessary gene to maintain IBC cell viability, while being non-essential for other breast cancer subtypes. Importantly, small molecule inhibitors for HDAC6 already exist and are in clinical trials for other tumor types. We thus demonstrated that Ricolinostat (ACY1215), a leading HDAC6 inhibitor, efficiently controls IBC cell proliferation both in vitro and in vivo. Critically, functional HDAC6 dependency is not associated with genomic alterations at its locus and thus represents a non-oncogene addiction. Despite HDAC6 not being overexpressed, we found that its activity is significantly higher in IBC compared to non-IBC cells, suggesting a possible rationale supporting the observed dependency. CONCLUSION Our finding that IBC cells are sensitive to HDAC6 inhibition provides a foundation to rapidly develop novel, efficient, and well-tolerated targeted therapy strategies for IBC patients.
Collapse
Affiliation(s)
- Preeti Putcha
- Herbert Irving Comprehensive Cancer Center, Columbia University, 1130 St. Nicholas Avenue, New York, NY, 10032, USA
| | - Jiyang Yu
- Department of Biomedical Informatics, Department of Systems Biology, Center for Computational Biology and Bioinformatics, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, 10032, USA
| | - Ruth Rodriguez-Barrueco
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-6574, USA.,Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Laura Saucedo-Cuevas
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-6574, USA
| | - Patricia Villagrasa
- Department of Pathology, Columbia University Medical Center, 630 West 168th Street, New York, NY, 10032, USA
| | - Eva Murga-Penas
- Department of Pathology, Columbia University Medical Center, 630 West 168th Street, New York, NY, 10032, USA
| | - Steven N Quayle
- Acetylon Pharmaceuticals, Inc., 70 Fargo St, Suite 205, Boston, MA, 02210, USA
| | - Min Yang
- Acetylon Pharmaceuticals, Inc., 70 Fargo St, Suite 205, Boston, MA, 02210, USA
| | - Veronica Castro
- Department of Pathology, Columbia University Medical Center, 630 West 168th Street, New York, NY, 10032, USA
| | - David Llobet-Navas
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-6574, USA
| | - Daniel Birnbaum
- Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Aix-Marseille Université, Marseille, France
| | - Pascal Finetti
- Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Aix-Marseille Université, Marseille, France
| | - Wendy A Woodward
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - François Bertucci
- Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Aix-Marseille Université, Marseille, France
| | - Mary L Alpaugh
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Andrea Califano
- Department of Biomedical Informatics, Department of Systems Biology, Center for Computational Biology and Bioinformatics, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, 10032, USA. .,Department of Biochemistry and Molecular Biophysics, Institute for Cancer Genetics, Columbia University, New York, NY, 10032, USA. .,Herbert Irving Comprehensive Cancer Center, Columbia University, 1130 St. Nicholas Avenue, New York, NY, 10032, USA.
| | - Jose Silva
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-6574, USA.
| |
Collapse
|
31
|
Investigating inter-chromosomal regulatory relationships through a comprehensive meta-analysis of matched copy number and transcriptomics data sets. BMC Genomics 2015; 16:967. [PMID: 26581858 PMCID: PMC4650296 DOI: 10.1186/s12864-015-2100-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 10/15/2015] [Indexed: 12/16/2022] Open
Abstract
Background Gene regulatory relationships can be inferred using matched array comparative genomics and transcriptomics data sets from cancer samples. The way in which copy numbers of genes in cancer samples are often greatly disrupted works like a natural gene amplification/deletion experiment. There are now a large number of such data sets publicly available making a meta-analysis of the data possible. Results We infer inter-chromosomal acting gene regulatory relationships from a meta-analysis of 31 publicly available matched array comparative genomics and transcriptomics data sets in humans. We obtained statistically significant predictions of target genes for 1430 potential regulatory genes. The regulatory relationships being inferred are either direct relationships, of a transcription factor on its target, or indirect ones, through pathways containing intermediate steps. We analyse the predictions in terms of cocitations, both publications which cite a regulator with any of its inferred targets and cocitations of any genes in a target list. Conclusions The most striking observation from the results is the greater number of inter-chromosomal regulatory relationships involving repression compared to those involving activation. The complete results of the meta-analysis are presented in the database METAMATCHED. We anticipate that the predictions contained in the database will be useful in informing experiments and in helping to construct networks of regulatory relationships. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2100-5) contains supplementary material, which is available to authorized users.
Collapse
|
32
|
Shen Y, Wang Z, Loo LWM, Ni Y, Jia W, Fei P, Risch HA, Katsaros D, Yu H. LINC00472 expression is regulated by promoter methylation and associated with disease-free survival in patients with grade 2 breast cancer. Breast Cancer Res Treat 2015; 154:473-82. [PMID: 26564482 DOI: 10.1007/s10549-015-3632-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 11/03/2015] [Indexed: 01/06/2023]
Abstract
Long non-coding RNAs (lncRNAs) are a class of newly recognized DNA transcripts that have diverse biological activities. Dysregulation of lncRNAs may be involved in many pathogenic processes including cancer. Recently, we found an intergenic lncRNA, LINC00472, whose expression was correlated with breast cancer progression and patient survival. Our findings were consistent across multiple clinical datasets and supported by results from in vitro experiments. To evaluate further the role of LINC00472 in breast cancer, we used various online databases to investigate possible mechanisms that might affect LINC00472 expression in breast cancer. We also analyzed associations of LINC00472 with estrogen receptor, tumor grade, and molecular subtypes in additional online datasets generated by microarray platforms different from the one we investigated previously. We found that LINC00472 expression in breast cancer was regulated more possibly by promoter methylation than by the alteration of gene copy number. Analysis of additional datasets confirmed our previous findings of high expression of LINC00472 associated with ER-positive and low-grade tumors and favorable molecular subtypes. Finally, in nine datasets, we examined the association of LINC00472 expression with disease-free survival in patients with grade 2 tumors. Meta-analysis of the datasets showed that LINC00472 expression in breast tumors predicted the recurrence of breast cancer in patients with grade 2 tumors. In summary, our analyses confirm that LINC00472 is functionally a tumor suppressor, and that assessing its expression in breast tumors may have clinical implications in breast cancer management.
