1
|
Santana NNM, Escarião WKM, Silva EHA, Fiuza FP, Nascimento Júnior ES, Costa MSMO, Engelberth RC, Cavalcante JS. Dorsal raphe nucleus receives retinal projections of morphologically distinct fibers in the common marmoset (Callithrix jacchus): A subunit B cholera labeling. J Anat 2025. [PMID: 39814418 DOI: 10.1111/joa.14218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/23/2024] [Accepted: 01/03/2025] [Indexed: 01/18/2025] Open
Abstract
Non-image forming (NIF) pathways, a specialized branch of retinal circuitry, play a crucial role supporting physiological and behavioral processes, including circadian rhythmicity. Among the NIF regions, the dorsal raphe nucleus (DRN), a midbrain serotonergic cluster of neurons, is also devoted to circadian functions. Despite indirectly send photic inputs to circadian centers and modulating their activities, little is known about the organization of retina-DRN circuits in primate species. To enhance our understanding of the intrinsic organization of NIF circuits and identify retinoraphe innervation in the common marmoset (Callithrix jacchus), a diurnal non-human primate model, we employed an anterograde tract-tracing method to labeling terminal/fibers with cholera toxin subunit B (CTb) and characterized the morphology of their projections. Our analysis revealed that sparse CTb+ retinal terminals are predominantly located in dorsal subdomain of the DRN, displaying two morphological types, such as simple en passant and R2-like terminals. This anatomical evidence suggests a phylogenetic stability of the retina-DRN projections in diurnal primate species, potentially serving as a significant source of photic modulation on the serotonergic profile in the DRN. However, functional significance in primate models remains uncertain. Our data provide a crucial anatomical foundation for understanding the functional aspect of this circuitry in primates, contributing to the comprehension of the phylogenetic pathways used by NIF functions, such as circadian rhythmicity.
Collapse
Affiliation(s)
- Nelyane N M Santana
- Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, Brazil
| | - Wellydo K M Escarião
- Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, Brazil
| | - Eryck H A Silva
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Felipe P Fiuza
- Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, Brazil
| | - Expedito S Nascimento Júnior
- Laboratory of Neuroanatomy, Department of Morphology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Miriam S M O Costa
- Laboratory of Neuroanatomy, Department of Morphology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Rovena Clara Engelberth
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Jeferson S Cavalcante
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
2
|
Wang J, Zheng Z, Tang Y, Zhang R, Lu Q, Wang B, Sun Q. Psychological distress and its influencing factors among psychiatric nurses in China: A cross-sectional study. Front Psychiatry 2022; 13:948786. [PMID: 36061279 PMCID: PMC9428287 DOI: 10.3389/fpsyt.2022.948786] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/26/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Psychiatric nurses often face abuse, attacks, escape, suicides, and other situations related to the care of patients with mental disorders, which are more likely to induce psychological distress. AIMS This study aimed to examine the relationship between coping styles and psychological distress among Chinese psychiatric nurses in Shandong and the significance of sleep quality as a mediating factor. METHODS A total of 812 psychiatric nurses in Shandong, China, were investigated using the Psychological Distress Scale (K10), Simplified Coping Style Questionnaire (SCSQ), Pittsburgh Sleep Quality Index (PSQI) and self-compiled general information questionnaire. RESULTS Psychological distress was detected in 571 psychiatric nurses (70.3%). The psychological distress of psychiatric nurses was significantly different with respect to professional title (χ2 = 10.627, P < 0.05) and shift work (χ2 = 9.120, P < 0.01). Psychological distress positively correlated with negative coping style (r = 0.266, P < 0.01) and sleep quality (PSQIT) (r = 0.532, P < 0.01). A significant positive correlation was found between psychological distress and all dimensions of sleep quality (r = 0.158-0.456, P < 0.05). Professional title, positive coping style, negative coping style, sleep quality (PSQIT), subjective sleep quality, sleep disorder and daytime dysfunction predicted psychological distress in psychiatric nurses (R 2 = 0.363, F = 65.343, P < 0.01). The relationship between negative coping style and psychological distress was partially mediated by sleep quality, with the mediating effect accounting for 37.97% of the total effect. CONCLUSIONS Psychiatric nurses have a high rate of psychological distress, which is closely related to coping styles, and sleep quality has a certain regulatory effect.
Collapse
Affiliation(s)
- Juan Wang
- School of Public Health, Weifang Medical University, Weifang, China
| | - Zhongren Zheng
- School of Clinical Medicine, Jining Medical University, Jining, China
| | - Yingxue Tang
- School of Nursing, Weifang Medical University, Weifang, China
| | - Rui Zhang
- School of Nursing, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Qinghua Lu
- Department of Infection Management, Shandong Mental Health Center, Jinan, China
| | - Bin Wang
- Psychology Department, The Affiliated Provincial Hospital of Shandong First Medical University (Shandong Provincial Hospital), Jinan, China
| | - Qihua Sun
- Shandong Mental Health Center, Jinan, China
| |
Collapse
|
3
|
Lee MJ, Lee WT, Jeon CJ. Organization of Neuropeptide Y-Immunoreactive Cells in the Mongolian gerbil ( Meriones unguiculatus) Visual Cortex. Cells 2021; 10:cells10020311. [PMID: 33546356 PMCID: PMC7913502 DOI: 10.3390/cells10020311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 01/03/2023] Open
Abstract
Neuropeptide Y (NPY) is found throughout the central nervous system where it appears to be involved in the regulation of a wide range of physiological effects. The Mongolian gerbil, a member of the rodent family Muridae, is a diurnal animal and has been widely used in various aspects of biomedical research. This study was conducted to investigate the organization of NPY-immunoreactive (IR) neurons in the gerbil visual cortex using NPY immunocytochemistry. The highest density of NPY-IR neurons was located in layer V (50.58%). The major type of NPY-IR neuron was a multipolar round/oval cell type (44.57%). Double-color immunofluorescence revealed that 89.55% and 89.95% of NPY-IR neurons contained gamma-aminobutyric acid (GABA) or somatostatin, respectively. Several processes of the NPY-IR neurons surrounded GABAergic interneurons. Although 30.81% of the NPY-IR neurons contained calretinin, NPY and calbindin-D28K-IR neurons were co-expressed rarely (3.75%) and NPY did not co-express parvalbumin. Triple-color immunofluorescence with anti-GluR2 or CaMKII antibodies suggested that some non-GABAergic NPY-IR neurons may make excitatory synaptic contacts. This study indicates that NPY-IR neurons have a notable architecture and are unique subpopulations of the interneurons of the gerbil visual cortex, which could provide additional valuable data for elucidating the role of NPY in the visual process in diurnal animals.
