1
|
Lettau K, Forchhammer S, Fehrenbacher B, Mahmutovic L, Scharpf M, Blumenstock G, Schaller M, Bonzheim I, Khozooei S, Toulany M. The subcellular distribution of phosphorylated Y-box-binding protein-1 at S102 in colorectal cancer patients, stratified by KRAS mutational status and clinicopathological features. Mol Oncol 2025. [PMID: 40420381 DOI: 10.1002/1878-0261.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/03/2025] [Accepted: 05/13/2025] [Indexed: 05/28/2025] Open
Abstract
Oncoprotein Y-box-binding protein-1 (YB-1) is involved in all cancer hallmarks. One of the most studied post-translational modifications of YB-1 is phosphorylation on Serine 102 (S102), which is involved in cancer progression. KRAS mutations are frequent, have been associated with poor prognosis and therapy resistance, and they are considered a major stimulator of S102 YB-1 in vitro. In this study, a relationship between S102 YB-1 phosphorylation in subcellular fractions and KRAS mutation was investigated in CRC tissues, and its association with clinicopathological parameters was analyzed. Immunohistochemistry on 36 patient samples and 5 normal tissue samples highlighted nuclear S102 YB-1 was specific to cancer tissues. Nuclear S102 YB-1 was expressed in 47.2% of tumor tissues, which was positively correlated with KRAS mutation (P = 0.017). There was no significant association between cytoplasmic S102 YB-1 with KRAS mutation status (P = 0.391). Further studies in larger cohorts are needed to validate the observed results. The significant association between S102 YB-1 in the nucleus and KRAS mutation may suggest YB-1 as an effective target to improve survival of CRC patients with KRAS-mutated tumors.
Collapse
Affiliation(s)
- Konstanze Lettau
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
- Department of Internal Medicine I, University Hospital Tuebingen, Tuebingen, Germany
| | - Stephan Forchhammer
- Department of Dermatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Birgit Fehrenbacher
- Department of Dermatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Lejla Mahmutovic
- Institute of Pathology and Neuropathology, University Hospital Tuebingen, Tuebingen, Germany
| | - Marcus Scharpf
- Institute of Pathology and Neuropathology, University Hospital Tuebingen, Tuebingen, Germany
| | - Gunnar Blumenstock
- Department of Clinical Epidemiology and Biostatistics, University Hospital Tuebingen, Tuebingen, Germany
| | - Martin Schaller
- Department of Dermatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Irina Bonzheim
- Institute of Pathology and Neuropathology, University Hospital Tuebingen, Tuebingen, Germany
| | - Shayan Khozooei
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | - Mahmoud Toulany
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
| |
Collapse
|
2
|
Khozooei S, Veerappan S, Toulany M. YB-1 activating cascades as potential targets in KRAS-mutated tumors. Strahlenther Onkol 2023; 199:1110-1127. [PMID: 37268766 DOI: 10.1007/s00066-023-02092-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/23/2023] [Indexed: 06/04/2023]
Abstract
Y‑box binding protein‑1 (YB-1) is a multifunctional protein that is highly expressed in human solid tumors of various entities. Several cellular processes, e.g. cell cycle progression, cancer stemness and DNA damage signaling that are involved in the response to chemoradiotherapy (CRT) are tightly governed by YB‑1. KRAS gene with about 30% mutations in all cancers, is considered the most commonly mutated oncogene in human cancers. Accumulating evidence indicates that oncogenic KRAS mediates CRT resistance. AKT and p90 ribosomal S6 kinase are downstream of KRAS and are the major kinases that stimulate YB‑1 phosphorylation. Thus, there is a close link between the KRAS mutation status and YB‑1 activity. In this review paper, we highlight the importance of the KRAS/YB‑1 cascade in the response of KRAS-mutated solid tumors to CRT. Likewise, the opportunities to interfere with this pathway to improve CRT outcome are discussed in light of the current literature.
