1
|
Watthanasakphuban N, Ninchan B, Pinmanee P, Rattanaporn K, Keawsompong S. In Silico Analysis and Development of the Secretory Expression of D-Psicose-3-Epimerase in Escherichia coli. Microorganisms 2024; 12:1574. [PMID: 39203416 PMCID: PMC11356227 DOI: 10.3390/microorganisms12081574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 09/03/2024] Open
Abstract
D-psicose-3-epimerase (DPEase), a key enzyme for D-psicose production, has been successfully expressed in Escherichia coli with high yield. However, intracellular expression results in high downstream processing costs and greater risk of lipopolysaccharide (LPS) contamination during cell disruption. The secretory expression of DPEase could minimize the number of purification steps and prevent LPS contamination, but achieving the secretion expression of DPEase in E. coli is challenging and has not been reported due to certain limitations. This study addresses these challenges by enhancing the secretion of DPEase in E. coli through computational predictions and structural analyses. Signal peptide prediction identified PelB as the most effective signal peptide for DPEase localization and enhanced solubility. Supplementary strategies included the addition of 0.1% (v/v) Triton X-100 to promote protein secretion, resulting in higher extracellular DPEase (0.5 unit/mL). Low-temperature expression (20 °C) mitigated the formation of inclusion bodies, thus enhancing DPEase solubility. Our findings highlight the pivotal role of signal peptide selection in modulating DPEase solubility and activity, offering valuable insights for protein expression and secretion studies, especially for rare sugar production. Ongoing exploration of alternative signal peptides and refinement of secretion strategies promise further enhancement in enzyme secretion efficiency and process safety, paving the way for broader applications in biotechnology.
Collapse
Affiliation(s)
- Nisit Watthanasakphuban
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand; (N.W.); (B.N.); (K.R.)
| | - Boontiwa Ninchan
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand; (N.W.); (B.N.); (K.R.)
| | - Phitsanu Pinmanee
- Enzyme Technology Research Team, National Center of Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani 12120, Thailand;
| | - Kittipong Rattanaporn
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand; (N.W.); (B.N.); (K.R.)
| | - Suttipun Keawsompong
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand; (N.W.); (B.N.); (K.R.)
| |
Collapse
|
2
|
Watthanasakphuban N, Srila P, Pinmanee P, Punvittayagul C, Petchyam N, Ninchan B. Production, purification, characterization, and safety evaluation of constructed recombinant D-psicose 3-epimerase. Microb Cell Fact 2024; 23:216. [PMID: 39080612 PMCID: PMC11290309 DOI: 10.1186/s12934-024-02487-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND D-psicose 3-epimerase (DPEase) is a potential catalytic enzyme for D-psicose production. D-psicose, also known as D-allulose, is a low-calorie sweetener that has gained considerable attention as a healthy alternative sweetener due to its notable physicochemical properties. This research focused on an in-depth investigation of the expression of the constructed DPEase gene from Agrobacterium tumefaciens in Escherichia coli for D-psicose synthesis. Experimentally, this research created the recombinant enzyme, explored the optimization of gene expression systems and protein purification strategies, investigated the enzymatic characterization, and then optimized the D-psicose production. Finally, the produced D-psicose syrup underwent acute toxicity evaluation to provide scientific evidence supporting its safety. RESULTS The optimization of DPEase expression involved the utilization of Mn2+ as a cofactor, fine-tuning isopropyl β-D-1-thiogalactopyranoside induction, and controlling the induction temperature. The purification process was strategically designed by a nickel column and an elution buffer containing 200 mM imidazole, resulting in purified DPEase with a notable 21.03-fold increase in specific activity compared to the crude extract. The optimum D-psicose conversion conditions were at pH 7.5 and 55 °C with a final concentration of 10 mM Mn2+ addition using purified DPEase to achieve the highest D-psicose concentration of 5.60% (w/v) using 25% (w/v) of fructose concentration with a conversion rate of 22.42%. Kinetic parameters of the purified DPEase were Vmax and Km values of 28.01 mM/min and 110 mM, respectively, which demonstrated the high substrate affinity and efficiency of DPEase conversion by the binding site of the fructose-DPEase-Mn2+ structure. Strategies for maintaining stability of DPEase activity were glycerol addition and storage at -20 °C. Based on the results from the acute toxicity study, there was no toxicity to rats, supporting the safety of the mixed D-fructose-D-psicose syrup produced using recombinant DPEase. CONCLUSIONS These findings have direct and practical implications for the industrial-scale production of D-psicose, a valuable rare sugar with a broad range of applications in the food and pharmaceutical industries. This research should advance the understanding of DPEase biocatalysis and offers a roadmap for the successful scale-up production of rare sugars, opening new avenues for their utilization in various industrial processes.