Collapse
|
4
|
Wong JJ, Chang DHF, Qi D, Men W, Gao JH, Lee TMC. The pontine-driven somatic gaze tract contributes to affective processing in humans. Neuroimage 2020; 213:116692. [PMID: 32135263 DOI: 10.1016/j.neuroimage.2020.116692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 11/15/2022] Open
Abstract
The relevance of subcortical structures for affective processing is not fully understood. Inspired by the gerbil retino-raphe pathway that has been shown to regulate affective behavior and previous human work showing that the pontine region is important for processing emotion, we asked whether well-established tracts in humans traveling between the eye and the brain stem contribute to functions beyond their conventionally understood roles. Here we report neuroimaging findings showing that optic chiasm-brain stem diffusivity predict responses reflecting perceived arousal and valence. Analyses of subsequent task-evoked connectivity further revealed that visual affective processing implicates the brain stem, particularly the pontine region at an early stage of the cascade, projecting to cortico-limbic regions in a feedforward manner. The optimal model implies that all intrinsic connections between the regions of interest are unidirectional and outwards from the pontine region. These findings suggest that affective processing implicates regions outside the cortico-limbic network. The involvement of a phylogenetically older locus in the pons that has consequences in oculomotor control may imply adaptive consequences of affect detection.
Collapse
Affiliation(s)
- Jing Jun Wong
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong; Laboratory of Neuropsychology, The University of Hong Kong, Hong Kong; Laboratory of Social Cognitive and Affective Neuroscience, The University of Hong Kong, Hong Kong
| | - Dorita H F Chang
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong; Department of Psychology, The University of Hong Kong, Hong Kong
| | - Di Qi
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong; Laboratory of Neuropsychology, The University of Hong Kong, Hong Kong; Laboratory of Social Cognitive and Affective Neuroscience, The University of Hong Kong, Hong Kong
| | - Weiwei Men
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Jia-Hong Gao
- Center for MRI Research and McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Tatia M C Lee
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong; Laboratory of Neuropsychology, The University of Hong Kong, Hong Kong; Laboratory of Social Cognitive and Affective Neuroscience, The University of Hong Kong, Hong Kong; Institute of Clinical Neuropsychology, The University of Hong Kong, Hong Kong; Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, China.
| |
Collapse
|
5
|
Daut RA, Fonken LK. Circadian regulation of depression: A role for serotonin. Front Neuroendocrinol 2019; 54:100746. [PMID: 31002895 PMCID: PMC9826732 DOI: 10.1016/j.yfrne.2019.04.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/13/2019] [Accepted: 04/15/2019] [Indexed: 01/11/2023]
Abstract
Synchronizing circadian (24 h) rhythms in physiology and behavior with the environmental light-dark cycle is critical for maintaining optimal health. Dysregulation of the circadian system increases susceptibility to numerous pathological conditions including major depressive disorder. Stress is a common etiological factor in the development of depression and the circadian system is highly interconnected to stress-sensitive neurotransmitter systems such as the serotonin (5-hydroxytryptamine, 5-HT) system. Thus, here we propose that stress-induced perturbation of the 5-HT system disrupts circadian processes and increases susceptibility to depression. In this review, we first provide an overview of the basic components of the circadian system. Next, we discuss evidence that circadian dysfunction is associated with changes in mood in humans and rodent models. Finally, we provide evidence that 5-HT is a critical factor linking dysregulation of the circadian system and mood. Determining how these two systems interact may provide novel therapeutic targets for depression.
Collapse
Affiliation(s)
- Rachel A Daut
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Laura K Fonken
- University of Texas at Austin, Division of Pharmacology and Toxicology, Austin, TX 78712, USA.
| |
Collapse
|
6
|
Mc Mahon B, Nørgaard M, Svarer C, Andersen SB, Madsen MK, Baaré WFC, Madsen J, Frokjaer VG, Knudsen GM. Seasonality-resilient individuals downregulate their cerebral 5-HT transporter binding in winter - A longitudinal combined 11C-DASB and 11C-SB207145 PET study. Eur Neuropsychopharmacol 2018; 28:1151-1160. [PMID: 30077433 DOI: 10.1016/j.euroneuro.2018.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 05/17/2018] [Accepted: 06/25/2018] [Indexed: 12/18/2022]
Abstract
We have recently shown that the emergence and severity of seasonal affective disorder (SAD) symptoms in the winter is associated with an increase in cerebral serotonin (5-HT) transporter (SERT) binding. Intriguingly, we also found that individuals resilient to SAD downregulate their cerebral SERT binding in the winter. In the present paper, we provide an analysis of the SERT- and 5-HT dynamics as indexed by 5-HT4 receptor (5-HT4R) binding related to successful stress coping. We included 46 11C-DASB positron emission tomography (PET) scans (N = 23, 13 women, age: 26 ± 6 years) and 14 11C-SB207145 PET scans (7 participants, 3 women, age: 25 ± 3 years) from 23 SAD-resilient Danes. Data was collected longitudinally in summer and winter. We found that compared to the summer, raphe nuclei and global brain SERT binding decreased significantly in the winter (praphe = 0.003 and pglobal = 0.003) and the two measures were positively correlated across seasons (summer: R2 = 0.33, p = .004, winter: R2 = 0.24, p = .018). A voxel-based analysis revealed prominent changes in SERT in clusters covering both angular gyri (0.0005 < pcorrected < 0.0016), prefrontal cortices (0.00087 < pcorrected < 0.0039) and the posterior temporal and adjacent occipital cortices (0.0001 < pcorrected < 0.0066). We did not observe changes in 5-HT4R binding, suggesting that 5-HT levels remained stable across seasons. We conclude that resilience to SAD is associated with a global downregulation of SERT levels in winter which serves to keep 5-HT levels across seasons.