Collapse
Affiliation(s)
- Yi Shen
- Cancer Epidemiology Program, University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI, 96813, USA
| | - Zhanwei Wang
- Cancer Epidemiology Program, University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI, 96813, USA
| | - Lenora W M Loo
- Cancer Epidemiology Program, University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI, 96813, USA
| | - Yan Ni
- Cancer Epidemiology Program, University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI, 96813, USA
| | - Wei Jia
- Cancer Epidemiology Program, University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI, 96813, USA
| | - Peiwen Fei
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Harvey A Risch
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | | | - Herbert Yu
- Cancer Epidemiology Program, University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI, 96813, USA.
| |
Collapse
|
33
|
Remo A, Simeone I, Pancione M, Parcesepe P, Finetti P, Cerulo L, Bensmail H, Birnbaum D, Van Laere SJ, Colantuoni V, Bonetti F, Bertucci F, Manfrin E, Ceccarelli M. Systems biology analysis reveals NFAT5 as a novel biomarker and master regulator of inflammatory breast cancer. J Transl Med 2015; 13:138. [PMID: 25928084 PMCID: PMC4438533 DOI: 10.1186/s12967-015-0492-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 04/14/2015] [Indexed: 01/30/2023] Open
Abstract
Background Inflammatory breast cancer (IBC) is the most rare and aggressive variant of breast cancer (BC); however, only a limited number of specific gene signatures with low generalization abilities are available and few reliable biomarkers are helpful to improve IBC classification into a molecularly distinct phenotype. We applied a network-based strategy to gain insight into master regulators (MRs) linked to IBC pathogenesis. Methods In-silico modeling and Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNe) on IBC/non-IBC (nIBC) gene expression data (n = 197) was employed to identify novel master regulators connected to the IBC phenotype. Pathway enrichment analysis was used to characterize predicted targets of candidate genes. The expression pattern of the most significant MRs was then evaluated by immunohistochemistry (IHC) in two independent cohorts of IBCs (n = 39) and nIBCs (n = 82) and normal breast tissues (n = 15) spotted on tissue microarrays. The staining pattern of non-neoplastic mammary epithelial cells was used as a normal control. Results Using in-silico modeling of network-based strategy, we identified three top enriched MRs (NFAT5, CTNNB1 or β-catenin, and MGA) strongly linked to the IBC phenotype. By IHC assays, we found that IBC patients displayed a higher number of NFAT5-positive cases than nIBC (69.2% vs. 19.5%; p-value = 2.79 10-7). Accordingly, the majority of NFAT5-positive IBC samples revealed an aberrant nuclear expression in comparison with nIBC samples (70% vs. 12.5%; p-value = 0.000797). NFAT5 nuclear accumulation occurs regardless of WNT/β-catenin activated signaling in a substantial portion of IBCs, suggesting that NFAT5 pathway activation may have a relevant role in IBC pathogenesis. Accordingly, cytoplasmic NFAT5 and membranous β-catenin expression were preferentially linked to nIBC, accounting for the better prognosis of this phenotype. Conclusions We provide evidence that NFAT-signaling pathway activation could help to identify aggressive forms of BC and potentially be a guide to assignment of phenotype-specific therapeutic agents. The NFAT5 transcription factor might be developed into routine clinical practice as a putative biomarker of IBC phenotype. Electronic supplementary material The online version of this article (doi:10.1186/s12967-015-0492-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrea Remo
- Department of Pathology, Mater Salutis Hospital, Legnago, Italy.
| | - Ines Simeone
- Department of Science and Technology, University of Sannio, Benevento, Italy. .,Qatar Computing Research Institute (QCRI), Qatar Foundation, Doha, Qatar.
| | - Massimo Pancione
- Department of Science and Technology, University of Sannio, Benevento, Italy.
| | - Pietro Parcesepe
- Department of Pathology and Diagnosis, University of Verona, Verona, Italy.
| | - Pascal Finetti
- Department of Molecular Oncology, Institut Paoli-Calmettes, U1068 Inserm, Marseille, France.
| | - Luigi Cerulo
- Department of Science and Technology, University of Sannio, Benevento, Italy. .,Bioinformatics Laboratory, BIOGEM, Ariano Irpino, Avellino, Italy.
| | - Halima Bensmail
- Qatar Computing Research Institute (QCRI), Qatar Foundation, Doha, Qatar.
| | - Daniel Birnbaum
- Department of Molecular Oncology, Institut Paoli-Calmettes, U1068 Inserm, Marseille, France.
| | | | - Vittorio Colantuoni
- Department of Science and Technology, University of Sannio, Benevento, Italy.
| | - Franco Bonetti
- Department of Pathology and Diagnosis, University of Verona, Verona, Italy.
| | - François Bertucci
- Department of Molecular Oncology, Institut Paoli-Calmettes, U1068 Inserm, Marseille, France.
| | - Erminia Manfrin
- Department of Pathology and Diagnosis, University of Verona, Verona, Italy.
| | - Michele Ceccarelli
- Department of Science and Technology, University of Sannio, Benevento, Italy. .,Qatar Computing Research Institute (QCRI), Qatar Foundation, Doha, Qatar.
