1
|
Lesnik C, Kaletsky R, Ashraf JM, Sohrabi S, Cota V, Sengupta T, Keyes W, Luo S, Murphy CT. Enhanced branched-chain amino acid metabolism improves age-related reproduction in C. elegans. Nat Metab 2024; 6:724-740. [PMID: 38418585 DOI: 10.1038/s42255-024-00996-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 01/25/2024] [Indexed: 03/01/2024]
Abstract
Reproductive ageing is one of the earliest human ageing phenotypes, and mitochondrial dysfunction has been linked to oocyte quality decline; however, it is not known which mitochondrial metabolic processes are critical for oocyte quality maintenance with age. To understand how mitochondrial processes contribute to Caenorhabditis elegans oocyte quality, we characterized the mitochondrial proteomes of young and aged wild-type and long-reproductive daf-2 mutants. Here we show that the mitochondrial proteomic profiles of young wild-type and daf-2 worms are similar and share upregulation of branched-chain amino acid (BCAA) metabolism pathway enzymes. Reduction of the BCAA catabolism enzyme BCAT-1 shortens reproduction, elevates mitochondrial reactive oxygen species levels, and shifts mitochondrial localization. Moreover, bcat-1 knockdown decreases oocyte quality in daf-2 worms and reduces reproductive capability, indicating the role of this pathway in the maintenance of oocyte quality with age. Notably, oocyte quality deterioration can be delayed, and reproduction can be extended in wild-type animals both by bcat-1 overexpression and by supplementing with vitamin B1, a cofactor needed for BCAA metabolism.
Collapse
Affiliation(s)
- Chen Lesnik
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- LSI Genomics, Princeton University, Princeton, NJ, USA
- Faculty of Natural Sciences, Department of Human Biology, University of Haifa, Haifa, Israel
| | - Rachel Kaletsky
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- LSI Genomics, Princeton University, Princeton, NJ, USA
| | - Jasmine M Ashraf
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- LSI Genomics, Princeton University, Princeton, NJ, USA
| | - Salman Sohrabi
- LSI Genomics, Princeton University, Princeton, NJ, USA
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA
| | - Vanessa Cota
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- LSI Genomics, Princeton University, Princeton, NJ, USA
- Department of Biology, Tacoma Community College, Tacoma, WA, USA
| | - Titas Sengupta
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- LSI Genomics, Princeton University, Princeton, NJ, USA
| | - William Keyes
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- LSI Genomics, Princeton University, Princeton, NJ, USA
| | - Shijing Luo
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- LSI Genomics, Princeton University, Princeton, NJ, USA
| | - Coleen T Murphy
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
- LSI Genomics, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
2
|
Lesnik C, Kaletsky R, Ashraf JM, Sohrabi S, Cota V, Sengupta T, Keyes W, Luo S, Murphy CT. Enhanced Branched-Chain Amino Acid Metabolism Improves Age-Related Reproduction in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.09.527915. [PMID: 38370685 PMCID: PMC10871302 DOI: 10.1101/2023.02.09.527915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Reproductive aging is one of the earliest human aging phenotypes, and mitochondrial dysfunction has been linked to oocyte quality decline. However, it is not known which mitochondrial metabolic processes are critical for oocyte quality maintenance with age. To understand how mitochondrial processes contribute to C. elegans oocyte quality, we characterized the mitochondrial proteomes of young and aged wild-type and long-reproductive daf-2 mutants. Here we show that the mitochondrial proteomic profiles of young wild-type and daf-2 worms are similar and share upregulation of branched-chain amino acid (BCAA) metabolism pathway enzymes. Reduction of the BCAA catabolism enzyme BCAT-1 shortens reproduction, elevates mitochondrial reactive oxygen species levels, and shifts mitochondrial localization. Moreover, bcat-1 knockdown decreases oocyte quality in daf-2 worms and reduces reproductive capability, indicating the role of this pathway in the maintenance of oocyte quality with age. Importantly, oocyte quality deterioration can be delayed, and reproduction can be extended in wild-type animals both by bcat-1 overexpression and by supplementing with Vitamin B1, a cofactor needed for BCAA metabolism.
Collapse
|
3
|
Fabrizio P, Alcolei A, Solari F. Considering Caenorhabditis elegans Aging on a Temporal and Tissue Scale: The Case of Insulin/IGF-1 Signaling. Cells 2024; 13:288. [PMID: 38334680 PMCID: PMC10854721 DOI: 10.3390/cells13030288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024] Open
Abstract
The aging process is inherently complex, involving multiple mechanisms that interact at different biological scales. The nematode Caenorhabditis elegans is a simple model organism that has played a pivotal role in aging research following the discovery of mutations extending lifespan. Longevity pathways identified in C. elegans were subsequently found to be conserved and regulate lifespan in multiple species. These pathways intersect with fundamental hallmarks of aging that include nutrient sensing, epigenetic alterations, proteostasis loss, and mitochondrial dysfunction. Here we summarize recent data obtained in C. elegans highlighting the importance of studying aging at both the tissue and temporal scale. We then focus on the neuromuscular system to illustrate the kinetics of changes that take place with age. We describe recently developed tools that enabled the dissection of the contribution of the insulin/IGF-1 receptor ortholog DAF-2 to the regulation of worm mobility in specific tissues and at different ages. We also discuss guidelines and potential pitfalls in the use of these new tools. We further highlight the opportunities that they present, especially when combined with recent transcriptomic data, to address and resolve the inherent complexity of aging. Understanding how different aging processes interact within and between tissues at different life stages could ultimately suggest potential intervention points for age-related diseases.
Collapse
Affiliation(s)
- Paola Fabrizio
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS UMR5239, INSERM 1210, University Claude Bernard Lyon 1, 69364 Lyon, France;
| | - Allan Alcolei
- INMG, MeLiS, CNRS UMR 5284, INSERM U1314, University Claude Bernard Lyon 1, 69008 Lyon, France;
| | - Florence Solari
- INMG, MeLiS, CNRS UMR 5284, INSERM U1314, University Claude Bernard Lyon 1, 69008 Lyon, France;
| |
Collapse
|
4
|
Abayev-Avraham M, Salzberg Y, Gliksberg D, Oren-Suissa M, Rosenzweig R. DNAJB6 mutants display toxic gain of function through unregulated interaction with Hsp70 chaperones. Nat Commun 2023; 14:7066. [PMID: 37923706 PMCID: PMC10624832 DOI: 10.1038/s41467-023-42735-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/19/2023] [Indexed: 11/06/2023] Open
Abstract
Molecular chaperones are essential cellular components that aid in protein folding and preventing the abnormal aggregation of disease-associated proteins. Mutations in one such chaperone, DNAJB6, were identified in patients with LGMDD1, a dominant autosomal disorder characterized by myofibrillar degeneration and accumulations of aggregated protein within myocytes. The molecular mechanisms through which such mutations cause this dysfunction, however, are not well understood. Here we employ a combination of solution NMR and biochemical assays to investigate the structural and functional changes in LGMDD1 mutants of DNAJB6. Surprisingly, we find that DNAJB6 disease mutants show no reduction in their aggregation-prevention activity in vitro, and instead differ structurally from the WT protein, affecting their interaction with Hsp70 chaperones. While WT DNAJB6 contains a helical element regulating its ability to bind and activate Hsp70, in LGMDD1 disease mutants this regulation is disrupted. These variants can thus recruit and hyperactivate Hsp70 chaperones in an unregulated manner, depleting Hsp70 levels in myocytes, and resulting in the disruption of proteostasis. Interfering with DNAJB6-Hsp70 binding, however, reverses the disease phenotype, suggesting future therapeutic avenues for LGMDD1.
Collapse
Affiliation(s)
- Meital Abayev-Avraham
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, 761000, Israel
| | - Yehuda Salzberg
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 761000, Israel
| | - Dar Gliksberg
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, 761000, Israel
| | - Meital Oren-Suissa
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 761000, Israel
| | - Rina Rosenzweig
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, 761000, Israel.
| |
Collapse
|
5
|
Nisaa K, Ben-Zvi A. HLH-1 Modulates Muscle Proteostasis During Caenorhabditis elegans Larval Development. Front Cell Dev Biol 2022; 10:920569. [PMID: 35733850 PMCID: PMC9207508 DOI: 10.3389/fcell.2022.920569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Muscle proteostasis is shaped by the myogenic transcription factor MyoD which regulates the expression of chaperones during muscle differentiation. Whether MyoD can also modulate chaperone expression in terminally differentiated muscle cells remains open. Here we utilized a temperature-sensitive (ts) conditional knockdown nonsense mutation in MyoD ortholog in C. elegans, HLH-1, to ask whether MyoD plays a role in maintaining muscle proteostasis post myogenesis. We showed that hlh-1 is expressed during larval development and that hlh-1 knockdown at the first, second, or third larval stages resulted in severe defects in motility and muscle organization. Motility defects and myofilament organization were rescued when the clearance of hlh-1(ts) mRNA was inhibited, and hlh-1 mRNA levels were restored. Moreover, hlh-1 knockdown modulated the expression of chaperones with putative HLH-1 binding sites in their promoters, supporting HLH-1 role in muscle maintenance during larval development. Finally, mild disruption of hlh-1 expression during development resulted in earlier dysregulation of muscle maintenance and function during adulthood. We propose that the differentiation transcription factor, HLH-1, contributes to muscle maintenance and regulates cell-specific chaperone expression post differentiation. HLH-1 may thus impact muscle proteostasis and potentially the onset and manifestation of sarcopenia.