Collapse
Affiliation(s)
- Brenda Mc Mahon
- Neurobiology Research Unit, Rigshospitalet and Center for Integrated Molecular Brain Imaging, Section 6931, Blegdamsvej 9, 2100 Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - Martin Nørgaard
- Neurobiology Research Unit, Rigshospitalet and Center for Integrated Molecular Brain Imaging, Section 6931, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Claus Svarer
- Neurobiology Research Unit, Rigshospitalet and Center for Integrated Molecular Brain Imaging, Section 6931, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Sofie B Andersen
- Neurobiology Research Unit, Rigshospitalet and Center for Integrated Molecular Brain Imaging, Section 6931, Blegdamsvej 9, 2100 Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Martin K Madsen
- Neurobiology Research Unit, Rigshospitalet and Center for Integrated Molecular Brain Imaging, Section 6931, Blegdamsvej 9, 2100 Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - William F C Baaré
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Kettegårds Allé 30, 2650 Hvidovre, Denmark
| | - Jacob Madsen
- PET and Cyclotron Unit, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Vibe G Frokjaer
- Neurobiology Research Unit, Rigshospitalet and Center for Integrated Molecular Brain Imaging, Section 6931, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Gitte M Knudsen
- Neurobiology Research Unit, Rigshospitalet and Center for Integrated Molecular Brain Imaging, Section 6931, Blegdamsvej 9, 2100 Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
7
|
Fu L, Fung FK, Lo ACY, Chan YK, So KF, Wong IYH, Shih KC, Lai JSM. Transcorneal Electrical Stimulation Inhibits Retinal Microglial Activation and Enhances Retinal Ganglion Cell Survival After Acute Ocular Hypertensive Injury. Transl Vis Sci Technol 2018; 7:7. [PMID: 29862139 PMCID: PMC5976234 DOI: 10.1167/tvst.7.3.7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 04/08/2018] [Indexed: 12/27/2022] Open
Abstract
PURPOSE To investigate the effect of transcorneal electrical stimulation (TcES) on retinal ganglion cell (RGC) function and survival after acute ocular hypertension-related retinal injury in gerbil eyes. METHODS Gerbil eyes were subjected to acute ocular hypertensive injury (80 mm Hg for 60 minutes). In the treatment group, TcES was applied to the surgical eye immediately and then twice weekly for a total of 1 month. In the control group, sham TcES was given to the surgical eye at the same time points. Retinal function was assessed and compared between groups using flash electroretinography. For histological analysis, the number of RGC and microglial cells were counted by immunofluorescence staining after the gerbils were sacrificed on day 7 and day 28. Real-time polymerase chain reaction and western blot analysis were conducted to compare expression of interleukin (IL)-10, IL-6, COX-2, tumor necrosis factor (TNF)-α, and NF-κB phosphorylation among groups. RESULTS TcES-treated eyes had significantly higher RGC survival at 1 month compared to controls. This was associated with RGC function. Furthermore, TcES-treated eyes were shown to have increased IL-10 expression, with a corresponding reduction in IL-6 and COX-2 expression as well as reduction in NF-κB phosphorylation. This was associated with a suppression in microglial cell activation in TcES-treated eyes. CONCLUSIONS Early treatment with TcES in gerbils protected the RGC from secondary damage and preserved retinal function in acute ocular hypertensive injury through modulation of the microglial-cell activated local inflammatory response. TRANSLATIONAL RELEVANCE Our study strengthens the argument for translating TcES as a viable treatment in acute glaucoma.
Collapse
Affiliation(s)
- Lin Fu
- Affiliated Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR
| | - Frederic K. Fung
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR
| | - Amy Cheuk-Yin Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR
| | - Yau-Kei Chan
- Department of Mechanical Engineering, Faculty of Engineering, University of Hong Kong, Hong Kong SAR
| | - Kwok-Fai So
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR
| | - Ian Yat-Hin Wong
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR
| | - Kendrick Co Shih
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR
| | - Jimmy Shiu-Ming Lai
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR
| |
Collapse
|
8
|
Morphological properties of medial amygdala-projecting retinal ganglion cells in the Mongolian gerbil. SCIENCE CHINA-LIFE SCIENCES 2018; 61:644-650. [PMID: 29564599 DOI: 10.1007/s11427-017-9275-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 01/16/2018] [Indexed: 10/17/2022]
Abstract
The amygdala is a limbic structure that is involved in many brain functions, including emotion, learning and memory. It has been reported that melanopsin-expressing retinal ganglion cells (ipRGCs) innervate the medial amygdala (MeA). However, whether conventional RGCs (cRGCs) project to the MeA remains unknown. The goal of this study was to determine if cRGCs project to the MeA and to determine the morphological properties of MeA-projecting RGCs (MeA-RGCs). Retrogradely labeled RGCs in whole-mount retinas were intracellularly injected to reveal their dendritic morphologies. Immunohistochemical staining was performed to selectively label ipRGCs (MeA-ipRGCs) and cRGCs (MeA-cRGCs). The results showed that 95.7% of the retrogradely labeled cells were cRGCs and that the rest were ipRGCs. Specifically, MeA-cRGCs consist of two morphological types. The majority of them exhibit small but dense dendritic fields and diffuse ramification patterns as previously reported in RGB2 (95%), while the rest exhibit small but sparse dendritic branching patterns resembling those of RGB3 cells (5%). MeA-ipRGCs consist of M1 and M2 subtypes. The MeA-RGCs showed an even retinal distribution patterns. The soma and dendritic field sizes of the MeA-RGCs did not vary with eccentricity. In conclusion, the present results suggest that MeA-RGCs are structurally heterogeneous. These direct RGCs that input to the MeA could be important for regulating amygdala functions.
