1
|
Bhushan A, Chinnaswamy S. Identifying causal variants at the interferon lambda locus in case-control studies: Utilizing non-synonymous variant rs117648444 to probe the role of IFN-λ4. Gene 2018; 664:168-180. [PMID: 29705128 DOI: 10.1016/j.gene.2018.04.076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/19/2018] [Accepted: 04/25/2018] [Indexed: 02/08/2023]
Abstract
Genetic variants at the interferon lambda (IFNL) locus have been associated with several human phenotypes in both disease and health. In chronic hepatitis C virus (HCV) infections, where the IFNL variants were first identified to be associated with response to interferon-α-ribavirin therapy, the available data clearly suggests that the causal variant could be the dinucleotide polymorphism rs368234815 that causes an open reading frame-shift in the IFNL4 gene resulting in expression of a functional IFN-λ4, a new type III IFN. In other human diseases/phenotypes where IFNL variants have been recently associated with, the causal mechanism remains unclear. In vitro evidence has shown that other IFNL variants (rs28416813, rs4803217) may regulate expression of another type III IFN, IFN-λ3. Therefore, expression of a functional IFN-λ4 and quantitative differences in IFN-λ3 expression are two potential causal mechanisms behind the observed phenotypes. Since these two potential causal mechanisms involve features of mutual exclusivity and overlapping functions, it is difficult to differentiate one from the other, in vivo, in absence of other implicating evidences. In addition, the strong linkage disequilibrium (LD) observed in many populations at the IFNL locus makes it difficult to tease out the actual functional/causal variants responsible for the phenotypes. The non-synonymous single nucleotide polymorphism rs117648444 that alters the activity of IFN-λ4 and the LD structure in the IFNL region which leads to a confounding effect of rs117648444 on other IFNL variants, provide us with additional tools in case-control studies to probe the role of IFN-λ4.
Collapse
Affiliation(s)
- Anand Bhushan
- National Institute of Biomedical Genomics, P.O.:N.S.S., Kalyani, West Bengal 741251, India
| | - Sreedhar Chinnaswamy
- National Institute of Biomedical Genomics, P.O.:N.S.S., Kalyani, West Bengal 741251, India.
| |
Collapse
|
2
|
Shrivastava S, Meissner EG, Funk E, Poonia S, Shokeen V, Thakur A, Poonia B, Sarin SK, Trehanpati N, Kottilil S. Elevated hepatic lipid and interferon stimulated gene expression in HCV GT3 patients relative to non-alcoholic steatohepatitis. Hepatol Int 2016; 10:937-946. [PMID: 27193023 DOI: 10.1007/s12072-016-9733-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 04/11/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS HCV GT-3 has a more pronounced effect on hepatic steatosis and host lipids than other HCV genotypes and is proving less responsive to all oral interferon-free treatment with direct acting antiviral agents. As both HCV GT3 infection and NASH can result in steatosis and cirrhosis, we asked whether hepatic transcriptional profiles reflective of the host response to inflammation differed based on the etiology of injury. METHODS Hepatic gene expression was determined for 48 pre-selected genes known to be associated with hepatic interferon signaling and lipid metabolic pathways in treatment-naïve HCV GT-3 (n = 9) and NASH (n = 14) patients. RESULTS Genes with significantly higher expression in HCV included chemokines CXCL10, CXCL11 interferon IFNA2, interferon receptors IFNAR1, IL10RB negative regulators of interferon signaling SOCS3, USP18, JAK/STAT and IRF family members STAT1, STAT2, and IRF, and TGFB family members TGFB1, TGFBR1, and TGFBR2 and other ISGs like OAS2, IF127, IF144 and ISG15. HCV infection was also associated with higher expression of genes associated with lipid metabolism APOE, APOL3, SREBF1 and HMBS. Furthermore, our results suggest that, in HCV GT3-infected patients, IL28B (CC) genotype is associated with lower baseline ISG expression such as IRF9, ISG15, MX1, STAT1, CXCL10, CXCL11, and IFI27 compared to CT/TT genotype. CONCLUSIONS HCV GT-3 and NASH both induce hepatic steatosis and inflammation, while HCV GT-3 infection is uniquely associated with elevated transcription of hepatic ISGs and genes associated with lipid metabolism. These changes likely reflect the unique host response to HCV replication distinct from the inflammatory response induced by NASH.