| |
Collapse
|
34
|
Jansen MPHM, Sas L, Sieuwerts AM, Van Cauwenberghe C, Ramirez-Ardila D, Look M, Ruigrok-Ritstier K, Finetti P, Bertucci F, Timmermans MM, van Deurzen CHM, Martens JWM, Simon I, Roepman P, Linn SC, van Dam P, Kok M, Lardon F, Vermeulen PB, Foekens JA, Dirix L, Berns EMJJ, Van Laere S. Decreased expression of ABAT and STC2 hallmarks ER-positive inflammatory breast cancer and endocrine therapy resistance in advanced disease. Mol Oncol 2015; 9:1218-33. [PMID: 25771305 DOI: 10.1016/j.molonc.2015.02.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 02/12/2015] [Accepted: 02/13/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Patients with Estrogen Receptor α-positive (ER+) Inflammatory Breast Cancer (IBC) are less responsive to endocrine therapy compared with ER+ non-IBC (nIBC) patients. The study of ER+ IBC samples might reveal biomarkers for endocrine resistant breast cancer. MATERIALS & METHODS Gene expression profiles of ER+ samples from 201 patients were explored for genes that discriminated between IBC and nIBC. Classifier genes were applied onto clinically annotated expression data from 947 patients with ER+ breast cancer and validated with RT-qPCR for 231 patients treated with first-line tamoxifen. Relationships with metastasis-free survival (MFS) and progression-free survival (PFS) following adjuvant and first-line endocrine treatment, respectively, were investigated using Cox regression analysis. RESULTS A metagene of six genes including the genes encoding for 4-aminobutyrate aminotransferase (ABAT) and Stanniocalcin-2 (STC2) were identified to distinguish 22 ER+ IBC from 43 ER+ nIBC patients and remained discriminatory in an independent series of 136 patients. The metagene and two genes were not prognostic in 517 (neo)adjuvant untreated lymph node-negative ER+ nIBC breast cancer patients. Only ABAT was related to outcome in 250 patients treated with adjuvant tamoxifen. Three independent series of in total 411 patients with advanced disease showed increased metagene scores and decreased expression of ABAT and STC2 to be correlated with poor first-line endocrine therapy outcome. The biomarkers remained predictive for first-line tamoxifen treatment outcome in multivariate analysis including traditional factors or published signatures. In an exploratory analysis, ABAT and STC2 protein expression levels had no relation with PFS after first-line tamoxifen. CONCLUSIONS This study utilized ER+ IBC to identify a metagene including ABAT and STC2 as predictive biomarkers for endocrine therapy resistance.
Collapse
Affiliation(s)
- Maurice P H M Jansen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center Rotterdam, Wytemaweg 80, 3000 CA Rotterdam, The Netherlands.
| | - Leen Sas
- Translational Cancer Research Unit, GZA Hospitals St-Augustinus, Oosterveldlaan 24, Antwerp B2610, Belgium; Department of Medical Oncology, University Hospital Antwerp, Wilrijkstraat 10, B2650 Antwerp, Belgium
| | - Anieta M Sieuwerts
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center Rotterdam, Wytemaweg 80, 3000 CA Rotterdam, The Netherlands
| | - Caroline Van Cauwenberghe
- Neurodegenerative Brain Diseases Group, Department of Molecular Genetics, VIB, Antwerp, Belgium; Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Diana Ramirez-Ardila
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center Rotterdam, Wytemaweg 80, 3000 CA Rotterdam, The Netherlands
| | - Maxime Look
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center Rotterdam, Wytemaweg 80, 3000 CA Rotterdam, The Netherlands
| | - Kirsten Ruigrok-Ritstier
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center Rotterdam, Wytemaweg 80, 3000 CA Rotterdam, The Netherlands
| | - Pascal Finetti
- Marseille Cancer Research Center (CRCM), UMR891 Inserm, Institut Paoli-Calmettes (IPC), Department of Molecular Oncology, Marseille, France
| | - François Bertucci
- Marseille Cancer Research Center (CRCM), UMR891 Inserm, Institut Paoli-Calmettes (IPC), Department of Molecular Oncology, Marseille, France
| | - Mieke M Timmermans
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center Rotterdam, Wytemaweg 80, 3000 CA Rotterdam, The Netherlands
| | - Carolien H M van Deurzen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center Rotterdam, Wytemaweg 80, 3000 CA Rotterdam, The Netherlands
| | - John W M Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center Rotterdam, Wytemaweg 80, 3000 CA Rotterdam, The Netherlands
| | - Iris Simon
- Research and Development, Agendia BV, Amsterdam, The Netherlands
| | - Paul Roepman
- Research and Development, Agendia BV, Amsterdam, The Netherlands
| | - Sabine C Linn
- The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Peter van Dam
- Translational Cancer Research Unit, GZA Hospitals St-Augustinus, Oosterveldlaan 24, Antwerp B2610, Belgium
| | - Marleen Kok
- The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Filip Lardon
- Department of Medical Oncology, University Hospital Antwerp, Wilrijkstraat 10, B2650 Antwerp, Belgium
| | - Peter B Vermeulen
- Translational Cancer Research Unit, GZA Hospitals St-Augustinus, Oosterveldlaan 24, Antwerp B2610, Belgium
| | - John A Foekens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center Rotterdam, Wytemaweg 80, 3000 CA Rotterdam, The Netherlands
| | - Luc Dirix
- Translational Cancer Research Unit, GZA Hospitals St-Augustinus, Oosterveldlaan 24, Antwerp B2610, Belgium
| | - Els M J J Berns
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center Rotterdam, Wytemaweg 80, 3000 CA Rotterdam, The Netherlands
| | - Steven Van Laere
- Translational Cancer Research Unit, GZA Hospitals St-Augustinus, Oosterveldlaan 24, Antwerp B2610, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium
| |
Collapse
|
35
|
Systems biology analysis of gene expression data and gene network reverse-engineering approaches reveal NFAT5 as a candidate biomarker in Inflammatory Breast Cancer. J Immunother Cancer 2015. [PMCID: PMC4547160 DOI: 10.1186/2051-1426-3-s1-p6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
36
|
Hamdi K, Goerlitz D, Stambouli N, Islam M, Baroudi O, Neili B, Benayed F, Chivi S, Loffredo C, Jillson IA, Benammar Elgaaied A, Blancato JK, Marrakchi R. miRNAs in Sera of Tunisian patients discriminate between inflammatory breast cancer and non-inflammatory breast cancer. SPRINGERPLUS 2014; 3:636. [PMID: 26034677 PMCID: PMC4447743 DOI: 10.1186/2193-1801-3-636] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 09/15/2014] [Indexed: 01/04/2023]
