1
|
Capasso C, Supuran CT. Overview on tyrosinases: Genetics, molecular biology, phylogenetic relationship. Enzymes 2024; 56:1-30. [PMID: 39304284 DOI: 10.1016/bs.enz.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Tyrosinases (TYRs) are enzymes found in various organisms that are crucial for melanin biosynthesis, coloration, and UV protection. They play vital roles in insect cuticle sclerotization, mollusk shell formation, fungal and bacterial pigmentation, biofilm formation, and virulence. Structurally, TYRs feature copper-binding sites that are essential for catalytic activity, facilitating substrate oxidation via interactions with conserved histidine residues. TYRs exhibit diversity across animals, plants, fungi, mollusks, and bacteria, reflecting their roles and function. Eukaryotic TYRs undergo post-translational modifications, such as glycosylation, which affect protein folding and activity. Bacterial TYRs are categorized into five types based on their structural variation, domain organization and enzymatic properties, showing versatility across bacterial species. Moreover, bacterial TYRs, akin to fungal TYRs, have been implicated in the synthesis of secondary metabolites with antimicrobial properties. TYRs share significant sequence homology with hemocyanins, oxygen-carrier proteins in mollusks and arthropods, highlighting their evolutionary relationships. The evolution of TYRs underscores the dynamic nature of these enzymes and reflects adaptive strategies across diverse taxa.
Collapse
Affiliation(s)
- Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources, CNR, Napoli, Italy.
| | - Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Florence, Italy
| |
Collapse
|
2
|
Oyama T, Yoshimori A, Ogawa H, Shirai Y, Abe H, Kamiya T, Tanuma SI. The structural differences between mushroom and human tyrosinase cleared by investigating the inhibitory activities of stilbenes. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
3
|
Munteanu CVA, Chirițoiu GN, Chirițoiu M, Ghenea S, Petrescu AJ, Petrescu ȘM. Affinity proteomics and deglycoproteomics uncover novel EDEM2 endogenous substrates and an integrative ERAD network. Mol Cell Proteomics 2021; 20:100125. [PMID: 34332121 PMCID: PMC8455867 DOI: 10.1016/j.mcpro.2021.100125] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 07/09/2021] [Accepted: 07/25/2021] [Indexed: 02/08/2023] Open
Abstract
Various pathologies result from disruptions to or stress of endoplasmic reticulum (ER) homeostasis, such as Parkinson's disease and most neurodegenerative illnesses, diabetes, pulmonary fibrosis, viral infections and cancers. A critical process in maintaining ER homeostasis is the selection of misfolded proteins by the ER quality-control system (ERQC) for destruction via ER-associated degradation (ERAD). One key protein proposed to act during the first steps of misfolded glycoprotein degradation is the ER degradation-enhancing α-mannosidase-like protein 2 (EDEM2). Therefore, characterization of the EDEM2 associated proteome is of great interest. We took advantage of using melanoma cells overexpressing EDEM2 as a cancer model system, to start documenting at the deglycoproteome level (N-glycosites identification) the emerging link between ER homeostasis and cancer progression. The dataset created for identifying the EDEM2 glyco-clients carrying high mannose/hybrid N-glycans provides a comprehensive N-glycosites analysis mapping over 1000 N-glycosites on more than 600 melanoma glycoproteins. To identify EDEM2-associated proteins we used affinity-proteomics and proteome-wide analysis of sucrose density fractionation in an integrative workflow. Using intensity and spectral count-based quantification, we identify seven new EDEM2 partners, all of which are involved in ERQC and ERAD. Moreover, we defined novel endogenous candidates for EDEM2-dependent ERAD by combining deglycoproteomics, SILAC-based proteomics, and biochemical methods. These included tumor antigens and several ER-transiting endogenous melanoma proteins, including ITGA1 and PCDH2, the expression of which was negatively correlated with that of EDEM2. Tumor antigens are key in the antigen presentation process, whilst ITGA1 and PCDH2 are involved in melanoma metastasis and invasion. EDEM2 could therefore have a regulatory role in melanoma through the modulation of these glycoproteins degradation and trafficking. The data presented herein suggest that EDEM2 is involved in ER homeostasis to a greater extent than previously suggested.
