1
|
Kura B, Kindernay L, Singla D, Dulova U, Bartekova M. Mechanistic insight into the role of cardiac-enriched microRNAs in diabetic heart injury. Am J Physiol Heart Circ Physiol 2025; 328:H865-H884. [PMID: 40033927 PMCID: PMC12069993 DOI: 10.1152/ajpheart.00736.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/12/2024] [Accepted: 02/26/2025] [Indexed: 03/05/2025]
Abstract
Cardiovascular complications, particularly diabetic cardiomyopathy (DCM), are the primary causes of morbidity and mortality among individuals with diabetes. Hyperglycemia associated with diabetes leads to cardiomyocyte hypertrophy, apoptosis, and myocardial fibrosis, culminating in heart failure (HF). Patients with diabetes face a 2-4 times greater risk of developing HF compared with those without diabetes. Consequently, there is a growing interest in exploring the molecular mechanisms that contribute to the development of DCM. MicroRNAs (miRNAs) are short, single-stranded, noncoding RNA molecules that participate in the maintenance of physiological homeostasis through the regulation of essential processes such as metabolism, cell proliferation, and apoptosis. At the posttranscriptional level, miRNAs modulate gene expression by binding directly to genes' mRNAs. Multiple cardiac-enriched miRNAs were reported to be dysregulated under diabetic conditions. Different studies revealed the role of specific miRNAs in the pathogenesis of diabetes and related cardiovascular complications, including cardiomyocyte hypertrophy and fibrosis, mitochondrial dysfunction, metabolic impairment, inflammatory response, or cardiomyocyte death. Circulating miRNAs have been shown to represent the potential biomarkers for early detection of diabetic heart injury. A deeper understanding of miRNAs and their role in diabetes-related pathophysiological processes could lead to new therapeutic strategies for addressing cardiac complications associated with diabetes.
Collapse
Affiliation(s)
- Branislav Kura
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lucia Kindernay
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Dinender Singla
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, USA
| | - Ulrika Dulova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Monika Bartekova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
2
|
Angelopoulos A, Oikonomou E, Antonopoulos A, Theofilis P, Zisimos K, Katsarou O, Gazouli M, Lazaros G, Papanikolaou P, Siasos G, Tousoulis D, Tsioufis K, Vlachopoulos C. Expression of Circulating miR-21 and -29 and their Association with Myocardial Fibrosis in Hypertrophic Cardiomyopathy. Curr Med Chem 2024; 31:3987-3996. [PMID: 38299392 DOI: 10.2174/0109298673286017240103073130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 02/02/2024]
Abstract
BACKGROUND Hypertrophic Cardiomyopathy (HCM) is characterized by myocardial hypertrophy, fibrosis, and sarcomeric disarray. OBJECTIVE To evaluate the expression levels of circulating miR-21 and -29 in patients with HCM and their association with clinical characteristics and myocardial fibrosis. METHODS In this case-control study, 27 subjects with HCM, 13 subjects with hypertensive cardiomyopathy, and 10 control subjects were enrolled. Evaluation of patients' functional capacity was made by the six-minute walk test. Echocardiographic measurements of left ventricle systolic and diastolic function were conducted. Cardiac magnetic resonance late gadolinium enhancement (LGE) -through a semiquantitative evaluation- was used in the assessment of myocardial fibrosis extent in HCM patients. The expression of miR-21 and -29 in peripheral blood samples of all patients was measured via the method of quantitative reverse transcription polymerase chain reaction. RESULTS Circulating levels of miR-21 were higher in both hypertensive and HCM (p<0.001) compared to controls, while expression of miR-29 did not differ between the three studied groups. In patients with HCM and LGE-detected myocardial fibrosis in more than 4 out of 17 myocardial segments, delta CT miR-21 values were lower than in patients with myocardial LGE in 3 or fewer myocardial segments (2.71 ± 1.06 deltaCT vs. 3.50 ± 0.55 deltaCT, p<0.04), indicating the higher expression of circulating miR-21 in patients with more extensive myocardial fibrosis. CONCLUSION MiR-21 was overexpressed in patients with HCM and hypertensive cardiomyopathy. Importantly, in patients with HCM, more extensive myocardial fibrosis was associated with higher levels of miR-21.
Collapse
Affiliation(s)
- Andreas Angelopoulos
- Unit for Inherited and Rare Cardiovascular Diseases, 1st Department of Cardiology, Hippokration Hospital, University of Athens Medical School, Athens, Greece
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, Sotiria Chest Disease Hospital, National and Kapodistrian, University of Athens Medical School, Athens, Greece
| | - Alexios Antonopoulos
- Unit for Inherited and Rare Cardiovascular Diseases, 1st Department of Cardiology, Hippokration Hospital, University of Athens Medical School, Athens, Greece
| | - Panagiotis Theofilis
- Unit for Inherited and Rare Cardiovascular Diseases, 1st Department of Cardiology, Hippokration Hospital, University of Athens Medical School, Athens, Greece
| | - Konstantinos Zisimos
- 3rd Department of Cardiology, Sotiria Chest Disease Hospital, National and Kapodistrian, University of Athens Medical School, Athens, Greece
| | - Ourania Katsarou
- 3rd Department of Cardiology, Sotiria Chest Disease Hospital, National and Kapodistrian, University of Athens Medical School, Athens, Greece
| | - Maria Gazouli
- Unit for Inherited and Rare Cardiovascular Diseases, 1st Department of Cardiology, Hippokration Hospital, University of Athens Medical School, Athens, Greece
| | - George Lazaros
- Unit for Inherited and Rare Cardiovascular Diseases, 1st Department of Cardiology, Hippokration Hospital, University of Athens Medical School, Athens, Greece
| | - Paraskevi Papanikolaou
- Unit for Inherited and Rare Cardiovascular Diseases, 1st Department of Cardiology, Hippokration Hospital, University of Athens Medical School, Athens, Greece
| | - Gerasimos Siasos
- 3rd Department of Cardiology, Sotiria Chest Disease Hospital, National and Kapodistrian, University of Athens Medical School, Athens, Greece
| | - Dimitris Tousoulis
- Unit for Inherited and Rare Cardiovascular Diseases, 1st Department of Cardiology, Hippokration Hospital, University of Athens Medical School, Athens, Greece
| | - Konstantinos Tsioufis
- Unit for Inherited and Rare Cardiovascular Diseases, 1st Department of Cardiology, Hippokration Hospital, University of Athens Medical School, Athens, Greece
| | - Charalambos Vlachopoulos
- Unit for Inherited and Rare Cardiovascular Diseases, 1st Department of Cardiology, Hippokration Hospital, University of Athens Medical School, Athens, Greece
| |
Collapse
|
3
|
Sessa F, Salerno M, Esposito M, Cocimano G, Pisanelli D, Malik A, Khan AA, Pomara C. New Insight into Mechanisms of Cardiovascular Diseases: An Integrative Analysis Approach to Identify TheranoMiRNAs. Int J Mol Sci 2023; 24:ijms24076781. [PMID: 37047756 PMCID: PMC10095439 DOI: 10.3390/ijms24076781] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
MiRNAs regulate both physiological and pathological heart functions. Altered expression of miRNAs is associated with cardiovascular diseases (CVDs), making miRNAs attractive therapeutic strategies for the diagnosis and treatment of heart diseases. A recent publication defined, for the first time, the term theranoMiRNA, meaning the miRNAs that may be used both for diagnosis and treatment. The use of in silico tools may be considered fundamental for these purposes, clarifying several molecular aspects, suggesting future directions for in vivo studies. This study aims to explore different bioinformatic tools in order to clarify miRNA interactions with candidate genes, demonstrating the need to use a computational approach when establishing the most probable associations between miRNAs and target genes. This study focused on the functions of miR-133a-3p, miR-21-5p, miR-499a-5p, miR-1-3p, and miR-126-3p, providing an up-to-date overview, and suggests future lines of research in the identification of theranoMiRNAs related to CVDs. Based on the results of the present study, we elucidated the molecular mechanisms that could be linked between miRNAs and CVDs, confirming that these miRNAs play an active role in the genesis and development of heart damage. Given that CVDs are the leading cause of death in the world, the identification of theranoMiRNAs is crucial, hence the need for a definition of in vivo studies in order to obtain further evidence in this challenging field of research.
Collapse
Affiliation(s)
- Francesco Sessa
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95121 Catania, Italy
| | - Monica Salerno
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95121 Catania, Italy
| | - Massimiliano Esposito
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95121 Catania, Italy
| | - Giuseppe Cocimano
- Department of Mental and Physical Health and Preventive Medicine, University of Campania “Vanvitelli”, 80121 Napoli, Italy
| | - Daniela Pisanelli
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Cristoforo Pomara
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95121 Catania, Italy
| |
Collapse
|
4
|
Upregulation of Reg IV and Hgf mRNAs by Intermittent Hypoxia via Downregulation of microRNA-499 in Cardiomyocytes. Int J Mol Sci 2022; 23:ijms232012414. [PMID: 36293268 PMCID: PMC9603944 DOI: 10.3390/ijms232012414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2022] Open
Abstract
Sleep apnea syndrome (SAS) is characterized by recurrent episodes of oxygen desaturation and reoxygenation (intermittent hypoxia [IH]), and is a risk factor for cardiovascular disease (CVD) and insulin resistance/Type 2 diabetes. However, the mechanisms linking IH stress and CVD remain elusive. We exposed rat H9c2 and mouse P19.CL6 cardiomyocytes to experimental IH or normoxia for 24 h to analyze the mRNA expression of several cardiomyokines. We found that the mRNA levels of regenerating gene IV (Reg IV) and hepatocyte growth factor (Hgf) in H9c2 and P19.CL6 cardiomyocytes were significantly increased by IH, whereas the promoter activities of the genes were not increased. A target mRNA search of microRNA (miR)s revealed that rat and mouse mRNAs have a potential target sequence for miR-499. The miR-499 level of IH-treated cells was significantly decreased compared to normoxia-treated cells. MiR-499 mimic and non-specific control RNA (miR-499 mimic NC) were introduced into P19.CL6 cells, and the IH-induced upregulation of the genes was abolished by introduction of the miR-499 mimic, but not by the miR-499 mimic NC. These results indicate that IH stress downregulates the miR-499 in cardiomyocytes, resulting in increased levels of Reg IV and Hgf mRNAs, leading to the protection of cardiomyocytes in SAS patients.
Collapse
|
5
|
Bozgeyik E, Bozgeyik İ. Non-coding RNA variations in oral cancers: a comprehensive review. Gene 2022; 851:147012. [PMID: 36349577 DOI: 10.1016/j.gene.2022.147012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/11/2022] [Accepted: 10/24/2022] [Indexed: 11/04/2022]
|
6
|
Myosins and MyomiR Network in Patients with Obstructive Hypertrophic Cardiomyopathy. Biomedicines 2022; 10:biomedicines10092180. [PMID: 36140281 PMCID: PMC9496008 DOI: 10.3390/biomedicines10092180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common genetic cardiomyopathy. The molecular mechanisms determining HCM phenotypes are incompletely understood. Myocardial biopsies were obtained from a group of patients with obstructive HCM (n = 23) selected for surgical myectomy and from 9 unused donor hearts (controls). A subset of tissue-abundant myectomy samples from HCM (n = 10) and controls (n = 6) was submitted to laser-capture microdissection to isolate cardiomyocytes. We investigated the relationship among clinical phenotype, cardiac myosin proteins (MyHC6, MyHC7, and MyHC7b) measured by optimized label-free mass spectrometry, the relative genes (MYH7, MYH7B and MYLC2), and the MyomiR network (myosin-encoded microRNA (miRs) and long-noncoding RNAs (Mhrt)) measured using RNA sequencing and RT-qPCR. MyHC6 was lower in HCM vs. controls, whilst MyHC7, MyHC7b, and MyLC2 were comparable. MYH7, MYH7B, and MYLC2 were higher in HCM whilst MYH6, miR-208a, miR-208b, miR-499 were comparable in HCM and controls. These results are compatible with defective transcription by active genes in HCM. Mhrt and two miR-499-target genes, SOX6 and PTBP3, were upregulated in HCM. The presence of HCM-associated mutations correlated with PTBP3 in myectomies and with SOX6 in cardiomyocytes. Additionally, iPSC-derived cardiomyocytes, transiently transfected with either miR-208a or miR-499, demonstrated a time-dependent relationship between MyomiRs and myosin genes. The transfection end-stage pattern was at least in part similar to findings in HCM myectomies. These data support uncoupling between myosin protein/genes and a modulatory role for the myosin/MyomiR network in the HCM myocardium, possibly contributing to phenotypic diversity and providing putative therapeutic targets.
Collapse
|
7
|
Saini VM, Liu KR, Surve AS, Gupta S, Gupta A. MicroRNAs as biomarkers for monitoring cardiovascular changes in Type II Diabetes Mellitus (T2DM) and exercise. J Diabetes Metab Disord 2022; 21:1819-1832. [PMID: 35818628 PMCID: PMC9261151 DOI: 10.1007/s40200-022-01066-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/10/2022] [Accepted: 05/27/2022] [Indexed: 11/21/2022]
Abstract
Introduction MicroRNAs (miRNAs) have been shown to be altered in both CVD and T2DM and can have an application as diagnostic and prognostic biomarkers. miRNAs are released into circulation when the cardiomyocyte is subjected to injury and damage. Objectives Measuring circulating miRNA levels in human plasma may be of great potential use for measuring the extent of damage to cardiomyocytes and response to exercise. This review is aimed to highlight the potential application of miRNAs as biomarkers of CVD progression in T2DM, and the impact of exercise on recovery. Methods The review aims to examine whether the health improvements following exercise in T2DM patients are reflective of changes in expression of plasma miRNAs. For this purpose, studies were identified from the literature that have established a correlation between diabetes, disease progression and plasma miRNA levels. We also reviewed studies which looked at the effect of exercise on plasma miRNA levels. Results The review identified miRNA signatures that are affected by T2DM and DHD and a subset of these miRNAs that are also affected by different types of exercise. This approach helped us to identify those miRNAs whose expression and function can be altered by regular bouts of exercise. Conclusions miRNAs identified as part of this review can serve as tools to monitor the cardio-protective, anti-inflammatory and metabolic effects of exercise in people suffering from T2DM. Future research should focus on regulation of these miRNAs in T2DM and how they can be altered by appropriate exercise interventions. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-022-01066-4.