Collapse
Affiliation(s)
| | - Eric G Meissner
- Division of Infectious Diseases, Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Emily Funk
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, USA
| | - Seerat Poonia
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, USA
| | | | - Arun Thakur
- Institute of Liver and Biliary Sciences, New Delhi, India
| | - Bhawna Poonia
- Institute of Human Virology, University of Maryland, Baltimore, MD, USA
| | | | | | | |
Collapse
|
3
|
Qiu X, Fu Q, Meng C, Yu S, Zhan Y, Dong L, Song C, Sun Y, Tan L, Hu S, Wang X, Liu X, Peng D, Liu X, Ding C. Newcastle Disease Virus V Protein Targets Phosphorylated STAT1 to Block IFN-I Signaling. PLoS One 2016; 11:e0148560. [PMID: 26859759 PMCID: PMC4747598 DOI: 10.1371/journal.pone.0148560] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 01/19/2016] [Indexed: 11/29/2022] Open
Abstract
Newcastle disease virus (NDV) V protein is considered as an effector for IFN antagonism, however, the mechanism remains unknown. In this study, the expression of STAT1 and phospho-STAT1 in cells infected with NDV or transfected with V protein-expressing plasmids were analyzed. Our results showed that NDV V protein targets phospho-STAT1 reduction in the cells depends on the stimulation of IFN-α. In addition, a V-deficient genotype VII recombinant NDV strain rZJ1-VS was constructed using reverse genetic technique to confirm the results. The rZJ1-VS lost the ability to reduce phospho-STAT1 and induced higher expression of IFN-responsive genes in infected cells. Furthermore, treatment with an ubiquitin E1 inhibitor PYR-41 demonstrated that phospho-STAT1 reduction was caused by degradation, but not de-phosphorylation. We conclude that NDV V protein targets phospho-STAT1 degradation to block IFN-α signaling, which adds novel knowledge to the strategies used by paramyxoviruses to evade IFN.
Collapse
Affiliation(s)
- Xusheng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, China
| | - Qiang Fu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, China
- Key Laboratory of Animal Infectious Diseases, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chunchun Meng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, China
| | - Shengqing Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, China
| | - Yuan Zhan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, China
| | - Luna Dong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, China
| | - Cuiping Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, China
| | - Yingjie Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, China
| | - Lei Tan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, China
| | - Shunlin Hu
- Key Laboratory of Animal Infectious Diseases, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaoquan Wang
- Key Laboratory of Animal Infectious Diseases, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaowen Liu
- Key Laboratory of Animal Infectious Diseases, Yangzhou University, Yangzhou, Jiangsu, China
| | - Daxin Peng
- Key Laboratory of Animal Infectious Diseases, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xiufan Liu
- Key Laboratory of Animal Infectious Diseases, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- * E-mail: (XFL); (CD)
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- * E-mail: (XFL); (CD)
| |
Collapse
|
4
|
de Sá KSG, Santana BB, de Souza Ferreira TC, Sousa RCM, Caldas CAM, Azevedo VN, Feitosa RNM, Machado LFA, de Oliveira Guimarães Ishak M, Ishak R, Vallinoto ACR. IL28B gene polymorphisms and Th1/Th2 cytokine levels might be associated with HTLV-associated arthropathy. Cytokine 2016; 77:79-87. [PMID: 26546777 DOI: 10.1016/j.cyto.2015.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/30/2015] [Accepted: 11/02/2015] [Indexed: 12/18/2022]
Abstract
The present study is the first investigation of the association between single nucleotide polymorphisms (SNPs - rs8099917, rs12979860 and rs8103142) of the IL28B gene and the development of human T-lymphotropic virus (HTLV)-associated arthropathy (HAA). Individuals with HAA exhibited low interleukin (IL) 6 (p<0.05) and high IL-10 (p<0.05) levels compared with asymptomatic patients. TNF-α/CD4(+) T cell count, TNF-α/CD8(+) T cell count and IFN-γ/proviral load positively correlated in asymptomatic patients. The allelic and genotypic frequencies did not differ between patients with HAA and asymptomatic patients. Seven haplotypes were detected in the investigated population, with haplotype CCT (p<0.05) being the most frequent among the HTLV-infected individuals, while haplotype TTG (p<0.05) was detected in the group with HAA only. Compared with asymptomatic patients, individuals with HAA and genotype TT (rs8099917) exhibited larger numbers of CD8(+) T cells (p<0.05) and higher proviral load levels (p<0.05). Those patients with HAA and genotypes CC (rs12979860) and TT (rs8103142) exhibited high TNF-β (p<0.05) and IFN-γ (p<0.05) levels. Those patients with HAA and genotype CT/TT (rs12979860) exhibited high IL-10 levels (p<0.05). These results suggest that haplotypes CCT and TTG might be associated with susceptibility to HTLV infection and progression to HAA, respectively. Genotype TT (rs8099917) might be a risk factor for elevation of the proviral load and CD8(+) T cell count. In addition, genotypes CC (rs12979860) and TT (rs8103142) seem to be associated with increased TNF-β and IFN-γ levels.