Collapse
Affiliation(s)
- Cristian V A Munteanu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry, Splaiul Independenței 296, 060031, Bucharest, Romania
| | - Gabriela N Chirițoiu
- Department of Molecular Cell Biology, Institute of Biochemistry, Splaiul Independenței 296, 060031, Bucharest, Romania
| | - Marioara Chirițoiu
- Department of Molecular Cell Biology, Institute of Biochemistry, Splaiul Independenței 296, 060031, Bucharest, Romania
| | - Simona Ghenea
- Department of Molecular Cell Biology, Institute of Biochemistry, Splaiul Independenței 296, 060031, Bucharest, Romania
| | - Andrei-Jose Petrescu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry, Splaiul Independenței 296, 060031, Bucharest, Romania
| | - Ștefana M Petrescu
- Department of Molecular Cell Biology, Institute of Biochemistry, Splaiul Independenței 296, 060031, Bucharest, Romania.
| |
Collapse
|
4
|
Manica G, Ghenea S, Munteanu CVA, Martin EC, Butnaru C, Surleac M, Chiritoiu GN, Alexandru PR, Petrescu AJ, Petrescu SM. EDEM3 Domains Cooperate to Perform Its Overall Cell Functioning. Int J Mol Sci 2021; 22:2172. [PMID: 33671632 PMCID: PMC7926307 DOI: 10.3390/ijms22042172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/15/2021] [Accepted: 02/19/2021] [Indexed: 01/20/2023] Open
Abstract
EDEM3 recognizes and directs misfolded proteins to the ER-associated protein degradation (ERAD) process. EDEM3 was predicted to act as lectin or as a mannosidase because of its homology with the GH47 catalytic domain of the Man1B1, but the contribution of the other regions remained unresolved. Here, we dissect the molecular determinants governing EDEM3 function and its cellular interactions. LC/MS analysis indicates very few stable ER interactors, suggesting EDEM3 availability for transient substrate interactions. Sequence analysis reveals that EDEM3 consists of four consecutive modules defined as GH47, intermediate (IMD), protease-associated (PA), and intrinsically disordered (IDD) domain. Using an EDEM3 knock-out cell line, we expressed EDEM3 and domain deletion mutants to address EDEM3 function. We find that the mannosidase domain provides substrate binding even in the absence of mannose trimming and requires the IMD domain for folding. The PA and IDD domains deletions do not impair the trimming, but specifically modulate the turnover of two misfolded proteins, NHK and the soluble tyrosinase mutant. Hence, we demonstrate that EDEM3 provides a unique ERAD timing to misfolded glycoproteins, not only by its mannose trimming activity, but also by the positive and negative feedback modulated by the protease-associated and intrinsically disordered domain, respectively.
Collapse
Affiliation(s)
- Georgiana Manica
- Department of Molecular Cell Biology, Institute of Biochemistry, Splaiul Independentei 296, 060031 Bucharest 17, Romania; (G.M.); (S.G.); (G.N.C.); (P.R.A.)
| | - Simona Ghenea
- Department of Molecular Cell Biology, Institute of Biochemistry, Splaiul Independentei 296, 060031 Bucharest 17, Romania; (G.M.); (S.G.); (G.N.C.); (P.R.A.)
| | - Cristian V. A. Munteanu
- Department of Bioinformatics and Structural Biochemistry, Splaiul Independentei 296, 060031 Bucharest 17, Romania; (C.V.A.M.); (E.C.M.); (C.B.); (M.S.); (A.-J.P.)
| | - Eliza C. Martin
- Department of Bioinformatics and Structural Biochemistry, Splaiul Independentei 296, 060031 Bucharest 17, Romania; (C.V.A.M.); (E.C.M.); (C.B.); (M.S.); (A.-J.P.)
| | - Cristian Butnaru
- Department of Bioinformatics and Structural Biochemistry, Splaiul Independentei 296, 060031 Bucharest 17, Romania; (C.V.A.M.); (E.C.M.); (C.B.); (M.S.); (A.-J.P.)
| | - Marius Surleac
- Department of Bioinformatics and Structural Biochemistry, Splaiul Independentei 296, 060031 Bucharest 17, Romania; (C.V.A.M.); (E.C.M.); (C.B.); (M.S.); (A.-J.P.)