Abstract
In recent years, circulating miRNAs have attracted interest as stable, non-invasive biomarkers for various pathological conditions. Here, we investigated their potential to serve as minimally invasive, early detection markers for inflammatory breast cancer (IBC) and non-inflammatory breast cancer (non-IBC) in serum. miRNA profiling was performed on serum from 20 patients with non-IBC, 20 with IBC, and 20 normal control subjects. Real-time reverse transcription-polymerase chain reaction (qRT-PCR) was applied to measure the level of 12 candidate miRNAs previously identified in other research(miR-342-5p, miR-342--3p, miR-320, miR-30b, miR-29a, miR-24, miR-15a, miR-548d-5p, miR-486-3p, miR-451, miR-337-5p, miR-335).We found that 4 miRNAs (miR-24, miR-342-3p, miR-337-5p and miR-451) were differentially expressed in serum of IBC patients compared to non-IBC, and 3 miRNAs (miR-337-5p ,miR-451and miR-30b) were differentially expressed in IBC and non-IBC patients combined compared to healthy controls. miR-24, miR-342-3p, miR-337-5p and miR-451 were found to be significantly down-regulated in IBC patients compared to non-IBC. Likewise, the expression level of mir-451 showed significant down-regulation in IBC serum, while mir-30b and miR-337-5p were up-regulated in non-IBC serum comparatively to normal controls. Using receiver operational curve (ROC) analysis, we show that dysregulated miRNAs can discriminate patients with IBC and non-IBC from healthy controls with sensitivity ranging from 76 to 81% and specificity from 66 to 80%, for three separate miRNAs. In conclusion, our data suggest that circulating miRNAs are potential biomarkers for classifying IBC and non-IBC, and may also be candidates for early detection of breast cancer.
Collapse
Affiliation(s)
- Khouloud Hamdi
- Laboratory of Genetics, Immunology and Human Pathology, Faculty of Sciences, University of Tunis El Manar, El Mannar I, Tunis, 2092 Tunisia
| | - David Goerlitz
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007 USA
| | - Neila Stambouli
- Laboratory of Genetics, Immunology and Human Pathology, Faculty of Sciences, University of Tunis El Manar, El Mannar I, Tunis, 2092 Tunisia
| | - Mohammed Islam
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007 USA
| | - Olfa Baroudi
- Laboratory of Genetics, Immunology and Human Pathology, Faculty of Sciences, University of Tunis El Manar, El Mannar I, Tunis, 2092 Tunisia
| | - Bilel Neili
- Laboratory of Genetics, Immunology and Human Pathology, Faculty of Sciences, University of Tunis El Manar, El Mannar I, Tunis, 2092 Tunisia
| | - Farhat Benayed
- Department of Medical Oncology, Hannibal International Clinic, Les Berges du Lac 2, Tunis, Tunisia
| | - Simon Chivi
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007 USA
| | - Christopher Loffredo
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007 USA
| | - Irene A Jillson
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007 USA
| | - Amel Benammar Elgaaied
- Laboratory of Genetics, Immunology and Human Pathology, Faculty of Sciences, University of Tunis El Manar, El Mannar I, Tunis, 2092 Tunisia
| | - Jan K Blancato
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007 USA
| | - Raja Marrakchi
- Laboratory of Genetics, Immunology and Human Pathology, Faculty of Sciences, University of Tunis El Manar, El Mannar I, Tunis, 2092 Tunisia
| |
Collapse
|
37
|
Newton R, Wernisch L. A meta-analysis of multiple matched copy number and transcriptomics data sets for inferring gene regulatory relationships. PLoS One 2014; 9:e105522. [PMID: 25148247 PMCID: PMC4141782 DOI: 10.1371/journal.pone.0105522] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 07/21/2014] [Indexed: 12/25/2022] Open
Abstract
Inferring gene regulatory relationships from observational data is challenging. Manipulation and intervention is often required to unravel causal relationships unambiguously. However, gene copy number changes, as they frequently occur in cancer cells, might be considered natural manipulation experiments on gene expression. An increasing number of data sets on matched array comparative genomic hybridisation and transcriptomics experiments from a variety of cancer pathologies are becoming publicly available. Here we explore the potential of a meta-analysis of thirty such data sets. The aim of our analysis was to assess the potential of in silico inference of trans-acting gene regulatory relationships from this type of data. We found sufficient correlation signal in the data to infer gene regulatory relationships, with interesting similarities between data sets. A number of genes had highly correlated copy number and expression changes in many of the data sets and we present predicted potential trans-acted regulatory relationships for each of these genes. The study also investigates to what extent heterogeneity between cell types and between pathologies determines the number of statistically significant predictions available from a meta-analysis of experiments.
Collapse
Affiliation(s)
- Richard Newton
- Biostatistics Unit, Medical Research Council, Cambridge, United Kingdom
- * E-mail:
| | - Lorenz Wernisch
- Biostatistics Unit, Medical Research Council, Cambridge, United Kingdom
| |
Collapse
|
38
|
Shkurnikov MY, Nechaev IN, Khaustova NA, Krainova NA, Savelov NA, Grinevich VN, Saribekyan EK. Expression profile of inflammatory breast cancer. Bull Exp Biol Med 2014; 155:667-72. [PMID: 24288735 DOI: 10.1007/s10517-013-2221-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Inflammatory breast cancer is characterized by high malignancy, early and rapid lymphogenic and hematogenic metastasizing, and high mortality. The diagnosis of this form of cancer is based fully on the clinical criteria. Whole transcriptome analysis of tumor tissue specimens from patients with inflammatory breast cancer detected 137 differentially expressed mRNA (17 genes with low expression and 120 with high expression). Genes involved in the organization of inflammatory process, chemotaxis, and transcription regulation were active in the process of pathogenesis of inflammatory breast cancer.