Collapse
|
8
|
Can Blebbistatin block the hypertrophy status in the zebrafish exvivo cardiac model? Biochim Biophys Acta Mol Basis Dis 2022; 1868:166471. [PMID: 35750268 DOI: 10.1016/j.bbadis.2022.166471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/31/2022] [Accepted: 06/16/2022] [Indexed: 11/23/2022]
Abstract
Ex-vivo simple models are powered tools to study cardiac hypertrophy. It is possible to control the activation of critical genes and thus test the effects of drug therapies before the in vivo tests. A zebrafish cardiac hypertrophy developed by 500 μM phenylephrine (PE) treatment in ex vivo culture has been demonstrated to activate the essential expression of the embryonal genes. These genes are the same as those described in several previous pieces of research on hypertrophic pathology in humans. The efficacy of the chemical drug Blebbistatin (BL) on hypertrophy induced ex vivo cultured hearts is studied in this research. BL can inhibit the myosins and the calcium wave in counteracting the hypertrophy status caused by PE. Samples treated with PE, BL and PE simultaneously, or pre/post-treatment with BL, have been analysed for the embryonal gene activation concerning the hypertrophy status. The qRTPCR has shown an inhibitory effect of BL treatments on the microRNAs downregulation with the consequent low expression of essential embryonal genes. In particular, BL seems to be effective in blocking the hyperplasia of the epicardium but less effective in myocardium hypertrophy. The model can make it possible to obtain knowledge on the transduction pathways activated by BL and investigate the potential use of this drug in treating cardiac hypertrophy in humans.
Collapse
|
9
|
Saleem M, Rahman S, Elijovich F, Laffer CL, Ertuglu LA, Masenga SK, Kirabo A. Sox6, A Potential Target for MicroRNAs in Cardiometabolic Disease. Curr Hypertens Rep 2022; 24:145-156. [PMID: 35124768 DOI: 10.1007/s11906-022-01175-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2022] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW The study aims to review recent advances in knowledge on the interplay between miRNAs and the sex-determining Region Y (SRY)-related high-mobility-group box 6 (Sox6) in physiology and pathophysiology, highlighting an important role in autoimmune and cardiometabolic conditions. RECENT FINDINGS The transcription factor Sox6 is an important member of the SoxD family and plays an indispensable role in adult tissue homeostasis, regeneration, and physiology. Abnormal expression of the Sox6 gene has been implicated in several disease conditions including diabetes, cardiomyopathy, autoimmune diseases, and hypertension. Expression of Sox6 is regulated by miRNAs, which are RNAs of about 22 nucleotides, and have also been implicated in several pathophysiological conditions where Sox6 plays a role. Regulation of Sox6 by miRNAs is important in diverse physiological tissues and organs. Dysregulation of the interplay between miRNAs and Sox6 is an important determinant of various disease conditions and may be actionable for therapeutic purposes.
Collapse
Affiliation(s)
- Mohammad Saleem
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN, 37232-6602, USA
| | - Sharla Rahman
- Centre for Translational and Clinical Research, Jamia Hamdard, New Delhi, India
| | - Fernando Elijovich
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN, 37232-6602, USA
| | - Cheryl L Laffer
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN, 37232-6602, USA
| | - Lale A Ertuglu
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN, 37232-6602, USA
| | - Sepiso K Masenga
- School of Medicine and Health Sciences, Mulungushi University, HAND Research Group, Livingstone, Zambia
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN, 37232-6602, USA.
| |
Collapse
|
10
|
Luo F, Liu W, Bu H. MicroRNAs in hypertrophic cardiomyopathy: pathogenesis, diagnosis, treatment potential and roles as clinical biomarkers. Heart Fail Rev 2022; 27:2211-2221. [PMID: 35332416 DOI: 10.1007/s10741-022-10231-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/15/2022] [Indexed: 12/28/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common heritable cardiomyopathy and is characterized by increased left ventricular wall thickness, but existing diagnostic and treatment approaches face limitations. MicroRNAs (miRNAs) are type of noncoding RNA molecule that plays crucial roles in the pathological process of cardiac remodelling. Accordingly, miRNAs related to HCM may represent potential novel therapeutic targets. In this review, we first discuss the different roles of miRNAs in the development of HCM. We then summarize the roles of common miRNAs as diagnostic and clinical biomarkers in HCM. Finally, we outline current and future challenges and potential new directions for miRNA-based therapeutics for HCM.
Collapse
Affiliation(s)
- Fanyan Luo
- The Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, People's Republic of China.,National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Liu
- The Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, People's Republic of China.,National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Haisong Bu
- The Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, People's Republic of China. .,National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
11
|
Hromadnikova I, Kotlabova K, Krofta L. First-Trimester Screening for Fetal Growth Restriction and Small-for-Gestational-Age Pregnancies without Preeclampsia Using Cardiovascular Disease-Associated MicroRNA Biomarkers. Biomedicines 2022; 10:biomedicines10030718. [PMID: 35327520 PMCID: PMC8945808 DOI: 10.3390/biomedicines10030718] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 02/06/2023] Open
Abstract
The goal of the study was to determine the early diagnostical potential of cardiovascular disease-associated microRNAs for prediction of small-for-gestational-age (SGA) and fetal growth restriction (FGR) without preeclampsia (PE). The whole peripheral venous blood samples were collected within 10 to 13 weeks of gestation from singleton Caucasian pregnancies within the period November 2012 to March 2020. The case-control retrospective study, nested in a cohort, involved all pregnancies diagnosed with SGA (n = 37) or FGR (n = 82) without PE and 80 appropriate-for-gestational age (AGA) pregnancies selected with regard to equality of sample storage time. Gene expression of 29 cardiovascular disease-associated microRNAs was assessed using real-time RT-PCR. Upregulation of miR-16-5p, miR-20a-5p, miR-146a-5p, miR-155-5p, miR-181a-5p, and miR-195-5p was observed in SGA or FGR pregnancies at 10.0% false positive rate (FPR). Upregulation of miR-1-3p, miR-20b-5p, miR-126-3p, miR-130b-3p, and miR-499a-5p was observed in SGA pregnancies only at 10.0% FPR. Upregulation of miR-145-5p, miR-342-3p, and miR-574-3p was detected in FGR pregnancies at 10.0% FPR. The combination of four microRNA biomarkers (miR-1-3p, miR-20a-5p, miR-146a-5p, and miR-181a-5p) was able to identify 75.68% SGA pregnancies at 10.0% FPR in early stages of gestation. The detection rate of SGA pregnancies without PE increased 4.67-fold (75.68% vs. 16.22%) when compared with the routine first-trimester screening for PE and/or FGR based on the criteria of the Fetal Medicine Foundation. The combination of seven microRNA biomarkers (miR-16-5p, miR-20a-5p, miR-145-5p, miR-146a-5p, miR-181a-5p, miR-342-3p, and miR-574-3p) was able to identify 42.68% FGR pregnancies at 10.0% FPR in early stages of gestation. The detection rate of FGR pregnancies without PE increased 1.52-fold (42.68% vs. 28.05%) when compared with the routine first-trimester screening for PE and/or FGR based on the criteria of the Fetal Medicine Foundation. Cardiovascular disease-associated microRNAs represent promising early biomarkers with very suitable predictive potential for SGA or FGR without PE to be implemented into the routine screening programs.
Collapse
Affiliation(s)
- Ilona Hromadnikova
- Department of Molecular Biology and Cell Pathology, Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic;
- Correspondence: ; Tel.: +420-296-511-336
| | - Katerina Kotlabova
- Department of Molecular Biology and Cell Pathology, Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic;
| | - Ladislav Krofta
- Institute for the Care of the Mother and Child, Third Faculty of Medicine, Charles University, 147 00 Prague, Czech Republic;
| |
Collapse
|
12
|
Moscoso I, Cebro-Márquez M, Martínez-Gómez Á, Abou-Jokh C, Martínez-Monzonís MA, Martínez-Sande JL, González-Melchor L, García-Seara J, Fernández-López XA, Moraña-Fernández S, González-Juanatey JR, Rodríguez-Mañero M, Lage R. Circulating miR-499a and miR-125b as Potential Predictors of Left Ventricular Ejection Fraction Improvement after Cardiac Resynchronization Therapy. Cells 2022; 11:cells11020271. [PMID: 35053387 PMCID: PMC8773679 DOI: 10.3390/cells11020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/24/2021] [Accepted: 01/06/2022] [Indexed: 11/30/2022] Open
Abstract
Cardiac resynchronization therapy represents a therapeutic option for heart failure drug-refractory patients. However, due to the lack of success in 30% of the cases, there is a demand for an in-depth analysis of individual heterogeneity. In this study, we aimed to evaluate the prognostic value of circulating miRNA differences. Responder patients were defined by a composite endpoint of the presence of left ventricular reverse remodelling (a reduction ≥15% in telesystolic volume and an increment ≥10% in left ventricular ejection fraction). Circulating miRNAs signature was analysed at the time of the procedure and at a 6-month follow-up. An expression analysis showed, both at baseline and at follow-up, differences between responders and non-responders. Responders presented lower baseline expressions of miR-499, and at follow-up, downregulation of miR-125b-5p, both associated with a significant improvement in left ventricular ejection fraction. The miRNA profile differences showed a marked sensitivity to distinguish between responders and non-responders. Our data suggest that miRNA differences might contribute to prognostic stratification of patients undergoing cardiac resynchronization therapy and suggest that preimplant cardiac context as well as remodelling response are key to therapeutic success.
Collapse
Affiliation(s)
- Isabel Moscoso
- Cardiology Group, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (I.M.); (M.C.-M.); (J.R.G.-J.)
- Department of Cardiology and Coronary Unit and Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research (IDIS-SERGAS), University Clinical Hospital, 15706 Santiago de Compostela, Spain; (Á.M.-G.); (C.A.-J.); (M.A.M.-M.); (J.L.M.-S.); (L.G.-M.); (J.G.-S.); (X.A.F.-L.); (S.M.-F.); (M.R.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - María Cebro-Márquez
- Cardiology Group, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (I.M.); (M.C.-M.); (J.R.G.-J.)
- Department of Cardiology and Coronary Unit and Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research (IDIS-SERGAS), University Clinical Hospital, 15706 Santiago de Compostela, Spain; (Á.M.-G.); (C.A.-J.); (M.A.M.-M.); (J.L.M.-S.); (L.G.-M.); (J.G.-S.); (X.A.F.-L.); (S.M.-F.); (M.R.-M.)
| | - Álvaro Martínez-Gómez
- Department of Cardiology and Coronary Unit and Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research (IDIS-SERGAS), University Clinical Hospital, 15706 Santiago de Compostela, Spain; (Á.M.-G.); (C.A.-J.); (M.A.M.-M.); (J.L.M.-S.); (L.G.-M.); (J.G.-S.); (X.A.F.-L.); (S.M.-F.); (M.R.-M.)
| | - Charigan Abou-Jokh
- Department of Cardiology and Coronary Unit and Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research (IDIS-SERGAS), University Clinical Hospital, 15706 Santiago de Compostela, Spain; (Á.M.-G.); (C.A.-J.); (M.A.M.-M.); (J.L.M.-S.); (L.G.-M.); (J.G.-S.); (X.A.F.-L.); (S.M.-F.); (M.R.-M.)
| | - María Amparo Martínez-Monzonís
- Department of Cardiology and Coronary Unit and Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research (IDIS-SERGAS), University Clinical Hospital, 15706 Santiago de Compostela, Spain; (Á.M.-G.); (C.A.-J.); (M.A.M.-M.); (J.L.M.-S.); (L.G.-M.); (J.G.-S.); (X.A.F.-L.); (S.M.-F.); (M.R.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - José Luis Martínez-Sande
- Department of Cardiology and Coronary Unit and Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research (IDIS-SERGAS), University Clinical Hospital, 15706 Santiago de Compostela, Spain; (Á.M.-G.); (C.A.-J.); (M.A.M.-M.); (J.L.M.-S.); (L.G.-M.); (J.G.-S.); (X.A.F.-L.); (S.M.-F.); (M.R.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Laila González-Melchor
- Department of Cardiology and Coronary Unit and Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research (IDIS-SERGAS), University Clinical Hospital, 15706 Santiago de Compostela, Spain; (Á.M.-G.); (C.A.-J.); (M.A.M.-M.); (J.L.M.-S.); (L.G.-M.); (J.G.-S.); (X.A.F.-L.); (S.M.-F.); (M.R.-M.)
| | - Javier García-Seara
- Department of Cardiology and Coronary Unit and Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research (IDIS-SERGAS), University Clinical Hospital, 15706 Santiago de Compostela, Spain; (Á.M.-G.); (C.A.-J.); (M.A.M.-M.); (J.L.M.-S.); (L.G.-M.); (J.G.-S.); (X.A.F.-L.); (S.M.-F.); (M.R.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Xesús Alberte Fernández-López
- Department of Cardiology and Coronary Unit and Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research (IDIS-SERGAS), University Clinical Hospital, 15706 Santiago de Compostela, Spain; (Á.M.-G.); (C.A.-J.); (M.A.M.-M.); (J.L.M.-S.); (L.G.-M.); (J.G.-S.); (X.A.F.-L.); (S.M.-F.); (M.R.-M.)
| | - Sandra Moraña-Fernández
- Department of Cardiology and Coronary Unit and Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research (IDIS-SERGAS), University Clinical Hospital, 15706 Santiago de Compostela, Spain; (Á.M.-G.); (C.A.-J.); (M.A.M.-M.); (J.L.M.-S.); (L.G.-M.); (J.G.-S.); (X.A.F.-L.); (S.M.-F.); (M.R.-M.)
| | - José R. González-Juanatey
- Cardiology Group, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (I.M.); (M.C.-M.); (J.R.G.-J.)