- Research Institute of the University of Bucharest, 030018 Bucharest 17, Romania
| | - Gabriela N. Chiritoiu
- Department of Molecular Cell Biology, Institute of Biochemistry, Splaiul Independentei 296, 060031 Bucharest 17, Romania; (G.M.); (S.G.); (G.N.C.); (P.R.A.)
| | - Petruta R. Alexandru
- Department of Molecular Cell Biology, Institute of Biochemistry, Splaiul Independentei 296, 060031 Bucharest 17, Romania; (G.M.); (S.G.); (G.N.C.); (P.R.A.)
| | - Andrei-Jose Petrescu
- Department of Bioinformatics and Structural Biochemistry, Splaiul Independentei 296, 060031 Bucharest 17, Romania; (C.V.A.M.); (E.C.M.); (C.B.); (M.S.); (A.-J.P.)
| | - Stefana M. Petrescu
- Department of Molecular Cell Biology, Institute of Biochemistry, Splaiul Independentei 296, 060031 Bucharest 17, Romania; (G.M.); (S.G.); (G.N.C.); (P.R.A.)
| |
Collapse
|
5
|
Homma T, Kageyama S, Nishikawa A, Nagata K. Anti-melanogenic activity of salacinol by inhibition of tyrosinase oligosaccharide processing. J Biochem 2021; 167:503-511. [PMID: 31883005 DOI: 10.1093/jb/mvz115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/23/2019] [Indexed: 12/19/2022] Open
Abstract
Hyperpigmentation that manifests through melasma and solar lentigo (age spots), although mostly harmless for health, bothers many people. Controlling the rate-limiting activity of tyrosinase is most effective for suppressing excessive melanin formation and accordingly recent research has focused on the maturation of tyrosinase. Salacia, a medicinal plant, has been used to treat diabetes in India and Sri Lanka. Salacia extract reportedly contains components that inhibit the activity of α-glucosidase. Salacinol, the active ingredient in Salacia extract, has unique thiosugar sulphonium sulphate inner salt structure. Here, we observed that the salacinol component of Salacia extract possesses anti-melanogenic activity in comparison to various existing whitening agents. Although the anti-melanogenic mechanism of salacinol is presumably medicated by inhibition of tyrosinase activity, which is often found in existing whitening agents, salacinol did not inhibit tyrosinase activity in vitro. Analysis of the intracellular state of tyrosinase showed a decrease in the mature tyrosinase form due to inhibition of N-linked oligosaccharide processing. Salacinol inhibited the processing glucosidase I/II, which are involved in the initial stage of N-linked glycosylation. Owing to high activity, low cytotoxicity and high hydrophilicity, salacinol is a promising candidate compound in whitening agents aimed for external application on skin.
Collapse
Affiliation(s)
- Toshiyuki Homma
- Pharmaceutical & Healthcare Research Laboratories, FUJIFILM Inc., 577 Ushijima, Kaisei-Machi, Ashigarakami-gun, Kanagawa 258-8577, Japan.,Department of Applied Life Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Shigeki Kageyama
- Pharmaceutical & Healthcare Research Laboratories, FUJIFILM Inc., 577 Ushijima, Kaisei-Machi, Ashigarakami-gun, Kanagawa 258-8577, Japan
| | - Atsushi Nishikawa
- Department of Applied Life Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Kozo Nagata
- Pharmaceutical & Healthcare Research Laboratories, FUJIFILM Inc., 577 Ushijima, Kaisei-Machi, Ashigarakami-gun, Kanagawa 258-8577, Japan
| |
Collapse
|
6
|
Membrane-associated human tyrosinase is an enzymatically active monomeric glycoprotein. PLoS One 2018; 13:e0198247. [PMID: 29870551 PMCID: PMC5988326 DOI: 10.1371/journal.pone.0198247] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 05/16/2018] [Indexed: 11/19/2022] Open
Abstract
Human tyrosinase (hTyr) is a Type 1 membrane bound glycoenzyme that catalyzes the initial and rate-limiting steps of melanin production in the melanosome. Mutations in the Tyr gene are linked to oculocutaneous albinism type 1 (OCA1), an autosomal recessive disorder. Currently, the application of enzyme replacement therapy for a treatment of OCA1 is hampered by the absence of pure hTyr. Here, full-length hTyr (residues 1-529) was overexpressed in Trichoplusia ni larvae infected with a baculovirus, solubilized with detergent and purified using chromatography. Michaelis-Menten kinetics, enzymatic specific activity, and analytical ultracentrifugation were used to compare the hTyr in detergent with the soluble recombinant intra-melanosomal domain, hTyrCtr (residues 19-469). Active hTyr is monomeric in detergent micelles suggesting no stable interactions between protein molecules. Both, hTyr and hTyrCtr, exhibited similar enzymatic activity and ligand affinity in L-DOPA and L-Tyrosine reactions. In addition, expression in larvae is a scalable process that will allow high yield protein production. Thus, larval production of enzymatically active human tyrosinase potentially could be a useful tool in developing a cure for OCA1.