Collapse
Affiliation(s)
- Nisit Watthanasakphuban
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Pimsiriya Srila
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Phitsanu Pinmanee
- Enzyme Technology Research Team, National Center of Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani, 12120, Thailand
| | - Charatda Punvittayagul
- Center of Veterinary Medical Diagnostic and Animal Health Innovation, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Nopphon Petchyam
- Center for Advanced Therapeutics, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Boontiwa Ninchan
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand.
- Sugars and Derivatives Analytical Laboratory, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand.
| |
Collapse
|
3
|
Hao Y, Liu M, Ni H, Bai Y, Hao Q, Zhang L, Kang X, Lyu M, Wang S. Preparation of Sweet Potato Porous Starch by Marine Dextranase and Its Adsorption Characteristics. Foods 2024; 13:549. [PMID: 38397526 PMCID: PMC10888179 DOI: 10.3390/foods13040549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Dextranase (EC 3.2.1.11) is primarily applied in food, sugar, and pharmaceutical industries. This study focuses on using a cold shock Escherichia coli expression system to express marine dextranase SP5-Badex; enzyme activity increased about 2.2-fold compared to previous expression. This enzyme was employed to produce sweet potato porous starch, with special emphasis on the pore size of the starch. The water and oil adsorption rates of the porous starch increased by 1.43 and 1.51 times, respectively. Extensive Fourier transform infrared spectroscopy and X-ray diffraction revealed that the crystal structure of the sweet potato starch was unaltered by enzymatic hydrolysis. The adsorption capacities of the porous starch for curcumin and proanthocyanidins were 9.59 and 12.29 mg/g, respectively. Notably, the stability of proanthocyanidins was significantly enhanced through their encapsulation in porous starch. After 2.5 h of ultraviolet irradiation, the free radical scavenging rate of the encapsulated proanthocyanidins remained at 95.10%. Additionally, after 30 days of sunlight exposure, the free radical scavenging rate of the encapsulated proanthocyanidins (84.42%) was significantly higher than that (24.34%) observed in the control group. These research findings provide substantial experimental evidence for preparing sweet potato porous starch using marine dextranase.
Collapse
Affiliation(s)
- Yue Hao
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (Y.H.); (M.L.); (H.N.); (Y.B.); (Q.H.); (L.Z.); (X.K.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mingwang Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (Y.H.); (M.L.); (H.N.); (Y.B.); (Q.H.); (L.Z.); (X.K.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Hao Ni
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (Y.H.); (M.L.); (H.N.); (Y.B.); (Q.H.); (L.Z.); (X.K.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yue Bai
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (Y.H.); (M.L.); (H.N.); (Y.B.); (Q.H.); (L.Z.); (X.K.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Qingfang Hao
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (Y.H.); (M.L.); (H.N.); (Y.B.); (Q.H.); (L.Z.); (X.K.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Lei Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (Y.H.); (M.L.); (H.N.); (Y.B.); (Q.H.); (L.Z.); (X.K.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xinxin Kang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (Y.H.); (M.L.); (H.N.); (Y.B.); (Q.H.); (L.Z.); (X.K.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mingsheng Lyu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (Y.H.); (M.L.); (H.N.); (Y.B.); (Q.H.); (L.Z.); (X.K.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shujun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (Y.H.); (M.L.); (H.N.); (Y.B.); (Q.H.); (L.Z.); (X.K.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
4
|
Qu W, Wang D, Wu J, Chan Z, Di W, Wang J, Zeng R. Production of Neoagaro-Oligosaccharides With Various Degrees of Polymerization by Using a Truncated Marine Agarase. Front Microbiol 2020; 11:574771. [PMID: 33072038 PMCID: PMC7541962 DOI: 10.3389/fmicb.2020.574771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 09/02/2020] [Indexed: 01/17/2023] Open
Abstract