Collapse
|
9
|
Li X, Li X. The Antidepressant Effect of Light Therapy from Retinal Projections. Neurosci Bull 2018; 34:359-368. [PMID: 29430586 DOI: 10.1007/s12264-018-0210-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 11/08/2017] [Indexed: 01/01/2023] Open
Abstract
Observations from clinical trials have frequently demonstrated that light therapy can be an effective therapy for seasonal and non-seasonal major depression. Despite the fact that light therapy is known to have several advantages over antidepressant drugs like a low cost, minimal side-effects, and fast onset of therapeutic effect, the mechanism underlying light therapy remains unclear. So far, it is known that light therapy modulates mood states and cognitive functions, involving circadian and non-circadian pathways from retinas into brain. In this review, we discuss the therapeutic effect of light on major depression and its relationship to direct retinal projections in the brain. We finally emphasize the function of the retino-raphe projection in modulating serotonin activity, which probably underlies the antidepressant effect of light therapy for depression.
Collapse
Affiliation(s)
- Xiaotao Li
- The Brain Cognition and Brain Disease Institute for Collaborative Research of SIAT at CAS and the McGovern Institute at MIT, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China. .,McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Xiang Li
- The Brain Cognition and Brain Disease Institute for Collaborative Research of SIAT at CAS and the McGovern Institute at MIT, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
10
|
Postnatal evolution of the ciliary processes in the gerbil (Meriones unguiculatus): a structural, ultrastructural and morphometric study. ZOOMORPHOLOGY 2017. [DOI: 10.1007/s00435-017-0378-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Huang L, Yuan T, Tan M, Xi Y, Hu Y, Tao Q, Zhao Z, Zheng J, Han Y, Xu F, Luo M, Sollars PJ, Pu M, Pickard GE, So KF, Ren C. A retinoraphe projection regulates serotonergic activity and looming-evoked defensive behaviour. Nat Commun 2017; 8:14908. [PMID: 28361990 PMCID: PMC5381010 DOI: 10.1038/ncomms14908] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/13/2017] [Indexed: 01/19/2023] Open
Abstract
Animals promote their survival by avoiding rapidly approaching objects that indicate threats. In mice, looming-evoked defensive responses are triggered by the superior colliculus (SC) which receives direct retinal inputs. However, the specific neural circuits that begin in the retina and mediate this important behaviour remain unclear. Here we identify a subset of retinal ganglion cells (RGCs) that controls mouse looming-evoked defensive responses through axonal collaterals to the dorsal raphe nucleus (DRN) and SC. Looming signals transmitted by DRN-projecting RGCs activate DRN GABAergic neurons that in turn inhibit serotoninergic neurons. Moreover, activation of DRN serotoninergic neurons reduces looming-evoked defensive behaviours. Thus, a dedicated population of RGCs signals rapidly approaching visual threats and their input to the DRN controls a serotonergic self-gating mechanism that regulates innate defensive responses. Our study provides new insights into how the DRN and SC work in concert to extract and translate visual threats into defensive behavioural responses.
Collapse
Affiliation(s)
- Lu Huang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, China.,Guangdong key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou 510632, China
| | - Tifei Yuan
- School of Psychology, Nanjing Normal University, Nanjing 210097, China
| | - Minjie Tan
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, China.,Guangdong key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou 510632, China
| | - Yue Xi
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, China.,Guangdong key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou 510632, China
| | - Yu Hu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, China.,Guangdong key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou 510632, China
| | - Qian Tao
- Psychology Department, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Zhikai Zhao
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, China.,Guangdong key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou 510632, China
| | - Jiajun Zheng
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, China.,Guangdong key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou 510632, China
| | - Yushui Han
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, China.,Guangdong key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou 510632, China
| | - Fuqiang Xu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Minmin Luo
- National Institute of Biological Sciences, Zhongguancun Life Science, Park 7 Science Park Road, Beijing 102206, China
| | - Patricia J Sollars
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, Nebraska 68583, USA
| | - Mingliang Pu
- Department of Anatomy, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Gary E Pickard
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, Nebraska 68583, USA.,Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Kwok-Fai So
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, China.,Guangdong key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou 510632, China.,Department of Ophthalmology and State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Chaoran Ren
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, China.,Guangdong key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou 510632, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| |
Collapse
|
12
|
ON and OFF retinal ganglion cells differentially regulate serotonergic and GABAergic activity in the dorsal raphe nucleus. Sci Rep 2016; 6:26060. [PMID: 27181078 PMCID: PMC4867631 DOI: 10.1038/srep26060] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/27/2016] [Indexed: 11/08/2022] Open
Abstract
The dorsal raphe nucleus (DRN), the major source of serotonergic input to the forebrain, receives excitatory input from the retina that can modulate serotonin levels and depressive-like behavior. In the Mongolian gerbil, retinal ganglion cells (RGCs) with alpha-like morphological and Y-like physiological properties innervate the DRN with ON DRN-projecting RGCs out numbering OFF DRN-projecting RGCs. The DRN neurons targeted by ON and OFF RGCs are unknown. To explore retino-raphe anatomical organization, retinal afferents labeled with Cholera toxin B were examined for association with the postsynaptic protein PSD-95. Synaptic associations between retinal afferents and DRN serotonergic and GABAergic neurons were observed. To explore retino-raphe functional organization, light-evoked c-fos expression was examined. Light significantly increased the number of DRN serotonergic and GABAergic cells expressing c-Fos. When ON RGCs were rendered silent while enhancing the firing rate of OFF RGCs, c-Fos expression was greatly increased in DRN serotonergic neurons suggesting that OFF DRN-projecting RGCs predominately activate serotonergic neurons whereas ON DRN-projecting RGCs mainly target GABAergic neurons. Direct glutamatergic retinal input to DRN 5-HT neurons contributes to the complex excitatory drive regulating these cells. Light, via the retinoraphe pathway can modify DRN 5-HT neuron activity which may play a role in modulating affective behavior.