Collapse
Affiliation(s)
- M Yu Shkurnikov
- Institue of General Pathology and Pathophysiology, the Russian Academy of Medical Sciences; BioClinicum Laboratory; BioClinicum Research and Technological Center, Moscow; Moscow Municipal Oncological Hospital No. 62, Department of Health of Moscow, Moscow Region, Istra; P. A. Hertsen Moscow Cancer Institute, Ministry of Health and Social Development of the Russian Federation, Russia.
| | | | | | | | | | | | | |
Collapse
|
39
|
Bertucci F, Finetti P, Vermeulen P, Van Dam P, Dirix L, Birnbaum D, Viens P, Van Laere S. Genomic profiling of inflammatory breast cancer: a review. Breast 2014; 23:538-45. [PMID: 24998451 DOI: 10.1016/j.breast.2014.06.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 06/02/2014] [Accepted: 06/08/2014] [Indexed: 01/04/2023] Open
Abstract
Inflammatory breast cancer (IBC) is a rare but aggressive form of breast cancer. Despite efforts in the past decade to delineate the molecular biology of IBC by applying high-throughput molecular profiling technologies to clinical samples, IBC remains insufficiently characterized. The reasons for that include limited sizes of the study population, heterogeneity with respect to the composition of the IBC and non-IBC control groups and technological differences across studies. In 2008, the World IBC Consortium was founded to foster collaboration between research groups focusing on IBC. One of the initial projects was to redefine the molecular profile of IBC using an unprecedented number of samples and search for gene signatures associated with survival and response to neo-adjuvant chemotherapy. Here, we provide an overview of all the molecular profiling studies that have been performed on IBC clinical samples to date.
Collapse
Affiliation(s)
- François Bertucci
- Département d'Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes and UMR1068 Inserm, Marseille, France; Département d'Oncologie Médicale, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes and UMR1068 Inserm, Marseille, France; Faculté de Médecine, Université de la Méditerranée, Marseille, France.
| | - Pascal Finetti
- Département d'Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes and UMR1068 Inserm, Marseille, France
| | - Peter Vermeulen
- Translational Cancer Research Unit, GZA Hospitals Sint-Augustinus, Wilrijk, Belgium; Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Peter Van Dam
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Luc Dirix
- Translational Cancer Research Unit, GZA Hospitals Sint-Augustinus, Wilrijk, Belgium; Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Daniel Birnbaum
- Département d'Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes and UMR1068 Inserm, Marseille, France
| | - Patrice Viens
- Département d'Oncologie Médicale, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes and UMR1068 Inserm, Marseille, France; Faculté de Médecine, Université de la Méditerranée, Marseille, France
| | - Steven Van Laere
- Translational Cancer Research Unit, GZA Hospitals Sint-Augustinus, Wilrijk, Belgium; Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
40
|
Zhou X, Liu J, Wan X, Yu W. Piecewise-constant and low-rank approximation for identification of recurrent copy number variations. Bioinformatics 2014; 30:1943-9. [PMID: 24642062 DOI: 10.1093/bioinformatics/btu131] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
MOTIVATION The post-genome era sees urgent need for more novel approaches to extracting useful information from the huge amount of genetic data. The identification of recurrent copy number variations (CNVs) from array-based comparative genomic hybridization (aCGH) data can help understand complex diseases, such as cancer. Most of the previous computational methods focused on single-sample analysis or statistical testing based on the results of single-sample analysis. Finding recurrent CNVs from multi-sample data remains a challenging topic worth further study. RESULTS We present a general and robust method to identify recurrent CNVs from multi-sample aCGH profiles. We express the raw dataset as a matrix and demonstrate that recurrent CNVs will form a low-rank matrix. Hence, we formulate the problem as a matrix recovering problem, where we aim to find a piecewise-constant and low-rank approximation (PLA) to the input matrix. We propose a convex formulation for matrix recovery and an efficient algorithm to globally solve the problem. We demonstrate the advantages of PLA compared with alternative methods using synthesized datasets and two breast cancer datasets. The experimental results show that PLA can successfully reconstruct the recurrent CNV patterns from raw data and achieve better performance compared with alternative methods under a wide range of scenarios. AVAILABILITY AND IMPLEMENTATION The MATLAB code is available at http://bioinformatics.ust.hk/pla.zip.
Collapse
Affiliation(s)
- Xiaowei Zhou
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon and Department of Computer Science and Institute of Theoretical and Computational Study, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Jiming Liu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon and Department of Computer Science and Institute of Theoretical and Computational Study, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Xiang Wan
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon and Department of Computer Science and Institute of Theoretical and Computational Study, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Weichuan Yu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon and Department of Computer Science and Institute of Theoretical and Computational Study, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| |
Collapse
|
41
|
Candidate luminal B breast cancer genes identified by genome, gene expression and DNA methylation profiling. PLoS One 2014; 9:e81843. [PMID: 24416132 PMCID: PMC3886975 DOI: 10.1371/journal.pone.0081843] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 10/17/2013] [Indexed: 01/19/2023] Open
Abstract
Breast cancers (BCs) of the luminal B subtype are estrogen receptor-positive (ER+), highly proliferative, resistant to standard therapies and have a poor prognosis. To better understand this subtype we compared DNA copy number aberrations (CNAs), DNA promoter methylation, gene expression profiles, and somatic mutations in nine selected genes, in 32 luminal B tumors with those observed in 156 BCs of the other molecular subtypes. Frequent CNAs included 8p11-p12 and 11q13.1-q13.2 amplifications, 7q11.22-q34, 8q21.12-q24.23, 12p12.3-p13.1, 12q13.11-q24.11, 14q21.1-q23.1, 17q11.1-q25.1, 20q11.23-q13.33 gains and 6q14.1-q24.2, 9p21.3-p24,3, 9q21.2, 18p11.31-p11.32 losses. A total of 237 and 101 luminal B-specific candidate oncogenes and tumor suppressor genes (TSGs) presented a deregulated expression in relation with their CNAs, including 11 genes previously reported associated with endocrine resistance. Interestingly, 88% of the potential TSGs are located within chromosome arm 6q, and seven candidate oncogenes are potential therapeutic targets. A total of 100 candidate oncogenes were validated in a public series of 5,765 BCs and the overexpression of 67 of these was associated with poor survival in luminal tumors. Twenty-four genes presented a deregulated expression in relation with a high DNA methylation level. FOXO3, PIK3CA and TP53 were the most frequent mutated genes among the nine tested. In a meta-analysis of next-generation sequencing data in 875 BCs, KCNB2 mutations were associated with luminal B cases while candidate TSGs MDN1 (6q15) and UTRN (6q24), were mutated in this subtype. In conclusion, we have reported luminal B candidate genes that may play a role in the development and/or hormone resistance of this aggressive subtype.