Bioactivities, such as freshness maintenance, whitening, and prebiotics, of marine neoagaro-oligosaccharides (NAOS) with 4-12 degrees of polymerization (DPs) have been proven. However, NAOS produced by most marine β-agarases always possess low DPs (≤6) and limited categories; thus, a strategy that can efficiently produce NAOS especially with various DPs ≥8 must be developed. In this study, 60 amino acid residues with no functional annotation result were removed from the C-terminal of agarase AgaM1, and truncated recombinant AgaM1 (trAgaM1) was found to have the ability to produce NAOS with various DPs (4-12) under certain conditions. The catalytic efficiency and stability of trAgaM1 were obviously lower than the wild type (rAgaM1), which probably endowed trAgaM1 with the ability to produce NAOS with various DPs. The optimum conditions for various NAOS production included mixing 1% agarose (w/v) with 10.26 U/ml trAgaM1 and incubating the mixture at 50°C in deionized water for 100 min. This strategy produced neoagarotetraose (NA4), neoagarohexaose (NA6), neoagarooctaose (NA8), neoagarodecaose (NA10), and neoagarododecaose (NA12) at final concentrations of 0.15, 1.53, 1.53, 3.02, and 3.02 g/L, respectively. The NAOS served as end-products of the reaction. The conditions for trAgaM1 expression in a shake flask and 5 L fermentation tank were optimized, and the yields of trAgaM1 increased by 56- and 842-fold compared with those before optimization, respectively. This study provides numerous substrate sources for production and activity tests of NAOS with high DPs and offers a foundation for large-scale production of NAOS with various DPs at a low cost.
Collapse
Affiliation(s)
- Wu Qu
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| | - Dingquan Wang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| | - Jie Wu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Zhuhua Chan
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Wenjie Di
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Jianxin Wang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| | - Runying Zeng
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China.,Technical Innovation Center for Utilization of Marine Biological Resources, Ministry of Natural Resources, Xiamen, China
| |
Collapse
|
5
|
Brandt SC, Ellinger B, van Nguyen T, Harder S, Schlüter H, Hahnke RL, Rühl M, Schäfer W, Gand M. Aspergillus sydowii: Genome Analysis and Characterization of Two Heterologous Expressed, Non-redundant Xylanases. Front Microbiol 2020; 11:2154. [PMID: 33071998 PMCID: PMC7531221 DOI: 10.3389/fmicb.2020.573482] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/14/2020] [Indexed: 12/28/2022] Open
Abstract
A prerequisite for the transition toward a biobased economy is the identification and development of efficient enzymes for the usage of renewable resources as raw material. Therefore, different xylanolytic enzymes are important for efficient enzymatic hydrolysis of xylan-heteropolymers. A powerful tool to overcome the limited enzymatic toolbox lies in exhausting the potential of unexplored habitats. By screening a Vietnamese fungal culture collection of 295 undiscovered fungal isolates, 12 highly active xylan degraders were identified. One of the best xylanase producing strains proved to be an Aspergillus sydowii strain from shrimp shell (Fsh102), showing a specific activity of 0.6 U/mg. Illumina dye sequencing was used to identify our Fsh102 strain and determine differences to the A. sydowii CBS 593.65 reference strain. With activity based in-gel zymography and subsequent mass spectrometric identification, three potential proteins responsible for xylan degradation were identified. Two of these proteins were cloned from the cDNA and, furthermore, expressed heterologously in Escherichia coli and characterized. Both xylanases, were entirely different from each other, including glycoside hydrolases (GH) families, folds, substrate specificity, and inhibition patterns. The specific enzyme activity applying 0.1% birch xylan of both purified enzymes were determined with 181.1 ± 37.8 or 121.5 ± 10.9 U/mg for xylanase I and xylanase II, respectively. Xylanase I belongs to the GH11 family, while xylanase II is member of the GH10 family. Both enzymes showed typical endo-xylanase activity, the main products of xylanase I are xylobiose, xylotriose, and xylohexose, while xylobiose, xylotriose, and xylopentose are formed by xylanase II. Additionally, xylanase II showed remarkable activity toward xylotriose. Xylanase I is stable when stored up to 30°C and pH value of 9, while xylanase II started to lose significant activity stored at pH 9 after exceeding 3 days of storage. Xylanase II displayed about 40% activity when stored at 50°C for 24 h. The enzymes are tolerant toward mesophilic temperatures, while acting in a broad pH range. With site directed mutagenesis, the active site residues in both enzymes were confirmed. The presented activity and stability justify the classification of both xylanases as highly interesting for further development.