Collapse
|
7
|
Mann T, Scherner C, Röhm KH, Kolbe L. Structure-Activity Relationships of Thiazolyl Resorcinols, Potent and Selective Inhibitors of Human Tyrosinase. Int J Mol Sci 2018; 19:ijms19030690. [PMID: 29495618 PMCID: PMC5877551 DOI: 10.3390/ijms19030690] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 02/13/2018] [Accepted: 02/24/2018] [Indexed: 01/22/2023] Open
Abstract
Tyrosinase inhibitors are of great clinical interest as agents for the treatment of hyperpigmentary disorders; however, most compounds described in the literature lack clinical efficiency due to insufficient inhibitory activity against human tyrosinase (hTyr). Recently, we reported that thiazolyl resorcinols (4-resorcinylthiazol-2-amines and -amides) are both selective and efficacious inhibitors of hTyr in vitro and in vivo. Here, we measured dose-activity profiles of a large number of thiazolyl resorcinols and analogous compounds to better understand the molecular basis of their interaction with hTyr. We show that both the resorcinyl moiety and the thiazole ring must be intact to allow efficient inhibition of hTyr, while the substituents at the thiazole 2-amino group confer additional inhibitory activity, depending on their size and polarity. The results of molecular docking simulations were in excellent agreement with the experimental data, affording a rationale for the structural importance of either ring. We further propose that a special type of interaction between the thiazole sulfur and a conserved asparagine residue is partially responsible for the superior inhibitory activity of thiazolyl resorcinols against hTyr.
Collapse
Affiliation(s)
- Tobias Mann
- Front End Innovation, Beiersdorf AG, 20245 Hamburg, Germany.
| | | | - Klaus-Heinrich Röhm
- Institute of Physiological Chemistry, Philipps University, 35032 Marburg, Germany.
| | - Ludger Kolbe
- Front End Innovation, Beiersdorf AG, 20245 Hamburg, Germany.
| |
Collapse
|
8
|
Ellgaard L, McCaul N, Chatsisvili A, Braakman I. Co- and Post-Translational Protein Folding in the ER. Traffic 2016; 17:615-38. [PMID: 26947578 DOI: 10.1111/tra.12392] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/26/2016] [Accepted: 03/03/2016] [Indexed: 12/19/2022]
Abstract
The biophysical rules that govern folding of small, single-domain proteins in dilute solutions are now quite well understood. The mechanisms underlying co-translational folding of multidomain and membrane-spanning proteins in complex cellular environments are often less clear. The endoplasmic reticulum (ER) produces a plethora of membrane and secretory proteins, which must fold and assemble correctly before ER exit - if these processes fail, misfolded species accumulate in the ER or are degraded. The ER differs from other cellular organelles in terms of the physicochemical environment and the variety of ER-specific protein modifications. Here, we review chaperone-assisted co- and post-translational folding and assembly in the ER and underline the influence of protein modifications on these processes. We emphasize how method development has helped advance the field by allowing researchers to monitor the progression of folding as it occurs inside living cells, while at the same time probing the intricate relationship between protein modifications during folding.