Collapse
|
42
|
Bertucci F, Ueno NT, Finetti P, Vermeulen P, Lucci A, Robertson FM, Marsan M, Iwamoto T, Krishnamurthy S, Masuda H, Van Dam P, Woodward WA, Cristofanilli M, Reuben JM, Dirix L, Viens P, Symmans WF, Birnbaum D, Van Laere SJ. Gene expression profiles of inflammatory breast cancer: correlation with response to neoadjuvant chemotherapy and metastasis-free survival. Ann Oncol 2013; 25:358-65. [PMID: 24299959 DOI: 10.1093/annonc/mdt496] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Inflammatory breast cancer (IBC) is an aggressive disease. To date, no molecular feature reliably predicts either the response to chemotherapy (CT) or the survival. Using DNA microarrays, we searched for multigene predictors. PATIENTS AND METHODS The World IBC Consortium generated whole-genome expression profiles of 137 IBC and 252 non-IBC (nIBC) samples. We searched for transcriptional profiles associated with pathological complete response (pCR) to neoadjuvant anthracycline-based CT and distant metastasis-free survival (DMFS) in respective subsets of 87 and 106 informative IBC samples. Correlations were investigated with predictive and prognostic gene expression signatures published in nIBC (nIBC-GES). Supervised analyses tested genes and activation signatures of 19 biological pathways and 234 transcription factors. RESULTS Three of five tested prognostic nIBC-GES and the two tested predictive nIBC-GES discriminated between IBC with and without pCR, as well as two interferon activation signatures. We identified a 107-gene signature enriched for immunity-related genes that distinguished between responders and nonresponders in IBC. Its robustness was demonstrated by external validation in three independent sets including two IBC sets and one nIBC set, with independent significant predictive value in IBC and nIBC validation sets in multivariate analysis. We found no robust signature associated with DMFS in patients with IBC, and neither of the tested prognostic GES, nor the molecular subtypes were informative, whereas they were in our nIBC series (220 stage I-III informative samples). CONCLUSION Despite the relatively small sample size, we show that response to neoadjuvant CT in IBC is, as in nIBC, associated with immunity-related processes, suggesting that similar mechanisms responsible for pCR exist. Analysis of a larger IBC series is warranted regarding the correlation of gene expression profiles and DMFS.
Collapse
|
43
|
Abstract
Breast cancer is the most frequent and the most deadly cancer in women in Western countries. Different classifications of disease (anatomoclinical, pathological, prognostic, genetic) are used for guiding the management of patients. Unfortunately, they fail to reflect the whole clinical heterogeneity of the disease. Consequently, molecularly distinct diseases are grouped in similar clinical classes, likely explaining the different clinical outcome between patients in a given class, and the fact that selection of the most appropriate diagnostic or therapeutic strategy for each patient is not done accurately. Today, treatment is efficient in only 70.0–75.0% of cases overall. Our repertoire of efficient drugs is limited but is being expanded with the discovery of new molecular targets for new drugs, based on the identification of candidate oncogenes and tumor suppressor genes (TSG) functionally relevant in disease. Development of new drugs makes therapeutical decisions even more demanding of reliable classifiers and prognostic/predictive tests. Breast cancer is a complex, heterogeneous disease at the molecular level. The combinatorial molecular origin and the heterogeneity of malignant cells, and the variability of the host background, create distinct subgroups of tumors endowed with different phenotypic features such as response to therapy and clinical outcome. Cellular and molecular analyses can identify new classes biologically and clinically relevant, as well as provide new clinically relevant markers and targets. The various stages of mammary tumorigenesis are not clearly defined and the genetic and epigenetic events critical to the development and aggressiveness of breast cancer are not precisely known. Because the phenotype of tumors is dependent on many genes, a large-scale and integrated molecular characterization of the genetic and epigenetic alterations and gene expression deregulation should allow the identification of new molecular classes clinically relevant, as well as among the altered genes and/or pathways, the identification of more accurate molecular diagnostic, prognostic/predictive factors, and for some of them, after functional validation, the identification of new therapeutic targets.
Collapse
|
44
|
Van Laere SJ, Ueno NT, Finetti P, Vermeulen P, Lucci A, Robertson FM, Marsan M, Iwamoto T, Krishnamurthy S, van Dam P, Woodward WA, Viens P, Cristofanilli M, Birnbaum D, Dirix L, Reuben JM, Bertucci F. Uncovering the molecular secrets of inflammatory breast cancer biology: an integrated analysis of three distinct affymetrix gene expression datasets. Clin Cancer Res 2013; 19:4685-96. [PMID: 23396049 PMCID: PMC6156084 DOI: 10.1158/1078-0432.ccr-12-2549] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Inflammatory breast cancer (IBC) is a poorly characterized form of breast cancer. So far, the results of expression profiling in IBC are inconclusive due to various reasons including limited sample size. Here, we present the integration of three Affymetrix expression datasets collected through the World IBC Consortium allowing us to interrogate the molecular profile of IBC using the largest series of IBC samples ever reported. EXPERIMENTAL DESIGN Affymetrix profiles (HGU133-series) from 137 patients with IBC and 252 patients with non-IBC (nIBC) were analyzed using unsupervised and supervised techniques. Samples were classified according to the molecular subtypes using the PAM50-algorithm. Regression models were used to delineate IBC-specific and molecular subtype-independent changes in gene expression, pathway, and transcription factor activation. RESULTS Four robust IBC-sample clusters were identified, associated with the different molecular subtypes (P<0.001), all of which were identified in IBC with a similar prevalence as in nIBC, except for the luminal A subtype (19% vs. 42%; P<0.001) and the HER2-enriched subtype (22% vs. 9%; P<0.001). Supervised analysis identified and validated an IBC-specific, molecular subtype-independent 79-gene signature, which held independent prognostic value in a series of 871 nIBCs. Functional analysis revealed attenuated TGF-β signaling in IBC. CONCLUSION We show that IBC is transcriptionally heterogeneous and that all molecular subtypes described in nIBC are detectable in IBC, albeit with a different frequency. The molecular profile of IBC, bearing molecular traits of aggressive breast tumor biology, shows attenuation of TGF-β signaling, potentially explaining the metastatic potential of IBC tumor cells in an unexpected manner.