Collapse
Affiliation(s)
- Keyla Santos Guedes de Sá
- Laboratory of Virology (Laboratório de Virologia), Institute of Biological Sciences (Instituto de Ciências Biológicas), Federal University of Pará (Universidade Federal do Pará), Guamá, 66075-110 Belém, Pará, Brazil
| | - Bárbara Brasil Santana
- Laboratory of Virology (Laboratório de Virologia), Institute of Biological Sciences (Instituto de Ciências Biológicas), Federal University of Pará (Universidade Federal do Pará), Guamá, 66075-110 Belém, Pará, Brazil
| | - Tuane Carolina de Souza Ferreira
- Laboratory of Virology (Laboratório de Virologia), Institute of Biological Sciences (Instituto de Ciências Biológicas), Federal University of Pará (Universidade Federal do Pará), Guamá, 66075-110 Belém, Pará, Brazil
| | - Rita Catarina Medeiros Sousa
- Tropical Medicine Unit (Núcleo de Medicina Tropical), Federal University of Pará (Universidade Federal do Para), Umarizal, 66050-240 Belém, Pará, Brazil
| | - Cezar Augusto Muniz Caldas
- Tropical Medicine Unit (Núcleo de Medicina Tropical), Federal University of Pará (Universidade Federal do Para), Umarizal, 66050-240 Belém, Pará, Brazil
| | - Vânia Nakauth Azevedo
- Laboratory of Virology (Laboratório de Virologia), Institute of Biological Sciences (Instituto de Ciências Biológicas), Federal University of Pará (Universidade Federal do Pará), Guamá, 66075-110 Belém, Pará, Brazil
| | - Rosimar Neris Martins Feitosa
- Laboratory of Virology (Laboratório de Virologia), Institute of Biological Sciences (Instituto de Ciências Biológicas), Federal University of Pará (Universidade Federal do Pará), Guamá, 66075-110 Belém, Pará, Brazil
| | - Luiz Fernando Almeida Machado
- Laboratory of Virology (Laboratório de Virologia), Institute of Biological Sciences (Instituto de Ciências Biológicas), Federal University of Pará (Universidade Federal do Pará), Guamá, 66075-110 Belém, Pará, Brazil
| | - Marluísa de Oliveira Guimarães Ishak
- Laboratory of Virology (Laboratório de Virologia), Institute of Biological Sciences (Instituto de Ciências Biológicas), Federal University of Pará (Universidade Federal do Pará), Guamá, 66075-110 Belém, Pará, Brazil
| | - Ricardo Ishak
- Laboratory of Virology (Laboratório de Virologia), Institute of Biological Sciences (Instituto de Ciências Biológicas), Federal University of Pará (Universidade Federal do Pará), Guamá, 66075-110 Belém, Pará, Brazil
| | - Antonio Carlos Rosário Vallinoto
- Laboratory of Virology (Laboratório de Virologia), Institute of Biological Sciences (Instituto de Ciências Biológicas), Federal University of Pará (Universidade Federal do Pará), Guamá, 66075-110 Belém, Pará, Brazil.