Collapse
Affiliation(s)
| | - Anat Ben-Zvi
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
6
|
Maglioni S, Schiavi A, Melcher M, Brinkmann V, Luo Z, Laromaine A, Raimundo N, Meyer JN, Distelmaier F, Ventura N. Neuroligin-mediated neurodevelopmental defects are induced by mitochondrial dysfunction and prevented by lutein in C. elegans. Nat Commun 2022; 13:2620. [PMID: 35551180 PMCID: PMC9098500 DOI: 10.1038/s41467-022-29972-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 04/09/2022] [Indexed: 12/02/2022] Open
Abstract
Complex-I-deficiency represents the most frequent pathogenetic cause of human mitochondriopathies. Therapeutic options for these neurodevelopmental life-threating disorders do not exist, partly due to the scarcity of appropriate model systems to study them. Caenorhabditis elegans is a genetically tractable model organism widely used to investigate neuronal pathologies. Here, we generate C. elegans models for mitochondriopathies and show that depletion of complex I subunits recapitulates biochemical, cellular and neurodevelopmental aspects of the human diseases. We exploit two models, nuo-5/NDUFS1- and lpd-5/NDUFS4-depleted animals, for a suppressor screening that identifies lutein for its ability to rescue animals’ neurodevelopmental deficits. We uncover overexpression of synaptic neuroligin as an evolutionarily conserved consequence of mitochondrial dysfunction, which we find to mediate an early cholinergic defect in C. elegans. We show lutein exerts its beneficial effects by restoring neuroligin expression independently from its antioxidant activity, thus pointing to a possible novel pathogenetic target for the human disease. Mitochondrial deficiency causes rare incurable disorders. Here, the authors use C. elegans to study these diseases and find that the natural compound lutein prevents neurodevelopmental deficits, thus pointing to a possible therapeutic target for the human diseases.
Collapse
Affiliation(s)
- Silvia Maglioni
- IUF-Leibniz Research Institute for Environmental Medicine, 40225, Duesseldorf, Germany
| | - Alfonso Schiavi
- IUF-Leibniz Research Institute for Environmental Medicine, 40225, Duesseldorf, Germany.,Institute for Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University, 40225, Duesseldorf, Germany
| | - Marlen Melcher
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Heinrich Heine University, 40225, Duesseldorf, Germany
| | - Vanessa Brinkmann
- IUF-Leibniz Research Institute for Environmental Medicine, 40225, Duesseldorf, Germany
| | - Zhongrui Luo
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC. Campus UAB, 08193, Bellaterra, Barcelona, Spain
| | - Anna Laromaine
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC. Campus UAB, 08193, Bellaterra, Barcelona, Spain
| | - Nuno Raimundo
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, 500 University Drive, Hershey, 17033, USA
| | - Joel N Meyer
- Nicholas School of the Environment, Duke University, Durham, NC, 27708-0328, USA
| | - Felix Distelmaier
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Heinrich Heine University, 40225, Duesseldorf, Germany
| | - Natascia Ventura
- IUF-Leibniz Research Institute for Environmental Medicine, 40225, Duesseldorf, Germany. .,Institute for Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University, 40225, Duesseldorf, Germany.
| |
Collapse
|
7
|
Rolland S, Conradt B. Genetic screen identifies non-mitochondrial proteins involved in the maintenance of mitochondrial homeostasis. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000562. [PMID: 35622507 PMCID: PMC9099400 DOI: 10.17912/micropub.biology.000562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 11/06/2022]
Abstract
The mitochondrial unfolded protein response (UPR mt ) is an important stress response that ensures the maintenance of mitochondrial homeostasis in response to various types of cellular stress. We previously described a genetic screen for Caenorhabditis elegans genes, which when inactivated cause UPR mt activation, and reported genes identified that encode mitochondrial proteins. We now report additional genes identified in the screen. Importantly, these include genes that encode non-mitochondrial proteins involved in processes such as the control of gene expression, post-translational modifications, cell signaling and cellular trafficking. Interestingly, we identified several genes that have been proposed to participate in the transfer of lipids between peroxisomes, ER and mitochondria, suggesting that lipid transfer between these organelles is essential for mitochondrial homeostasis. In conclusion, this study shows that the maintenance of mitochondrial homeostasis is not only dependent on mitochondrial processes but also relies on non-mitochondrial processes and pathways. Our results reinforce the notion that mitochondrial function and cellular function are intimately connected.
Collapse
Affiliation(s)
- Stephane Rolland
- Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
- Current Address: Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, South Korea
| | - Barbara Conradt
- Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
- Center for Integrated Protein Science (CIPSM), Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
- Current Address: Department of Cell and Developmental Biology, Division of Biosciences, University College London, London WC1E 6AP, United Kingdom
| |
Collapse
|
8
|
Fujita Y, Chokki T, Nishioka T, Morimoto K, Nakayama A, Nakae H, Ogasawara M, Terasaki AG. The emergence of nebulin repeats and evolution of lasp family proteins. Cytoskeleton (Hoboken) 2022; 78:419-435. [PMID: 35224880 DOI: 10.1002/cm.21693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 11/10/2022]
Abstract
The LIM and SH3 domain protein (lasp) family, the smallest proteins in the nebulin superfamily, consists of vertebrate lasp-1 expressed in various non-muscle tissues, vertebrate lasp-2 expressed in the brain and cardiac muscle, and invertebrate lasp whose functions have been analyzed in Ascidiacea and Insecta. Gene evolution of the lasp family proteins was investigated by multiple alignments, comparison of gene structure, and synteny analyses in eukaryotes in which mRNA expression was confirmed. All invertebrates analyzed in this study belonging to the clade Filasterea, with the exception of Placozoa, have at least one lasp gene. The minimal actin-binding region (LIM domain and first nebulin repeat) and SH3 domain detected in vertebrate lasp-2 were found to be conserved among the lasp family proteins, and we showed that nematode lasp has actin-binding activity. The linker sequences vary among invertebrate lasp proteins, implying that the lasp family proteins have universal and diverse functions. Gene structures and syntenic analyses suggest that a gene fragment encoding two nebulin repeats and a linker emerged in Filasterea or Holozoa, and the first lasp gene was generated following combination of three gene fragments encoding the LIM domain, two nebulin repeats with a linker, and the SH3 domain. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yuki Fujita
- Department of Biology, Graduate School of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba, Japan
| | - Tamami Chokki
- Department of Biology, Graduate School of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba, Japan
| | - Tatsuji Nishioka
- Department of Biology, Graduate School of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba, Japan
| | - Kouta Morimoto
- Department of Biology, Graduate School of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba, Japan
| | - Ayako Nakayama
- Department of Biology, Graduate School of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba, Japan
| | - Hiroki Nakae
- BIO-Business Solutions, Hisamoto, Takatsu-ku, Kawasaki, Japan
| | - Michio Ogasawara
- Department of Biology, Graduate School of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba, Japan
| | - Asako G Terasaki
- Department of Biology, Graduate School of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba, Japan
| |
Collapse
|
9
|
Dhondt I, Verschuuren C, Zečić A, Loier T, Braeckman BP, De Vos WH. Prediction of biological age by morphological staging of sarcopenia in Caenorhabditis elegans. Dis Model Mech 2021; 14:272684. [PMID: 34723324 PMCID: PMC8649172 DOI: 10.1242/dmm.049169] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/25/2021] [Indexed: 02/01/2023] Open
Abstract
Sarcopenia encompasses a progressive decline in muscle quantity and quality. Given its close association with ageing, it may represent a valuable healthspan marker. The commonalities with human muscle structure and facile visualization possibilities make Caenorhabditis elegans an attractive model for studying the relationship between sarcopenia and healthspan. However, classical visual assessment of muscle architecture is subjective and has low throughput. To resolve this, we have developed an image analysis pipeline for the quantification of muscle integrity in confocal microscopy images from a cohort of ageing myosin::GFP reporter worms. We extracted a variety of morphological descriptors and found a subset to scale linearly with age. This allowed establishing a linear model that predicts biological age from a morphological muscle signature. To validate the model, we evaluated muscle architecture in long-lived worms that are known to experience delayed sarcopenia by targeted knockdown of the daf-2 gene. We conclude that quantitative microscopy allows for staging sarcopenia in C. elegans and may foster the development of image-based screens in this model organism to identify modulators that mitigate age-related muscle frailty and thus improve healthspan. Summary: A tool for quantitative image analysis of muscle deterioration that allows predicting healthspan in the nematode model Caenorhabditis elegans and may lead to the first C. elegans-based high-throughput sarcopenia screening platform.
Collapse
Affiliation(s)
- Ineke Dhondt
- Biology Department, Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Clara Verschuuren
- Biology Department, Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Aleksandra Zečić
- Biology Department, Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Tim Loier
- Biology Department, Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Bart P Braeckman
- Biology Department, Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, 2610 Antwerp, Belgium
| |
Collapse
|
10
|
Fu R, Huang Z, Li H, Zhu Y, Zhang H. A Hemidesmosome-to-Cytoplasm Translocation of Small Heat Shock Proteins Provides Immediate Protection against Heat Stress. Cell Rep 2020; 33:108410. [DOI: 10.1016/j.celrep.2020.108410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/28/2020] [Accepted: 10/29/2020] [Indexed: 02/08/2023] Open
|
11
|
Mor DE, Sohrabi S, Kaletsky R, Keyes W, Tartici A, Kalia V, Miller GW, Murphy CT. Metformin rescues Parkinson's disease phenotypes caused by hyperactive mitochondria. Proc Natl Acad Sci U S A 2020; 117:26438-26447. [PMID: 33024014 PMCID: PMC7585014 DOI: 10.1073/pnas.2009838117] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Metabolic dysfunction occurs in many age-related neurodegenerative diseases, yet its role in disease etiology remains poorly understood. We recently discovered a potential causal link between the branched-chain amino acid transferase BCAT-1 and the neurodegenerative movement disorder Parkinson's disease (PD). RNAi-mediated knockdown of Caenorhabditis elegans bcat-1 is known to recapitulate PD-like features, including progressive motor deficits and neurodegeneration with age, yet the underlying mechanisms have remained unknown. Using transcriptomic, metabolomic, and imaging approaches, we show here that bcat-1 knockdown increases mitochondrial respiration and induces oxidative damage in neurons through mammalian target of rapamycin-independent mechanisms. Increased mitochondrial respiration, or "mitochondrial hyperactivity," is required for bcat-1(RNAi) neurotoxicity. Moreover, we show that post-disease-onset administration of the type 2 diabetes medication metformin reduces mitochondrial respiration to control levels and significantly improves both motor function and neuronal viability. Taken together, our findings suggest that mitochondrial hyperactivity may be an early event in the pathogenesis of PD, and that strategies aimed at reducing mitochondrial respiration may constitute a surprising new avenue for PD treatment.