Collapse
Affiliation(s)
- Shayan Khozooei
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | - Soundaram Veerappan
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | - Mahmoud Toulany
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
3
|
YB-1 as an Oncoprotein: Functions, Regulation, Post-Translational Modifications, and Targeted Therapy. Cells 2022; 11:cells11071217. [PMID: 35406781 PMCID: PMC8997642 DOI: 10.3390/cells11071217] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/26/2022] [Accepted: 04/02/2022] [Indexed: 02/04/2023] Open
Abstract
Y box binding protein 1 (YB-1) is a protein with a highly conserved cold shock domain (CSD) that also belongs to the family of DNA- and RNA-binding proteins. YB-1 is present in both the nucleus and cytoplasm and plays versatile roles in gene transcription, RNA splicing, DNA damage repair, cell cycle progression, and immunity. Cumulative evidence suggests that YB-1 promotes the progression of multiple tumor types and serves as a potential tumor biomarker and therapeutic target. This review comprehensively summarizes the emerging functions, mechanisms, and regulation of YB-1 in cancers, and further discusses targeted strategies.
Collapse
|
4
|
Guens GP. YB-1 Protein in Breast Cancer (Scientific and Personal Meetings with Professor Ovchinnikov). BIOCHEMISTRY. BIOKHIMIIA 2022; 87:S86-S47. [PMID: 35501988 DOI: 10.1134/s0006297922140073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 06/14/2023]
Abstract
In the article, the author examines the properties of Y-box-binding protein (YB-1) and expression of the YBX-1 gene in various malignant tumors and provides the data from her own prospective study in breast cancer patients. YB-1 is a member of the highly conserved family of cold shock proteins with multiple functions in the cytoplasm and cell nucleus. YB-1 is involved in embryogenesis; it ensures cell proliferation and protects cell from the action of various aggressive environmental factors. In adult organisms, YB-1 is involved in a variety of cellular functions that regulate malignant phenotype in several types of tumors. YB-1 is a molecular marker of tumor progression that can be used in clinical practice as both prognostic factor and a target for anticancer therapy. Our prospective clinical study showed that expression of YB-1 mRNA is an independent prognostic factor, as breast cancer patients expressing YB-1 have a lower disease-free survival rate, regardless of the tumor stage and biological subtype. We recommend determining the level of YB-1 mRNA expression as a prognostic test in breast cancer patients.
Collapse
Affiliation(s)
- Gelena P Guens
- Department of Oncology and Radiation Therapy, Yevdokimov Moscow State University of Medicine and Dentistry, Moscow, 127473, Russia.
| |
Collapse
|
5
|
Wang S, Zeng F, Liang S, Wang Q, Wen Y, Wang Q, Zhang J, Li M, Fang S, Wei T, Li M, Manapov F, Zhang J, Guo L. WITHDRAWN: lncRNA Linc00173 modulates glucose metabolism and multidrug chemoresistance in SCLC: Potential molecular panel for targeted therapy. Mol Ther 2021:S1525-0016(21)00574-8. [PMID: 34763086 DOI: 10.1016/j.ymthe.2021.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/05/2021] [Accepted: 11/03/2021] [Indexed: 11/28/2022] Open
Abstract
This article has been withdrawn at the request of the editor-in-chief. Following publication of this article, the editor-in-chief discovered evidence of image duplication in Figures 1I, 1J, 3F, S5B, and S6B. Given the duplication of several western blots representing several gene products, the editor-in-chief has lost faith in the findings presented in this article. The authors maintain that these image duplications were the result of errors in file management and do not affect the conclusions of the study. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Shuyu Wang
- Department of Pathology, Zhujiang Hospital, Southern Medical University, 253 Gongye Road, Guangzhou 510282, People's Republic of China; Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Gongye Road, Guangzhou 510282, People's Republic of China
| | - Fanrui Zeng
- Department of Radiation Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, People's Republic of China
| | - Shumei Liang
- Department of Pathology, Zhujiang Hospital, Southern Medical University, 253 Gongye Road, Guangzhou 510282, People's Republic of China
| | - Qiuping Wang
- Department of Pathology, Zhujiang Hospital, Southern Medical University, 253 Gongye Road, Guangzhou 510282, People's Republic of China
| | - Yang Wen
- Department of Pathology, Zhujiang Hospital, Southern Medical University, 253 Gongye Road, Guangzhou 510282, People's Republic of China
| | - Qiongyao Wang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Gongye Road, Guangzhou 510282, People's Republic of China
| | - Jiexia Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Man Li
- Department of Pathology, Zhujiang Hospital, Southern Medical University, 253 Gongye Road, Guangzhou 510282, People's Republic of China
| | - Shun Fang
- Department of Pathology, Zhujiang Hospital, Southern Medical University, 253 Gongye Road, Guangzhou 510282, People's Republic of China
| | - Ting Wei
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Gongye Road, Guangzhou 510282, People's Republic of China
| | - Minglun Li
- Department of Radiation Oncology, University Hospital, LMU Munich, Campus Grosshadern, Marchioninistr. 15, 81377 Munich, Germany
| | - Farkhad Manapov
- Department of Radiation Oncology, University Hospital, LMU Munich, Campus Grosshadern, Marchioninistr. 15, 81377 Munich, Germany
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Gongye Road, Guangzhou 510282, People's Republic of China.