Collapse
Affiliation(s)
- Steven J. Van Laere
- Translational Cancer Research Unit Antwerp, Oncology Center, General Hospital Sint-Augustinus, Wilrijk, Belgium
- Department Oncology, KU Leuven, Leuven, Belgium
| | - Naoto T. Ueno
- Morgan Welch Inflammatory Breast Cancer Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pascal Finetti
- Département d’Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, UMR891 Inserm, Institut Paoli-Calmettes (IPC), Marseille, France
| | - Peter Vermeulen
- Translational Cancer Research Unit Antwerp, Oncology Center, General Hospital Sint-Augustinus, Wilrijk, Belgium
| | - Anthony Lucci
- Morgan Welch Inflammatory Breast Cancer Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fredika M. Robertson
- Morgan Welch Inflammatory Breast Cancer Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Melike Marsan
- Translational Cancer Research Unit Antwerp, Oncology Center, General Hospital Sint-Augustinus, Wilrijk, Belgium
- Department Oncology, KU Leuven, Leuven, Belgium
| | - Takayuki Iwamoto
- Morgan Welch Inflammatory Breast Cancer Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Savitri Krishnamurthy
- Morgan Welch Inflammatory Breast Cancer Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peter van Dam
- Translational Cancer Research Unit Antwerp, Oncology Center, General Hospital Sint-Augustinus, Wilrijk, Belgium
| | - Wendy A. Woodward
- Morgan Welch Inflammatory Breast Cancer Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Patrice Viens
- Département d’Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, UMR891 Inserm, Institut Paoli-Calmettes (IPC), Marseille, France
| | - Massimo Cristofanilli
- Department of Medical Oncology,G. Morris Dorrance Jr. Endowed Chair in Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Daniel Birnbaum
- Département d’Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, UMR891 Inserm, Institut Paoli-Calmettes (IPC), Marseille, France
| | - Luc Dirix
- Translational Cancer Research Unit Antwerp, Oncology Center, General Hospital Sint-Augustinus, Wilrijk, Belgium
| | - James M. Reuben
- Morgan Welch Inflammatory Breast Cancer Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - François Bertucci
- Département d’Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, UMR891 Inserm, Institut Paoli-Calmettes (IPC), Marseille, France
| |
Collapse
|
45
|
Lerebours F, Callens C, Vacher S, Hatem R, Guinebretière JM, Bièche I. Rare overexpression of anaplastic lymphoma kinase gene in inflammatory and non-inflammatory breast cancer. Eur J Cancer 2013; 49:2774-6. [DOI: 10.1016/j.ejca.2013.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 04/09/2013] [Indexed: 01/22/2023]
|
46
|
Fernandez SV, Robertson FM, Pei J, Aburto-Chumpitaz L, Mu Z, Chu K, Alpaugh RK, Huang Y, Cao Y, Ye Z, Cai KQ, Boley KM, Klein-Szanto AJ, Devarajan K, Addya S, Cristofanilli M. Inflammatory breast cancer (IBC): clues for targeted therapies. Breast Cancer Res Treat 2013; 140:23-33. [PMID: 23784380 PMCID: PMC4273486 DOI: 10.1007/s10549-013-2600-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 06/06/2013] [Indexed: 01/26/2023]
Abstract
Inflammatory breast cancer (IBC) is the most aggressive type of advanced breast cancer characterized by rapid proliferation, early metastatic development and poor prognosis. Since there are few preclinical models of IBC, there is a general lack of understanding of the complexity of the disease. Recently, we have developed a new model of IBC derived from the pleural effusion of a woman with metastatic secondary IBC. FC-IBC02 cells are triple negative and form clusters (mammospheres) in suspension that are strongly positive for E-cadherin, β-catenin and TSPAN24, all adhesion molecules that play an important role in cell migration and invasion. FC-IBC02 cells expressed stem cell markers and some, but not all of the characteristics of cells undergoing epithelial mesenchymal transition (EMT). Breast tumor FC-IBC02 xenografts developed quickly in SCID mice with the presence of tumor emboli and the development of lymph node and lung metastases. Remarkably, FC-IBC02 cells were able to produce brain metastasis in mice on intracardiac or intraperitoneal injections. Genomic studies of FC-IBC02 and other IBC cell lines showed that IBC cells had important amplification of 8q24 where MYC, ATAD2 and the focal adhesion kinase FAK1 are located. MYC and ATAD2 showed between 2.5 and 7 copies in IBC cells. FAK1, which plays important roles in anoikis resistance and tumor metastasis, showed 6–4 copies in IBC cells. Also, CD44 was amplified in triple-negative IBC cells (10–3 copies). Additionally, FC-IBC02 showed amplification of ALK and NOTCH3. These results indicate that MYC, ATAD2, CD44, NOTCH3, ALK and/or FAK1 may be used as potential targeted therapies against IBC.