Collapse
Affiliation(s)
- Danielle E Mor
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544
| | - Salman Sohrabi
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544
| | - Rachel Kaletsky
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544
| | - William Keyes
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544
| | - Alp Tartici
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
| | - Vrinda Kalia
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032
| | - Gary W Miller
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032
| | - Coleen T Murphy
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544;
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544
| |
Collapse
|
12
|
Choi J, Sung JY, Lee S, Yoo J, Rongo C, Kim YN, Shim J. Rab8 and Rabin8-Mediated Tumor Formation by Hyperactivated EGFR Signaling via FGFR Signaling. Int J Mol Sci 2020; 21:ijms21207770. [PMID: 33092268 PMCID: PMC7589727 DOI: 10.3390/ijms21207770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/13/2020] [Accepted: 10/19/2020] [Indexed: 02/08/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) signaling is important for normal development, such as vulval development in Caenorhabditis elegans, and hyperactivation of the EGFR is often associated with cancer development. Our previous report demonstrated the multivulva (Muv) phenotype, a tumor model in C. elegans (jgIs25 strain) by engineering LET-23/EGFR with a TKI-resistant human EGFR T790-L858 mutant. Because Rab proteins regulate vesicle transport, which is important for receptor signaling, we screened the RNAi in the jgIs25 strain to find the Rabs critical for Muv formation. Herein, we show that rab-8 RNAi and the rab-8 (-/-) mutation effectively reduce Muv formation. We demonstrate that RABN-8, an ortholog of Rabin8, known as a GEF for Rab8, is also required for Muv formation by promoting the secretion of EGL-17/FGF from vulval precursor cells. In addition, FGFR inhibitors decreased Muv formation mediated by mutant EGFR. Our data suggest that Rab8 and Rabin8 mediate Muv formation through FGF secretion in the EGFR-TKI-resistant nematode model. Furthermore, FGFR-TKIs more effectively inhibit the growth of lung cancer cell lines in H1975 (EGFR T790M-L858R; EGFR-TKI-resistant) than H522 (wild-type EGFR) and H1650 (EGFR exon 19 deletion; EGFR-TKI-sensitive) cells, suggesting that FGFR-TKIs could be used to control cancers with EGFR-TKI-resistant mutations.
Collapse
Affiliation(s)
- Junghwa Choi
- Research Institute of National Cancer Center, 323 Ilsan-ro, Goyang, Gyeonggi-do 10408, Korea; (J.C.); (J.Y.S.); (S.L.); (J.Y.)
| | - Jee Young Sung
- Research Institute of National Cancer Center, 323 Ilsan-ro, Goyang, Gyeonggi-do 10408, Korea; (J.C.); (J.Y.S.); (S.L.); (J.Y.)
| | - Saerom Lee
- Research Institute of National Cancer Center, 323 Ilsan-ro, Goyang, Gyeonggi-do 10408, Korea; (J.C.); (J.Y.S.); (S.L.); (J.Y.)
| | - Jungyoen Yoo
- Research Institute of National Cancer Center, 323 Ilsan-ro, Goyang, Gyeonggi-do 10408, Korea; (J.C.); (J.Y.S.); (S.L.); (J.Y.)
| | - Christopher Rongo
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, 190 Frelinghuysen Road, Piscataway, NJ 08854, USA;
| | - Yong-Nyun Kim
- Research Institute of National Cancer Center, 323 Ilsan-ro, Goyang, Gyeonggi-do 10408, Korea; (J.C.); (J.Y.S.); (S.L.); (J.Y.)
- Correspondence: (Y.-N.K.); (J.S.); Tel.: +82-31-920-2415 (Y.-N.K.); +82-31-920-2262 (J.S.)
| | - Jaegal Shim
- Research Institute of National Cancer Center, 323 Ilsan-ro, Goyang, Gyeonggi-do 10408, Korea; (J.C.); (J.Y.S.); (S.L.); (J.Y.)
- Correspondence: (Y.-N.K.); (J.S.); Tel.: +82-31-920-2415 (Y.-N.K.); +82-31-920-2262 (J.S.)
| |
Collapse
|
13
|
Ancestral function of Inhibitors-of-kappaB regulates Caenorhabditis elegans development. Sci Rep 2020; 10:16153. [PMID: 32999373 PMCID: PMC7527347 DOI: 10.1038/s41598-020-73146-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/10/2020] [Indexed: 01/08/2023] Open
Abstract
Mammalian IκB proteins (IκBs) exert their main function as negative regulators of NF-κB, a central signaling pathway controlling immunity and inflammation. An alternative chromatin role for IκBs has been shown to affect stemness and cell differentiation. However, the involvement of NF-κB in this function has not been excluded. NFKI-1 and IKB-1 are IκB homologs in Caenorhabditis elegans, which lacks NF-κB nuclear effectors. We found that nfki-1 and ikb-1 mutants display developmental defects that phenocopy mutations in Polycomb and UTX-1 histone demethylase, suggesting a role for C. elegans IκBs in chromatin regulation. Further supporting this possibility (1) we detected NFKI-1 in the nucleus of cells; (2) NFKI-1 and IKB-1 bind to histones and Polycomb proteins, (3) and associate with chromatin in vivo, and (4) mutations in nfki-1 and ikb-1 alter chromatin marks. Based on these results, we propose that ancestral IκB inhibitors modulate Polycomb activity at specific gene subsets with an impact on development.
Collapse
|
14
|
Bruns AN, Lo SH. Tensin regulates pharyngeal pumping in Caenorhabditis elegans. Biochem Biophys Res Commun 2019; 522:599-603. [PMID: 31784086 DOI: 10.1016/j.bbrc.2019.11.153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 11/22/2019] [Indexed: 12/24/2022]
Abstract
Tensin is a focal adhesion molecule that is known to regulate cell adhesion, migration, and proliferation. Although there are four tensin homologs (TNS1, TNS2, TNS3, and CTEN/TNS4) in mammals, only one tensin gene is found in Caenorhabditis elegans. Sequence analysis suggests that Caenorhabditis elegans tensin is slightly closer aligned with human TNS1 than with other human tensins. To establish the role of TNS1 in Caenorhabditis elegans, we have generated TNS1 knockout (KO) worms by CRISPR-Cas9 and homologous recombination directed repair approaches. Lack of TNS1 does not appear to affect the development or gross morphology of the worms. Nonetheless, defecation cycles are significantly longer in TNS1 KO worms. In addition, their pharyngeal pumping rate is markedly faster, which is likely due to a shorter pump duration in the KO worms. These findings indicate that TNS1 is not required for the development and survival of Caenorhabditis elegans but point to a critical role in modulating defecation and pharyngeal pumping rates.
Collapse
Affiliation(s)
- Aaron N Bruns
- Department of Biochemistry and Molecular Medicine, University of California-Davis, Sacramento, CA, 95817, USA
| | - Su Hao Lo
- Department of Biochemistry and Molecular Medicine, University of California-Davis, Sacramento, CA, 95817, USA.
| |
Collapse
|
15
|
Hellerschmied D, Lehner A, Franicevic N, Arnese R, Johnson C, Vogel A, Meinhart A, Kurzbauer R, Deszcz L, Gazda L, Geeves M, Clausen T. Molecular features of the UNC-45 chaperone critical for binding and folding muscle myosin. Nat Commun 2019; 10:4781. [PMID: 31636255 PMCID: PMC6803673 DOI: 10.1038/s41467-019-12667-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 09/21/2019] [Indexed: 12/16/2022] Open
Abstract
Myosin is a motor protein that is essential for a variety of processes ranging from intracellular transport to muscle contraction. Folding and assembly of myosin relies on a specific chaperone, UNC-45. To address its substrate-targeting mechanism, we reconstitute the interplay between Caenorhabditis elegans UNC-45 and muscle myosin MHC-B in insect cells. In addition to providing a cellular chaperone assay, the established system enabled us to produce large amounts of functional muscle myosin, as evidenced by a biochemical and structural characterization, and to directly monitor substrate binding to UNC-45. Data from in vitro and cellular chaperone assays, together with crystal structures of binding-deficient UNC-45 mutants, highlight the importance of utilizing a flexible myosin-binding domain. This so-called UCS domain can adopt discrete conformations to efficiently bind and fold substrate. Moreover, our data uncover the molecular basis of temperature-sensitive UNC-45 mutations underlying one of the most prominent motility defects in C. elegans. Myosin, a motor protein essential for intracellular transport to muscle contraction, requires a chaperone UNC-45 for folding and assembly. Here authors use in vitro reconstitution and structural biology to characterize the interplay between UNC-45 and muscle myosin MHC-B.