| | - Linlang Guo
- Department of Pathology, Zhujiang Hospital, Southern Medical University, 253 Gongye Road, Guangzhou 510282, People's Republic of China.
| |
Collapse
|
6
|
Lv Z, Xue C, Zhang L, Sun J, Bo C. Elevated mRNA Level of Y-Box Binding Protein 1 Indicates Unfavorable Prognosis Correlated with Macrophage Infiltration and T Cell Exhaustion in Luminal Breast Cancer. Cancer Manag Res 2021; 13:6411-6428. [PMID: 34429650 PMCID: PMC8374538 DOI: 10.2147/cmar.s311650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 07/22/2021] [Indexed: 12/25/2022] Open
Abstract
Purpose The Y-box binding protein 1 (YBX1) gene encodes the multifunctional protein YB1 that is associated with the dysregulation of numerous cancer-related genes. However, the prognostic value of YBX1 and its correlation with immune cell infiltration in breast cancer (BRCA) remain unclear. Methods YBX1 expression data in various malignancies were obtained from Oncomine, Tumor Immune Estimation Resource (TIMER), Cancer Cell Line Encyclopedia, UALCAN and cBio Cancer Genomics Portal databases. Survival data were analyzed with Kaplan–Meier plotter. Immune cell infiltration and its association with YBX1 expression level were assessed with TIMER and LinkedOmics. YB1 expression was evaluated by immunohistochemistry and Western blotting, and changes in cancer cell viability and T cell activity following YBX1 knockdown were assessed with an immunocyte–tumor cell co-culture assay. Results YBX1 was downregulated in the BRCA cohort, which was closely associated with worse prognosis in the luminal A subtype (overall survival [OS]: hazard ratio [HR] 1.93, 95% confidence interval [CI] 1.22–3.05, P = 0.0042; recurrence-free survival [RFS]: HR 1.85, 95% CI 1.51–2.28, P = 3.1e-9) and luminal B subtype (OS: HR 1.08, 95% CI 0.68–1.70, P = 0.75; RFS: HR 1.29, 95% CI 1.02–1.62, P = 0.03). YBX1 expression was positively correlated with the M2 macrophage infiltration and expression of T cell exhaustion markers such as indoleamine 2,3-dioxygenase 1 (IDO1) (rs = 0.388, P = 4.93e-37) and cytotoxic T-lymphocyte-associated protein 4 (CTLA4) (rs = 0.321, P = 2.54e-25) in luminal BRCA. Kaplan–Meier analysis revealed a correlation between YBX1 expression, M2 infiltration and survival outcome. Co-culture with macrophages or T cells enhanced the decrease in luminal BRCA cell viability induced by YBX1 knockdown. Conclusion High YBX1 mRNA levels predict a poor prognosis in luminal BRCA, which is correlated with M2 macrophage infiltration and T cell exhaustion in the tumor microenvironment. Combining classic therapeutics with immune checkpoint inhibitors and M1 polarization agents may be an effective treatment strategy for luminal BRCA with YBX1 overexpression.