| |
Collapse
|
5
|
Zhu JW, Liu FL, Mu D, Deng DY, Zheng YT. Increased expression and dysregulated association of restriction factors and type I interferon in HIV, HCV mono- and co-infected patients. J Med Virol 2015; 88:987-95. [PMID: 26519943 DOI: 10.1002/jmv.24419] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2015] [Indexed: 12/23/2022]
Abstract
Host restriction factors and type I interferon are important in limiting HIV and HCV infections, yet the role of HIV, HCV mono- and co-infection in regulating these antiviral genes expression is not clear. In this study, we measured the levels of TRIM5α, TRIM22, APOBEC3G, and IFN-α, -β mRNA expression in peripheral blood mononuclear cells of 43 HIV mono-infected, 70 HCV mono-infected and 64 HIV/HCV co-infected patients along with 98 healthy controls. We also quantified HIV and HCV viral loads in mono- and co-infected patients. The results showed that HCV, HIV mono- and co-infection differentially increased TRIM22, APOBEC3G, and IFN-α, -β mRNA expression while the mRNA expression of TRIMα was upregulated only by HCV-mono infection. HIV/HCV co-infection was associated with higher viral load, compared to either HIV or HCV mono-infection. Additionally, we showed TRIMα and TRIM22 positively correlated with IFN-α, -β, which could be dysregulated by HIV, HCV mono- and co-infection. Furthermore, we found TRIM22 negatively correlated with HCV viral load in mono-infected patients and APOBEC3G positively correlated with HCV viral load in co-infected patients. Collectively, our findings suggest the potential role of restriction factors in restricting HIV, HCV mono- and co-infection in vivo, which appears to be a therapeutic target for potential drug discovery.
Collapse
Affiliation(s)
- Jia-Wu Zhu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Feng-Liang Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Dan Mu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - De-Yao Deng
- Department of Clinical Laboratory, The Second People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
6
|
Domagalski K, Pawłowska M, Kozielewicz D, Dybowska D, Tretyn A, Halota W. The Impact of IL28B Genotype and Liver Fibrosis on the Hepatic Expression of IP10, IFI27, ISG15, and MX1 and Their Association with Treatment Outcomes in Patients with Chronic Hepatitis C. PLoS One 2015; 10:e0130899. [PMID: 26115415 PMCID: PMC4482747 DOI: 10.1371/journal.pone.0130899] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 05/25/2015] [Indexed: 12/14/2022] Open
Abstract
The strong impact of interleukin 28B (IL28B) polymorphisms on sustained virological response (SVR) after peginterferon and ribavirin treatment in patients with chronic hepatitis C (CHC) is well-known. We investigated IL28B variability and hepatic expression of IP10, IFI27, ISG15, and MX1 in CHC patients, the relation of each with their clinical characteristics, and how they associated with responses to combined therapy. Genotyping and gene expression analysis were conducted in a selected cohort of treatment-naïve patients who underwent interferon and ribavirin treatment. Differential expression of IP10, IFI27, ISG15, and MX1 genes was assessed from pretreatment liver biopsies using quantitative PCR. Histopathological evaluation of liver specimens was performed on the basis of the Scheuer's modified scale. We showed that hepatic IFI27, ISG15, and MX1 expression was lower in the IL28B CC 12979860 and TT rs8099917 groups than in the CT-TT rs12979860 and TG-GG rs8099917 groups (P < 0.001). We found no differences in IP10 expression between the IL28B genotypes (P > 0.05); in contrast, IP10 expression was significantly affected by the progression of fibrosis (P = 0.007). We showed that the rs12979860 CC genotype was associated with successful treatment when compared to the rs12979860 CT-TT genotype (P = 0.004). Additionally, the expression levels of IP10, IFI27 and ISG15, but not MX1, were significantly higher in non-SVR patients than in SVR patients. The effect of variation in IL28B on the results of IFN-based treatment may be associated with changes in IFI27 and ISG15, but not with IP10. Silencing of IP10 is positive and independent from IL28B prediction of SVR, which is strongly associated with liver fibrosis in CHC patients.