Collapse
Affiliation(s)
- Doris Hellerschmied
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria. .,Faculty of Biology, Center of Medical Biotechnology, University Duisburg-Essen, Essen, Germany.
| | | | - Nina Franicevic
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Renato Arnese
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Chloe Johnson
- School of Biosciences, University of Kent, Canterbury, UK
| | - Antonia Vogel
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Anton Meinhart
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Robert Kurzbauer
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Luiza Deszcz
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Linn Gazda
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Michael Geeves
- School of Biosciences, University of Kent, Canterbury, UK
| | - Tim Clausen
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria. .,Medical University Vienna, Vienna, Austria.
| |
Collapse
|
16
|
C. elegans Tensin Promotes Axon Regeneration by Linking the Met-like SVH-2 and Integrin Signaling Pathways. J Neurosci 2019; 39:5662-5672. [PMID: 31109965 DOI: 10.1523/jneurosci.2059-18.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 01/04/2023] Open
Abstract
Axon regeneration is a conserved mechanism induced by axon injury that initiates a neuronal response leading to regrowth of the axon. In Caenorhabditis elegans, the initiation of axon regeneration is regulated by the JNK MAP kinase (MAPK) pathway. We have previously identified a number of genes affecting the JNK pathway using an RNAi-based screen. Analysis of these genes, called the svh genes, has shed new light on the regulation of axon regeneration, revealing the involvement of a signaling cascade consisting of a growth factor SVH-1 and its receptor, the tyrosine kinase SVH-2. Here, we characterize the svh-6/tns-1 gene, which is a homolog of mammalian tensin, and show that it is a positive regulator of axon regeneration in motor neurons. We demonstrate that TNS-1 interacts with tyrosine-autophosphorylated SVH-2 and the integrin β subunit PAT-3 via its SH2 and PTB domains, respectively, to promote axon regeneration. These results suggest that TNS-1 acts as an adaptor to link the SVH-2 and integrin signaling pathways.SIGNIFICANCE STATEMENT The Caenorhabditis elegans JNK MAPK pathway regulates the initiation of axon regeneration. Previously, we showed that a signaling cascade consisting of the HGF-like growth factor SVH-1 and its Met-like receptor tyrosine kinase SVH-2 promotes axon regeneration through activation of the JNK pathway. In this study, we show that the C. elegans tensin, TNS-1, is required for efficient regeneration after axon injury. Phosphorylation of SVH-2 on tyrosine mediates its interaction with the SH2 domain of TNS-1 to positively regulate axon regeneration. Furthermore, TNS-1 interacts via its PTB domain with the integrin β subunit PAT-3. These results suggest that TNS-1 plays a critical role in the regulation of axon regeneration by linking the SVH-2 and integrin signaling pathways.
Collapse
|
17
|
Li H, Su L, Su X, Liu X, Wang D, Li H, Ba X, Zhang Y, Lu J, Huang B, Li X. Arginine methylation of SKN-1 promotes oxidative stress resistance in Caenorhabditis elegans. Redox Biol 2019; 21:101111. [PMID: 30682707 PMCID: PMC6351272 DOI: 10.1016/j.redox.2019.101111] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/09/2019] [Accepted: 01/13/2019] [Indexed: 01/07/2023] Open
Abstract
Caenorhabditis elegans NRF (NF-E2-related factor)/CNC (Cap'n'collar) transcription factor, Skinhead-1 (SKN-1), is conservatively critical for promoting phase II detoxification gene expressions in response to oxidative stress. SKN-1 activity is controlled by well-known phosphorylation and recently-reported O-GlcNAcylation. Whether other kinds of posttanslational modifications of SKN-1 occur and influence its function remains elusive. Here, we found arginines 484 and 516 (R484/R516) of SKN-1 were asymmetrically dimethylated by PRMT-1. Oxidative stress enhanced the binding of PRMT-1 to SKN-1. Consequently, asymmetrical dimethylation of arginines on SKN-1 was elevated. Loss of prmt-1 or disruption of R484/R516 dimethylation decreased the enrichment of SKN-1 on the promoters of SKN-1-driven phase II detoxification genes, including gamma-glutamine cysteine synthetase gcs-1, glutathione S-transferases gst-7 and gst-4, which resulted in reduced ability of worms to defense against oxidative stress. These findings have important implications for investigating the physiological and pathological functions of arginine methylation on conserved NRF/CNC transcription factors in human diseases related to oxidative stress response. Arg 484/516 of SKN-1 are asymmetrically dimethylated by PRMT-1 in C. elegans. Oxidative stress enhances the binding of PRMT-1 to SKN-1. Oxidative stress elevates asymmetrical dimethylation of arginines on SKN-1. Arg 484/516 methylation increases SKN-1 binding to detoxification gene promoters. Arg 484/516 methylation promotes function of SKN-1 in oxidative stress resistance.
Collapse
Affiliation(s)
- Hongyuan Li
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China; Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Liangping Su
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China; School of Basic Medical Sciences, Guilin Medical University, Guilin 541004, China
| | - Xin Su
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Xin Liu
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Dan Wang
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Hongmei Li
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Xueqing Ba
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Yu Zhang
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Jun Lu
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Baiqu Huang
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China.
| | - Xiaoxue Li
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
18
|
Abstract
Aggregation of cytosolic proteins is a pathological finding in disease states, including ageing and neurodegenerative diseases. We have previously reported that hypoxia induces protein misfolding in Caenorhabditis elegans mitochondria, and electron micrographs suggested protein aggregates. Here, we seek to determine whether mitochondrial proteins actually aggregate after hypoxia and other cellular stresses. To enrich for mitochondrial proteins that might aggregate, we performed a proteomics analysis on purified C. elegans mitochondria to identify relatively insoluble proteins under normal conditions (110 proteins identified) or after sublethal hypoxia (65 proteins). A GFP-tagged mitochondrial protein (UCR-11 - a complex III electron transport chain protein) in the normally insoluble set was found to form widespread aggregates in mitochondria after hypoxia. Five other GFP-tagged mitochondrial proteins in the normally insoluble set similarly form hypoxia-induced aggregates. Two GFP-tagged mitochondrial proteins from the soluble set as well as a mitochondrial-targeted GFP did not form aggregates. Ageing also resulted in aggregates. The number of hypoxia-induced aggregates was regulated by the mitochondrial unfolded protein response (UPRmt) master transcriptional regulator ATFS-1, which has been shown to be hypoxia protective. An atfs-1(loss-of-function) mutant and RNAi construct reduced the number of aggregates while an atfs-1(gain-of-function) mutant increased aggregates. Our work demonstrates that mitochondrial protein aggregation occurs with hypoxic injury and ageing in C. elegans. The UPRmt regulates aggregation and may protect from hypoxia by promoting aggregation of misfolded proteins.
Collapse
|
19
|
A Differentiation Transcription Factor Establishes Muscle-Specific Proteostasis in Caenorhabditis elegans. PLoS Genet 2016; 12:e1006531. [PMID: 28036392 PMCID: PMC5201269 DOI: 10.1371/journal.pgen.1006531] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 12/08/2016] [Indexed: 02/07/2023] Open
Abstract
Safeguarding the proteome is central to the health of the cell. In multi-cellular organisms, the composition of the proteome, and by extension, protein-folding requirements, varies between cells. In agreement, chaperone network composition differs between tissues. Here, we ask how chaperone expression is regulated in a cell type-specific manner and whether cellular differentiation affects chaperone expression. Our bioinformatics analyses show that the myogenic transcription factor HLH-1 (MyoD) can bind to the promoters of chaperone genes expressed or required for the folding of muscle proteins. To test this experimentally, we employed HLH-1 myogenic potential to genetically modulate cellular differentiation of Caenorhabditis elegans embryonic cells by ectopically expressing HLH-1 in all cells of the embryo and monitoring chaperone expression. We found that HLH-1-dependent myogenic conversion specifically induced the expression of putative HLH-1-regulated chaperones in differentiating muscle cells. Moreover, disrupting the putative HLH-1-binding sites on ubiquitously expressed daf-21(Hsp90) and muscle-enriched hsp-12.2(sHsp) promoters abolished their myogenic-dependent expression. Disrupting HLH-1 function in muscle cells reduced the expression of putative HLH-1-regulated chaperones and compromised muscle proteostasis during and after embryogenesis. In turn, we found that modulating the expression of muscle chaperones disrupted the folding and assembly of muscle proteins and thus, myogenesis. Moreover, muscle-specific over-expression of the DNAJB6 homolog DNJ-24, a limb-girdle muscular dystrophy-associated chaperone, disrupted the muscle chaperone network and exposed synthetic motility defects. We propose that cellular differentiation could establish a proteostasis network dedicated to the folding and maintenance of the muscle proteome. Such cell-specific proteostasis networks can explain the selective vulnerability that many diseases of protein misfolding exhibit even when the misfolded protein is ubiquitously expressed. Molecular chaperones protect proteins from misfolding and aggregation. In multi-cellular organisms, the composition and expression levels of chaperones vary between tissues. However, little is known of how such differential expression is regulated. We hypothesized that the cellular differentiation that regulates the cell-type specific expression program may be involved in establishing a cell-type specific chaperone network. To test this possibility, we addressed the myogenic commitment transcription factor HLH-1 (CeMyoD) that converts embryonic cells to muscle cells in Caenorhabditis elegans. We demonstrated that HLH-1 regulates the expression of muscle chaperones during muscle differentiation. Moreover, we showed that HLH-1-dependent expression of chaperones is required for embryonic development and muscle function. We propose that cellular differentiation results in cell-specific differences in the chaperone network that may be detrimental in terms of the susceptibility of neurons and muscle cells to protein misfolding diseases.
Collapse
|
20
|
Caenorhabditis elegans AGXT-1 is a mitochondrial and temperature-adapted ortholog of peroxisomal human AGT1: New insights into between-species divergence in glyoxylate metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1195-1205. [PMID: 27179589 DOI: 10.1016/j.bbapap.2016.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/27/2016] [Accepted: 05/10/2016] [Indexed: 11/23/2022]
|
21
|
Bito T, Watanabe F. Biochemistry, function, and deficiency of vitamin B12 in Caenorhabditis elegans. Exp Biol Med (Maywood) 2016; 241:1663-8. [PMID: 27486161 DOI: 10.1177/1535370216662713] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Caenorhabditis elegans is a nematode that has been widely used as an animal for investigation of diverse biological phenomena. Vitamin B12 is essential for the growth of this worm, which contains two cobalamin-dependent enzymes, methylmalonyl-CoA mutase and methionine synthase. A full complement of gene homologs encoding the enzymes associated with the mammalian intercellular metabolic processes of vitamin B12 is identified in the genome of C elegans However, this worm has no orthologs of the vitamin B12-binders that participate in human intestinal absorption and blood circulation. When the worm is treated with a vitamin B12-deficient diet for five generations (15 days), it readily develops vitamin B12 deficiency, which induces worm phenotypes (infertility, delayed growth, and shorter lifespan) that resemble the symptoms of mammalian vitamin B12 deficiency. Such phenotypes associated with vitamin B12 deficiency were readily induced in the worm.