Collapse
|
13
|
Pickard GE, So KF, Pu M. Dorsal raphe nucleus projecting retinal ganglion cells: Why Y cells? Neurosci Biobehav Rev 2015; 57:118-31. [PMID: 26363667 PMCID: PMC4646079 DOI: 10.1016/j.neubiorev.2015.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 06/30/2015] [Accepted: 08/01/2015] [Indexed: 10/23/2022]
Abstract
Retinal ganglion Y (alpha) cells are found in retinas ranging from frogs to mice to primates. The highly conserved nature of the large, fast conducting retinal Y cell is a testament to its fundamental task, although precisely what this task is remained ill-defined. The recent discovery that Y-alpha retinal ganglion cells send axon collaterals to the serotonergic dorsal raphe nucleus (DRN) in addition to the lateral geniculate nucleus (LGN), medial interlaminar nucleus (MIN), pretectum and the superior colliculus (SC) has offered new insights into the important survival tasks performed by these cells with highly branched axons. We propose that in addition to its role in visual perception, the Y-alpha retinal ganglion cell provides concurrent signals via axon collaterals to the DRN, the major source of serotonergic afferents to the forebrain, to dramatically inhibit 5-HT activity during orientation or alerting/escape responses, which dis-facilitates ongoing tonic motor activity while dis-inhibiting sensory information processing throughout the visual system. The new data provide a fresh view of these evolutionarily old retinal ganglion cells.
Collapse
Affiliation(s)
- Gary E Pickard
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE, 68583, United States; Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, United States; GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Kwok-Fai So
- Department of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China; Department of Ophthalmology, The University of Hong Kong, Hong Kong, China; GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China; State Key Laboratory for Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China.
| | - Mingliang Pu
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China; Key Laboratory on Machine Perception (Ministry of Education), Peking University, Beijing, China; Key Laboratory for Visual Impairment and Restoration (Ministry of Education), Peking University, Beijing, China.
| |
Collapse
|
14
|
Jeong MJ, Jeon CJ. Localization of melanopsin-immunoreactive cells in the Mongolian gerbil retina. Neurosci Res 2015; 100:6-16. [PMID: 26083722 DOI: 10.1016/j.neures.2015.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/19/2015] [Accepted: 06/04/2015] [Indexed: 12/20/2022]
Abstract
Melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) are involved in circadian rhythm and pupil responses. The purpose of this study was to reveal the organization of melanopsin-immunoreactive (IR) neurons in the Mongolian gerbil retina using immunocytochemistry. Melanopsin-IR cells were primarily located in the ganglion cell layer (GCL; M1c; 75.15%). Many melanopsin-IR cells were also observed in the inner nuclear layer (INL; M1d; 22.28%). The M1c and M1d cell types extended their dendritic processes into the OFF sublayer of the inner plexiform layer (IPL). We rarely observed bistratified cells (M3; 2.56%) with dendrites in both the ON and OFF sublayers of the IPL. Surprisingly, we did not observe M2 cells which are well observed in other rodents. Melanopsin-IR cell somas were small to medium in size and had large dendritic fields. They had 2-5 primary dendrites that branched sparingly and had varicosities. Melanopsin-IR cell density was very low: they comprised 0.50% of the total ganglion cell population. Moreover, none of the melanopsin-IR cells expressed calbindin-D28K, calretinin, or parvalbumin. These results suggest that in the Mongolian gerbil, melanopsin-IR cells are expressed in a very small RGC subpopulation, and are independent of calcium-binding proteins-containing RGCs.
Collapse
Affiliation(s)
- Mi-Jin Jeong
- Department of Biology, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University, Daegu 702-701, South Korea
| | - Chang-Jin Jeon
- Department of Biology, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University, Daegu 702-701, South Korea.
| |
Collapse
|
15
|
Reifler AN, Chervenak AP, Dolikian ME, Benenati BA, Meyers BS, Demertzis ZD, Lynch AM, Li BY, Wachter RD, Abufarha FS, Dulka EA, Pack W, Zhao X, Wong KY. The rat retina has five types of ganglion-cell photoreceptors. Exp Eye Res 2015; 130:17-28. [PMID: 25450063 PMCID: PMC4276437 DOI: 10.1016/j.exer.2014.11.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/27/2014] [Accepted: 11/17/2014] [Indexed: 01/30/2023]
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) are inner retinal photoreceptors that mediate non-image-forming visual functions, e.g. pupillary constriction, regulation of pineal melatonin release, and circadian photoentrainment. Five types of ipRGCs were recently discovered in mouse, but whether they exist in other mammals remained unknown. We report that the rat also has five types of ipRGCs, whose morphologies match those of mouse ipRGCs; this is the first demonstration of all five cell types in a non-mouse species. Through immunostaining and λmax measurements, we showed that melanopsin is likely the photopigment of all rat ipRGCs. The various cell types exhibited diverse spontaneous spike rates, with the M1 type spiking the least and M4 spiking the most, just like we had observed for their mouse counterparts. Also similar to mouse, all ipRGCs in rat generated not only sluggish intrinsic photoresponses but also fast, synaptically driven ones. However, we noticed two significant differences between these species. First, whereas we learned previously that all mouse ipRGCs had equally sustained synaptic light responses, rat M1 cells' synaptic photoresponses were far more transient than those of M2-M5. Since M1 cells provide all input to the circadian clock, this rat-versus-mouse discrepancy could explain the difference in photoentrainment threshold between mouse and other species. Second, rat ipRGCs' melanopsin-based spiking photoresponses could be classified into three varieties, but only two were discerned for mouse ipRGCs. This correlation of spiking photoresponses with cell types will help researchers classify ipRGCs in multielectrode-array (MEA) spike recordings.