- Department of Cardiology and Coronary Unit and Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research (IDIS-SERGAS), University Clinical Hospital, 15706 Santiago de Compostela, Spain; (Á.M.-G.); (C.A.-J.); (M.A.M.-M.); (J.L.M.-S.); (L.G.-M.); (J.G.-S.); (X.A.F.-L.); (S.M.-F.); (M.R.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Moisés Rodríguez-Mañero
- Department of Cardiology and Coronary Unit and Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research (IDIS-SERGAS), University Clinical Hospital, 15706 Santiago de Compostela, Spain; (Á.M.-G.); (C.A.-J.); (M.A.M.-M.); (J.L.M.-S.); (L.G.-M.); (J.G.-S.); (X.A.F.-L.); (S.M.-F.); (M.R.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Ricardo Lage
- Cardiology Group, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (I.M.); (M.C.-M.); (J.R.G.-J.)
- Department of Cardiology and Coronary Unit and Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research (IDIS-SERGAS), University Clinical Hospital, 15706 Santiago de Compostela, Spain; (Á.M.-G.); (C.A.-J.); (M.A.M.-M.); (J.L.M.-S.); (L.G.-M.); (J.G.-S.); (X.A.F.-L.); (S.M.-F.); (M.R.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
13
|
Ren X, Ellis BW, Ronan G, Blood SR, DeShetler C, Senapati S, March KL, Handberg E, Anderson D, Pepine C, Chang HC, Zorlutuna P. A multiplexed ion-exchange membrane-based miRNA (MIX·miR) detection platform for rapid diagnosis of myocardial infarction. LAB ON A CHIP 2021; 21:3876-3887. [PMID: 34546237 PMCID: PMC9115728 DOI: 10.1039/d1lc00685a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Micro RNAs (miRNAs) have shown great potential as rapid and discriminating biomarkers for acute myocardial infarction (AMI) diagnosis. We have developed a multiplexed ion-exchange membrane-based miRNA (MIX·miR) preconcentration/sensing amplification-free platform for quantifying in parallel a panel of miRNAs, including miR-1, miR-208b, and miR-499, from the same plasma samples from: 1) reference subjects with no evident coronary artery disease (NCAD); 2) subjects with stable coronary artery disease (CAD); and 3) subjects experiencing ST-elevation myocardial infarction (STEMI) prior to (STEMI-pre) and following (STEMI-PCI) percutaneous coronary intervention. The picomolar limit of detection from raw plasma and 3-decade dynamic range of MIX·miR permits detection of the miRNA panel in untreated samples from disease patients and its precise standard curve, provided by large 0.1 to 1 V signals and eliminates individual sensor calibration. The use of molecular concentration feature reduces the assay time to less than 30 minutes and increases the detection sensitivity by bringing all targets close to the sensors. miR-1 was low for NCAD patients but more than one order of magnitude above the normal value for all samples from three categories (CAD, STEMI-pre, and STEMI-PCI) of patients with CAD. In fact, miR-1 expression levels of stable CAD, STEMI-pre and STEMI-PCI are each more than 10-fold higher than the previous class, in that order, well above the 95% confidence level of MIX·miR. Its overexpression estimate is significantly higher than the PCR benchmark. This suggests that, in contrast to protein biomarkers of myocardial injury, miR-1 appears to differentiate ischemia from both reperfusion injury and non-AMI CAD patients. The battery-operated MIX·miR can be a portable and low-cost AMI diagnostic device, particularly useful in settings where cardiac catheterization is not readily available to determine the status of coronary reperfusion.
Collapse
Affiliation(s)
- Xiang Ren
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Bradley W Ellis
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - George Ronan
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Stuart Ryan Blood
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Cameron DeShetler
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Satyajyoti Senapati
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Keith L March
- Division of Cardiology, Department of Medicine in the College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Eileen Handberg
- Division of Cardiology, Department of Medicine in the College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - David Anderson
- Division of Cardiology, Department of Medicine in the College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Carl Pepine
- Division of Cardiology, Department of Medicine in the College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Hsueh-Chia Chang
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Pinar Zorlutuna
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
14
|
Wang X, Chen X, Xu H, Zhou S, Zheng Y, Keller BB, Cai L. Emerging roles of microRNA-208a in cardiology and reverse cardio-oncology. Med Res Rev 2021; 41:2172-2194. [PMID: 33533026 DOI: 10.1002/med.21790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/22/2020] [Accepted: 01/20/2021] [Indexed: 12/18/2022]
Abstract
Cardiovascular diseases (CVDs) and cancer, which are the leading causes of mortality globally, have been viewed as two distinct diseases. However, the fact that cancer and CVDs may coincide has been noted by cardiologists when taking care of patients with CVDs caused by cancer chemotherapy; this entity is designated cardio-oncology. More recently, patients with CVDs have also been found to have increased risk of cancers, termed reverse cardio-oncology. Although reverse cardio-oncology has been highlighted as an important disease state in recent studies, how the diseased heart affects cancer and the potential mediators of the crosstalk between CVDs and cancer are largely unknown. Here, we focus on the roles of cardiac-specific microRNA-208a (miR-208a) in cardiac and cancer biology and explore its essential roles in reverse cardio-oncology. Accumulating evidence has shown that within the heart, increased miR-208a promotes myocardial injury, arrhythmia, cardiac remodeling, and dysfunction and that secreted miR-208a in the circulation may have novel roles in promoting tumor proliferation and invasion. This review, therefore, provides insights into the novel roles of miR-208a in reverse cardio-oncology and strategies to prevent secondary carcinogenesis in patients with early- or late-stage heart failure.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Cardiovascular Disease, First Hospital of Jilin University, Jilin University, Changchun, Jilin, China
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Xinxin Chen
- Department of Burn Surgery, First Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| | - Hui Xu
- Department of Cardiovascular Disease, First Hospital of Jilin University, Jilin University, Changchun, Jilin, China
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Shanshan Zhou
- Department of Cardiovascular Disease, First Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| | - Yang Zheng
- Department of Cardiovascular Disease, First Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| | - Bradley B Keller
- Cincinnati Children's Heart Institute, Greater Louisville and Western Kentucky Practice, Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Lu Cai
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
15
|
Sonsöz MR, Yilmaz M, Cevik E, Orta H, Bilge AK, Elitok A, Onur I, Komurcu-Bayrak E. Circulating Levels of MicroRNAs in Hypertrophic Cardiomyopathy: The Relationship With Left Ventricular Hypertrophy, Left Atrial Dilatation and Ventricular Depolarisation-Repolarisation Parameters. Heart Lung Circ 2021; 31:199-206. [PMID: 34088630 DOI: 10.1016/j.hlc.2021.04.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/31/2020] [Accepted: 04/25/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND MicroRNAs are small, endogenous, non-coding RNAs that regulate the expression of many genes. It has recently been shown that circulating microRNAs may be biomarkers of hypertrophy and fibrosis in patients with hypertrophic cardiomyopathy (HCM). OBJECTIVE To determine whether circulating levels of microRNAs involved in HCM are associated with electrocardiographic and echocardiographic parameters. METHODS This study enrolled 20 patients with familial HCM and 20 blood donors. Peripheral serum levels of miR-29a-3p, miR-199a-5p and miR-451a were assessed by quantitative real-time polymerase chain reaction and compared with levels in the control group. Whether circulating levels of miRNAs in HCM patients correlated with electrocardiographic and echocardiographic parameters was also assessed. RESULTS Median circulating levels of miR-29a and miR-451a were significantly higher in HCM than the control group. Median miR-199a levels did not differ between groups. However, circulating levels of miR-199a negatively correlated with corrected QT duration (Bazett formula). Median miR-29a levels positively correlated with QRS duration. In addition, circulating levels of miR-29a correlated with maximal wall thickness, left ventricular mass index and left atrial volume index. CONCLUSIONS The data suggested that serum levels of miR-29a and miR-451a were significantly increased in HCM patients. As the circulating level of miR-29a correlated with QRS duration, left ventricular hypertrophy and left atrial dilatation, the serum miR-199a level negatively correlated with corrected QT duration. These miRNAs may be seen as potential biomarkers for further research in HCM pathophysiology.
Collapse
Affiliation(s)
- Mehmet Rasih Sonsöz
- Department of Cardiology, Basaksehir Pine and Sakura City Hospital, Istanbul, Turkey.
| | - Mustafa Yilmaz
- Department of Cardiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Erdem Cevik
- Department of Cardiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Huseyin Orta
- Department of Cardiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Ahmet Kaya Bilge
- Department of Cardiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Ali Elitok
- Department of Cardiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Imran Onur
- Department of Cardiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Evrim Komurcu-Bayrak
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine and Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
16
|
Agarwal T, Fortunato GM, Hann SY, Ayan B, Vajanthri KY, Presutti D, Cui H, Chan AHP, Costantini M, Onesto V, Di Natale C, Huang NF, Makvandi P, Shabani M, Maiti TK, Zhang LG, De Maria C. Recent advances in bioprinting technologies for engineering cardiac tissue. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112057. [PMID: 33947551 DOI: 10.1016/j.msec.2021.112057] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022]
Abstract
Annually increasing incidence of cardiac-related disorders and cardiac tissue's minimal regenerative capacity have motivated the researchers to explore effective therapeutic strategies. In the recent years, bioprinting technologies have witnessed a great wave of enthusiasm and have undergone steady advancements over a short period, opening the possibilities for recreating engineered functional cardiac tissue models for regenerative and diagnostic applications. With this perspective, the current review delineates recent developments in the sphere of engineered cardiac tissue fabrication, using traditional and advanced bioprinting strategies. The review also highlights different printing ink formulations, available cellular opportunities, and aspects of personalized medicines in the context of cardiac tissue engineering and bioprinting. On a concluding note, current challenges and prospects for further advancements are also discussed.
Collapse
Affiliation(s)
- Tarun Agarwal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Gabriele Maria Fortunato
- Research Center "E. Piaggio" and Department of Information Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy
| | - Sung Yun Hann
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Bugra Ayan
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Kiran Yellappa Vajanthri
- School of Biomedical Engineering, Indian Institute of Technology Banaras Hindu University Varanasi, Uttar Pradesh 221005, India
| | - Dario Presutti
- Institute of Physical Chemistry - Polish Academy of Sciences, Warsaw, Poland
| | - Haitao Cui
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Alex H P Chan
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Marco Costantini
- Institute of Physical Chemistry - Polish Academy of Sciences, Warsaw, Poland
| | - Valentina Onesto
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), Campus Ecotekne, via Monteroni, Lecce 73100, Italy
| | - Concetta Di Natale
- Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy; Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, P.leTecchio 80, Naples 80125, Italy
| | - Ngan F Huang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Pooyan Makvandi
- Center for Materials Interface, Istituto Italiano di Tecnologia, Pontedera 56025, Pisa, Italy
| | - Majid Shabani
- Center for Materials Interface, Istituto Italiano di Tecnologia, Pontedera 56025, Pisa, Italy
| | - Tapas Kumar Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA; Department of Electrical and Computer Engineering, The George Washington University, Washington, DC 20052, USA; Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA; Department of Medicine, The George Washington University, Washington, DC 20052, USA.
| | - Carmelo De Maria
- Research Center "E. Piaggio" and Department of Information Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy.
| |
Collapse
|
17
|
Wang J, Hao D, Zeng L, Zhang Q, Huang W. Neuropeptide Y mediates cardiac hypertrophy through microRNA-216b/FoxO4 signaling pathway. Int J Med Sci 2021; 18:18-28. [PMID: 33390770 PMCID: PMC7738963 DOI: 10.7150/ijms.51133] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/13/2020] [Indexed: 01/13/2023] Open
Abstract
Cardiac hypertrophy (CH) is a major risk factor for heart failure accompanied by maladaptive cardiac remodeling. The role and potential mechanism of neuropeptide Y (NPY) in CH are still unclear. We will explore the role and the mechanism of NPY inactivation (NPY-I) in CH caused by pressure overload. Abdominal aortic constriction (AAC) was used to induce CH model in rats. NPY or angiotensin II (Ang II) was used to trigger CH model in vitro in neonatal rat ventricular myocytes (NRVMs). We found that NPY was increased in the heart and plasma of hypertrophic rats. However, Ang II did not increase NPY expression in cardiomyocytes. NPY-I attenuated CH as decreasing CH-related markers (ANP, BNP and β-MHC mRNA) level, reducing cell surface area, and restoring cardiac function. NPY inactivation increased miR-216b and decreased FoxO4 expression in CH heart. Moreover, NPY decreased miR-216b and increased FoxO4 expression in NRVMs which were reversed by NPY type 1 receptor (NPY1R) antagonist BIBO3304. MiR-216b mimic and FoxO4 siRNA (small interfering RNA) inhibited NPY/Ang II-induced myocardial hypertrophy in vitro. Meanwhile, BIBO3304 reversed the pro-hypertrophy effect of NPY in vitro. Collectively, NPY deficiency attenuated CH by NPY1R-miR-216b-FoxO4 axis. These findings suggested that NPY would be a potential therapeutic target for the prevention and treatment of cardiac hypertrophy.