Collapse
Affiliation(s)
- Lars Ellgaard
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Nicholas McCaul
- Cellular Protein Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Anna Chatsisvili
- Cellular Protein Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Ineke Braakman
- Cellular Protein Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
9
|
Chiritoiu GN, Jandus C, Munteanu CV, Ghenea S, Gannon PO, Romero P, Petrescu SM. Epitope locatedN-glycans impair the MHC-I epitope generation and presentation. Electrophoresis 2016; 37:1448-60. [DOI: 10.1002/elps.201500449] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/15/2015] [Accepted: 12/15/2015] [Indexed: 11/07/2022]
Affiliation(s)
| | - Camilla Jandus
- Ludwig Cancer Research Center, Faculty of Biology and Medicine; University of Lausanne; Lausanne Switzerland
| | | | - Simona Ghenea
- Institute of Biochemistry; Romanian Academy; Bucharest Romania
| | - Philippe O. Gannon
- Department of Oncology, Lausanne University Hospital (CHUV); University of Lausanne; Lausanne Switzerland
| | - Pedro Romero
- Ludwig Cancer Research Center, Faculty of Biology and Medicine; University of Lausanne; Lausanne Switzerland
| | | |
Collapse
|
10
|
The role of N-glycans and the C-terminal loop of the subunit rBAT in the biogenesis of the cystinuria-associated transporter. Biochem J 2015; 473:233-44. [PMID: 26537754 DOI: 10.1042/bj20150846] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/03/2015] [Indexed: 11/17/2022]
Abstract
The transport system b(0,+) mediates reabsorption of dibasic amino acids and cystine in the kidney. It is made up of two disulfide-linked membrane subunits: the carrier, b(0,+)AT and the helper, rBAT (related to b(0,+) amino acid transporter). rBAT mutations that impair biogenesis of the transporter cause type I cystinuria. It has been shown that upon assembly, b(0,+)AT prevents degradation and promotes folding of rBAT; then, rBAT traffics b(0,+)AT from the endoplasmic reticulum (ER) to the plasma membrane. The role of the N-glycans of rBAT and of its C-terminal loop, which has no homology to any other sequence, in biogenesis of system b(0,+) is unknown. In the present study, we studied these points. We first identified the five N-glycans of rBAT. Elimination of the N-glycan Asn(575), but not of the others, delayed transporter maturation, as measured by pulse chase experiments and endoglycosidase H assays. Moreover, a transporter with only the N-glycan Asn(575) displayed similar maturation compared with wild-type, suggesting that this N-glycan was necessary and sufficient to achieve the maximum rate of transporter maturation. Deletion of the rBAT C-terminal disulfide loop (residues 673-685) prevented maturation and prompted degradation of the transporter. Alanine-scanning mutagenesis uncovered loop residues important for stability and/or maturation of system b(0,+). Further, double-mutant cycle analysis showed partial additivity of the effects of the Asn(679) loop residue and the N-glycan Asn(575) on transporter maturation, indicating that they may interact during system b(0,+) biogenesis. These data highlight the important role of the N-glycan Asn(575) and the C-terminal disulfide loop of rBAT in biogenesis of the rBAT-b(0,+)AT heterodimer.
Collapse
|
11
|
Fogal S, Carotti M, Giaretta L, Lanciai F, Nogara L, Bubacco L, Bergantino E. Human tyrosinase produced in insect cells: a landmark for the screening of new drugs addressing its activity. Mol Biotechnol 2015; 57:45-57. [PMID: 25189462 DOI: 10.1007/s12033-014-9800-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human tyrosinase is the first enzyme of the multistep process of melanogenesis. It catalyzes the hydroxylation of L-tyrosine to L-dihydroxyphenylalanine and the following oxidation of o-diphenol to the corresponding quinone, L-dopaquinone. In spite of its biomedical relevance, its reactivity is far from being fully understood, mostly because of the lack of a suitable expression system. Indeed, until now, studies on substrates and inhibitors of tyrosinases have been performed in vitro almost exclusively using mushroom or bacterial enzymes. We report on the production of a recombinant human tyrosinase in insect cells (Sf9 line). Engineering the protein, improving cell culture conditions, and setting a suitable purification protocol optimized product yield. The obtained active enzyme was truthfully characterized with a number of substrate and inhibitor molecules. These results were compared to those gained from a parallel analysis of the bacterial (Streptomyces antibioticus) enzyme and those acquired from the literature for mushroom tyrosinase, showing that the reactivity of the human enzyme appears unique and pointing out the great bias introduced when using non-human tyrosinases to measure the inhibitory efficacy of new molecules. The described enzyme is therefore an indispensable paradigm in testing pharmaceutical or cosmetic agents addressing tyrosinase activity.