Collapse
Affiliation(s)
- Aaron N Reifler
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Andrew P Chervenak
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Michael E Dolikian
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Brian A Benenati
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Benjamin S Meyers
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Zachary D Demertzis
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Andrew M Lynch
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Benjamin Y Li
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Rebecca D Wachter
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Fady S Abufarha
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Eden A Dulka
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Weston Pack
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Xiwu Zhao
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Kwoon Y Wong
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA; Department of Molecular, Cellular & Developmental Biology, University of Michigan, Ann Arbor, MI 48105, USA.
| |
Collapse
|
16
|
Cui Q, Ren C, Sollars PJ, Pickard GE, So KF. The injury resistant ability of melanopsin-expressing intrinsically photosensitive retinal ganglion cells. Neuroscience 2014; 284:845-853. [PMID: 25446359 PMCID: PMC4637166 DOI: 10.1016/j.neuroscience.2014.11.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/17/2014] [Accepted: 11/04/2014] [Indexed: 12/19/2022]
Abstract
Neurons in the mammalian retina expressing the photopigment melanopsin have been identified as a class of intrinsically photosensitive retinal ganglion cells (ipRGCs). This discovery more than a decade ago has opened up an exciting new field of retinal research, and following the initial identification of photosensitive ganglion cells, several subtypes have been described. A number of studies have shown that ipRGCs subserve photoentrainment of circadian rhythms. They also influence other non-image forming functions of the visual system, such as the pupillary light reflex, sleep, cognition, mood, light aversion and development of the retina. These novel photosensitive neurons also influence form vision by contributing to contrast detection. Furthermore, studies have shown that ipRGCs are more injury-resistant following optic nerve injury, in animal models of glaucoma, and in patients with mitochondrial optic neuropathies, i.e., Leber’s hereditary optic neuropathy and dominant optic atrophy. There is also an indication that these cells may be resistant to glutamate-induced excitotoxicity. Herein we provide an overview of ipRGCs and discuss the injury-resistant character of these neurons under certain pathological and experimental conditions.
Collapse
Affiliation(s)
- Q Cui
- Guangdong-HongKong-Macau Institute of CNS Regeneration, Jinan University, Guangdong, PR China; Guangdong Medical Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, PR China; GHM Collaboration and Innovation Center for Tissue Regeneration and Repair, Jinan University, Guangzhou, PR China
| | - C Ren
- Guangdong-HongKong-Macau Institute of CNS Regeneration, Jinan University, Guangdong, PR China; Guangdong Medical Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, PR China; GHM Collaboration and Innovation Center for Tissue Regeneration and Repair, Jinan University, Guangzhou, PR China
| | - P J Sollars
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE 68583, USA
| | - G E Pickard
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE 68583, USA; Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - K-F So
- Guangdong-HongKong-Macau Institute of CNS Regeneration, Jinan University, Guangdong, PR China; Guangdong Medical Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, PR China; GHM Collaboration and Innovation Center for Tissue Regeneration and Repair, Jinan University, Guangzhou, PR China; Department of Ophthalmology, University of Hong Kong, Hong Kong.
| |
Collapse
|
17
|
Ren C, Pu M, Cui Q, So KF. Dendritic morphology of caudal periaqueductal gray projecting retinal ganglion cells in Mongolian gerbil (Meriones unguiculatus). PLoS One 2014; 9:e103306. [PMID: 25054882 PMCID: PMC4108400 DOI: 10.1371/journal.pone.0103306] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/27/2014] [Indexed: 12/01/2022] Open
Abstract
In this study we investigated the morphological features of the caudal periaqueductal gray (cPAG)-projecting retinal ganglion cells (RGCs) in Mongolian gerbils using retrograde labeling, in vitro intracellular injection, confocal microscopy and three-dimensional reconstruction approaches. cPAG-projecting RGCs exhibit small somata (10–17 µm) and irregular dendritic fields (201–298 µm). Sizes of somata and dendritic fields do not show obvious variation at different distance from the optic disk (eccentricity). Dendrites are moderately branched. Morphological analysis (n = 23) reveals that cPAG-projecting RGCs ramified in sublamina a and b in the inner plexiform layer. These cells exhibit different stratification patterns based on the thickness of dendritic bands in sublaminas a and b: majority of analyzed cells (16 out of 23) have two bands of arborizations share similar thickness. The rest of analyzed cells (7 out of 23) exhibit thinner band in sublamina a than in sublamina b. Together, the present study suggests that cPAG of Mongolian gerbil could receive direct retinal inputs from two types of bistratified RGCs. Furthermore, a small subset of melanopsin-expressing RGCs (total 41 in 6 animals) is shown to innervate the rostral PAG (rPAG). Functional characteristics of these non-visual center projecting RGCs remain to be determined.