Collapse
Affiliation(s)
- Jinghao Wang
- Department of Pharmacy, the First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Dan Hao
- Department of Cardiology, the First Hospital of Harbin, Harbin 150010, China
| | - Lingfeng Zeng
- Department of Pharmacy, the First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Qianhui Zhang
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang 163319, China
| | - Wei Huang
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang 163319, China
| |
Collapse
|
18
|
Sadat-Ebrahimi SR, Aslanabadi N. Role of MicroRNAs in Diagnosis, Prognosis, and Treatment of Acute Heart Failure: Ambassadors from Intracellular Zone. Galen Med J 2020; 9:e1818. [PMID: 34466598 PMCID: PMC8343948 DOI: 10.31661/gmj.v9i0.1818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/24/2020] [Accepted: 02/06/2020] [Indexed: 12/12/2022] Open
Abstract
Acute heart failure (AHF) is one of the burdensome diseases affecting a considerable proportion of the population. Recently, it has been demonstrated that micro-ribonucleic acids (miRNAs) can exert diagnostic, prognostic, and therapeutic roles in a variety of conditions including AHF. These molecules play essential roles in HF-related pathophysiology, particularly, cardiac fibrosis, and hypertrophy. Some miRNAs namely miRNA-423-5p are reported to have both diagnostic and prognostic capabilities. However, some studies suggest that combination of biomarkers is a much better way to achieve the highest accuracy such as the combination of miRNAs and N-terminal pro b-type Natriuretic Peptide (NT pro-BNP). Therefore, this review discusses different views towards various roles of miRNAs in AHF.
Collapse
Affiliation(s)
- Seyyed-Reza Sadat-Ebrahimi
- Cardiovascular Research Center, Madani Heart Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naser Aslanabadi
- Cardiovascular Research Center, Madani Heart Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Correspondence to: Naser Aslanabadi, Professor of Cardiology, Cardiovascular Research Center, Madani Heart Center, Tabriz University of Medical Sciences, Tabriz, Iran Telephone Number: +989143110844 Email Address:
| |
Collapse
|
19
|
Pielok A, Marycz K. Non-Coding RNAs as Potential Novel Biomarkers for Early Diagnosis of Hepatic Insulin Resistance. Int J Mol Sci 2020; 21:ijms21114182. [PMID: 32545342 PMCID: PMC7313458 DOI: 10.3390/ijms21114182] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/30/2020] [Accepted: 06/04/2020] [Indexed: 12/22/2022] Open
Abstract
In the recent years, the prevalence of metabolic conditions such as type 2 Diabetes (T2D) and metabolic syndrome (MetS) raises. The impairment of liver metabolism resulting in hepatic insulin resistance is a common symptom and a critical step in the development of T2D and MetS. The liver plays a crucial role in maintaining glucose homeostasis. Hepatic insulin resistance can often be identified before other symptoms arrive; therefore, establishing methods for its early diagnosis would allow for the implementation of proper treatment in patients before the disease develops. Non-coding RNAs such as miRNAs (micro-RNA) and lncRNAs (long-non-coding RNA) are being recognized as promising novel biomarkers and therapeutic targets—especially due to their regulatory function. The dysregulation of miRNA and lncRNA activity has been reported in the livers of insulin-resistant patients. Many of those transcripts are involved in the regulation of the hepatic insulin signaling cascade. Furthermore, for several miRNAs (miR-802, miR-499-5p, and miR-122) and lncRNAs (H19 imprinted maternally expressed transcript (H19), maternally expressed gene 3 (MEG3), and metastasis associated lung adenocarcinoma transcript 1 (MALAT1)), circulating levels were altered in patients with prediabetes, T2D, and MetS. In the course of this review, the role of the aforementioned ncRNAs in hepatic insulin signaling cascade, as well as their potential application in diagnostics, is discussed. Overall, circulating ncRNAs are precise indicators of hepatic insulin resistance in the development of metabolic diseases and could be applied as early diagnostic and/or therapeutic tools in conditions associated with insulin resistance.
Collapse
Affiliation(s)
- Ariadna Pielok
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
- Correspondence: (A.P.); (K.M.)
| | - Krzysztof Marycz
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
- International Institute of Translational Medicine, Jesionowa 11 St., 55-124 Malin, Poland
- Collegium Medicum, Cardinal Stefan Wyszyński University (UKSW), Woycickiego 1/3, 01-938 Warsaw, Poland
- Correspondence: (A.P.); (K.M.)
| |
Collapse
|
20
|
Wang X, Tian L, Sun Q. Diagnostic and prognostic value of circulating miRNA-499 and miRNA-22 in acute myocardial infarction. J Clin Lab Anal 2020; 34:2410-2417. [PMID: 32529742 PMCID: PMC7439427 DOI: 10.1002/jcla.23332] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/20/2020] [Accepted: 02/22/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Currently, acute myocardial infarction (AMI) represents a serious cardiovascular disease with high morbidity and mortality. Therefore, this study aimed to systematically evaluate the roles of miRNA-499 and miRNA-22 as potential biomarkers for AMI. METHODS According to the inclusion and exclusion criteria, we measured circulating levels of miRNAs in 50 AMI patients and 50 non-MI populations. The expression levels of plasma miRNA-499 and miRNA-22 were analyzed by real-time fluorescent quantitative polymerase chain reaction (qRT-PCR). A statistical analysis of clinical data of AMI patients was conducted by 90-day follow-up. RESULTS Real-time PCR analysis showed that the relative expression level of miRNA-499 increased gradually among the three groups (P < .05). However, the expression of miRNA-22 showed a downward trend (P < .05). According to logistic analysis, the relative levels of miRNA-499 and miRNA-22 were important predictors of AMI. When the miRNA-499 and miRNA-22 levels were 0.377 and 0.946 separately, the diagnostic value of miRNA-499 and miRNA-22 for AMI was 86.00% and 86.00% for sensitivity, and 98.00% and 94.00% for specificity, respectively. In addition, compared to the baseline GRACE scoring system, the combination of miRNA-499, miRNA-22, and GRACE scores had a stronger discriminating power for MACE occurrence, with a sensitivity of 100.00% and a specificity of 79.40%. CONCLUSIONS The results showed that plasma miRNA-499 and miRNA-22 were more sensitive and specific for the diagnosis of AMI, suggesting that they can be used as potential biomarkers for clinical diagnosis of AMI.
Collapse
Affiliation(s)
- Xiaoqing Wang
- Clinical Laboratory, Hospital Affiliated to Chengde Medical University, Chengde, China
| | - Lu Tian
- Clinical Laboratory, Hospital Affiliated to Chengde Medical University, Chengde, China
| | - Qiyu Sun
- Clinical Laboratory, Hospital Affiliated to Chengde Medical University, Chengde, China
| |
Collapse
|
21
|
Chen P, Li Z, Nie J, Wang H, Yu B, Wen Z, Sun Y, Shi X, Jin L, Wang DW. MYH7B variants cause hypertrophic cardiomyopathy by activating the CaMK-signaling pathway. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1347-1362. [DOI: 10.1007/s11427-019-1627-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 02/27/2020] [Indexed: 12/12/2022]
|
22
|
Wang W, Li T, Gao L, Li Y, Sun Y, Yao HC. Diagnostic and prognostic impact of circulating microRNA-208b and microRNA-499 in patients with acute coronary syndrome. Biomark Med 2020; 14:87-95. [PMID: 31789049 DOI: 10.2217/bmm-2019-0257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aim: This study aimed to investigate the correlation between the expression of circulating miR-208b and miR-499 and acute coronary syndrome (ACS) patients. Materials & methods: A total of 160 consecutive patients with ACS and 48 healthy control subjects were enrolled for primary analysis. The ACS patients (n = 160) were followed up for 6 months for further analysis regarding major adverse cardiac events. Results: Area under the curve values of miR-208b and miR-499 for predicting ACS were 0.910 and 0.851 (p < 0.001, respectively). Cox proportional hazards regression analysis revealed that miR-208b but not miR-499 was an independent predictor of major adverse cardiac events. Conclusion: Circulating miR-208b and miR-499 could be considered as diagnostic or prognostic biomarkers for patients with ACS.
Collapse
Affiliation(s)
- Wei Wang
- Department of Cardiology, Liaocheng People’s Hospital Affiliated to Shandong University & Clinical School of Shandong First Medical University, Liaocheng 252000, PR China
| | - Tai Li
- Department of Nursing, Liaocheng Vocational & Technical College, Liaocheng 252000, PR China
| | - Lei Gao
- Zhong Yuan Academy of Biological Medicine, Liaocheng People’s Hospital, Shandong University, Liaocheng 252000, PR China
| | - Yang Li
- Zhong Yuan Academy of Biological Medicine, Liaocheng People’s Hospital, Shandong University, Liaocheng 252000, PR China
| | - Ying Sun
- Department of Cardiology, Liaocheng People’s Hospital Affiliated to Shandong University & Clinical School of Shandong First Medical University, Liaocheng 252000, PR China
| | - Heng-Chen Yao
- Department of Cardiology, Liaocheng People’s Hospital Affiliated to Shandong University & Clinical School of Shandong First Medical University, Liaocheng 252000, PR China
| |
Collapse
|
23
|
Mousa NO, Abdellatif A, Fahmy N, Zada S, El-Fawal H, Osman A. Circulating MicroRNAs in Duchenne Muscular Dystrophy. Clin Neurol Neurosurg 2019; 189:105634. [PMID: 31838454 DOI: 10.1016/j.clineuro.2019.105634] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/27/2019] [Accepted: 12/06/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The diagnosis of Duchenne Muscular Dystrophy (DMD) currently depends on non-specific measures such as Creatine kinase (CK) levels. MicroRNAs (miRNAs) are a class of small, endogenous RNAs of 21-25 nucleotides, that are important regulators for numerous physiological and pathological processes. The aim of the current study is to assess the potential of miRNAs as non-invasive biomarker for the diagnosis of DMD and for identifying carriers. PATIENTS AND METHODS Thirty healthy subjects and 29 families with one member diagnosed with DMD were enrolled in the study. Peripheral blood samples were collected from all subjects where microRNAs were extracted from plasma followed by the quantification of miR-499, miR-103a-3p, miR-103a-5p, miR-206, miR-208a, miR-223 and miR-191-5p. MLPA and NGS were carried out as a gold standard technique to identify the mutations in the participants. RESULTS Our data revealed that miR-499 was significantly upregulated in all DMD patients, and true carriers (mothers), while 78 % of potential carriers (sisters) exhibited high levels of this miRNA. Similarly, miR-103a-3p showed an increase in the patients' families although to a lesser extent. On the other hand, miR-206 and miR-191-5p were significantly downregulated in the majority of the DMD patients and the tested female family members. MicroRNA miR-103a-5p and miR-208a followed a comparable trend in patients and mothers. CONCLUSIONS Ourresults suggest that the plasma levels of miRNAs have the capability to diagnose DMD patients and more importantly, miRNAs can be used to identify female carriers.
Collapse
Affiliation(s)
- Nahla O Mousa
- Biology Department, and Biotechnology Program, School of Sciences & Engineering, The American University in Cairo, School of Sciences and Engineering, 11835, Cairo, Egypt; Biotechnology Department, Faculty of Science, Cairo University, 12613, Giza, Egypt
| | - Ahmed Abdellatif
- Biology Department, and Biotechnology Program, School of Sciences & Engineering, The American University in Cairo, School of Sciences and Engineering, 11835, Cairo, Egypt.
| | - Nagia Fahmy
- Neuromuscular Unit, Neuropsychiatry Department, Faculty of Medicine Ain Shams University, 11566, Cairo, Egypt
| | - Suher Zada
- Biology Department, and Biotechnology Program, School of Sciences & Engineering, The American University in Cairo, School of Sciences and Engineering, 11835, Cairo, Egypt
| | - Hassan El-Fawal
- Biology Department, and Biotechnology Program, School of Sciences & Engineering, The American University in Cairo, School of Sciences and Engineering, 11835, Cairo, Egypt
| | - Ahmed Osman
- Biotechnology Department, Basic and Applied Sciences Institute, Egypt-Japan University of Science and Technology, Borg Al Arab, 21934, Egypt; Biochemistry Department, Faculty of Science, Ain Shams University, 11566, Cairo, Egypt.
| |
Collapse
|
24
|
MicroRNA-19a/b-3p protect the heart from hypertension-induced pathological cardiac hypertrophy through PDE5A. J Hypertens 2019; 36:1847-1857. [PMID: 29664809 PMCID: PMC6080882 DOI: 10.1097/hjh.0000000000001769] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AIM PDE5A is a leading factor contributing to cGMP signaling and cardiac hypertrophy. However, microRNA-mediated posttranscriptional regulation of PDE5A has not been reported. The aim of this study is to screen the microRNAs that are able to regulate PDE5A and explore the function of the microRNAs in cardiac hypertrophy and remodeling. METHODS AND RESULTS Although miR-19a/b-3p (microRNA-19a-3p and microRNA-19b-3p) have been reported to be differentially expressed during cardiac hypertrophy, the direct targets and the functions of this microRNA family for regulation of cardiac hypertrophy have not yet been investigated. The present study identified some direct targets and the underlying functions of miR-19a/b-3p by using bioinformatics tools and gene manipulations within mouse neonatal cardiomyocytes. Transfection of miR-19a/b-3p down-regulated endogenous expressions of PDE5A at both mRNA and protein levels with real-time PCR and western blot. Luciferase reporter assays showed that PDE5A was a direct target of miR-19a/b-3p. In mouse models of cardiac hypertrophy, we found that miR-19a/b-3p was expressed in cardiomyocytes and that its expression was reduced in pressure overload-induced hypertrophic hearts. miR-19a/b-3p transgenic mice prevented the progress of cardiac hypertrophy and cardiac remodeling in response to angiotensin II infusion with echocardiographic assessment and pressure-volume relation analysis. CONCLUSION Our study elucidates that PDE5A is a novel direct target of miR-19a/b-3p, and demonstrates that antihypertrophic roles of the miR-19a/b-3p family in Ang II-induced hypertrophy and cardiac remodeling, suggests that endogenous miR-19a/b-3p might have clinical potential to suppress cardiac hypertrophy and heart failure.