Collapse
Affiliation(s)
- Tomohiro Bito
- Faculty of Agriculture, School of Agricultural, Biological, and Environmental Sciences, Tottori University, Tottori 680-8553, Japan
| | - Fumio Watanabe
- Faculty of Agriculture, School of Agricultural, Biological, and Environmental Sciences, Tottori University, Tottori 680-8553, Japan
| |
Collapse
|
22
|
Yuan Y, Hakimi P, Kao C, Kao A, Liu R, Janocha A, Boyd-Tressler A, Hang X, Alhoraibi H, Slater E, Xia K, Cao P, Shue Q, Ching TT, Hsu AL, Erzurum SC, Dubyak GR, Berger NA, Hanson RW, Feng Z. Reciprocal Changes in Phosphoenolpyruvate Carboxykinase and Pyruvate Kinase with Age Are a Determinant of Aging in Caenorhabditis elegans. J Biol Chem 2016; 291:1307-19. [PMID: 26631730 PMCID: PMC4714217 DOI: 10.1074/jbc.m115.691766] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/30/2015] [Indexed: 01/01/2023] Open
Abstract
Aging involves progressive loss of cellular function and integrity, presumably caused by accumulated stochastic damage to cells. Alterations in energy metabolism contribute to aging, but how energy metabolism changes with age, how these changes affect aging, and whether they can be modified to modulate aging remain unclear. In locomotory muscle of post-fertile Caenorhabditis elegans, we identified a progressive decrease in cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C), a longevity-associated metabolic enzyme, and a reciprocal increase in glycolytic pyruvate kinase (PK) that were necessary and sufficient to limit lifespan. Decline in PEPCK-C with age also led to loss of cellular function and integrity including muscle activity, and cellular senescence. Genetic and pharmacologic interventions of PEPCK-C, muscle activity, and AMPK signaling demonstrate that declines in PEPCK-C and muscle function with age interacted to limit reproductive life and lifespan via disrupted energy homeostasis. Quantifications of metabolic flux show that reciprocal changes in PEPCK-C and PK with age shunted energy metabolism toward glycolysis, reducing mitochondrial bioenergetics. Last, calorie restriction countered changes in PEPCK-C and PK with age to elicit anti-aging effects via TOR inhibition. Thus, a programmed metabolic event involving PEPCK-C and PK is a determinant of aging that can be modified to modulate aging.
Collapse
Affiliation(s)
| | | | - Clara Kao
- From the Departments of Pharmacology
| | | | - Ruifu Liu
- From the Departments of Pharmacology
| | - Allison Janocha
- the Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195
| | | | - Xi Hang
- From the Departments of Pharmacology, the School of Pharmacy, Suzhou Health College, Suzhou, Jiangsu 215009, China, and
| | | | | | - Kevin Xia
- From the Departments of Pharmacology
| | | | | | - Tsui-Ting Ching
- the Departments of Internal Medicine, Division of Geriatric Medicine, and
| | - Ao-Lin Hsu
- the Departments of Internal Medicine, Division of Geriatric Medicine, and Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
| | - Serpil C Erzurum
- the Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195
| | - George R Dubyak
- From the Departments of Pharmacology, Physiology and Biophysics, and
| | - Nathan A Berger
- Departments of Biochemistry and Medicine, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | | | | |
Collapse
|
23
|
Cairns TC, Studholme DJ, Talbot NJ, Haynes K. New and Improved Techniques for the Study of Pathogenic Fungi. Trends Microbiol 2015; 24:35-50. [PMID: 26549580 DOI: 10.1016/j.tim.2015.09.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 09/29/2015] [Accepted: 09/30/2015] [Indexed: 02/05/2023]
Abstract
Fungal pathogens pose serious threats to human, plant, and ecosystem health. Improved diagnostics and antifungal strategies are therefore urgently required. Here, we review recent developments in online bioinformatic tools and associated interactive data archives, which enable sophisticated comparative genomics and functional analysis of fungal pathogens in silico. Additionally, we highlight cutting-edge experimental techniques, including conditional expression systems, recyclable markers, RNA interference, genome editing, compound screens, infection models, and robotic automation, which are promising to revolutionize the study of both human and plant pathogenic fungi. These novel techniques will allow vital knowledge gaps to be addressed with regard to the evolution of virulence, host-pathogen interactions and antifungal drug therapies in both the clinic and agriculture. This, in turn, will enable delivery of improved diagnosis and durable disease-control strategies.
Collapse
Affiliation(s)
- Timothy C Cairns
- Institut für Biotechnologie, Technische Universität Berlin, Gustav-Meyer Allee 22, Berlin, Germany.
| | | | | | - Ken Haynes
- Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
24
|
Metabolome and proteome changes with aging in Caenorhabditis elegans. Exp Gerontol 2015; 72:67-84. [PMID: 26390854 DOI: 10.1016/j.exger.2015.09.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 09/15/2015] [Accepted: 09/16/2015] [Indexed: 01/13/2023]
Abstract
To expand the understanding of aging in the model organism Caenorhabditis elegans, global quantification of metabolite and protein levels in young and aged nematodes was performed using mass spectrometry. With age, there was a decreased abundance of proteins functioning in transcription termination, mRNA degradation, mRNA stability, protein synthesis, and proteasomal function. Furthermore, there was altered S-adenosyl methionine metabolism as well as a decreased abundance of the S-adenosyl methionine synthetase (SAMS-1) protein. Other aging-related changes included alterations in free fatty acid levels and composition, decreased levels of ribosomal proteins, decreased levels of NADP-dependent isocitrate dehydrogenase (IDH1), a shift in the cellular redox state, an increase in sorbitol content, alterations in free amino acid levels, and indications of altered muscle function and sarcoplasmic reticulum Ca(2+) homeostasis. There were also decreases in pyrimidine and purine metabolite levels, most markedly nitrogenous bases. Supplementing the culture medium with cytidine (a pyrimidine nucleoside) or hypoxanthine (a purine base) increased lifespan slightly, suggesting that aging-induced alterations in ribonucleotide metabolism affect lifespan. An age-related increase in body size, lipotoxicity from ectopic yolk lipoprotein accumulation, a decline in NAD(+) levels, and mitochondrial electron transport chain dysfunction may explain many of these changes. In addition, dietary restriction in aged worms resulting from sarcopenia of the pharyngeal pump likely decreases the abundance of SAMS-1, possibly leading to decreased phosphatidylcholine levels, larger lipid droplets, and ER and mitochondrial stress. The complementary use of proteomics and metabolomics yielded unique insights into the molecular processes altered with age in C. elegans.
Collapse
|
25
|
Gorrepati L, Krause MW, Chen W, Brodigan TM, Correa-Mendez M, Eisenmann DM. Identification of Wnt Pathway Target Genes Regulating the Division and Differentiation of Larval Seam Cells and Vulval Precursor Cells in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2015; 5:1551-66. [PMID: 26048561 PMCID: PMC4528312 DOI: 10.1534/g3.115.017715] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/18/2015] [Indexed: 12/29/2022]
Abstract
The evolutionarily conserved Wnt/β-catenin signaling pathway plays a fundamental role during metazoan development, regulating numerous processes including cell fate specification, cell migration, and stem cell renewal. Wnt ligand binding leads to stabilization of the transcriptional effector β-catenin and upregulation of target gene expression to mediate a cellular response. During larval development of the nematode Caenorhabditis elegans, Wnt/β-catenin pathways act in fate specification of two hypodermal cell types, the ventral vulval precursor cells (VPCs) and the lateral seam cells. Because little is known about targets of the Wnt signaling pathways acting during larval VPC and seam cell differentiation, we sought to identify genes regulated by Wnt signaling in these two hypodermal cell types. We conditionally activated Wnt signaling in larval animals and performed cell type-specific "mRNA tagging" to enrich for VPC and seam cell-specific mRNAs, and then used microarray analysis to examine gene expression compared to control animals. Two hundred thirty-nine genes activated in response to Wnt signaling were identified, and we characterized 50 genes further. The majority of these genes are expressed in seam and/or vulval lineages during normal development, and reduction of function for nine genes caused defects in the proper division, fate specification, fate execution, or differentiation of seam cells and vulval cells. Therefore, the combination of these techniques was successful at identifying potential cell type-specific Wnt pathway target genes from a small number of cells and at increasing our knowledge of the specification and behavior of these C. elegans larval hypodermal cells.