Collapse
Affiliation(s)
- Krzysztof Domagalski
- Centre For Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - Małgorzata Pawłowska
- Department of Infectious Diseases and Hepatology, Nicolaus Copernicus University, Faculty of Medicine, Bydgoszcz, Poland
| | - Dorota Kozielewicz
- Department of Infectious Diseases and Hepatology, Nicolaus Copernicus University, Faculty of Medicine, Bydgoszcz, Poland
| | - Dorota Dybowska
- Department of Infectious Diseases and Hepatology, Nicolaus Copernicus University, Faculty of Medicine, Bydgoszcz, Poland
| | - Andrzej Tretyn
- Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Toruń, Poland
| | - Waldemar Halota
- Department of Infectious Diseases and Hepatology, Nicolaus Copernicus University, Faculty of Medicine, Bydgoszcz, Poland
| |
Collapse
|
7
|
Gene expression profiling to predict and assess the consequences of therapy-induced virus eradication in chronic hepatitis C virus infection. J Virol 2014; 88:12254-64. [PMID: 25100847 DOI: 10.1128/jvi.00775-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED Systems biology has proven to be a powerful tool to identify reliable predictors of treatment response in chronic hepatitis C virus (HCV) infection. In the present study, we studied patients with chronic HCV infection who responded to interferon (IFN)-based therapy, as evidenced by an absence of HCV RNA at the end of treatment, and focused on two issues that have not received much attention. First, we evaluated whether specific genes or gene expression patterns in blood were able to distinguish responder patients with a viral relapse from responder patients who remained virus negative after cessation of treatment. We found that patients with chronic HCV infection who were sustained responders and relapsers after IFN-based therapy showed comparable baseline clinical parameters and immune compositions in blood. However, at baseline, the gene expression profiles of a set of 18 genes predicted treatment outcome with an accuracy of 94%. Second, we examined whether patients with successful therapy-induced clearance of HCV still exhibited gene expression patterns characteristic of HCV or whether normalization of their transcriptome was observed. We observed that the relatively high expression levels of IFN-stimulated genes (ISGs) in patients with chronic HCV infection prior to therapy were reduced after successful IFN-based antiviral therapy (at 24 weeks of follow-up). These ISGs included the CXCL10, OAS1, IFI6, DDX60, TRIM5, and STAT1 genes. In addition, 1,428 differentially expressed non-ISGs were identified in paired pre- and posttreatment samples from sustained responders, which included genes involved in transforming growth factor beta (TGF-β) signaling, apoptosis, autophagy, and nucleic acid and protein metabolism. Interestingly, 1,424 genes with altered expression levels in responder patients after viral eradication were identified, in comparison to normal expression levels in healthy individuals. Additionally, aberrant expression levels of a subset of these genes, including the interleukin-32 (IL-32), IL-16, CCND3, and RASSF1 genes, were also observed at baseline. Our findings indicate that successful antiviral therapy for patients with chronic HCV infection does not lead to normalization of their blood transcriptional signature. The altered transcriptional activity may reflect HCV-induced liver damage in previously infected individuals. IMPORTANCE Tools to predict the efficacy of antiviral therapy for patients with HCV infection are important to select the optimal therapeutic strategy. Using a systems biology approach, we identify a set of 18 genes expressed in blood that predicts the recurrence of HCV RNA after cessation of therapy consisting of peginterferon and ribavirin. This set of genes may be applicable as a useful biomarker in clinical decision-making, since the number of genes included in the predictor is small and the correct prediction rate is high (94%). In addition, we observed that the blood transcriptional profile in patients with chronic HCV infection who were successfully treated is not normalized to the status observed in healthy individuals. Even 6 months after therapy-induced elimination of HCV RNA, gene expression profiles in blood are still altered in these patients with chronic HCV infection, strongly suggesting long-term modulation of immune parameters in previously infected patients.