Collapse
|
25
|
Shi Y, Han Y, Niu L, Li J, Chen Y. MiR-499 inhibited hypoxia/reoxygenation induced cardiomyocytes injury by targeting SOX6. Biotechnol Lett 2019; 41:837-847. [PMID: 31076992 PMCID: PMC6551346 DOI: 10.1007/s10529-019-02685-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 05/02/2019] [Indexed: 01/12/2023]
Abstract
Objective MiR-499 has been reported to be expressed only in cardiomyocytes, and its expression would increase after acute myocardial infarction (AMI). miR-499 plays a role in the process of cardiomyocytes injury induced by hypoxia/reoxygenation (H/R), however, it still remains unclear. Results Hypoxia inhibited miR-499-5p expression and H/R induced apoptosis. SOX6 was a target gene of miR-499-5p, and high expression of miR-499-5p inhibited the expression of SOX6. MiR-499-5p reduced H9c2 cells injury by inhibiting the expression of SOX6, overexpression of which could reverse the effect of miR-499-5p on H9c2 cells. MiR-499-5p inhibited the levels of LDH and MDA, while overexpression of miR-499-5p inhibited H/R-induced cell apoptosis. MiR-499-5p could up-regulate the level of Bcl-2 and down-regulate the expression levels of Bax and caspase-3. However, SOX6 partially reversed these effects of miR-499-5p. Conclusion We proved that miR-499-5p inhibited H/R-induced cardiomyocytes injury by targeting SOX6. Our results suggested that miR-499-5p/SOX6 pathway may present a potential therapeutic target for the treatment of AMI.
Collapse
Affiliation(s)
- Yujie Shi
- Department of Cardiology, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China
| | - Yunfeng Han
- Cardiovascular Disease Institute, PLA Army General Hospital, Beijing, China
| | - Lili Niu
- Cardiovascular Disease Institute, PLA Army General Hospital, Beijing, China
| | - Junxia Li
- Cardiovascular Disease Institute, PLA Army General Hospital, Beijing, China
| | - Yundai Chen
- Department of Cardiology, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
26
|
Silva DCPD, Carneiro FD, Almeida KCD, Fernandes-Santos C. Role of miRNAs on the Pathophysiology of Cardiovascular Diseases. Arq Bras Cardiol 2019; 111:738-746. [PMID: 30484515 PMCID: PMC6248252 DOI: 10.5935/abc.20180215] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
MiRNA (or microRNA) is a subclass of non-coding RNAs that is responsible for
post-transcriptional gene regulation. It has approximately 22 nucleotides and
regulates gene expression in plants and animals at the post-transcriptional
level, by the cleavage of a target mRNA or by suppression of its translation.
Although many of the processes and mechanisms have not yet been fully
elucidated, there is a strong association between miRNA expression and several
diseases. It is known that miRNAs are expressed in the cardiovascular system,
but their role in cardiovascular diseases (CVDs) has not been clearly
established. In this non-systematic review of the literature, we first present
the definition of miRNAs and their action at the cellular level. Afterward, we
discuss the role of miRNAs as circulating biomarkers of CVDs, and then their
role in cardiac remodeling and atherosclerosis. Despite the complexity and
challenges, it is crucial to identify deregulated miRNAs in CVDs, as it allows a
better understanding of underlying cellular and molecular mechanisms and helps
in the development of more accurate diagnostic and prognostic circulating
biomarkers, and new therapeutic strategies for different stages of CVDs.
Collapse
Affiliation(s)
| | - Felipe Demani Carneiro
- Programa de Pós-graduação em Ciências Cardiovasculares da Universidade Federal Fluminense (UFF), Niterói, RJ - Brazil
| | | | - Caroline Fernandes-Santos
- Programa de Pós-graduação em Ciências Cardiovasculares da Universidade Federal Fluminense (UFF), Niterói, RJ - Brazil
| |
Collapse
|
27
|
Wang M, Ling W, Xiong C, Xie D, Chu X, Li Y, Qiu X, Li Y, Xiao X. Potential Strategies for Cardiac Diseases: Lineage Reprogramming of Somatic Cells into Induced Cardiomyocytes. Cell Reprogram 2019; 21:63-77. [DOI: 10.1089/cell.2018.0052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Mingyu Wang
- Department of Animal Science, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Wenhui Ling
- Department of Animal Science, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Chunxia Xiong
- Department of Animal Science, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Dengfeng Xie
- Department of Animal Science, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Xinyue Chu
- Department of Animal Science, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yunxin Li
- Department of Animal Science, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Xiaoyan Qiu
- Department of Animal Science, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yuemin Li
- Department of Animal Science, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Xiong Xiao
- Department of Animal Science, College of Animal Science and Technology, Southwest University, Chongqing, China
| |
Collapse
|
28
|
Bastami M, Choupani J, Saadatian Z, Zununi Vahed S, Mansoori Y, Daraei A, Samadi Kafil H, Masotti A, Nariman-Saleh-Fam Z. miRNA Polymorphisms and Risk of Cardio-Cerebrovascular Diseases: A Systematic Review and Meta-Analysis. Int J Mol Sci 2019; 20:ijms20020293. [PMID: 30642078 PMCID: PMC6359604 DOI: 10.3390/ijms20020293] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/31/2018] [Accepted: 01/08/2019] [Indexed: 02/07/2023] Open
Abstract
Recently extensive focus has been concentrated on the role of miRNAs in the initiation and progression of cardio-cerebrovascular diseases (CCDs) which constitute a range of conditions including cardiovascular diseases (CVDs, especially coronary artery disease (CAD)), congenital heart disease (CHD) and cerebrovascular diseases (CBVDs, especially the ischemic stroke (IS)). An increasing number of studies are evaluating the association between different miRNA polymorphisms and risk of CCDs, but results have been inconclusive. This study represents a comprehensive systematic review and meta-analysis of the association between miRNA polymorphisms and risk of CCDs. PubMed, Embase, Scopus, and Web of Science were queried to identify eligible articles. Odds ratios and 95% confidence intervals were used to assess the association of miRNA polymorphisms with CCD susceptibility. A total of 51 eligible articles evaluating the association of 31 miRNA polymorphisms were identified. Meta-analysis was performed for six miRNA polymorphisms. miR-146a rs2910164 (30 studies: 13,186 cases/14,497 controls), miR-149 rs2292832 (Nine studies: 4116 cases/3511 controls), miR-149 rs71428439 (Three studies: 1556 cases/1567 controls), miR-196a2 rs11614913 (20 studies: 10,144 cases/10,433 controls), miR-218 rs11134527 (Three studies: 2,322 cases/2,754 controls) were not associated with overall CCD. miR-499 rs3746444 was associated with CCD (20 studies: 9564 cases/8876 controls). In the subgroups, rs2910164 and rs3746444 were only associated with CVDs, especially CAD. In conclusion, the results support the existence of a role for miR-146a rs2910164 and miR-499 rs3746444 in determining susceptibility to CCDs, especially CAD.
Collapse
Affiliation(s)
- Milad Bastami
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran.
| | - Jalal Choupani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran.
| | - Zahra Saadatian
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran.
| | - Sepideh Zununi Vahed
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz 5166614756, Iran.
| | - Yaser Mansoori
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa 7461686688, Iran.
| | - Abdolreza Daraei
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol 4617647745, Iran.
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran.
| | - Andrea Masotti
- Bambino Gesù Children's Hospital-IRCCS, Research Laboratories, Viale di San Paolo 15, 00146 Rome, Italy.
| | - Ziba Nariman-Saleh-Fam
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz 5138663134, Iran.
| |
Collapse
|
29
|
Cerf ME. High Fat Programming and Cardiovascular Disease. MEDICINA (KAUNAS, LITHUANIA) 2018; 54:E86. [PMID: 30428585 PMCID: PMC6262472 DOI: 10.3390/medicina54050086] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/31/2018] [Accepted: 11/08/2018] [Indexed: 02/06/2023]
Abstract
Programming is triggered through events during critical developmental phases that alter offspring health outcomes. High fat programming is defined as the maintenance on a high fat diet during fetal and/or early postnatal life that induces metabolic and physiological alterations that compromise health. The maternal nutritional status, including the dietary fatty acid composition, during gestation and/or lactation, are key determinants of fetal and postnatal development. A maternal high fat diet and obesity during gestation compromises the maternal metabolic state and, through high fat programming, presents an unfavorable intrauterine milieu for fetal growth and development thereby conferring adverse cardiac outcomes to offspring. Stressors on the heart, such as a maternal high fat diet and obesity, alter the expression of cardiac-specific factors that alter cardiac structure and function. The proper nutritional balance, including the fatty acid balance, particularly during developmental windows, are critical for maintaining cardiac structure, preserving cardiac function and enhancing the cardiac response to metabolic challenges.
Collapse
Affiliation(s)
- Marlon E Cerf
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa.
- Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg 7505, South Africa.
| |
Collapse
|
30
|
Mohseni Z, Spaanderman MEA, Oben J, Calore M, Derksen E, Al-Nasiry S, de Windt LJ, Ghossein-Doha C. Cardiac remodeling and pre-eclampsia: an overview of microRNA expression patterns. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2018; 52:310-317. [PMID: 28466998 DOI: 10.1002/uog.17516] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 03/13/2017] [Accepted: 03/31/2017] [Indexed: 06/07/2023]
Abstract
Pre-eclampsia (PE) is strongly associated with heart failure (HF) later in life. During PE pregnancy, the left ventricle undergoes concentric remodeling which often persists after delivery. This aberrant remodeling can induce a molecular signature that can be evaluated in terms of microRNAs (miRNAs) and which may help to explain the associated increased risk of HF. For this review, we performed a literature search of PubMed (National Center for Biotechnology Information), identifying studies on miRNA expression in concentric remodeling and on miRNA expression in PE. The miRNA data were stratified based on origin (isolated from humans or animals and from tissue or the circulation) and both datasets compared in order to generate a list of miRNA expression patterns in concentric remodeling and in PE. The nine miRNAs identified in both concentric remodeling and PE-complicated pregnancy were: miR-1, miR-18, miR-21, miR-29b, miR-30, miR-125b, miR-181b, miR-195 and miR-499-5p. We found five of these miRNAs (miR-18, miR-21, miR-125b, miR-195 and miR-499-5p) to be upregulated in both PE pregnancy and cardiac remodeling and two (miR-1 and miR-30) to be downregulated in both; the remaining two miRNAs (miR-29b and miR-181b) showed upregulation during PE but downregulation in cardiac remodeling. This innovative approach may be a step towards finding relevant biomarkers for complicated pregnancy and elucidating their relationship with remote cardiovascular disease. Copyright © 2017 ISUOG. Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Z Mohseni
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| | - M E A Spaanderman
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| | - J Oben
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| | - M Calore
- Department of Cardiology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - E Derksen
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| | - S Al-Nasiry
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| | - L J de Windt
- Department of Cardiology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - C Ghossein-Doha
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| |
Collapse
|
31
|
Zhou YL, Sun Q, Zhang L, Li R. miR-208b targets Bax to protect H9c2 cells against hypoxia-induced apoptosis. Biomed Pharmacother 2018; 106:1751-1759. [PMID: 30119250 DOI: 10.1016/j.biopha.2018.07.141] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND miR-208 family members have been considered as promising biomarkers in myocardial infarction (MI). Among which, miR-208a and miR-499 are reported to function as ischemic injury promoting miRNAs. This study aimed to explore the in vitro function of miR-208b in MI, which has not been widely studied. METHODS RT-qPCR was conducted to measure the expression changes of miR-208b in MI patients, MI mouse model and H9c2 cells stimulated by hypoxia. H9c2 cells were subjected to hypoxia before which miR-208b expression was altered by transfection. CCK-8, flow cytometry and Western blot were performed to detect cell survival. Besides, the regulatory relationship between miR-208b, Bax, and PI3K/AKT was tested by luciferase reporter, RT-qPCR and Western blot. RESULTS Serum levels of miR-208b in MI patients were significantly higher than those in the healthy controls. Also, miR-208b was up-regulated in mouse model and cell model of MI. Overexpression of miR-208b protected H9c2 cells against hypoxia-induced apoptosis, as the viability was increased, apoptosis rate was decreased, Bax and Cytochrome c were down-regulated, and Bcl-2 was up-regulated. Bax was a target gene of miR-208b. And miR-208b could not protect H9c2 cells when Bax was overexpressed. More interestingly, miR-208b activated PI3K/AKT pathway via targeting Bax, and the activated PI3K/AKT pathway could further repress Bax expression. Finally, blocking PI3K/AKT pathway by using LY294002 eliminated the myocardioprotective effects of miR-208b. CONCLUSION miR-208b is highly expressed during MI, and miR-208b protects H9c2 cells against hypoxia-induced apoptosis. miR-208b exerts myocardioprotective effect via targeting Bax and activating PI3K/AKT pathway.