Collapse
Affiliation(s)
- Sophie C. Brandt
- Department of Molecular Phytopathology, University of Hamburg, Hamburg, Germany
| | - Bernhard Ellinger
- Department ScreeningPort, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Hamburg, Germany
| | - Thuat van Nguyen
- Department of Molecular Phytopathology, University of Hamburg, Hamburg, Germany
| | - Sönke Harder
- Mass Spectrometric Proteomics Group, Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hartmut Schlüter
- Mass Spectrometric Proteomics Group, Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Richard L. Hahnke
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Martin Rühl
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Giessen, Germany
| | - Wilhelm Schäfer
- Department of Molecular Phytopathology, University of Hamburg, Hamburg, Germany
| | - Martin Gand
- Department of Molecular Phytopathology, University of Hamburg, Hamburg, Germany
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
6
|
Efficient xylan-to-sugar biotransformation using an engineered xylanase in hyperthermic environment. Int J Biol Macromol 2020; 157:17-23. [DOI: 10.1016/j.ijbiomac.2020.04.145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/11/2020] [Accepted: 04/18/2020] [Indexed: 11/30/2022]
|
7
|
Construction and characterization of the GFAT gene as a novel selection marker in Aspergillus nidulans. Appl Microbiol Biotechnol 2018; 102:7951-7962. [DOI: 10.1007/s00253-018-9185-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/09/2018] [Accepted: 06/17/2018] [Indexed: 11/30/2022]
|
8
|
Basit A, Liu J, Rahim K, Jiang W, Lou H. Thermophilic xylanases: from bench to bottle. Crit Rev Biotechnol 2018; 38:989-1002. [DOI: 10.1080/07388551.2018.1425662] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Abdul Basit
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Junquan Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Kashif Rahim
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, Institute of Biochemistry and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Wei Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Huiqiang Lou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Heterologous production of a temperature and pH-stable laccase from Bacillus vallismortis fmb-103 in Escherichia coli and its application. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.01.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
10
|
Liu R, Liang X, Xiang D, Guo Y, Liu Y, Zhu G. Expression and Functional Properties of an Anti-Triazophos High-Affinity Single-Chain Variable Fragment Antibody with Specific Lambda Light Chain. Int J Mol Sci 2016; 17:E823. [PMID: 27338340 PMCID: PMC4926357 DOI: 10.3390/ijms17060823] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/29/2016] [Accepted: 05/23/2016] [Indexed: 01/29/2023] Open
Abstract
Triazophos is a widely used organophosphorous insecticide that has potentially adverse effects to organisms. In the present study, a high-affinity single-chain variable fragment (scFv) antibody with specific lambda light chain was developed for residue monitoring. First, the specific variable regions were correctly amplified from a hybridoma cell line 8C10 that secreted monoclonal antibody (mAb) against triazophos. The regions were then assembled as scFv via splicing by overlap extension polymerase chain reaction. Subsequently, the recombinant anti-triazophos scFv-8C10 was successfully expressed in Escherichia coli strain HB2151 in soluble form, purified through immobilized metal ion affinity chromatography, and verified via Western blot and peptide mass fingerprinting analyses. Afterward, an indirect competitive enzyme-linked immunosorbent assay was established based on the purified anti-triazophos scFv-8C10 antibody. The assay exhibited properties similar to those based on the parent mAb, with a high sensitivity (IC50 of 1.73 ng/mL) to triazophos and no cross reaction for other organophosphorus pesticides; it was reliable in detecting triazophos residues in spiked water samples. Moreover, kinetic measurement using a surface plasmon resonance biosensor indicated that the purified scFv-8C10 antibody had a high affinity of 1.8 × 10(-10) M and exhibited good binding stability. Results indicated that the recombinant high-affinity scFv-8C10 antibody was an effective detection material that would be promising for monitoring triazophos residues in environment samples.