Collapse
|
8
|
Chinnaswamy S. Genetic variants at the IFNL3 locus and their association with hepatitis C virus infections reveal novel insights into host-virus interactions. J Interferon Cytokine Res 2014; 34:479-97. [PMID: 24555572 PMCID: PMC4080901 DOI: 10.1089/jir.2013.0113] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 11/25/2013] [Indexed: 12/19/2022] Open
Abstract
Human genetic variation plays a critical role in both spontaneous clearance of and response to interferon (IFN)-based therapies against hepatitis C virus (HCV) as shown by the success of recent genome-wide association studies (GWAS). Several GWAS and later validation studies have shown that single nucleotide polymorphisms (SNPs) at the IFNL3 (formerly IL28B) locus on chromosome 19 are involved in eliminating HCV in human patients. No doubt that this information is helping clinicians worldwide in making better clinical decisions in anti-HCV therapy, but the biological mechanisms involving the SNPs leading to differential responses to therapy and spontaneous clearance of HCV remain elusive. Recent reports including the discovery of a novel IFN (IFN-λ4) gene at the IFNL3 locus and in vitro functional studies implicating 2 SNPs as causal variants lead to novel conclusions and perhaps to new directions in research. An attempt is made in this review to summarize the major findings of the GWAS, the efforts involved in the discovery of causal SNPs; and to explain the biological basis for spontaneous clearance and response to treatment in HCV infections.
Collapse
|
9
|
Hebels DGA, Jetten MJA, Aerts HJW, Herwig R, Theunissen DHJ, Gaj S, van Delft JH, Kleinjans JCS. Evaluation of database-derived pathway development for enabling biomarker discovery for hepatotoxicity. Biomark Med 2014; 8:185-200. [DOI: 10.2217/bmm.13.154] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Current testing models for predicting drug-induced liver injury are inadequate, as they basically under-report human health risks. We present here an approach towards developing pathways based on hepatotoxicity-associated gene groups derived from two types of publicly accessible hepatotoxicity databases, in order to develop drug-induced liver injury biomarker profiles. One human liver ‘omics-based and four text-mining-based databases were explored for hepatotoxicity-associated gene lists. Over-representation analysis of these gene lists with a hepatotoxicant-exposed primary human hepatocytes data set showed that human liver ‘omics gene lists performed better than text-mining gene lists and the results of the latter differed strongly between databases. However, both types of databases contained gene lists demonstrating biomarker potential. Visualizing those in pathway format may aid in interpreting the biomolecular background. We conclude that exploiting existing and openly accessible databases in a dedicated manner seems promising in providing venues for translational research in toxicology and biomarker development.
Collapse
Affiliation(s)
- Dennie GA Hebels
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Marlon JA Jetten
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Hugo JW Aerts
- Department or Biostatistics & Computational Biology, Dana–Farber Cancer Institute, Harvard School of Public Health, 44 Binney Street, Boston, MA 02115, USA
| | - Ralf Herwig
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Daniël HJ Theunissen
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Stan Gaj
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Joost H van Delft
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Jos CS Kleinjans
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
10
|
Bustamante MF, Nurtdinov RN, Río J, Montalban X, Comabella M. Baseline gene expression signatures in monocytes from multiple sclerosis patients treated with interferon-beta. PLoS One 2013; 8:e60994. [PMID: 23637780 PMCID: PMC3630153 DOI: 10.1371/journal.pone.0060994] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 03/05/2013] [Indexed: 11/19/2022] Open
Abstract
Background A relatively large proportion of relapsing-remitting multiple sclerosis (RRMS) patients do not respond to interferon-beta (IFNb) treatment. In previous studies with peripheral blood mononuclear cells (PBMC), we identified a subgroup of IFNb non-responders that was characterized by a baseline over-expression of type I IFN inducible genes. Additional mechanistic experiments carried out in IFNb non-responders suggested a selective alteration of the type I IFN signaling pathway in the population of blood monocytes. Here, we aimed (i) to investigate whether the type I IFN signaling pathway is up-regulated in isolated monocytes from IFNb non-responders at baseline; and (ii) to search for additional biological pathways in this cell population that may be implicated in the response to IFNb treatment. Methods Twenty RRMS patients classified according to their clinical response to IFNb treatment and 10 healthy controls were included in the study. Monocytes were purified from PBMC obtained before treatment by cell sorting and the gene expression profiling was determined with oligonucleotide microarrays. Results and discussion Purified monocytes from IFNb non-responders were characterized by an over-expression of type I IFN responsive genes, which confirms the type I IFN signature in monocytes suggested from previous studies. Other relevant signaling pathways that were up-regulated in IFNb non-responders were related with the mitochondrial function and processes such as protein synthesis and antigen presentation, and together with the type I IFN signaling pathway, may also be playing roles in the response to IFNb.