Collapse
Affiliation(s)
- Ya-Li Zhou
- Health Management Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qiang Sun
- Department of Ultrasound, The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao, China
| | - Lei Zhang
- Department of Ultrasound, The Affiliated Hospital of Jining Medical College, Jining, China
| | - Rui Li
- Health Management Center, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
32
|
Chung E, Haizlip KM, Leinwand LA. Pregnancy late in rodent life has detrimental effects on the heart. Am J Physiol Heart Circ Physiol 2018; 315:H482-H491. [PMID: 29750565 DOI: 10.1152/ajpheart.00020.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
During pregnancy, the heart undergoes significant and numerous changes, including hypertrophy, that are usually described as physiological and reversible. Two aspects of the cardiac response to pregnancy are relatively understudied: advanced maternal age and multiple pregnancies (multiparity). Repeated breeder (RB) mice that have undergone five to seven consecutive pregnancies were euthanized 21 days after the weaning of their last pups and compared with age-matched primiparous, one-time pregnant (O1P) mice. The ages of the older mouse groups were similar (12 ± 1 mo). Pregnancy at a later age resulted in reduced fertility (40%); resorption was 29%, maternal mortality was 10%, and mortality of the pups was 17%. Contractile function as indicated by percent fractional shortening was significantly decreased in O1P and RB groups compared with the old nonpregnant control (ONP) group. There was no pathological induction of the fetal program of gene expression, with the exception of β-myosin heavy chain mRNA, which was induced in O1P compared with ONP mice ( P < 0.05) but not in RB mice. MicroRNA-208a was significantly increased in O1P compared with ONP mice ( P < 0.05) but significantly decreased in RB compared with ONP mice ( P < 0.05). mRNA of genes regulating angiogenesis (i.e., vascular endothelial growth factor-A) were significantly downregulated, whereas proinflammatory genes [i.e., interleukin-6, chemokine (C-C motif) ligand 2, and Cd36] were significantly upregulated in O1P ( P < 0.05) but not in RB mice. Overall, our results suggest that rather than multiparity, pregnancy in advanced age is a much more stressful event in both pregnant dams and fetuses, as evidenced by increased mortality, lower fertility, downregulation of angiogenesis, upregulation of inflammation, and cardiac dysfunction. NEW & NOTEWORTHY Pregnancy in older mice significantly decreases cardiac function, although repeated breeder mice demonstrated increased wall hypertrophy and dilated chamber size compared with one-time pregnant mice. Interestingly, many of the molecular changes were altered in one-time pregnant mice but not in repeated breeder mice, which may contribute to adverse pregnancy outcomes in a first pregnancy at a later age.
Collapse
Affiliation(s)
- Eunhee Chung
- Department of Kinesiology, Health, and Nutrition, University of Texas at San Antonio , San Antonio, Texas
| | - Kaylan M Haizlip
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado , Boulder, Colorado
| | - Leslie A Leinwand
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado , Boulder, Colorado
| |
Collapse
|
33
|
Fawzy MS, Toraih EA, Hamed EO, Hussein MH, Ismail HM. Association of MIR-499a expression and seed region variant (rs3746444) with cardiovascular disease in Egyptian patients. Acta Cardiol 2018; 73:131-140. [PMID: 28786773 DOI: 10.1080/00015385.2017.1351243] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Circulating microRNAs could be powerful markers of acute myocardial infarction (MI) and its functional genetic variants could increase susceptibility to cardiovascular disease (CVD). The current study aimed to quantify the microRNA (miR)-499a levels in serum of MI patients compared to hypertensive and healthy subjects and to investigate the association of its A/G variant rs3746444 with CVD in a sample of an Egyptian population. METHODS Serum miR-499a relative expressions were measured in 110 acute MI patients, 76 hypertensive patients, and 121 healthy controls by Real-time quantitative polymerase chain reaction. MIR-499a genotyping was performed for an additional 107 coronary artery disease patients by Real-time allele discrimination assay. RESULTS Acute MI patients showed high relative expression of miR-499a (> 105-fold, p < .001), and it was nearly undetectable in healthy controls and hypertensive patients. It showed an area under the curve of 0.953, with a sensitivity of 97.2% and a specificity of 75.0%. ST-elevation MI (STEMI) patients had higher miR-499a serum levels than patients with Non-STEMI. There was a significant association of MIR-499a variant with acute MI but not with hypertension under all genetic models tested. As a new finding, in overall and stratified analysis, the miR-499a variant was not correlated with its expression profile. CONCLUSIONS Circulating miR-499a levels could be a useful biomarker, discriminating acute MI within 12 hours from healthy subjects. Its variant rs3746444 A/G is associated with increased susceptibility to acute MI and CAD in Egyptian population.
Collapse
Affiliation(s)
- Manal S. Fawzy
- Department of Medical Biochemistry, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Saudi Arabia
| | - Eman A. Toraih
- Department of Histology and Cell Biology (Genetics Unit), Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Elham O. Hamed
- Department of Clinical Pathology, Faculty of Medicine, Sohag University, Sohag, Egypt
| | | | - Hussein M. Ismail
- Department of Cardiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- Department of Medicine, College of Medicine, Taibah University, Almadinah Almunawwarah, Kingdom of Saudi Arabia
| |
Collapse
|
34
|
Qipshidze Kelm N, Piell KM, Wang E, Cole MP. MicroRNAs as predictive biomarkers for myocardial injury in aged mice following myocardial infarction. J Cell Physiol 2018; 233:5214-5221. [PMID: 29150941 DOI: 10.1002/jcp.26283] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 11/13/2017] [Indexed: 12/23/2022]
Abstract
The occurrence of myocardial infarction (MI) increases appreciably with age. In the Framingham Heart Study, the incidence of MI more than doubles for men and increases more than five-fold in women (ages 55-64 years compared to 85-94 years). MicroRNAs (miRNAs) quantitatively regulate their target's expression post-transcriptionally by either silencing action through binding at the 3'UTR domains or degrading the messages at their coding regions. In either case, these regulations affect the cardiac transcriptional output and cardiac function. Among the known cardiac associated miRNA, miRNA-1, miRNA-133a, and miRNA-34a have been shown to induce adverse structural remodeling to impair cardiac contractile function. In the present study, an in vivo model of MI in young (3 month) and old (22 month) mice is used to investigate the possible role whereby these three miRNAs exert negative effects on heart function following MI. Herein we demonstrate that in older mouse heart, all three microRNAs show increased levels of expression, while miRNA-1 shows a further increase in old mouse heart following MI, which corresponds to left ventricular (LV) wall thinning. These structural changes in cardiac tissue may causes downstream LV dilation and subsequent LV dysfunction. Results presented here suggest that significantly elevated levels of miRNA-1 in post-MI old heart could be predictive of cardiac injury in older mice as the high risk biomarker for MI in older individuals.
Collapse
Affiliation(s)
- Natia Qipshidze Kelm
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, Kentucky.,Department of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, Kentucky
| | - Kellianne M Piell
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, Kentucky.,Department of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, Kentucky
| | - Eugenia Wang
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, Kentucky.,Gheens Center on Aging, University of Louisville School of Medicine, Louisville, Kentucky
| | - Marsha P Cole
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, Kentucky.,Department of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, Kentucky.,Gheens Center on Aging, University of Louisville School of Medicine, Louisville, Kentucky
| |
Collapse
|
35
|
Lock MC, Botting KJ, Tellam RL, Brooks D, Morrison JL. Adverse Intrauterine Environment and Cardiac miRNA Expression. Int J Mol Sci 2017; 18:ijms18122628. [PMID: 29210999 PMCID: PMC5751231 DOI: 10.3390/ijms18122628] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/10/2017] [Accepted: 11/28/2017] [Indexed: 12/23/2022] Open
Abstract
Placental insufficiency, high altitude pregnancies, maternal obesity/diabetes, maternal undernutrition and stress can result in a poor setting for growth of the developing fetus. These adverse intrauterine environments result in physiological changes to the developing heart that impact how the heart will function in postnatal life. The intrauterine environment plays a key role in the complex interplay between genes and the epigenetic mechanisms that regulate their expression. In this review we describe how an adverse intrauterine environment can influence the expression of miRNAs (a sub-set of non-coding RNAs) and how these changes may impact heart development. Potential consequences of altered miRNA expression in the fetal heart include; Hypoxia inducible factor (HIF) activation, dysregulation of angiogenesis, mitochondrial abnormalities and altered glucose and fatty acid transport/metabolism. It is important to understand how miRNAs are altered in these adverse environments to identify key pathways that can be targeted using miRNA mimics or inhibitors to condition an improved developmental response.
Collapse
Affiliation(s)
- Mitchell C Lock
- Early Origins of Adult Health Research Group; School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| | - Kimberley J Botting
- Early Origins of Adult Health Research Group; School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| | - Ross L Tellam
- Early Origins of Adult Health Research Group; School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
- CSIRO Agriculture, 306 Carmody Rd, St. Lucia, QLD 4067, Australia.
| | - Doug Brooks
- Mechanisms in Cell Biology and Disease Research Group School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| | - Janna L Morrison
- Early Origins of Adult Health Research Group; School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| |
Collapse
|
36
|
Yousefzadeh N, Jeddi S, Ghiasi R, Alipour MR. Effect of fetal hypothyroidism on MyomiR network and its target gene expression profiles in heart of offspring rats. Mol Cell Biochem 2017; 436:179-187. [PMID: 28660410 DOI: 10.1007/s11010-017-3089-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 06/01/2017] [Indexed: 02/08/2023]
Abstract
Thyroid hormone deficiency during fetal life (fetal hypothyroidism) causes intrauterine growth restriction (IUGR). Fetal hypothyroidism (FH) could attenuate normal cardiac functions in the later life of the offspring rats. The aim of this study was to evaluate the contribution of myomiR network and its target gene expression in cardiac dysfunction in fetal hypothyroid rats. Six Pregnant female rats were divided into two groups: Control consumed tap water, and the hypothyroid group received water containing 0.025% 6-propyl-2-thiouracil during gestation. Hearts from male offspring rats in adulthood (month 3) were tested with Langendorff apparatus for measuring hemodynamic parameters. Expressions of miR-208a, -208b, and -499 and its target genes including thyroid hormone receptor 1 (Thrap1), sex-determining region Y-box 6 (Sox6), and purine-rich element-binding protein β (Purβ) were measured by qPCR. FH rats had lower LVDP (%20), +dp/dt (%26), -dp/dt (%20), and heart rate (%21) than controls. FH rats at month 3 had a higher expression of β-MHC (190%), Myh7b (298%), and lower expression of α-MHC (36%) genes in comparison with controls. FH rats at month 3 had a higher expression of miR-499 (520%) and miR-208b (439%) and had lower expression of miR-208a (74%), Thrap1 (47%), Sox6 (49%), and Purβ (45%) compared with controls. Our results showed that thyroid hormone deficiency during fetal life changes the pattern of gene expression of myomiR network and its target genes in fetal heart, which, in turn, resulted in increased β-MHC expression and associated cardiac dysfunction in adulthood.
Collapse
Affiliation(s)
- Nasibeh Yousefzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rafighe Ghiasi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
37
|
López-López D, Gómez-Nieto R, Herrero-Turrión MJ, García-Cairasco N, Sánchez-Benito D, Ludeña MD, López DE. Overexpression of the immediate-early genes Egr1, Egr2, and Egr3 in two strains of rodents susceptible to audiogenic seizures. Epilepsy Behav 2017; 71:226-237. [PMID: 26775236 DOI: 10.1016/j.yebeh.2015.12.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/10/2015] [Accepted: 12/12/2015] [Indexed: 11/17/2022]
Abstract
Genetic animal models of epilepsy are an important tool for further understanding the basic cellular mechanisms underlying epileptogenesis and for developing novel antiepileptic drugs. We conducted a comparative study of gene expression in the inferior colliculus, a nucleus that triggers audiogenic seizures, using two animal models, the Wistar audiogenic rat (WAR) and the genetic audiogenic seizure hamster (GASH:Sal). For this purpose, both models were exposed to high intensity auditory stimulation, and 60min later, the inferior colliculi were collected. As controls, intact Wistar rats and Syrian hamsters were subjected to stimulation and tissue preparation protocols identical to those performed on the experimental animals. Ribonucleic acid was isolated, and microarray analysis comparing the stimulated Wistar and WAR rats showed that the genomic profile of these animals displayed significant (fold change, |FC|≥2.0 and p<0.05) upregulation of 38 genes and downregulation of 47 genes. Comparison of gene expression profiles between stimulated control hamsters and stimulated GASH:Sal revealed the upregulation of 10 genes and the downregulation of 5 genes. Among the common genes that were altered in both models, we identified the zinc finger immediate-early growth response gene Egr3. The Egr3 protein is a transcription factor that is induced by distinct stress-elicited factors. Based on immunohistochemistry, this protein was expressed in the cochlear nucleus complex, the inferior colliculus, and the hippocampus of both animal models as well as in lymphoma tumors of the GASH:Sal. Our results support that the overexpression of the Egr3 gene in both models might contribute to neuronal viability and development of lymphoma in response to stress associated with audiogenic seizures. This article is part of a Special Issue entitled "Genetic and Reflex Epilepsies, Audiogenic Seizures and Strains: From Experimental Models to the Clinic".