Collapse
Affiliation(s)
- Stefano Fogal
- Department of Biology, University of Padua, Viale G. Colombo 3, 35121, Padua, Italy
| | | | | | | | | | | | | |
Collapse
|
12
|
Hidaka C, Mitsui S. N-Glycosylation modulates filopodia-like protrusions induced by sez-6 through regulating the distribution of this protein on the cell surface. Biochem Biophys Res Commun 2015; 462:346-51. [PMID: 25960298 DOI: 10.1016/j.bbrc.2015.04.139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 04/29/2015] [Indexed: 11/26/2022]
Abstract
Seizure-related gene 6 (sez-6) is a trans-membrane protein expressed by neuronal cells that modulates dendritic branching. It has three clusters of eleven possible N-glycosylation sites in the extracellular domain region: sugar chain (SC)1-3, SC4-7, and SC8-11. Recent reports suggest that N-glycosylation modulates the membrane trafficking and function of trans-membrane proteins. Here, we studied the role of N-glycosylation in sez-6 function. We transfected mutants lacking one, two, or all N-glycosylation clusters into neuro2a cells. A mutant lacking all N-glycosylation was transported to the cell membrane. Mutants lacking one cluster (sez-6 ΔSC1-3, ΔSC4-7, ΔSC8-11) were evenly distributed on the cell membrane and secreted into the conditioned medium, as in wild-type sez-6; in contrast, the unglycosylated mutant, sez-6 ΔSC1-11, and mutants having only one cluster (sez-6 SC1-3, SC8-11) were localized in some portions on the cell membrane. Despite sez-6 SC4-7 having only one cluster, it was transported like the wild type. Among mutants behaving like the wild type, sez-6 ΔSC1-3 and ΔSC4-7 reduced neurite formation. Interestingly, mutants lacking SC4-7 (sez-6 ΔSC4-7) did not affect the formation of filopodia-like protrusions. In contrast, other mutants as well as the wild type induced it, suggesting that SC4-7 is crucial for filopodia-like protrusions. Our results indicate that N-glycosylation regulates cell morphology through modulating the cell surface distribution of sez-6 protein.
Collapse
Affiliation(s)
- Chiharu Hidaka
- Department of Rehabilitation Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-machi, Maebashi, Gunma 371-8514, Japan
| | - Shinichi Mitsui
- Department of Rehabilitation Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-machi, Maebashi, Gunma 371-8514, Japan.
| |
Collapse
|
13
|
Solomon EI, Heppner DE, Johnston EM, Ginsbach JW, Cirera J, Qayyum M, Kieber-Emmons MT, Kjaergaard CH, Hadt RG, Tian L. Copper active sites in biology. Chem Rev 2014; 114:3659-853. [PMID: 24588098 PMCID: PMC4040215 DOI: 10.1021/cr400327t] [Citation(s) in RCA: 1218] [Impact Index Per Article: 110.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | - David E. Heppner
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | | | - Jake W. Ginsbach
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | - Jordi Cirera
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | - Munzarin Qayyum
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | | | | | - Ryan G. Hadt
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | - Li Tian
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| |
Collapse
|
14
|
Gidalevitz T, Stevens F, Argon Y. Orchestration of secretory protein folding by ER chaperones. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1833:2410-24. [PMID: 23507200 PMCID: PMC3729627 DOI: 10.1016/j.bbamcr.2013.03.007] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/27/2013] [Accepted: 03/01/2013] [Indexed: 02/06/2023]
Abstract
The endoplasmic reticulum is a major compartment of protein biogenesis in the cell, dedicated to production of secretory, membrane and organelle proteins. The secretome has distinct structural and post-translational characteristics, since folding in the ER occurs in an environment that is distinct in terms of its ionic composition, dynamics and requirements for quality control. The folding machinery in the ER therefore includes chaperones and folding enzymes that introduce, monitor and react to disulfide bonds, glycans, and fluctuations of luminal calcium. We describe the major chaperone networks in the lumen and discuss how they have distinct modes of operation that enable cells to accomplish highly efficient production of the secretome. This article is part of a Special Issue entitled: Functional and structural diversity of endoplasmic reticulum.