Collapse
|
47
|
Toloşi L, Theißen J, Halachev K, Hero B, Berthold F, Lengauer T. A method for finding consensus breakpoints in the cancer genome from copy number data. ACTA ACUST UNITED AC 2013; 29:1793-800. [PMID: 23716195 DOI: 10.1093/bioinformatics/btt300] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
MOTIVATION Recurrent DNA breakpoints in cancer genomes indicate the presence of critical functional elements for tumor development. Identifying them can help determine new therapeutic targets. High-dimensional DNA microarray experiments like arrayCGH afford the identification of DNA copy number breakpoints with high precision, offering a solid basis for computational estimation of recurrent breakpoint locations. RESULTS We introduce a method for identification of recurrent breakpoints (consensus breakpoints) from copy number aberration datasets. The method is based on weighted kernel counting of breakpoints around genomic locations. Counts larger than expected by chance are considered significant. We show that the consensus breakpoints facilitate consensus segmentation of the samples. We apply our method to three arrayCGH datasets and show that by using consensus segmentation we achieve significant dimension reduction, which is useful for the task of prediction of tumor phenotype based on copy number data. We use our approach for classification of neuroblastoma tumors from different age groups and confirm the recent recommendation for the choice of age cut-off for differential treatment of 18 months. We also investigate the (epi)genetic properties at consensus breakpoint locations for seven datasets and show enrichment in overlap with important functional genomic regions. AVAILABILITY Implementation in R of our approach can be found at http://www.mpi-inf.mpg.de/ ∼laura/FeatureGrouping.html. CONTACT laura@mpi-inf.mpg.de. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Laura Toloşi
- Department of Computational Biology and Applied Algorithmics, Max-Planck-Institute for Informatics, Campus E1.4, 66123 Saarbrücken, Germany
| | | | | | | | | | | |
Collapse
|
48
|
Lerebours F, Cizeron-Clairac G, Susini A, Vacher S, Mouret-Fourme E, Belichard C, Brain E, Alberini JL, Spyratos F, Lidereau R, Bieche I. miRNA expression profiling of inflammatory breast cancer identifies a 5-miRNA signature predictive of breast tumor aggressiveness. Int J Cancer 2013; 133:1614-23. [PMID: 23526361 DOI: 10.1002/ijc.28171] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 03/07/2013] [Indexed: 12/19/2022]
Abstract
IBC (inflammatory breast cancer) is a rare but very aggressive form of breast cancer with a particular phenotype. The molecular mechanisms responsible for IBC remain largely unknown. In particular, genetic and epigenetic alterations specific to IBC remain to be identified. MicroRNAs, a class of small noncoding RNAs able to regulate gene expression, are deregulated in breast cancer and may therefore serve as tools for diagnosis and prediction. This study was designed to determine miRNA expression profiling (microRNAome) in IBC. Quantitative RT-PCR was used to determine expression levels of 804 miRNAs in a screening series of 12 IBC compared to 31 non-stage-matched non-IBC and 8 normal breast samples. The differentially expressed miRNAs were then validated in a series of 65 IBC and 95 non-IBC. From a set of 18 miRNAs of interest selected from the screening series, 13 were differentially expressed with statistical significance in the validation series of IBC compared to non-IBC. Among these, a 5-miRNA signature comprising miR-421, miR-486, miR-503, miR-720 and miR-1303 was shown to be predictive for IBC phenotype with an overall accuracy of 89%. Moreover, multivariate analysis showed that this signature was an independent predictor of poor Metastasis-Free Survival in non-IBC patients.
Collapse
Affiliation(s)
- Florence Lerebours
- Laboratoire d'oncogénétique, Institut Curie, Hopital Rene Huguenin, 35 rue Dailly, Saint-Cloud, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Bhar A, Haubrock M, Mukhopadhyay A, Maulik U, Bandyopadhyay S, Wingender E. Coexpression and coregulation analysis of time-series gene expression data in estrogen-induced breast cancer cell. Algorithms Mol Biol 2013; 8:9. [PMID: 23521829 PMCID: PMC3827943 DOI: 10.1186/1748-7188-8-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 02/07/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Estrogen is a chemical messenger that has an influence on many breast cancers as it helps cells to grow and divide. These cancers are often known as estrogen responsive cancers in which estrogen receptor occupies the surface of the cells. The successful treatment of breast cancers requires understanding gene expression, identifying of tumor markers, acquiring knowledge of cellular pathways, etc. In this paper we introduce our proposed triclustering algorithm δ-TRIMAX that aims to find genes that are coexpressed over subset of samples across a subset of time points. Here we introduce a novel mean-squared residue for such 3D dataset. Our proposed algorithm yields triclusters that have a mean-squared residue score below a threshold δ. RESULTS We have applied our algorithm on one simulated dataset and one real-life dataset. The real-life dataset is a time-series dataset in estrogen induced breast cancer cell line. To establish the biological significance of genes belonging to resultant triclusters we have performed gene ontology, KEGG pathway and transcription factor binding site enrichment analysis. Additionally, we represent each resultant tricluster by computing its eigengene and verify whether its eigengene is also differentially expressed at early, middle and late estrogen responsive stages. We also identified hub-genes for each resultant triclusters and verified whether the hub-genes are found to be associated with breast cancer. Through our analysis CCL2, CD47, NFIB, BRD4, HPGD, CSNK1E, NPC1L1, PTEN, PTPN2 and ADAM9 are identified as hub-genes which are already known to be associated with breast cancer. The other genes that have also been identified as hub-genes might be associated with breast cancer or estrogen responsive elements. The TFBS enrichment analysis also reveals that transcription factor POU2F1 binds to the promoter region of ESR1 that encodes estrogen receptor α. Transcription factor E2F1 binds to the promoter regions of coexpressed genes MCM7, ANAPC1 and WEE1. CONCLUSIONS Thus our integrative approach provides insights into breast cancer prognosis.
Collapse
|
50
|
Comprehensive genome characterization of solitary fibrous tumors using high‐resolution array‐based comparative genomic hybridization. Genes Chromosomes Cancer 2012; 52:156-64. [DOI: 10.1002/gcc.22015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 09/07/2012] [Indexed: 11/07/2022] Open
|