Collapse
Affiliation(s)
- Rui Liu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China.
| | - Xiao Liang
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China.
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agriculture Sciences, Haikou 571101, China.
| | - Dandan Xiang
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China.
| | - Yirong Guo
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China.
| | - Yihua Liu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China.
| | - Guonian Zhu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
11
|
Duan X, Zou C, Wu J. Triton X-100 enhances the solubility and secretion ratio of aggregation-prone pullulanase produced in Escherichia coli. BIORESOURCE TECHNOLOGY 2015; 194:137-143. [PMID: 26188556 DOI: 10.1016/j.biortech.2015.07.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/02/2015] [Accepted: 07/03/2015] [Indexed: 06/04/2023]
Abstract
The pullulanase from Bacillus deramificans is an industrially useful starch-debranching enzyme that is difficult to produce in large quantities. In this study, B. deramificans pullulanase was found to be an aggregation-prone protein that can be solubilized from the insoluble fraction by surfactants in vitro. Studying the effects of various surfactants on pullulanase production in Escherichia coli in shake flasks revealed that optimal pullulanase production could be obtained by adding 0.5% Triton X-100 during the later period of fermentation. A modified fed-batch fermentation strategy was then applied to the production of pullulanase in a 3-L fermentor. When supplemented with 0.5% Triton X-100 at 40 h, the maximal extracellular pullulanase production and secretion ratio were 812.4 U mL(-1) and 86.0%, which were 46.2- and 47.8-fold that of the control, respectively.
Collapse
Affiliation(s)
- Xuguo Duan
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Chun Zou
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| |
Collapse
|
12
|
Enhancing the secretion efficiency and thermostability of a Bacillus deramificans pullulanase mutant (D437H/D503Y) by N-terminal domain truncation. Appl Environ Microbiol 2015; 81:1926-31. [PMID: 25556190 DOI: 10.1128/aem.03714-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pullulanase (EC 3.2.1.41), an important enzyme in the production of starch syrup, catalyzes the hydrolysis of α-1,6 glycosidic bonds in complex carbohydrates. A double mutant (DM; D437H/D503Y) form of Bacillus deramificans pullulanase was recently constructed to enhance the thermostability and catalytic efficiency of the enzyme (X. Duan, J. Chen, and J. Wu, Appl Environ Microbiol 79:4072-4077, 2013, http://dx.doi.org/10.1128/AEM.00457-13). In the present study, three N-terminally truncated variants of this DM that lack the CBM41 domain (DM-T1), the CBM41 and X25 domains (DM-T2), or the CBM41, X25, and X45 domains (DM-T3) were constructed. Upon expression, DM-T3 existed as inclusion bodies, while 72.8 and 74.8% of the total pullulanase activities of DM-T1 and DM-T2, respectively, were secreted into the medium. These activities are 2.8- and 2.9-fold that of the DM enzyme, respectively. The specific activities of DM-T1 and DM-T2 were 380.0 × 10(8) and 449.3 × 10(8) U · mol(-1), respectively, which are 0.94- and 1.11-fold that of the DM enzyme. DM-T1 and DM-T2 retained 50% of their activity after incubation at 60°C for 203 and 160 h, respectively, which are 1.7- and 1.3-fold that of the DM enzyme. Kinetic studies showed that the Km values of DM-T1 and DM-T2 were 1.5- and 2.7-fold higher and the Kcat/Km values were 11 and 50% lower, respectively, than those of the DM enzyme. Furthermore, DM-T1 and DM-T2 produced d-glucose contents of 95.0 and 94.1%, respectively, in a starch saccharification reaction, which are essentially identical to that produced by the DM enzyme (95%). The enhanced secretion and improved thermostability of the truncation mutant enzymes make them more suitable than the DM enzyme for industrial processes.