Collapse
Affiliation(s)
- Tali Gidalevitz
- Department of Biology, Drexel University, Drexel University, 418 Papadakis Integrated Science Bldg, 3245 Chestnut Street, Philadelphia, PA 19104
| | | | - Yair Argon
- Division of Cell Pathology, Department of Pathology and Lab Medicine, The Children's Hospital of Philadelphia and the University of Pennsylvania, 3615 Civic Center Blvd., Philadelphia, PA 19104, USA, , Phone: 267-426-5131, Fax: 267-426-5165)
| |
Collapse
|
15
|
Wei HS, Wei HL, Zhao F, Zhong LP, Zhan YT. Glycosyltransferase GLT8D2 positively regulates ApoB100 protein expression in hepatocytes. Int J Mol Sci 2013; 14:21435-46. [PMID: 24173238 PMCID: PMC3856013 DOI: 10.3390/ijms141121435] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/11/2013] [Accepted: 09/12/2013] [Indexed: 12/18/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by triglyceride (TG) accumulation in hepatocytes. Very low density lipoprotein (VLDL) is a major secretory product of the liver that transports endogenously synthesized TG. Disrupted VLDL secretion may contribute to the accumulation of TG in hepatocytes. ApoB100 (apolipoprotein B100) is a glycoprotein and an essential protein component of VLDL. Its glycosylation may affect VLDL assembly and secretion. However, which glycosyltransferase catalyzes apoB100 glycosylation is unknown. In this study, we cloned the GLT8D2 (glycosyltransferase 8 domain containing 2) gene from HepG2 cells and generated a series of plasmids for in vitro studies of its molecular functions. We discovered that GLT8D2 was localized in the ER, interacted with apoB100, and positively regulated the levels of apoB100 protein in HepG2 cells. Based on these results, we propose that GLT8D2 is a glycosyltransferase of apoB100 that regulates apoB100 levels in hepatocytes.
Collapse
Affiliation(s)
- Hong-Shan Wei
- Institutes of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; E-Mail:
| | - Hong-Lian Wei
- Seventh Department of Internal Medicine, Linyi People’s Hospital, Linyi 276000, Shandong, China; E-Mail:
- Department of Gastroenterology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; E-Mails: (F.Z.); (L.-P.Z.)
| | - Fei Zhao
- Department of Gastroenterology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; E-Mails: (F.Z.); (L.-P.Z.)
| | - Le-Ping Zhong
- Department of Gastroenterology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; E-Mails: (F.Z.); (L.-P.Z.)
| | - Yu-Tao Zhan
- Department of Gastroenterology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; E-Mails: (F.Z.); (L.-P.Z.)