Collapse
Affiliation(s)
- Chaoran Ren
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, PR China
- Guangdong Medical Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, PR China
- GHM Collaboration and Innovation Center for Tissue Regeneration and Repair, Jinan University, Guangzhou, PR China
- * E-mail: (CR); (K-FS)
| | - Mingliang Pu
- Department of Anatomy, School of Basic Medical Sciences, Peking University, Beijing, PR China
- Key Laboratory on Machine Perception (Ministry of Education), Peking University, Beijing, PR China
- Key Laboratory for Visual Impairment and Restoration (Ministry of Education), Peking University, Beijing, PR China
| | - Qi Cui
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, PR China
- Guangdong Medical Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, PR China
- GHM Collaboration and Innovation Center for Tissue Regeneration and Repair, Jinan University, Guangzhou, PR China
| | - Kwok-Fai So
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, PR China
- Guangdong Medical Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, PR China
- GHM Collaboration and Innovation Center for Tissue Regeneration and Repair, Jinan University, Guangzhou, PR China
- Department of Ophthalmology and State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, PR China
- * E-mail: (CR); (K-FS)
| |
Collapse
|
18
|
Differential progression of structural and functional alterations in distinct retinal ganglion cell types in a mouse model of glaucoma. J Neurosci 2013; 33:17444-57. [PMID: 24174678 DOI: 10.1523/jneurosci.5461-12.2013] [Citation(s) in RCA: 209] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Intraocular pressure (IOP) elevation is a principal risk factor for glaucoma. Using a microbead injection technique to chronically raise IOP for 15 or 30 d in mice, we identified the early changes in visual response properties of different types of retinal ganglion cells (RGCs) and correlated these changes with neuronal morphology before cell death. Microbead-injected eyes showed reduced optokinetic tracking as well as cell death. In such eyes, multielectrode array recordings revealed that four RGC types show diverse alterations in their light responses upon IOP elevation. OFF-transient RGCs exhibited a more rapid decline in both structural and functional organizations compared with other RGCs. In contrast, although the light-evoked responses of OFF-sustained RGCs were perturbed, the dendritic arbor of this cell type remained intact. ON-transient and ON-sustained RGCs had normal functional receptive field sizes but their spontaneous and light-evoked firing rates were reduced. ON- and OFF-sustained RGCs lost excitatory synapses across an otherwise structurally normal dendritic arbor. Together, our observations indicate that there are changes in spontaneous activity and light-evoked responses in RGCs before detectable dendritic loss. However, when dendrites retract, we found corresponding changes in receptive field center size. Importantly, the effects of IOP elevation are not uniformly manifested in the structure and function of diverse RGC populations, nor are distinct RGC types perturbed within the same time-frame by such a challenge.
Collapse
|
19
|
Changes in retinal morphology, electroretinogram and visual behavior after transient global ischemia in adult rats. PLoS One 2013; 8:e65555. [PMID: 23776500 PMCID: PMC3679137 DOI: 10.1371/journal.pone.0065555] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 04/25/2013] [Indexed: 12/26/2022] Open
Abstract
The retina is a light-sensitive tissue of the central nervous system that is vulnerable to ischemia. The pathological mechanism underlying retinal ischemic injury is not fully understood. The purpose of this study was to investigate structural and functional changes of different types of rat retinal neurons and visual behavior following transient global ischemia. Retinal ischemia was induced using a 4-vessel occlusion model. Compared with the normal group, the number of βIII-tubulin positive retinal ganglion cells and calretinin positive amacrine cells were reduced from 6 h to 48 h following ischemia. The number of recoverin positive cone bipolar cells transiently decreased at 6 h and 12 h after ischemia. However, the fluorescence intensity of rhodopsin positive rod cells and fluorescent peanut agglutinin positive cone cells did not change after reperfusion. An electroretinogram recording showed that the a-wave, b-wave, oscillatory potentials and the photopic negative response were completely lost during ischemia. The amplitudes of the a- and b-waves were partially recovered at 1 h after ischemia, and returned to the control level at 48 h after reperfusion. However, the amplitudes of oscillatory potentials and the photopic negative response were still reduced at 48 h following reperfusion. Visual behavior detection showed there was no significant change in the time spent in the dark chamber between the control and 48 h group, but the distance moved, mean velocity in the black and white chambers and intercompartmental crosses were reduced at 48 h after ischemia. These results indicate that transient global ischemia induces dysfunction of retinal ganglion cells and amacrine cells at molecular and ERG levels. However, transient global ischemia in a 17 minute duration does not appear to affect photoreceptors.
Collapse
|
20
|
Zhang Q, Vuong H, Huang X, Wang Y, Brecha NC, Pu M, Gao J. Melanopsin-expressing retinal ganglion cell loss and behavioral analysis in the Thy1-CFP-DBA/2J mouse model of glaucoma. SCIENCE CHINA-LIFE SCIENCES 2013; 56:720-30. [PMID: 23729182 DOI: 10.1007/s11427-013-4493-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 04/29/2013] [Indexed: 12/11/2022]
Abstract
In this study, the role of melanopsin-expressing retinal ganglion cells (mRGCs) in the glaucoma-induced depressive behavioral response pattern was investigated. The CFP-D2 transgenic glaucoma animal model from five age groups was used in this study. Immunohistochemical labeling, quantitative analysis of mRGC morphology, open field test (OFT), and statistical analysis were used. In comparison with C57 BL/6 mice, the age-matched CFP-D2 mice had significantly elevated intraocular pressure (IOP). We observed parallel morphological changes in the retina, including a reduction in the density of cyan fluorescent protein-(CFP) expressing cells (cells mm(-2) at 2 months of age, 1309±26; 14 months, 878±30, P<0.001), mRGCs (2 months, 48±3; 14 months, 19±4, P<0.001), Brn3b-expressing RGCs (2 months, 1283±80; 14 months, 950±31, P <0.001), Brn-3b expressing mRGCs (5 months, 50.17%±5.5%; 14 months, 12.61%±3.8%, P<0.001), and reduction in the dendritic field size of mRGCs (mm(2) at 2 months, 0.077±0.015; 14 months, 0.065±0.015, P<0.05). CFP-D2 mice had hyperactive locomotor activity patterns based on OFT findings of the total distance traveled, number of entries into the center, and time spent in the center of the testing apparatus. The glaucoma induced hyperactive response pattern could be associated with dysfunctional mRGCs, most likely Brn-3b-positive mRGCs in CFP-D2 mice.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Anatomy, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | | | | | | | | | | | | |
Collapse
|
21
|
Ren C, Luan L, Wui-Man Lau B, Huang X, Yang J, Zhou Y, Wu X, Gao J, Pickard GE, So KF, Pu M. Direct retino-raphe projection alters serotonergic tone and affective behavior. Neuropsychopharmacology 2013; 38:1163-75. [PMID: 23370156 PMCID: PMC3656380 DOI: 10.1038/npp.2013.35] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 12/24/2012] [Accepted: 01/28/2013] [Indexed: 01/12/2023]
Abstract
Light is a powerful modulator of higher-order cognitive processes such as mood but it remains unclear which neural circuits mediate the impact of light on affective behavior. We found that light deprivation produces a depressive-like behavioral state that is reversed by activation of direct retinal signals to the serotonergic dorsal raphe nucleus (DRN) in a manner equivalent to treatment with the selective serotonin reuptake inhibitor fluoxetine. Surprisingly, the DRN-projecting retinal ganglion cells (RGCs) are indistinguishable from the classic alpha/Y-like RGC type that contributes to image-forming visual pathways. Silencing RGC firing or specific immunotoxin ablation of DRN-projecting RGCs increased depressive-like behavior and reduced serotonin levels in the DRN. Serotonin has a key role in the pathophysiology of depression, and these results demonstrate that retino-raphe signals modulate DRN serotonergic tone and affective behavior.