Collapse
|
13
|
Dong G, Wang C, Wu Y, Cong J, Cheng L, Wang M, Zhao P, Tang L, Zhang C, Wu K. Tat peptide-mediated soluble expression of the membrane protein LSECtin-CRD in Escherichia coli. PLoS One 2013; 8:e83579. [PMID: 24358298 PMCID: PMC3865297 DOI: 10.1371/journal.pone.0083579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 11/05/2013] [Indexed: 12/22/2022] Open
Abstract
The human liver and lymph node sinusoidal endothelial cell C-type lectin (hLSECtin), a type II integral membrane protein, containing a Ca2+-dependent carbohydrate recognition domain (CRD), has a well-established biological activity, yet its three-dimensional structure is unknown due to low expression yields and aggregation into inclusion bodies. Previous study has demonstrated that the HIV-1 virus-encoded Tat peptide (‘YGRKKRRQRRR’) can increase the yields and the solubility of heterologous proteins. However, whether the Tat peptide could promote the high-yield and soluble expression of membrane proteins in Escherichia coli is not known. Therefore, the prokaryotic expression vector pET28b-Tat-hLSECtin-CRD (using pET28b and pET28b-hLSECtin-CRD as controls) was constructed, and transformed into E. coli BL21 (DE3) cells and induced with isopropyl-β-d-thiogalactoside (IPTG) followed with identifying by SDS-PAGE and Western blot. Subsequently, the bacterial subcellular structure, in which overexpressed the heterologous proteins Tat-hLSECtin-CRD and Tat-free hLSECtin-CRD, was analyzed by transmission electron microscope (TEM) respectively, and the mannose-binding activity of Tat-hLSECtin-CRD was also determined. Expectedly, the solubility of Tat-LSECtin-CRD significantly increased compared to Tat-free LSECtin-CRD (**p < 0.01) with prolonged time, and the Tat-LSECtin-CRD had a significant mannose-binding activity. The subcellular structure analysis indicated that the bacterial cells overexpressed Tat-hLSECtin-CRD exhibited denser region compared with controls, while dot denser region aggregated in the two ends of bacterial cells overexpressed Tat-free hLSECtin-CRD. This study provided a novel method for improving the soluble expression of membrane proteins in prokaryotic systems by fusion with the Tat peptide, which may be potentially expanded to the expression of other membrane proteins.
Collapse
MESH Headings
- Carbohydrate Metabolism/genetics
- Cloning, Molecular
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression Regulation, Bacterial
- Humans
- Lectins, C-Type/chemistry
- Lectins, C-Type/genetics
- Lectins, C-Type/isolation & purification
- Lectins, C-Type/metabolism
- Mannose/metabolism
- Organisms, Genetically Modified
- Peptide Fragments/chemistry
- Peptide Fragments/genetics
- Peptide Fragments/metabolism
- Protein Binding
- Protein Interaction Domains and Motifs/genetics
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/isolation & purification
- Recombinant Fusion Proteins/metabolism
- Solubility
- tat Gene Products, Human Immunodeficiency Virus/chemistry
- tat Gene Products, Human Immunodeficiency Virus/genetics
- tat Gene Products, Human Immunodeficiency Virus/metabolism
Collapse
Affiliation(s)
- Guofu Dong
- Beijing Institute of Radiation Medicine, Beijing, P. R. China
| | - Changzhen Wang
- Beijing Institute of Radiation Medicine, Beijing, P. R. China
| | - Yonghong Wu
- Beijing Institute of Radiation Medicine, State Key Laboratory of Proteomics, Cognitive and Mental Health Research Center of PLA, Beijing, P. R. China
| | - Jianbo Cong
- Beijing Institute of Radiation Medicine, Beijing, P. R. China
| | - Li Cheng
- Beijing Institute of Radiation Medicine, Beijing, P. R. China
| | - Mingqun Wang
- Beijing Institute of Radiation Medicine, Beijing, P. R. China
| | - Pengkai Zhao
- Beijing Institute of Radiation Medicine, Beijing, P. R. China
| | - Li Tang
- Beijing Institute of Radiation Medicine, Department of Genomics and Proteomics, Chinese Human Genome Center, Beijing, P. R. China
- * E-mail: (LT); (CZ); (KW)
| | - Chenggang Zhang
- Beijing Institute of Radiation Medicine, State Key Laboratory of Proteomics, Cognitive and Mental Health Research Center of PLA, Beijing, P. R. China
- * E-mail: (LT); (CZ); (KW)
| | - Ke Wu
- Beijing Institute of Radiation Medicine, Beijing, P. R. China
- * E-mail: (LT); (CZ); (KW)
| |
Collapse
|
14
|