Collapse
Affiliation(s)
- Lakshmi Gorrepati
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250
| | | | - Weiping Chen
- Intramural Research Program, NIDDK, Bethesda, Maryland 20814
| | | | - Margarita Correa-Mendez
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250
| | - David M Eisenmann
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250
| |
Collapse
|
26
|
Impact of a Complex Food Microbiota on Energy Metabolism in the Model Organism Caenorhabditis elegans. BIOMED RESEARCH INTERNATIONAL 2015; 2015:621709. [PMID: 25961031 PMCID: PMC4417589 DOI: 10.1155/2015/621709] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 11/11/2014] [Indexed: 02/03/2023]
Abstract
The nematode Caenorhabditis elegans is widely used as a model system for research on aging, development, and host-pathogen interactions. Little is currently known about the mechanisms underlying the effects exerted by foodborne microbes. We took advantage of C. elegans to evaluate the impact of foodborne microbiota on well characterized physiological features of the worms. Foodborne lactic acid bacteria (LAB) consortium was used to feed nematodes and its composition was evaluated by 16S rDNA analysis and strain typing before and after colonization of the nematode gut. Lactobacillus delbrueckii, L. fermentum, and Leuconostoc lactis were identified as the main species and shown to display different worm gut colonization capacities. LAB supplementation appeared to decrease nematode lifespan compared to the animals fed with the conventional Escherichia coli nutrient source or a probiotic bacterial strain. Reduced brood size was also observed in microbiota-fed nematodes. Moreover, massive accumulation of lipid droplets was revealed by BODIPY staining. Altered expression of nhr-49, pept-1, and tub-1 genes, associated with obesity phenotypes, was demonstrated by RT-qPCR. Since several pathways are evolutionarily conserved in C. elegans, our results highlight the nematode as a valuable model system to investigate the effects of a complex microbial consortium on host energy metabolism.
Collapse
|
27
|
Etheridge T, Rahman M, Gaffney CJ, Shaw D, Shephard F, Magudia J, Solomon DE, Milne T, Blawzdziewicz J, Constantin-Teodosiu D, Greenhaff PL, Vanapalli SA, Szewczyk NJ. The integrin-adhesome is required to maintain muscle structure, mitochondrial ATP production, and movement forces in Caenorhabditis elegans. FASEB J 2014; 29:1235-46. [PMID: 25491313 PMCID: PMC4396603 DOI: 10.1096/fj.14-259119] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 11/11/2014] [Indexed: 01/19/2023]
Abstract
The integrin-adhesome network, which contains >150 proteins, is mechano-transducing and located at discreet positions along the cell-cell and cell-extracellular matrix interface. A small subset of the integrin-adhesome is known to maintain normal muscle morphology. However, the importance of the entire adhesome for muscle structure and function is unknown. We used RNA interference to knock down 113 putative Caenorhabditis elegans homologs constituting most of the mammalian adhesome and 48 proteins known to localize to attachment sites in C. elegans muscle. In both cases, we found >90% of components were required for normal muscle mitochondrial structure and/or proteostasis vs. empty vector controls. Approximately half of these, mainly proteins that physically interact with each other, were also required for normal sarcomere and/or adhesome structure. Next we confirmed that the dystrophy observed in adhesome mutants associates with impaired maximal mitochondrial ATP production (P < 0.01), as well as reduced probability distribution of muscle movement forces compared with wild-type animals. Our results show that the integrin-adhesome network as a whole is required for maintaining both muscle structure and function and extend the current understanding of the full complexities of the functional adhesome in vivo.—Etheridge, T., Rahman, M., Gaffney, C. J., Shaw, D., Shephard, F., Magudia, J., Solomon, D. E., Milne, T., Blawzdziewicz, J., Constantin-Teodosiu, D., Greenhaff, P. L., Vanapalli, S. A., Szewczyk, N. J. The integrin-adhesome is required to maintain muscle structure, mitochondrial ATP production, and movement forces in Caenorhabditis elegans.
Collapse
Affiliation(s)
- Timothy Etheridge
- *Department of Sport and Health Science, College of Life and Environmental Sciences, and College of Engineering, Mathematics and Physical Science, University of Exeter, Exeter, United Kingdom; Departments of Chemical Engineering and Mechanical Engineering, Texas Tech University, Lubbock, Texas, USA; Medical Research Council/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Schools of Life Sciences and Medicine, University of Nottingham, Nottingham, United Kingdom; and School of Veterinary Medicine and Science, University of Nottingham, Leicestershire, United Kingdom
| | - Mizanur Rahman
- *Department of Sport and Health Science, College of Life and Environmental Sciences, and College of Engineering, Mathematics and Physical Science, University of Exeter, Exeter, United Kingdom; Departments of Chemical Engineering and Mechanical Engineering, Texas Tech University, Lubbock, Texas, USA; Medical Research Council/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Schools of Life Sciences and Medicine, University of Nottingham, Nottingham, United Kingdom; and School of Veterinary Medicine and Science, University of Nottingham, Leicestershire, United Kingdom
| | - Christopher J Gaffney
- *Department of Sport and Health Science, College of Life and Environmental Sciences, and College of Engineering, Mathematics and Physical Science, University of Exeter, Exeter, United Kingdom; Departments of Chemical Engineering and Mechanical Engineering, Texas Tech University, Lubbock, Texas, USA; Medical Research Council/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Schools of Life Sciences and Medicine, University of Nottingham, Nottingham, United Kingdom; and School of Veterinary Medicine and Science, University of Nottingham, Leicestershire, United Kingdom
| | - Debra Shaw
- *Department of Sport and Health Science, College of Life and Environmental Sciences, and College of Engineering, Mathematics and Physical Science, University of Exeter, Exeter, United Kingdom; Departments of Chemical Engineering and Mechanical Engineering, Texas Tech University, Lubbock, Texas, USA; Medical Research Council/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Schools of Life Sciences and Medicine, University of Nottingham, Nottingham, United Kingdom; and School of Veterinary Medicine and Science, University of Nottingham, Leicestershire, United Kingdom
| | - Freya Shephard
- *Department of Sport and Health Science, College of Life and Environmental Sciences, and College of Engineering, Mathematics and Physical Science, University of Exeter, Exeter, United Kingdom; Departments of Chemical Engineering and Mechanical Engineering, Texas Tech University, Lubbock, Texas, USA; Medical Research Council/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Schools of Life Sciences and Medicine, University of Nottingham, Nottingham, United Kingdom; and School of Veterinary Medicine and Science, University of Nottingham, Leicestershire, United Kingdom
| | - Jignesh Magudia
- *Department of Sport and Health Science, College of Life and Environmental Sciences, and College of Engineering, Mathematics and Physical Science, University of Exeter, Exeter, United Kingdom; Departments of Chemical Engineering and Mechanical Engineering, Texas Tech University, Lubbock, Texas, USA; Medical Research Council/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Schools of Life Sciences and Medicine, University of Nottingham, Nottingham, United Kingdom; and School of Veterinary Medicine and Science, University of Nottingham, Leicestershire, United Kingdom
| | - Deepak E Solomon
- *Department of Sport and Health Science, College of Life and Environmental Sciences, and College of Engineering, Mathematics and Physical Science, University of Exeter, Exeter, United Kingdom; Departments of Chemical Engineering and Mechanical Engineering, Texas Tech University, Lubbock, Texas, USA; Medical Research Council/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Schools of Life Sciences and Medicine, University of Nottingham, Nottingham, United Kingdom; and School of Veterinary Medicine and Science, University of Nottingham, Leicestershire, United Kingdom
| | - Thomas Milne
- *Department of Sport and Health Science, College of Life and Environmental Sciences, and College of Engineering, Mathematics and Physical Science, University of Exeter, Exeter, United Kingdom; Departments of Chemical Engineering and Mechanical Engineering, Texas Tech University, Lubbock, Texas, USA; Medical Research Council/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Schools of Life Sciences and Medicine, University of Nottingham, Nottingham, United Kingdom; and School of Veterinary Medicine and Science, University of Nottingham, Leicestershire, United Kingdom
| | - Jerzy Blawzdziewicz
- *Department of Sport and Health Science, College of Life and Environmental Sciences, and College of Engineering, Mathematics and Physical Science, University of Exeter, Exeter, United Kingdom; Departments of Chemical Engineering and Mechanical Engineering, Texas Tech University, Lubbock, Texas, USA; Medical Research Council/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Schools of Life Sciences and Medicine, University of Nottingham, Nottingham, United Kingdom; and School of Veterinary Medicine and Science, University of Nottingham, Leicestershire, United Kingdom
| | - Dumitru Constantin-Teodosiu
- *Department of Sport and Health Science, College of Life and Environmental Sciences, and College of Engineering, Mathematics and Physical Science, University of Exeter, Exeter, United Kingdom; Departments of Chemical Engineering and Mechanical Engineering, Texas Tech University, Lubbock, Texas, USA; Medical Research Council/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Schools of Life Sciences and Medicine, University of Nottingham, Nottingham, United Kingdom; and School of Veterinary Medicine and Science, University of Nottingham, Leicestershire, United Kingdom
| | - Paul L Greenhaff
- *Department of Sport and Health Science, College of Life and Environmental Sciences, and College of Engineering, Mathematics and Physical Science, University of Exeter, Exeter, United Kingdom; Departments of Chemical Engineering and Mechanical Engineering, Texas Tech University, Lubbock, Texas, USA; Medical Research Council/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Schools of Life Sciences and Medicine, University of Nottingham, Nottingham, United Kingdom; and School of Veterinary Medicine and Science, University of Nottingham, Leicestershire, United Kingdom
| | - Siva A Vanapalli
- *Department of Sport and Health Science, College of Life and Environmental Sciences, and College of Engineering, Mathematics and Physical Science, University of Exeter, Exeter, United Kingdom; Departments of Chemical Engineering and Mechanical Engineering, Texas Tech University, Lubbock, Texas, USA; Medical Research Council/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Schools of Life Sciences and Medicine, University of Nottingham, Nottingham, United Kingdom; and School of Veterinary Medicine and Science, University of Nottingham, Leicestershire, United Kingdom
| | - Nathaniel J Szewczyk
- *Department of Sport and Health Science, College of Life and Environmental Sciences, and College of Engineering, Mathematics and Physical Science, University of Exeter, Exeter, United Kingdom; Departments of Chemical Engineering and Mechanical Engineering, Texas Tech University, Lubbock, Texas, USA; Medical Research Council/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Schools of Life Sciences and Medicine, University of Nottingham, Nottingham, United Kingdom; and School of Veterinary Medicine and Science, University of Nottingham, Leicestershire, United Kingdom
| |
Collapse
|
28
|
Kato M, Chou TF, Yu CZ, DeModena J, Sternberg PW. LINKIN, a new transmembrane protein necessary for cell adhesion. eLife 2014; 3:e04449. [PMID: 25437307 PMCID: PMC4275582 DOI: 10.7554/elife.04449] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 11/28/2014] [Indexed: 12/15/2022] Open
Abstract