Collapse
Affiliation(s)
- Chaoran Ren
- Department of Anatomy, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory on Machine Perception (Ministry of Education), Peking University, Beijing, China
- Key Laboratory for Visual Impairment and Restoration (Ministry of Education), Peking University, Beijing, China
| | - Liju Luan
- Department of Anatomy, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory on Machine Perception (Ministry of Education), Peking University, Beijing, China
- Key Laboratory for Visual Impairment and Restoration (Ministry of Education), Peking University, Beijing, China
| | - Benson Wui-Man Lau
- Department of Anatomy and Research Center of Heart, Brain, Hormone and Healthy Aging, LKS Faculty of Medicine, Pokfulam, Hong Kong, China
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Xin Huang
- Department of Anatomy, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory on Machine Perception (Ministry of Education), Peking University, Beijing, China
- Key Laboratory for Visual Impairment and Restoration (Ministry of Education), Peking University, Beijing, China
| | - Jian Yang
- Department of Anatomy and Research Center of Heart, Brain, Hormone and Healthy Aging, LKS Faculty of Medicine, Pokfulam, Hong Kong, China
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Yuan Zhou
- Department of Anatomy, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory on Machine Perception (Ministry of Education), Peking University, Beijing, China
- Key Laboratory for Visual Impairment and Restoration (Ministry of Education), Peking University, Beijing, China
| | - Xihong Wu
- Key Laboratory for Visual Impairment and Restoration (Ministry of Education), Peking University, Beijing, China
- Department of Machine Intelligence, Peking University, Beijing, China
| | - Jie Gao
- Department of Anatomy, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory on Machine Perception (Ministry of Education), Peking University, Beijing, China
- Key Laboratory for Visual Impairment and Restoration (Ministry of Education), Peking University, Beijing, China
| | - Gary E Pickard
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln Lincoln, NE, USA
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kwok-Fai So
- Department of Anatomy and Research Center of Heart, Brain, Hormone and Healthy Aging, LKS Faculty of Medicine, Pokfulam, Hong Kong, China
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Mingliang Pu
- Department of Anatomy, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory on Machine Perception (Ministry of Education), Peking University, Beijing, China
- Key Laboratory for Visual Impairment and Restoration (Ministry of Education), Peking University, Beijing, China
| |
Collapse
|
22
|
Form and function of the M4 cell, an intrinsically photosensitive retinal ganglion cell type contributing to geniculocortical vision. J Neurosci 2012; 32:13608-20. [PMID: 23015450 DOI: 10.1523/jneurosci.1422-12.2012] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The photopigment melanopsin confers photosensitivity upon a minority of retinal output neurons. These intrinsically photosensitive retinal ganglion cells (ipRGCs) are more diverse than once believed, comprising five morphologically distinct types, M1 through M5. Here, in mouse retina, we provide the first in-depth characterization of M4 cells, including their structure, function, and central projections. M4 cells apparently correspond to ON α cells of earlier reports, and are easily distinguished from other ipRGCs by their very large somata. Their dendritic arbors are more radiate and highly branched than those of M1, M2, or M3 cells. The melanopsin-based intrinsic photocurrents of M4 cells are smaller than those of M1 and M2 cells, presumably because melanopsin is more weakly expressed; we can detect it immunohistochemically only with strong amplification. Like M2 cells, M4 cells exhibit robust, sustained, synaptically driven ON responses and dendritic stratification in the ON sublamina of the inner plexiform layer. However, their stratification patterns are subtly different, with M4 dendrites positioned just distal to those of M2 cells and just proximal to the ON cholinergic band. M4 receptive fields are large, with an ON center, antagonistic OFF surround and nonlinear spatial summation. Their synaptically driven photoresponses lack direction selectivity and show higher ultraviolet sensitivity in the ventral retina than in the dorsal retina, echoing the topographic gradient in S- and M-cone opsin expression. M4 cells are readily labeled by retrograde transport from the dorsal lateral geniculate nucleus and thus likely contribute to the pattern vision that persists in mice lacking functional rods and cones.
Collapse
|
23
|
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) respond to light in the absence of all rod and cone photoreceptor input. The existence of these ganglion cell photoreceptors, although predicted from observations scattered over many decades, was not established until it was shown that a novel photopigment, melanopsin, was expressed in retinal ganglion cells of rodents and primates. Phototransduction in mammalian ipRGCs more closely resembles that of invertebrate than vertebrate photoreceptors and appears to be mediated by transient receptor potential channels. In the retina, ipRGCs provide excitatory drive to dopaminergic amacrine cells and ipRGCs are coupled to GABAergic amacrine cells via gap junctions. Several subtypes of ipRGC have been identified in rodents based on their morphology, physiology and expression of molecular markers. ipRGCs convey irradiance information centrally via the optic nerve to influence several functions including photoentrainment of the biological clock located in the hypothalamus, the pupillary light reflex, sleep and perhaps some aspects of vision. In addition, ipRGCs may also contribute irradiance signals that interface directly with the autonomic nervous system to regulate rhythmic gene activity in major organs of the body. Here we review the early work that provided the motivation for searching for a new mammalian photoreceptor, the ground-breaking discoveries, current progress that continues to reveal the unusual properties of these neuron photoreceptors, and directions for future investigation.
Collapse
Affiliation(s)
- Gary E Pickard
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE 68583, USA.
| | | |
Collapse
|