Collapse
Affiliation(s)
- D López-López
- Institute for Neuroscience of Castilla y León (INCyL), University of Salamanca, Salamanca, Spain; Salamanca Institute for Biomedical Research (IBSAL), Spain
| | - R Gómez-Nieto
- Institute for Neuroscience of Castilla y León (INCyL), University of Salamanca, Salamanca, Spain; Salamanca Institute for Biomedical Research (IBSAL), Spain; Department of Cell Biology and Pathology, School of Medicine, University of Salamanca, Salamanca, Spain
| | - M J Herrero-Turrión
- Institute for Neuroscience of Castilla y León (INCyL), University of Salamanca, Salamanca, Spain
| | - N García-Cairasco
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - D Sánchez-Benito
- Institute for Neuroscience of Castilla y León (INCyL), University of Salamanca, Salamanca, Spain; Salamanca Institute for Biomedical Research (IBSAL), Spain
| | - M D Ludeña
- Department of Cell Biology and Pathology, School of Medicine, University of Salamanca, Salamanca, Spain
| | - D E López
- Institute for Neuroscience of Castilla y León (INCyL), University of Salamanca, Salamanca, Spain; Salamanca Institute for Biomedical Research (IBSAL), Spain; Department of Cell Biology and Pathology, School of Medicine, University of Salamanca, Salamanca, Spain.
| |
Collapse
|
38
|
Downregulation of myogenic microRNAs in sub-chronic but not in sub-acute model of daunorubicin-induced cardiomyopathy. Mol Cell Biochem 2017; 432:79-89. [DOI: 10.1007/s11010-017-2999-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/04/2017] [Indexed: 12/21/2022]
|
39
|
Duong E, Xiao J, Qi XY, Nattel S. MicroRNA-135a regulates sodium-calcium exchanger gene expression and cardiac electrical activity. Heart Rhythm 2017; 14:739-748. [PMID: 28188930 DOI: 10.1016/j.hrthm.2017.01.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Complete atrioventricular block (CAVB) causes arrhythmogenic remodeling and increases the risk of torsades de pointes arrhythmias. MicroRNAs (miRNAs) are key regulators of gene expression that contribute to cardiac remodeling. OBJECTIVE The purpose of this study was to assess miRNA changes after CAVB and identify novel candidates potentially involved in arrhythmogenic cardiac remodeling. METHODS CAVB was induced in mice via His-bundle ablation. Expression of miRNAs was evaluated by pan-miRNA microarray with quantitative polymerase chain reaction (qPCR) confirmation, on samples obtained 24 hours and 4 weeks post-CAVB. MiRNA target prediction algorithms were used to identify potential target genes. Targets confirmed by luciferase assays in HEK293 cells were followed up with overexpression studies in neonatal rat ventricular myocytes to evaluate regulation using real time- quantitative polymerase chain reaction (RT-qPCR), western blots, cell shortening measurements, and fura-2 Ca2+ fluorescence imaging. RESULTS Of >400 miRNAs assayed, only miRNA-135a (miR-135a) was altered at 24 hours, down-regulated 78% (P <.001). Algorithms predicted miR-135a regulation of the sodium-calcium exchanger type 1 (NCX1). miR-135a transfection suppressed NCX1 3'UTR reporter activity by 42% (P <.001), mRNA expression by 34% (P <.001), and protein levels by 45% (P <.001) vs noncoding miRNA control. miR-135a overexpression reduced spontaneous beating frequency of neonatal rat ventricular myocytes by 63% (P <.001) while slowing decay (by 56%, P <.05) of caffeine-induced Ca2+ transients. miR-135a also suppressed the Ca2+ loading effects of ouabain and ouabain-induced spontaneous Ca2+ release events. CONCLUSION NCX1 is negatively regulated by miR-135a, a microRNA that is down-regulated in the heart after CAVB in mice. By controlling NCX1 expression, miR-135a modulates cardiomyocyte automaticity, Ca2+ extrusion, and arrhythmogenic Ca2+ loading/spontaneous Ca2+ release events. Therefore, miR-135a may contribute to proarrhythmic remodeling after CAVB.
Collapse
Affiliation(s)
- Eric Duong
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada; Department of Medicine, Montreal Heart Institute and Université de Montréal, Montreal, Canada
| | - Jiening Xiao
- Department of Medicine, Montreal Heart Institute and Université de Montréal, Montreal, Canada
| | - Xiao Yan Qi
- Department of Medicine, Montreal Heart Institute and Université de Montréal, Montreal, Canada
| | - Stanley Nattel
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada; Department of Medicine, Montreal Heart Institute and Université de Montréal, Montreal, Canada; Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
40
|
Soci UPR, Melo SFS, Gomes JLP, Silveira AC, Nóbrega C, de Oliveira EM. Exercise Training and Epigenetic Regulation: Multilevel Modification and Regulation of Gene Expression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1000:281-322. [PMID: 29098627 DOI: 10.1007/978-981-10-4304-8_16] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Exercise training elicits acute and adaptive long term changes in human physiology that mediate the improvement of performance and health state. The responses are integrative and orchestrated by several mechanisms, as gene expression. Gene expression is essential to construct the adaptation of the biological system to exercise training, since there are molecular processes mediating oxidative and non-oxidative metabolism, angiogenesis, cardiac and skeletal myofiber hypertrophy, and other processes that leads to a greater physiological status. Epigenetic is the field that studies about gene expression changes heritable by meiosis and mitosis, by changes in chromatin and DNA conformation, but not in DNA sequence, that studies the regulation on gene expression that is independent of genotype. The field approaches mechanisms of DNA and chromatin conformational changes that inhibit or increase gene expression and determine tissue specific pattern. The three major studied epigenetic mechanisms are DNA methylation, Histone modification, and regulation of noncoding RNA-associated genes. This review elucidates these mechanisms, focusing on the relationship between them and their relationship with exercise training, physical performance and the enhancement of health status. On this chapter, we clarified the relationship of epigenetic modulations and their intimal relationship with acute and chronic effect of exercise training, concentrating our effort on skeletal muscle, heart and vascular responses, that are the most responsive systems against to exercise training and play crucial role on physical performance and improvement of health state.
Collapse
Affiliation(s)
| | | | | | | | - Clara Nóbrega
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, SP, Brazil
| | | |
Collapse
|
41
|
An CI, Ichihashi Y, Peng J, Sinha NR, Hagiwara N. Transcriptome Dynamics and Potential Roles of Sox6 in the Postnatal Heart. PLoS One 2016; 11:e0166574. [PMID: 27832192 PMCID: PMC5104335 DOI: 10.1371/journal.pone.0166574] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 10/31/2016] [Indexed: 01/20/2023] Open
Abstract
The postnatal heart undergoes highly coordinated developmental processes culminating in the complex physiologic properties of the adult heart. The molecular mechanisms of postnatal heart development remain largely unexplored despite their important clinical implications. To gain an integrated view of the dynamic changes in gene expression during postnatal heart development at the organ level, time-series transcriptome analyses of the postnatal hearts of neonatal through adult mice (P1, P7, P14, P30, and P60) were performed using a newly developed bioinformatics pipeline. We identified functional gene clusters by principal component analysis with self-organizing map clustering which revealed organized, discrete gene expression patterns corresponding to biological functions associated with the neonatal, juvenile and adult stages of postnatal heart development. Using weighted gene co-expression network analysis with bootstrap inference for each of these functional gene clusters, highly robust hub genes were identified which likely play key roles in regulating expression of co-expressed, functionally linked genes. Additionally, motivated by the role of the transcription factor Sox6 in the functional maturation of skeletal muscle, the role of Sox6 in the postnatal maturation of cardiac muscle was investigated. Differentially expressed transcriptome analyses between Sox6 knockout (KO) and control hearts uncovered significant upregulation of genes involved in cell proliferation at postnatal day 7 (P7) in the Sox6 KO heart. This result was validated by detecting mitotically active cells in the P7 Sox6 KO heart. The current report provides a framework for the complex molecular processes of postnatal heart development, thus enabling systematic dissection of the developmental regression observed in the stressed and failing adult heart.
Collapse
Affiliation(s)
- Chung-Il An
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California Davis, Davis, California, United States of America
- * E-mail: (CA); (YI); (NH)
| | - Yasunori Ichihashi
- Department of Plant Biology, University of California Davis, Davis, California, United States of America
- * E-mail: (CA); (YI); (NH)
| | - Jie Peng
- Department of Statistics, University of California Davis, Davis, California, United States of America
| | - Neelima R. Sinha
- Department of Plant Biology, University of California Davis, Davis, California, United States of America
| | - Nobuko Hagiwara
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California Davis, Davis, California, United States of America
- * E-mail: (CA); (YI); (NH)
| |
Collapse
|
42
|
Jia Z, Wang J, Shi Q, Liu S, Wang W, Tian Y, Lu Q, Chen P, Ma K, Zhou C. SOX6 and PDCD4 enhance cardiomyocyte apoptosis through LPS-induced miR-499 inhibition. Apoptosis 2016; 21:174-83. [PMID: 26659076 PMCID: PMC4712245 DOI: 10.1007/s10495-015-1201-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Sepsis-induced cardiac apoptosis is one of the major pathogenic factors in myocardial dysfunction. As it enhances numerous proinflammatory factors, lipopolysaccharide (LPS) is considered the principal mediator in this pathological process. However, the detailed mechanisms involved are unclear. In this study, we attempted to explore the mechanisms involved in LPS-induced cardiomyocyte apoptosis. We found that LPS stimulation inhibited microRNA (miR)-499 expression and thereby upregulated the expression of SOX6 and PDCD4 in neonatal rat cardiomyocytes. We demonstrate that SOX6 and PDCD4 are target genes of miR-499, and they enhance LPS-induced cardiomyocyte apoptosis by activating the BCL-2 family pathway. The apoptosis process enhanced by overexpression of SOX6 or PDCD4, was rescued by the cardiac-abundant miR-499. Overexpression of miR-499 protected the cardiomyocytes against LPS-induced apoptosis. In brief, our results demonstrate the existence of a miR-499-SOX6/PDCD4-BCL-2 family pathway in cardiomyocytes in response to LPS stimulation.
Collapse
Affiliation(s)
- Zhuqing Jia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education of China, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing, China
| | - Jiaji Wang
- Beijing Jianhua Experimental School, Yuquan Road 66, Haidian District, Beijing, China
| | - Qiong Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education of China, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing, China
| | - Siyu Liu
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Road NE, Atlanta, GA, 30322, USA
| | - Weiping Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education of China, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing, China
| | - Yuyao Tian
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education of China, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing, China
| | - Qin Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education of China, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing, China
| | - Ping Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education of China, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing, China
| | - Kangtao Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education of China, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing, China
| | - Chunyan Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education of China, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing, China.
| |
Collapse
|
43
|
Chaggar PS, Williams SG, Yonan N, Fildes J, Venkateswaran R, Shaw SM. Myocardial recovery with mechanical circulatory support. Eur J Heart Fail 2016; 18:1220-1227. [DOI: 10.1002/ejhf.575] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/24/2016] [Accepted: 04/28/2016] [Indexed: 01/18/2023] Open
Affiliation(s)
- Parminder S. Chaggar
- The Transplant Unit; University Hospital of South Manchester; Southmoor Road Manchester M23 9LT UK
- The Manchester Collaborative Centre for Inflammation Research; University of Manchester; Manchester UK
| | - Simon G. Williams
- The Transplant Unit; University Hospital of South Manchester; Southmoor Road Manchester M23 9LT UK
| | - Nizar Yonan
- The Transplant Unit; University Hospital of South Manchester; Southmoor Road Manchester M23 9LT UK
| | - James Fildes
- The Transplant Unit; University Hospital of South Manchester; Southmoor Road Manchester M23 9LT UK
- The Manchester Collaborative Centre for Inflammation Research; University of Manchester; Manchester UK
| | - Rajamiyer Venkateswaran
- The Transplant Unit; University Hospital of South Manchester; Southmoor Road Manchester M23 9LT UK
| | - Steven M. Shaw
- The Transplant Unit; University Hospital of South Manchester; Southmoor Road Manchester M23 9LT UK
| |
Collapse
|
44
|
Singh A, Singh A, Sen D. Mesenchymal stem cells in cardiac regeneration: a detailed progress report of the last 6 years (2010-2015). Stem Cell Res Ther 2016; 7:82. [PMID: 27259550 PMCID: PMC4893234 DOI: 10.1186/s13287-016-0341-0] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells have been used for cardiovascular regenerative therapy for decades. These cells have been established as one of the potential therapeutic agents, following several tests in animal models and clinical trials. In the process, various sources of mesenchymal stem cells have been identified which help in cardiac regeneration by either revitalizing the cardiac stem cells or revascularizing the arteries and veins of the heart. Although mesenchymal cell therapy has achieved considerable admiration, some challenges still remain that need to be overcome in order to establish it as a successful technique. This in-depth review is an attempt to summarize the major sources of mesenchymal stem cells involved in myocardial regeneration, the significant mechanisms involved in the process with a focus on studies (human and animal) conducted in the last 6 years and the challenges that remain to be addressed.
Collapse
Affiliation(s)
- Aastha Singh
- School of Bio Sciences and Technology, VIT University, Vellore, India
| | - Abhishek Singh
- School of Bio Sciences and Technology, VIT University, Vellore, India
| | - Dwaipayan Sen
- School of Bio Sciences and Technology, VIT University, Vellore, India. .,Cellular and Molecular Therapeutics Laboratory, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), VIT University, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
45
|
Wing-Lun E, Eaton SA, Hur SSJ, Aiken A, Young PE, Buckland ME, Li CCY, Cropley JE, Suter CM. Nutrition has a pervasive impact on cardiac microRNA expression in isogenic mice. Epigenetics 2016; 11:475-81. [PMID: 27216962 DOI: 10.1080/15592294.2016.1190895] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The complex interaction between obesity, Western-style diets, and cardiovascular disease is of increasing interest, with a growing number of children being born to obese parents with poor lifestyle choices. These offspring have themselves an increased susceptibility to obesity and subsequent cardiovascular disease in adult life, which may be 'programmed' by their intrauterine environment. Cardiac microRNAs (miRNAs) are affected by multiple disease states, and have also been shown to be capable of exerting a hormone-like control on whole body metabolism. Here we sought to determine the effect of prenatal exposure to maternal obesity and/or postnatal exposure to a Western diet on miRNA expression in the heart. Unbiased small RNA sequencing was carried out on cardiac tissue from young adult mice born to lean or obese mothers; offspring were weaned onto either a low-fat control diet or a high-fat Western-style diet. We found 8 cardiac miRNAs that were significantly altered in response to maternal obesity, but only when the offspring were challenged postnatally with the Western diet. In contrast, postnatal exposure to the diet alone induced significant changes to the expression of a much larger number of miRNAs (33 in offspring of lean and 46 in offspring of obese). Many of the affected miRNAs have previously been implicated in various cardiac pathologies. The pervasive cardiac miRNA changes induced by a Western diet suggest that an individual's lifestyle choices outweigh the impact of any programming effects by maternal obesity on miRNA-related cardiac health.