In epithelial collective migration, leader and follower cells migrate while maintaining cell–cell adhesion and tissue polarity. We have identified a conserved protein and interactors required for maintaining cell adhesion during a simple collective migration in the developing C. elegans male gonad. LINKIN is a previously uncharacterized, transmembrane protein conserved throughout Metazoa. We identified seven atypical FG–GAP domains in the extracellular domain, which potentially folds into a β-propeller structure resembling the α-integrin ligand-binding domain. C. elegans LNKN-1 localizes to the plasma membrane of all gonadal cells, with apical and lateral bias. We identified the LINKIN interactors RUVBL1, RUVBL2, and α-tubulin by using SILAC mass spectrometry on human HEK 293T cells and testing candidates for lnkn-1-like function in C. elegans male gonad. We propose that LINKIN promotes adhesion between neighboring cells through its extracellular domain and regulates microtubule dynamics through RUVBL proteins at its intracellular domain. DOI:http://dx.doi.org/10.7554/eLife.04449.001 In animals, cells can move from one place to another to shape tissues, heal wounds, or defend against invading microbes. A cell may move alone or it may be attached to others and move as part of a group. One member of the group leads this ‘collective migration’, but it is not known how the cells are able to stick to each other and move together. Collective migration takes place in the male gonad—the organ that makes sperm cells—in larvae of the nematode worm C. elegans. As the gonad matures, a group of cells form a simple chain that can move together. Kato et al. found that a protein called LINKIN must be present for this to happen. LINKIN is found in the membrane that surrounds animal cells. One section of the protein—called the β-propeller—sits on the outside surface of the membrane. The structure of the β-propeller is similar to a section of another protein—called α-integrin—that also allows cells to attach, suggesting LINKIN may work in a similar way. LINKIN is found in many animals, so Kato et al. searched for proteins that can interact with it in human cells. This search revealed three proteins that can interact with LINKIN and are required for the cells to move together. Two of the proteins control elements of the internal scaffolding of the cell: this scaffolding, which is known as the cytoskeleton, is involved in moving the cells. The experiments suggest that LINKIN coordinates the process of binding together with the changes in the cytoskeleton that are needed to allow the cells to move as one. The next challenge is to understand how LINKIN changes the internal program of the cells to achieve this. DOI:http://dx.doi.org/10.7554/eLife.04449.002
Collapse
Affiliation(s)
- Mihoko Kato
- Division of Biology and Biological Engineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, United States
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, United States
| | - Collin Z Yu
- Division of Biology and Biological Engineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, United States
| | - John DeModena
- Division of Biology and Biological Engineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, United States
| | - Paul W Sternberg
- Division of Biology and Biological Engineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, United States
| |
Collapse
|
29
|
Frumkin A, Dror S, Pokrzywa W, Bar-Lavan Y, Karady I, Hoppe T, Ben-Zvi A. Challenging muscle homeostasis uncovers novel chaperone interactions in Caenorhabditis elegans. Front Mol Biosci 2014; 1:21. [PMID: 25988162 PMCID: PMC4428482 DOI: 10.3389/fmolb.2014.00021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 10/18/2014] [Indexed: 11/16/2022] Open
Abstract
Proteome stability is central to cellular function and the lifespan of an organism. This is apparent in muscle cells, where incorrect folding and assembly of the sarcomere contributes to disease and aging. Apart from the myosin-assembly factor UNC-45, the complete network of chaperones involved in assembly and maintenance of muscle tissue is currently unknown. To identify additional factors required for sarcomere quality control, we performed genetic screens based on suppressed or synthetic motility defects in Caenorhabditis elegans. In addition to ethyl methyl sulfonate-based mutagenesis, we employed RNAi-mediated knockdown of candidate chaperones in unc-45 temperature-sensitive mutants and screened for impaired movement at permissive conditions. This approach confirmed the cooperation between UNC-45 and Hsp90. Moreover, the screens identified three novel co-chaperones, CeHop (STI-1), CeAha1 (C01G10.8) and Cep23 (ZC395.10), required for muscle integrity. The specific identification of Hsp90 and Hsp90 co-chaperones highlights the physiological role of Hsp90 in myosin folding. Our work thus provides a clear example of how a combination of mild perturbations to the proteostasis network can uncover specific quality control modules.
Collapse
Affiliation(s)
- Anna Frumkin
- Department of Life Sciences and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev Beer Sheva, Israel
| | - Shiran Dror
- Department of Life Sciences and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev Beer Sheva, Israel
| | - Wojciech Pokrzywa
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne Cologne, Germany ; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, CECAD Research Center, University of Cologne Cologne, Germany
| | - Yael Bar-Lavan
- Department of Life Sciences and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev Beer Sheva, Israel
| | - Ido Karady
- Department of Life Sciences and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev Beer Sheva, Israel
| | - Thorsten Hoppe
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne Cologne, Germany ; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, CECAD Research Center, University of Cologne Cologne, Germany
| | - Anat Ben-Zvi
- Department of Life Sciences and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev Beer Sheva, Israel
| |
Collapse
|
30
|
Papsdorf K, Sacherl J, Richter K. The balanced regulation of Hsc70 by DNJ-13 and UNC-23 is required for muscle functionality. J Biol Chem 2014; 289:25250-61. [PMID: 25053410 DOI: 10.1074/jbc.m114.565234] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molecular chaperone Hsc70 assists in the folding of non-native proteins together with its J domain- and BAG domain-containing cofactors. In Caenorhabditis elegans, two BAG domain-containing proteins can be identified, one of them being UNC-23, whose mutation induces severe motility dysfunctions. Using reporter strains, we find that the full-length UNC-23, in contrast to C-terminal fragments, localizes specifically to the muscular attachment sites. C-terminal fragments of UNC-23 instead perform all Hsc70-related functions, like ATPase stimulation and regulation of folding activity, albeit with lower affinity than BAG-1. Interestingly, overexpression of CFP-Hsc70 can induce muscular defects in wild-type nematodes that phenocopy the knockout of its cofactor UNC-23. Strikingly, the motility dysfunction in the unc-23 mutated strain can be cured specifically by down-regulation of the antagonistic Hsc70 cochaperone DNJ-13, implying that the severe phenotype is caused by misregulation of the Hsc70 cycle. These findings point out that the balanced action of cofactors in the ATP-driven cycle of Hsc70 is crucial for the contribution of Hsc70 to muscle functionality.
Collapse
Affiliation(s)
- Katharina Papsdorf
- From the Department of Biotechnology and Center for Integrated Protein Science Munich (CIPS), Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Julia Sacherl
- From the Department of Biotechnology and Center for Integrated Protein Science Munich (CIPS), Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Klaus Richter
- From the Department of Biotechnology and Center for Integrated Protein Science Munich (CIPS), Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| |
Collapse
|
31
|
Simske JS. Claudins reign: The claudin/EMP/PMP22/γ channel protein family in C. elegans. Tissue Barriers 2013; 1:e25502. [PMID: 24665403 PMCID: PMC3879130 DOI: 10.4161/tisb.25502] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 06/19/2013] [Accepted: 06/21/2013] [Indexed: 01/06/2023] Open
Abstract
The claudin family of integral membrane proteins was identified as the major protein component of the tight junctions in all vertebrates. Since their identification, claudins, and their associated pfam00822 superfamily of proteins have been implicated in a wide variety of cellular processes. Claudin homologs have been identified in invertebrates as well, including Drosophila and C. elegans. Recent studies demonstrate that the C. elegans claudins, clc-1-clc- 5, and similar proteins in the greater PMP22/EMP/claudin/voltage-gated calcium channel γ subunit family, including nsy-4, and vab-9, while highly divergent at a sequence level from each other and from the vertebrate claudins, in many cases play roles similar to those traditionally assigned to their vertebrate homologs. These include regulating cell adhesion and passage of small molecules through the paracellular space, channel activity, protein aggregation, sensitivity to pore-forming toxins, intercellular signaling, cell fate specification and dynamic changes in cell morphology. Study of claudin superfamily proteins in C. elegans should continue to provide clues as to how claudin family protein function has been adapted to perform diverse functions at specialized cell-cell contacts in metazoans.
Collapse
|
32
|
Staab TA, Griffen TC, Corcoran C, Evgrafov O, Knowles JA, Sieburth D. The conserved SKN-1/Nrf2 stress response pathway regulates synaptic function in Caenorhabditis elegans. PLoS Genet 2013; 9:e1003354. [PMID: 23555279 PMCID: PMC3605294 DOI: 10.1371/journal.pgen.1003354] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 01/16/2013] [Indexed: 12/30/2022] Open
Abstract
The Nrf family of transcription factors plays a critical role in mediating adaptive responses to cellular stress and defends against neurodegeneration, aging, and cancer. Here, we report a novel role for the Caenorhabditis elegans Nrf homolog SKN-1 in regulating synaptic transmission at neuromuscular junctions (NMJs). Activation of SKN-1, either by acute pharmacological treatment with the mitochondrial toxin sodium arsenite or by mutations that cause constitutive SKN-1 activation, results in defects in neuromuscular function. Additionally, elimination of the conserved WD40 repeat protein WDR-23, a principal negative regulator of SKN-1, results in impaired locomotion and synaptic vesicle and neuropeptide release from cholinergic motor axons. Mutations that abolish skn-1 activity restore normal neuromuscular function to wdr-23 mutants and animals treated with toxin. We show that negative regulation of SKN-1 by WDR-23 in the intestine, but not at neuromuscular junctions, is necessary and sufficient for proper neuromuscular function. WDR-23 isoforms differentially localize to the outer membranes of mitochondria and to nuclei, and the effects of WDR-23 on neuromuscular function are dependent on its interaction with cullin E3 ubiquitin ligase. Finally, whole-transcriptome RNA sequencing of wdr-23 mutants reveals an increase in the expression of known SKN-1/Nrf2-regulated stress-response genes, as well as neurotransmission genes not previously implicated in SKN-1/Nrf2 responses. Together, our results indicate that SKN-1/Nrf2 activation may be a mechanism through which cellular stress, detected in one tissue, affects cellular function of a distal tissue through endocrine signaling. These results provide insight into how SKN-1/Nrf2 might protect the nervous system from damage in response to oxidative stress. Transcriptional programs control cellular responses in the face of environmental stress, such as dietary restriction, hypoxia, or oxidative stress. Furthermore, in order to promote survival of the organism in response to insult, communication between tissues must be established. Using the model system C. elegans, we investigate functional changes in the nervous system mediated by the transcription factor SKN-1. We establish that activation of SKN-1, either genetically or through exposure to the mitochondrial toxin arsenite, results in locomotion changes that take place at the neuromuscular junction. Furthermore, these changes in the nervous system are brought about through signaling from the intestine. Lastly, we use whole-transcriptome RNA sequencing to identify new transcriptional targets of SKN-1 that might be affecting locomotory behavior. Our results indicate that neuronal function can be regulated at the level of the synapse in response to environmental stress.