Collapse
Affiliation(s)
- Marta F. Bustamante
- Servei de Neurología/Neuroimmunología. Centre d’Esclerosi Múltiple de Catalunya, Cemcat. Hospital Universitari Vall dHebron (HUVH), Barcelona, Spain
| | - Ramil N. Nurtdinov
- Servei de Neurología/Neuroimmunología. Centre d’Esclerosi Múltiple de Catalunya, Cemcat. Hospital Universitari Vall dHebron (HUVH), Barcelona, Spain
| | - Jordi Río
- Servei de Neurología/Neuroimmunología. Centre d’Esclerosi Múltiple de Catalunya, Cemcat. Hospital Universitari Vall dHebron (HUVH), Barcelona, Spain
| | - Xavier Montalban
- Servei de Neurología/Neuroimmunología. Centre d’Esclerosi Múltiple de Catalunya, Cemcat. Hospital Universitari Vall dHebron (HUVH), Barcelona, Spain
| | - Manuel Comabella
- Servei de Neurología/Neuroimmunología. Centre d’Esclerosi Múltiple de Catalunya, Cemcat. Hospital Universitari Vall dHebron (HUVH), Barcelona, Spain
- * E-mail:
| |
Collapse
|
11
|
Jiménez-Sousa MA, Fernández-Rodríguez A, Guzmán-Fulgencio M, García-Álvarez M, Resino S. Meta-analysis: implications of interleukin-28B polymorphisms in spontaneous and treatment-related clearance for patients with hepatitis C. BMC Med 2013; 11:6. [PMID: 23298311 PMCID: PMC3570369 DOI: 10.1186/1741-7015-11-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 01/08/2013] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Since 2009, several studies have identified single-nucleotide polymorphisms (SNPs) near the gene encoding for interleukin (IL)-28 (IL28B) that are strongly associated with spontaneous and treatment-induced hepatitis C virus (HCV) clearance. Because this large amount of data includes some inconsistencies, we consider assessment of the global estimate for each SNP to be essential. METHODS Relevant studies assessing IL28B polymorphisms associated with sustained virologic response (SVR) and spontaneous clearance (SC) were identified from a literature search of PubMed up to 9 July, 2012. Studies were eligible studies if they included patients infected with HCV or HCV/HIV, or assessed any SNP located within or near the IL28B gene, SVR data available under standard treatment, and/or SC data in patients with acute HCV infection. Pooled odds ratios were estimated by fixed or random effects models when appropriate. Variables such as HCV genotype, ethnicity, and type of co-infection were studied. RESULTS Of 282 screened studies, 67 were selected for SVR and 10 for SC. In total, 20,163 patients were studied for SVR and 3,554 for SC. For SVR, we found that all SNPs showed strong associations in patients with HCV genotypes 1 and 4, whereas the pooled ORs were almost three times lower for genotypes 2 and 3 (rs12979860 and rs8099917). Regarding ethnicity, the SNP most associated with SVR was rs12979860 in white patients, whereas in East Asians it seemed to be rs8099917. The most studied SNP (rs12979860) showed similar results for patients co-infected with HCV/HIV, as for those infected with HCV only. Finally, rs12979860 and rs8099917 both appeared to be associated with SC. CONCLUSIONS IL28B polymorphisms influence both the outcome of interferon treatment and the natural clearance of HCV. However we did not identify a universal predictor SNP, as the best genetic markers differed depending on patient ethnicity, genotype, and type of infection. Nevertheless, our results may be useful for more precise treatment decision-making.