| |
Collapse
|
16
|
Farinha CM, Matos P, Amaral MD. Control of cystic fibrosis transmembrane conductance regulator membrane trafficking: not just from the endoplasmic reticulum to the Golgi. FEBS J 2013; 280:4396-406. [PMID: 23773658 DOI: 10.1111/febs.12392] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/25/2013] [Accepted: 06/11/2013] [Indexed: 12/18/2022]
Abstract
Biogenesis of cystic fibrosis transmembrane conductance regulator (CFTR) starts with its cotranslational insertion into the membrane of the endoplasmic reticulum (ER) and core glycosylation. These initial events are followed by a complex succession of steps with the main goal of checking the overall quality of CFTR conformation in order to promote its exit from the ER through the secretory pathway. Failure to pass the various checkpoints of the ER quality control targets the most frequent disease-causing mutant protein (F508del-CFTR) for premature degradation. For wild-type CFTR that exits the ER, trafficking through the Golgi is the major site for glycan processing, although nonconventional trafficking pathways have also been described for CFTR. Once CFTR is at the cell surface, its stability is also controlled by multiple protein interactors, including Rab proteins, Rho small GTPases, and PDZ proteins. These regulate not only anterograde trafficking to the cell surface, but also endocytosis and recycling, thus achieving fine and tight modulation of CFTR plasma membrane levels. Exciting recent data have related autophagy and epithelial differentiation to the regulation of CFTR trafficking. Herein, we review the various checkpoints of the complex quality control along the secretory trafficking pathway and the associated pathways that are starting to be explored for the benefit of cystic fibrosis patients.
Collapse
Affiliation(s)
- Carlos M Farinha
- Faculty of Sciences, BioFIG - Centre for Biodiversity, Functional and Integrative Genomics, University of Lisboa, Portugal
| | | | | |
Collapse
|
17
|
Marin MB, Ghenea S, Spiridon LN, Chiritoiu GN, Petrescu AJ, Petrescu SM. Tyrosinase degradation is prevented when EDEM1 lacks the intrinsically disordered region. PLoS One 2012; 7:e42998. [PMID: 22905195 PMCID: PMC3414498 DOI: 10.1371/journal.pone.0042998] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 07/16/2012] [Indexed: 01/08/2023] Open
Abstract
EDEM1 is a mannosidase-like protein that recruits misfolded glycoproteins from the calnexin/calreticulin folding cycle to downstream endoplasmic reticulum associated degradation (ERAD) pathway. Here, we investigate the role of EDEM1 in the processing of tyrosinase, a tumour antigen overexpressed in melanoma cells. First, we analyzed and modeled EDEM1 major domains. The homology model raised on the crystal structures of human and Saccharomyces cerevisiae ER class I α1,2-mannosidases reveals that the major mannosidase domain located between aminoacids 121-598 fits with high accuracy. We have further identified an N-terminal region located between aminoacids 40-119, predicted to be intrinsically disordered (ID) and susceptible to adopt multiple conformations, hence facilitating protein-protein interactions. To investigate these two domains we have constructed an EDEM1 deletion mutant lacking the ID region and a triple mutant disrupting the glycan-binding domain and analyzed their association with tyrosinase. Tyrosinase is a glycoprotein partly degraded endogenously by ERAD and the ubiquitin proteasomal system. We found that the degradation of wild type and misfolded tyrosinase was enhanced when EDEM1 was overexpressed. Glycosylated and non-glycosylated mutants co-immunoprecipitated with EDEM1 even in the absence of its intact mannosidase-like domain, but not when the ID region was deleted. In contrast, calnexin and SEL 1L associated with the deletion mutant. Our data suggest that the ID region identified in the N-terminal end of EDEM1 is involved in the binding of glycosylated and non-glycosylated misfolded proteins. Accelerating tyrosinase degradation by EDEM1 overexpression may lead to an efficient antigen presentation and enhanced elimination of melanoma cells.
Collapse
Affiliation(s)
- Marioara B. Marin
- Department of Molecular Cell Biology, Institute of Biochemistry of Romanian Academy, Bucharest, Romania
| | - Simona Ghenea
- Department of Molecular Cell Biology, Institute of Biochemistry of Romanian Academy, Bucharest, Romania
| | - Laurentiu N. Spiridon
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of Romanian Academy, Bucharest, Romania
| | - Gabriela N. Chiritoiu
- Department of Molecular Cell Biology, Institute of Biochemistry of Romanian Academy, Bucharest, Romania
| | - Andrei-Jose Petrescu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of Romanian Academy, Bucharest, Romania
- * E-mail: (SMP); (AJP)
| | - Stefana-Maria Petrescu
- Department of Molecular Cell Biology, Institute of Biochemistry of Romanian Academy, Bucharest, Romania
- * E-mail: (SMP); (AJP)
| |
Collapse
|