Collapse
Affiliation(s)
- Zhenhuan Lv
- Department of Clinical Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, People's Republic of China
| | - Chunli Xue
- Department of Radiotherapy, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, People's Republic of China
| | - Lei Zhang
- Physical Examination Center, the Affiliated Hospital of Jining Medical College, Jining, People's Republic of China
| | - Jujie Sun
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, People's Republic of China
| | - Cong Bo
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, People's Republic of China
| |
Collapse
|
7
|
Y-Box Binding Protein-1: A Neglected Target in Pediatric Brain Tumors? Mol Cancer Res 2020; 19:375-387. [PMID: 33239357 DOI: 10.1158/1541-7786.mcr-20-0655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/21/2020] [Accepted: 11/20/2020] [Indexed: 11/16/2022]
|
8
|
Mehta S, Algie M, Al-Jabry T, McKinney C, Kannan S, Verma CS, Ma W, Zhang J, Bartolec TK, Masamsetti VP, Parker K, Henderson L, Gould ML, Bhatia P, Harfoot R, Chircop M, Kleffmann T, Cohen SB, Woolley AG, Cesare AJ, Braithwaite A. Critical Role for Cold Shock Protein YB-1 in Cytokinesis. Cancers (Basel) 2020; 12:cancers12092473. [PMID: 32882852 PMCID: PMC7565962 DOI: 10.3390/cancers12092473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/21/2020] [Accepted: 08/27/2020] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Y-box-binding protein-1, YB-1, plays an important role in regulating the cell cycle, although precisely how it does the is unknown. Using live cell imaging, we show that YB-1 is essential for initiating the last step of cell division (cytokinesis), required for creation of two daughter cells. Using confocal microscopy we showed that YB-1 regulates the spatial distribution of key proteins essential for cytokinesis to occur and that this required YB-1 to be phosphorylated on several residues. In-silico modeling demonstrated that modifications at these residues resulted in conformational changes in YB-1 protein allowing it to interact with proteins essential for cytokinesis. As many cancers have high levels YB-1 and these are associated with poor prognosis, our data suggest developing small molecule inhibitors to block YB-1 phosphorylation could be a novel approach to cancer therapy. Abstract High levels of the cold shock protein Y-box-binding protein-1, YB-1, are tightly correlated with increased cell proliferation and progression. However, the precise mechanism by which YB-1 regulates proliferation is unknown. Here, we found that YB-1 depletion in several cancer cell lines and in immortalized fibroblasts resulted in cytokinesis failure and consequent multinucleation. Rescue experiments indicated that YB-1 was required for completion of cytokinesis. Using confocal imaging we found that YB-1 was essential for orchestrating the spatio-temporal distribution of the microtubules, β-actin and the chromosome passenger complex (CPC) to define the cleavage plane. We show that phosphorylation at six serine residues was essential for cytokinesis, of which novel sites were identified using mass spectrometry. Using atomistic modelling we show how phosphorylation at multiple sites alters YB-1 conformation, allowing it to interact with protein partners. Our results establish phosphorylated YB-1 as a critical regulator of cytokinesis, defining precisely how YB-1 regulates cell division.
Collapse
Affiliation(s)
- Sunali Mehta
- Department of Pathology, University of Otago, 9016 Dunedin, New Zealand; (M.A.); (C.M.); (K.P.); (L.H.); (M.L.G.); (P.B.); (R.H.); (A.G.W.); (A.B.)
- Maurice Wilkins Centre for Biodiscovery, University of Otago, 9016 Dunedin, New Zealand
- Correspondence: ; Tel.: +64-3-4797169
| | - Michael Algie
- Department of Pathology, University of Otago, 9016 Dunedin, New Zealand; (M.A.); (C.M.); (K.P.); (L.H.); (M.L.G.); (P.B.); (R.H.); (A.G.W.); (A.B.)