Collapse
Affiliation(s)
- Edwina Wing-Lun
- a Molecular, Structural and Computational Biology Division , Victor Chang Cardiac Research Institute , Darlinghurst , NSW , Australia
| | - Sally A Eaton
- a Molecular, Structural and Computational Biology Division , Victor Chang Cardiac Research Institute , Darlinghurst , NSW , Australia.,b Faculty of Medicine , University of New South Wales , Kensington , NSW , Australia
| | - Suzy S J Hur
- a Molecular, Structural and Computational Biology Division , Victor Chang Cardiac Research Institute , Darlinghurst , NSW , Australia
| | - Alastair Aiken
- a Molecular, Structural and Computational Biology Division , Victor Chang Cardiac Research Institute , Darlinghurst , NSW , Australia
| | - Paul E Young
- a Molecular, Structural and Computational Biology Division , Victor Chang Cardiac Research Institute , Darlinghurst , NSW , Australia
| | - Michael E Buckland
- c Brain and Mind Research Institute, University of Sydney , Sydney , NSW , Australia
| | - Cheryl C Y Li
- a Molecular, Structural and Computational Biology Division , Victor Chang Cardiac Research Institute , Darlinghurst , NSW , Australia.,c Brain and Mind Research Institute, University of Sydney , Sydney , NSW , Australia
| | - Jennifer E Cropley
- a Molecular, Structural and Computational Biology Division , Victor Chang Cardiac Research Institute , Darlinghurst , NSW , Australia.,b Faculty of Medicine , University of New South Wales , Kensington , NSW , Australia
| | - Catherine M Suter
- a Molecular, Structural and Computational Biology Division , Victor Chang Cardiac Research Institute , Darlinghurst , NSW , Australia.,b Faculty of Medicine , University of New South Wales , Kensington , NSW , Australia
| |
Collapse
|
46
|
Marques FZ, Vizi D, Khammy O, Mariani JA, Kaye DM. The transcardiac gradient of cardio-microRNAs in the failing heart. Eur J Heart Fail 2016; 18:1000-8. [DOI: 10.1002/ejhf.517] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 02/08/2016] [Accepted: 03/01/2016] [Indexed: 11/07/2022] Open
Affiliation(s)
- Francine Z. Marques
- Heart Failure Research Group; Baker IDI Heart and Diabetes Research Institute VIC; Australia
| | - Donna Vizi
- Heart Centre; Alfred Hospital; Melbourne VIC Australia
| | - Ouda Khammy
- Heart Failure Research Group; Baker IDI Heart and Diabetes Research Institute VIC; Australia
| | - Justin A. Mariani
- Heart Failure Research Group; Baker IDI Heart and Diabetes Research Institute VIC; Australia
- Heart Centre; Alfred Hospital; Melbourne VIC Australia
| | - David M. Kaye
- Heart Failure Research Group; Baker IDI Heart and Diabetes Research Institute VIC; Australia
- Heart Centre; Alfred Hospital; Melbourne VIC Australia
| |
Collapse
|
47
|
Chistiakov DA, Orekhov AN, Bobryshev YV. Cardiac-specific miRNA in cardiogenesis, heart function, and cardiac pathology (with focus on myocardial infarction). J Mol Cell Cardiol 2016; 94:107-121. [PMID: 27056419 DOI: 10.1016/j.yjmcc.2016.03.015] [Citation(s) in RCA: 218] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/09/2016] [Accepted: 03/24/2016] [Indexed: 12/21/2022]
Abstract
Cardiac miRNAs (miR-1, miR133a, miR-208a/b, and miR-499) are abundantly expressed in the myocardium. They play a central role in cardiogenesis, heart function and pathology. While miR-1 and miR-133a predominantly control early stages of cardiogenesis supporting commitment of cardiac-specific muscle lineage from embryonic stem cells and mesodermal precursors, miR-208 and miR-499 are involved in the late cardiogenic stages mediating differentiation of cardioblasts to cardiomyocytes and fast/slow muscle fiber specification. In the heart, miR-1/133a control cardiac conductance and automaticity by regulating all phases of the cardiac action potential. miR-208/499 located in introns of the heavy chain myosin genes regulate expression of sarcomeric contractile proteins. In cardiac pathology including myocardial infarction (MI), expression of cardiac miRNAs is markedly altered that leads to deleterious effects associated with heart wounding, arrhythmia, increased apoptosis, fibrosis, hypertrophy, and tissue remodeling. In acute MI, circulating levels of cardiac miRNAs are significantly elevated making them to be a promising diagnostic marker for early diagnosis of acute MI. Great cardiospecific capacity of these miRNAs is very helpful for enhancing regenerative properties and survival of stem cell and cardiac progenitor transplants and for reprogramming of mature non-cardiac cells to cardiomyocytes.
Collapse
Affiliation(s)
- Dimitry A Chistiakov
- Department of Molecular Genetic Diagnostics and Cell Biology, Division of Laboratory Medicine, Institute of Pediatrics, Research Center for Children's Health, 119991 Moscow, Russia
| | - Alexander N Orekhov
- Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow 125315, Russia; Department of Biophysics, Biological Faculty, Moscow State University, Moscow 119991, Russia; Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow 121609, Russia
| | - Yuri V Bobryshev
- Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow 125315, Russia; Faculty of Medicine, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia; School of Medicine, University of Western Sydney, Campbelltown, NSW 2560, Australia.
| |
Collapse
|
48
|
Crippa S, Nemir M, Ounzain S, Ibberson M, Berthonneche C, Sarre A, Boisset G, Maison D, Harshman K, Xenarios I, Diviani D, Schorderet D, Pedrazzini T. Comparative transcriptome profiling of the injured zebrafish and mouse hearts identifies miRNA-dependent repair pathways. Cardiovasc Res 2016; 110:73-84. [PMID: 26857418 PMCID: PMC4798047 DOI: 10.1093/cvr/cvw031] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 01/28/2016] [Indexed: 02/07/2023] Open
Abstract
Aims The adult mammalian heart has poor regenerative capacity. In contrast, the zebrafish heart retains a robust capacity for regeneration into adulthood. These distinct responses are consequences of a differential utilization of evolutionary-conserved gene regulatory networks in the damaged heart. To systematically identify miRNA-dependent networks controlling cardiac repair following injury, we performed comparative gene and miRNA profiling of the cardiac transcriptome in adult mice and zebrafish. Methods and results Using an integrated approach, we show that 45 miRNA-dependent networks, involved in critical biological pathways, are differentially modulated in the injured zebrafish vs. mouse hearts. We study, more particularly, the miR-26a-dependent response. Therefore, miR-26a is down-regulated in the fish heart after injury, whereas its expression remains constant in the mouse heart. Targets of miR-26a involve activators of the cell cycle and Ezh2, a component of the polycomb repressive complex 2 (PRC2). Importantly, PRC2 exerts repressive functions on negative regulators of the cell cycle. In cultured neonatal cardiomyocytes, inhibition of miR-26a stimulates, therefore, cardiomyocyte proliferation. Accordingly, miR-26a knockdown prolongs the proliferative window of cardiomyocytes in the post-natal mouse heart. Conclusions This novel strategy identifies a series of miRNAs and associated pathways, in particular miR-26a, which represent attractive therapeutic targets for inducing repair in the injured heart.
Collapse
Affiliation(s)
- Stefania Crippa
- Experimental Cardiology Unit, Department of Medicine, University of Lausanne Medical School, Lausanne 1011, Switzerland
| | - Mohamed Nemir
- Experimental Cardiology Unit, Department of Medicine, University of Lausanne Medical School, Lausanne 1011, Switzerland
| | - Samir Ounzain
- Experimental Cardiology Unit, Department of Medicine, University of Lausanne Medical School, Lausanne 1011, Switzerland
| | - Mark Ibberson
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Corinne Berthonneche
- Cardiovascular Assessment Facility, University of Lausanne, Lausanne, Switzerland
| | - Alexandre Sarre
- Cardiovascular Assessment Facility, University of Lausanne, Lausanne, Switzerland
| | - Gaëlle Boisset
- Institute for Research in Ophthalmology, Sion, Switzerland
| | - Damien Maison
- Experimental Cardiology Unit, Department of Medicine, University of Lausanne Medical School, Lausanne 1011, Switzerland
| | - Keith Harshman
- Lausanne Genomic Technologies Facility, University of Lausanne, Lausanne, Switzerland
| | | | - Dario Diviani
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | | | - Thierry Pedrazzini
- Experimental Cardiology Unit, Department of Medicine, University of Lausanne Medical School, Lausanne 1011, Switzerland
| |
Collapse
|
49
|
Vásquez-Trincado C, García-Carvajal I, Pennanen C, Parra V, Hill JA, Rothermel BA, Lavandero S. Mitochondrial dynamics, mitophagy and cardiovascular disease. J Physiol 2016; 594:509-25. [PMID: 26537557 DOI: 10.1113/jp271301] [Citation(s) in RCA: 459] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 08/30/2015] [Indexed: 12/14/2022] Open
Abstract
Cardiac hypertrophy is often initiated as an adaptive response to haemodynamic stress or myocardial injury, and allows the heart to meet an increased demand for oxygen. Although initially beneficial, hypertrophy can ultimately contribute to the progression of cardiac disease, leading to an increase in interstitial fibrosis and a decrease in ventricular function. Metabolic changes have emerged as key mechanisms involved in the development and progression of pathological remodelling. As the myocardium is a highly oxidative tissue, mitochondria play a central role in maintaining optimal performance of the heart. 'Mitochondrial dynamics', the processes of mitochondrial fusion, fission, biogenesis and mitophagy that determine mitochondrial morphology, quality and abundance have recently been implicated in cardiovascular disease. Studies link mitochondrial dynamics to the balance between energy demand and nutrient supply, suggesting that changes in mitochondrial morphology may act as a mechanism for bioenergetic adaptation during cardiac pathological remodelling. Another critical function of mitochondrial dynamics is the removal of damaged and dysfunctional mitochondria through mitophagy, which is dependent on the fission/fusion cycle. In this article, we discuss the latest findings regarding the impact of mitochondrial dynamics and mitophagy on the development and progression of cardiovascular pathologies, including diabetic cardiomyopathy, atherosclerosis, damage from ischaemia-reperfusion, cardiac hypertrophy and decompensated heart failure. We will address the ability of mitochondrial fusion and fission to impact all cell types within the myocardium, including cardiac myocytes, cardiac fibroblasts and vascular smooth muscle cells. Finally, we will discuss how these findings can be applied to improve the treatment and prevention of cardiovascular diseases.
Collapse
Affiliation(s)
- César Vásquez-Trincado
- Advanced Centre for Chronic Disease (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile.,Centre for Molecular Studies of the Cell, Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile
| | - Ivonne García-Carvajal
- Advanced Centre for Chronic Disease (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile.,Centre for Molecular Studies of the Cell, Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile
| | - Christian Pennanen
- Advanced Centre for Chronic Disease (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile.,Centre for Molecular Studies of the Cell, Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile
| | - Valentina Parra
- Advanced Centre for Chronic Disease (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile.,Centre for Molecular Studies of the Cell, Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile.,Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Centre, Dallas, TX, USA
| | - Joseph A Hill
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Centre, Dallas, TX, USA.,Department of Molecular Biology, University of Texas Southwestern Medical Centre, Dallas, TX, USA
| | - Beverly A Rothermel
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Centre, Dallas, TX, USA.,Department of Molecular Biology, University of Texas Southwestern Medical Centre, Dallas, TX, USA
| | - Sergio Lavandero
- Advanced Centre for Chronic Disease (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile.,Centre for Molecular Studies of the Cell, Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile.,Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Centre, Dallas, TX, USA
| |
Collapse
|
50
|
MicroRNAs Based Therapy of Hypertrophic Cardiomyopathy: The Road Traveled So Far. BIOMED RESEARCH INTERNATIONAL 2015; 2015:983290. [PMID: 26504850 PMCID: PMC4609405 DOI: 10.1155/2015/983290] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/19/2015] [Indexed: 01/01/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is an autosomal dominant disease characterized by variable expressivity, age penetrance, and a high heterogeneity. The transcriptional profile (miRNAs, mRNAs), epigenetic modifications, and posttranslational modifications seem to be highly relevant for the onset of the disease. miRNAs, small noncoding RNAs with 22 nucleotides, have been implicated in the regulation of cardiomyocyte function, being differentially expressed in several heart diseases, including HCM. Moreover, a different miRNA expression profile in the various stages of HCM development is also observed. This review summarizes the current knowledge of the profile of miRNAs characteristic of asymptomatic to overt HCM patients, discussing alongside their potential use for diagnosis and therapy. Indeed, the stability and specificity of miRNAs make them suitable targets for use as biomarkers for diagnosis and prognosis and as therapeutical targets.
Collapse
|