Duan X, Chen J, Wu J. Optimization of pullulanase production in Escherichia coli by regulation of process conditions and supplement with natural osmolytes. BIORESOURCE TECHNOLOGY 2013; 146:379-385. [PMID: 23948275 DOI: 10.1016/j.biortech.2013.07.074] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/15/2013] [Accepted: 07/17/2013] [Indexed: 06/02/2023]
Abstract
In this study, the effects of temperature, IPTG (Isopropyl β-D-1-thiogalactopyranoside) concentration, and osmolytes (proline, K-glutamate, and betaine) on cell growth and soluble pullulanase productivity of recombinant Escherichia coli were investigated. The yield of soluble pullulanase was found to be enhanced with decrease in cultivation temperature, lower IPTG concentration, and betaine supplementation in a shake flask. In addition, a modified two-stage feeding strategy was proposed and applied in a 3-L fermentor supplied with 20mM betaine, which achieved a dry cell weight of 59.3 g L(-1). Through this cultivation approach at 25 °C, the total soluble activity of pullulanase reached 963.9 U mL(-1), which was 8.3-fold higher than that observed without addition of betaine at 30 °C (115.8 U mL(-1)). The higher expression of soluble pullulanase in a scalable semisynthetic medium showed the potential of the proposed process for the industrial production of soluble enzyme.
Collapse
Affiliation(s)
- Xuguo Duan
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Jian Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| |
Collapse
|
15
|
Ng IS, Chi X, Wu X, Bao Z, Lu Y, Chang JS, Ling X. Cloning and expression of Cel8A from Klebsiella pneumoniae in Escherichia coli and comparison to cel gene of Cellulomonas uda. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2013.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
16
|
Wan Q, Kovalevsky A, Zhang Q, Hamilton-Brehm S, Upton R, Weiss KL, Mustyakimov M, Graham D, Coates L, Langan P. Heterologous expression, purification, crystallization and preliminary X-ray analysis of Trichoderma reesei xylanase II and four variants. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:320-3. [PMID: 23519813 PMCID: PMC3606583 DOI: 10.1107/s1744309113001164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 01/11/2013] [Indexed: 11/10/2022]
Abstract
Xylanase II from Trichoderma reesei catalyzes the hydrolysis of glycosidic bonds in xylan. Crystallographic studies of this commercially important enzyme have been initiated to investigate its reaction mechanism, substrate binding and dependence on basic pH conditions. The wild-type protein was heterologously expressed in an Escherichia coli host using the defined medium and four active-site amino acids were replaced to abolish its activity (E177Q and E86Q) or to change its pH optimum (N44D and N44H). Cation-exchange and size-exclusion chromatography were used to obtain >90% protein purity. The ligand-free proteins and variant complexes containing substrate (xylohexaose) or product (xylotriose) were crystallized in several different space groups and diffracted to high resolutions (from 1.07 to 1.55 Å).
Collapse
Affiliation(s)
- Qun Wan
- Biology and Soft Matter Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Andrey Kovalevsky
- Biology and Soft Matter Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Qiu Zhang
- Biology and Soft Matter Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Scott Hamilton-Brehm
- Biology and Soft Matter Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Rosalynd Upton
- Bioscience Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Kevin L. Weiss
- Biology and Soft Matter Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Marat Mustyakimov
- Biology and Soft Matter Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - David Graham
- Bioscience Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Leighton Coates
- Biology and Soft Matter Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Paul Langan
- Biology and Soft Matter Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| |
Collapse
|
17
|
Peng J, Wang W, Jiang Y, Liu M, Zhang H, Shao W. Enhanced Soluble Expression of a Thermostable Cellulase from Clostridium thermocellum in Escherichia coli. Curr Microbiol 2011; 63:523-30. [DOI: 10.1007/s00284-011-0012-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 08/28/2011] [Indexed: 10/17/2022]
|