Collapse
Affiliation(s)
- María A Jiménez-Sousa
- Unit of HIV/Hepatitis Coinfection, National Center for Microbiology, Health Institute Carlos III (ISCIII), 28220 Majadahonda, Madrid, Spain
| | - Amanda Fernández-Rodríguez
- Unit of HIV/Hepatitis Coinfection, National Center for Microbiology, Health Institute Carlos III (ISCIII), 28220 Majadahonda, Madrid, Spain
| | - María Guzmán-Fulgencio
- Unit of HIV/Hepatitis Coinfection, National Center for Microbiology, Health Institute Carlos III (ISCIII), 28220 Majadahonda, Madrid, Spain
| | - Mónica García-Álvarez
- Unit of HIV/Hepatitis Coinfection, National Center for Microbiology, Health Institute Carlos III (ISCIII), 28220 Majadahonda, Madrid, Spain
| | - Salvador Resino
- Unit of HIV/Hepatitis Coinfection, National Center for Microbiology, Health Institute Carlos III (ISCIII), 28220 Majadahonda, Madrid, Spain
| |
Collapse
|
12
|
Prokunina-Olsson L, Muchmore B, Tang W, Pfeiffer RM, Park H, Dickensheets H, Hergott D, Porter-Gill P, Mumy A, Kohaar I, Chen S, Brand N, Tarway M, Liu L, Sheikh F, Astemborski J, Bonkovsky HL, Edlin BR, Howell CD, Morgan TR, Thomas DL, Rehermann B, Donnelly RP, O'Brien TR. A variant upstream of IFNL3 (IL28B) creating a new interferon gene IFNL4 is associated with impaired clearance of hepatitis C virus. Nat Genet 2013; 45:164-71. [PMID: 23291588 DOI: 10.1038/ng.2521] [Citation(s) in RCA: 757] [Impact Index Per Article: 63.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 12/07/2012] [Indexed: 02/06/2023]
Abstract
Chronic infection with hepatitis C virus (HCV) is a common cause of liver cirrhosis and cancer. We performed RNA sequencing in primary human hepatocytes activated with synthetic double-stranded RNA to mimic HCV infection. Upstream of IFNL3 (IL28B) on chromosome 19q13.13, we discovered a new transiently induced region that harbors a dinucleotide variant ss469415590 (TT or ΔG), which is in high linkage disequilibrium with rs12979860, a genetic marker strongly associated with HCV clearance. ss469415590[ΔG] is a frameshift variant that creates a novel gene, designated IFNL4, encoding the interferon-λ4 protein (IFNL4), which is moderately similar to IFNL3. Compared to rs12979860, ss469415590 is more strongly associated with HCV clearance in individuals of African ancestry, although it provides comparable information in Europeans and Asians. Transient overexpression of IFNL4 in a hepatoma cell line induced STAT1 and STAT2 phosphorylation and the expression of interferon-stimulated genes. Our findings provide new insights into the genetic regulation of HCV clearance and its clinical management.
Collapse
Affiliation(s)
- Ludmila Prokunina-Olsson
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, US National Institutes of Health, Bethesda, Maryland, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Hayes CN, Imamura M, Aikata H, Chayama K. Genetics of IL28B and HCV--response to infection and treatment. Nat Rev Gastroenterol Hepatol 2012; 9:406-17. [PMID: 22641049 DOI: 10.1038/nrgastro.2012.101] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The IL28B locus attracted the attention of HCV researchers after a series of genome-wide association studies independently identified a strong association between common IL28B polymorphisms and the outcome of PEG-IFN-α plus ribavirin combination therapy in patients chronically infected with HCV genotype 1. This association was subsequently replicated for other HCV genotypes and has been linked to spontaneous eradication of HCV, development of steatosis and biochemical changes (such as altered levels of γ-glutamyl transpeptidase and LDL). Despite the introduction of direct-acting antiviral drugs, IL28B genetics are likely to play a part in patient selection and treatment decisions-moving towards a personalized approach to therapy. In HCV-infected patients with the so-called favourable IL28B genotype (rs12979860 CC; associated with better treatment response), hepatic expression levels of IL28B and interferon-stimulated genes seem to be reduced at baseline, but are induced more strongly after IFN-α administration, perhaps resulting in more effective elimination of the virus. Clarification of the mechanisms underlying these biological phenomena will lead to improved understanding of the antiviral effects of IFN-λ and, ideally, to the development of better therapies against HCV infection. This Review summarizes current understanding of the role of IL28B in HCV infection and response to therapy.
Collapse
Affiliation(s)
- C Nelson Hayes
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku Hiroshima 734-8551, Japan
| | | | | | | |
Collapse
|