Collapse
Affiliation(s)
- Trisha A. Staab
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Trevor C. Griffen
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Connor Corcoran
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Oleg Evgrafov
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - James A. Knowles
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Derek Sieburth
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
33
|
Warner A, Xiong G, Qadota H, Rogalski T, Vogl AW, Moerman DG, Benian GM. CPNA-1, a copine domain protein, is located at integrin adhesion sites and is required for myofilament stability in Caenorhabditis elegans. Mol Biol Cell 2013; 24:601-16. [PMID: 23283987 PMCID: PMC3583664 DOI: 10.1091/mbc.e12-06-0478] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 12/17/2012] [Accepted: 12/21/2012] [Indexed: 11/11/2022] Open
Abstract
We identify cpna-1 (F31D5.3) as a novel essential muscle gene in the nematode Caenorhabditis elegans. Antibodies specific to copine domain protein atypical-1 (CPNA-1), as well as a yellow fluorescent protein translational fusion, are localized to integrin attachment sites (M-lines and dense bodies) in the body-wall muscle of C. elegans. CPNA-1 contains an N-terminal predicted transmembrane domain and a C-terminal copine domain and binds to the M-line/dense body protein PAT-6 (actopaxin) and the M-line proteins UNC-89 (obscurin), LIM-9 (FHL), SCPL-1 (SCP), and UNC-96. Proper CPNA-1 localization is dependent upon PAT-6 in embryonic and adult muscle. Nematodes lacking cpna-1 arrest elongation at the twofold stage of embryogenesis and display disruption of the myofilament lattice. The thick-filament component myosin heavy chain MYO-3 and the M-line component UNC-89 are initially localized properly in cpna-1-null embryos. However, in these embryos, when contraction begins, MYO-3 and UNC-89 become mislocalized into large foci and animals die. We propose that CPNA-1 acts as a linker between an integrin-associated protein, PAT-6, and membrane-distal components of integrin adhesion complexes in the muscle of C. elegans.
Collapse
Affiliation(s)
- Adam Warner
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Ge Xiong
- Department of Pathology, Emory University, Atlanta, GA 30322
| | - Hiroshi Qadota
- Department of Pathology, Emory University, Atlanta, GA 30322
| | - Teresa Rogalski
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - A. Wayne Vogl
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Donald G. Moerman
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Guy M. Benian
- Department of Pathology, Emory University, Atlanta, GA 30322
| |
Collapse
|
34
|
Gaglia MM, Jeong DE, Ryu EA, Lee D, Kenyon C, Lee SJ. Genes that act downstream of sensory neurons to influence longevity, dauer formation, and pathogen responses in Caenorhabditis elegans. PLoS Genet 2012; 8:e1003133. [PMID: 23284299 PMCID: PMC3527274 DOI: 10.1371/journal.pgen.1003133] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 10/15/2012] [Indexed: 12/11/2022] Open
Abstract
The sensory systems of multicellular organisms are designed to provide information about the environment and thus elicit appropriate changes in physiology and behavior. In the nematode Caenorhabditis elegans, sensory neurons affect the decision to arrest during development in a diapause state, the dauer larva, and modulate the lifespan of the animals in adulthood. However, the mechanisms underlying these effects are incompletely understood. Using whole-genome microarray analysis, we identified transcripts whose levels are altered by mutations in the intraflagellar transport protein daf-10, which result in impaired development and function of many sensory neurons in C. elegans. In agreement with existing genetic data, the expression of genes regulated by the transcription factor DAF-16/FOXO was affected by daf-10 mutations. In addition, we found altered expression of transcriptional targets of the DAF-12/nuclear hormone receptor in the daf-10 mutants and showed that this pathway influences specifically the dauer formation phenotype of these animals. Unexpectedly, pathogen-responsive genes were repressed in daf-10 mutant animals, and these sensory mutants exhibited altered susceptibility to and behavioral avoidance of bacterial pathogens. Moreover, we found that a solute transporter gene mct-1/2, which was induced by daf-10 mutations, was necessary and sufficient for longevity. Thus, sensory input seems to influence an extensive transcriptional network that modulates basic biological processes in C. elegans. This situation is reminiscent of the complex regulation of physiology by the mammalian hypothalamus, which also receives innervations from sensory systems, most notably the visual and olfactory systems. The senses provide animals with information about their environment, which affects not only their behavior but also their internal state and physiological outputs. How this information is processed is still unclear. In this study, we used mutant C. elegans roundworms that had defective sensory neurons to investigate how changes in sensation alter the expression of genes and regulate physiology, specifically the worms' choice to hibernate during growth and their longevity as fully-grown adults. We showed that defects in sensory neurons change the pattern of gene expression and regulate these outputs through known hormonal pathways, including insulin/IGF-1 and steroid pathways. We also identified a new regulator of longevity, MCT-1, that is predicted to transport small metabolites and hormones in the body. Unexpectedly, we found that sensory impairment altered yet another physiological output, the response to infectious agents. It prevented the worms from avoiding infectious bacteria and reduced the expression of potentially protective factors, but also increased the worms' resistance to infection, suggesting a complex network of responses to environmental stimuli. Understanding how sensory information is relayed in this relatively simple organism may inform our understanding of sensory processing in higher organisms like mammals.
Collapse
Affiliation(s)
- Marta M Gaglia
- Neuroscience Graduate Program and Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | | | | | | | | | | |
Collapse
|
35
|
Hsp90 in non-mammalian metazoan model systems. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:712-21. [PMID: 21983200 DOI: 10.1016/j.bbamcr.2011.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 09/08/2011] [Accepted: 09/09/2011] [Indexed: 01/26/2023]
Abstract
The molecular chaperone Hsp90 has been discovered in the heat-shock response of the fruit fly more than 30years ago. Today, it is becoming clear that Hsp90 is in the middle of a regulatory system, participating in the modulation of many essential client proteins and signaling pathways. Exerting these activities, Hsp90 works together with about a dozen of cochaperones. Due to their organismal simplicity and the possibility to influence their genetics on a large scale, many studies have addressed the function of Hsp90 in several multicellular model systems. Defined pathways involving Hsp90 client proteins have been identified in the metazoan model systems of Caenorhabditis elegans, Drosophila melanogaster and the zebrafish Danio rerio. Here, we summarize the functions of Hsp90 during muscle maintenance, development of phenotypic traits and the involvement of Hsp90 in stress responses, all of which were largely uncovered using the model organisms covered in this review. These findings highlight the many specific and general actions of the Hsp90 chaperone machinery. This article is part of a Special Issue entitled: Heat Shock Protein 90 (HSP90).
Collapse
|
36
|
Warner A, Qadota H, Benian GM, Vogl AW, Moerman DG. The Caenorhabditis elegans paxillin orthologue, PXL-1, is required for pharyngeal muscle contraction and for viability. Mol Biol Cell 2011; 22:2551-63. [PMID: 21633109 PMCID: PMC3135480 DOI: 10.1091/mbc.e10-12-0941] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Caenorhabditis elegans pxl-1 is the orthologue of vertebrate paxillin and is expressed in body wall and pharyngeal muscle. In body wall muscle PXL-1 localizes to dense bodies, M-lines, and adhesion plaques, and in pharyngeal muscle PXL-1 localizes to podosome-like actin attachment complexes. PXL-1 is required in the pharynx for muscle contraction and viability. We have identified the gene C28H8.6 (pxl-1) as the Caenorhabditis elegans orthologue of vertebrate paxillin. PXL-1 contains the four C-terminal LIM domains conserved in paxillin across all species and three of the five LD motifs found in the N-terminal half of most paxillins. In body wall muscle, PXL-1 antibodies and a full-length green fluorescent protein translational fusion localize to adhesion sites in the sarcomere, the functional repeat unit in muscle responsible for contraction. PXL-1 also localizes to ring-shaped structures near the sarcolemma in pharyngeal muscle corresponding to podosome-like sites of actin attachment. Our analysis of a loss-of-function allele of pxl-1, ok1483, shows that loss of paxillin leads to early larval arrested animals with paralyzed pharyngeal muscles and eventual lethality, presumably due to an inability to feed. We rescued the mutant phenotype by expressing paxillin solely in the pharynx and found that these animals survived and are essentially wild type in movement and body wall muscle structure. This indicates a differential requirement for paxillin in these two types of muscle. In pharyngeal muscle it is essential for contraction, whereas in body wall muscle it is dispensable for filament assembly, sarcomere stability, and ultimately movement.
Collapse
Affiliation(s)
- Adam Warner
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | |
Collapse
|