- Centre for Protein Research, Department of Biochemistry, University of Otago, 9054 Dunedin, New Zealand;
| | - Tariq Al-Jabry
- Children’s Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia; (T.S.-J.); (W.M.); (J.Z.); (T.K.B.); (V.P.M.); (M.C.); (S.B.C.); (A.J.C.)
| | - Cushla McKinney
- Department of Pathology, University of Otago, 9016 Dunedin, New Zealand; (M.A.); (C.M.); (K.P.); (L.H.); (M.L.G.); (P.B.); (R.H.); (A.G.W.); (A.B.)
| | - Srinivasaraghavan Kannan
- Department of Biomolecular Modelling and Design, Bioinformatics Institute (A*STAR), 30 Biopolis Street, 07-01 Matrix, Singapore 138671, Singapore; (S.K.); (C.S.V.)
| | - Chandra S Verma
- Department of Biomolecular Modelling and Design, Bioinformatics Institute (A*STAR), 30 Biopolis Street, 07-01 Matrix, Singapore 138671, Singapore; (S.K.); (C.S.V.)
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117543, Singapore
| | - Weini Ma
- Children’s Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia; (T.S.-J.); (W.M.); (J.Z.); (T.K.B.); (V.P.M.); (M.C.); (S.B.C.); (A.J.C.)
| | - Jessie Zhang
- Children’s Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia; (T.S.-J.); (W.M.); (J.Z.); (T.K.B.); (V.P.M.); (M.C.); (S.B.C.); (A.J.C.)
| | - Tara K. Bartolec
- Children’s Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia; (T.S.-J.); (W.M.); (J.Z.); (T.K.B.); (V.P.M.); (M.C.); (S.B.C.); (A.J.C.)
| | - V. Pragathi Masamsetti
- Children’s Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia; (T.S.-J.); (W.M.); (J.Z.); (T.K.B.); (V.P.M.); (M.C.); (S.B.C.); (A.J.C.)
| | - Kim Parker
- Department of Pathology, University of Otago, 9016 Dunedin, New Zealand; (M.A.); (C.M.); (K.P.); (L.H.); (M.L.G.); (P.B.); (R.H.); (A.G.W.); (A.B.)
| | - Luke Henderson
- Department of Pathology, University of Otago, 9016 Dunedin, New Zealand; (M.A.); (C.M.); (K.P.); (L.H.); (M.L.G.); (P.B.); (R.H.); (A.G.W.); (A.B.)
- Maurice Wilkins Centre for Biodiscovery, University of Otago, 9016 Dunedin, New Zealand
| | - Maree L Gould
- Department of Pathology, University of Otago, 9016 Dunedin, New Zealand; (M.A.); (C.M.); (K.P.); (L.H.); (M.L.G.); (P.B.); (R.H.); (A.G.W.); (A.B.)
| | - Puja Bhatia
- Department of Pathology, University of Otago, 9016 Dunedin, New Zealand; (M.A.); (C.M.); (K.P.); (L.H.); (M.L.G.); (P.B.); (R.H.); (A.G.W.); (A.B.)
| | - Rhodri Harfoot
- Department of Pathology, University of Otago, 9016 Dunedin, New Zealand; (M.A.); (C.M.); (K.P.); (L.H.); (M.L.G.); (P.B.); (R.H.); (A.G.W.); (A.B.)
| | - Megan Chircop
- Children’s Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia; (T.S.-J.); (W.M.); (J.Z.); (T.K.B.); (V.P.M.); (M.C.); (S.B.C.); (A.J.C.)
| | - Torsten Kleffmann
- Centre for Protein Research, Department of Biochemistry, University of Otago, 9054 Dunedin, New Zealand;
| | - Scott B Cohen
- Children’s Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia; (T.S.-J.); (W.M.); (J.Z.); (T.K.B.); (V.P.M.); (M.C.); (S.B.C.); (A.J.C.)
| | - Adele G Woolley
- Department of Pathology, University of Otago, 9016 Dunedin, New Zealand; (M.A.); (C.M.); (K.P.); (L.H.); (M.L.G.); (P.B.); (R.H.); (A.G.W.); (A.B.)
- Maurice Wilkins Centre for Biodiscovery, University of Otago, 9016 Dunedin, New Zealand
| | - Anthony J Cesare
- Children’s Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia; (T.S.-J.); (W.M.); (J.Z.); (T.K.B.); (V.P.M.); (M.C.); (S.B.C.); (A.J.C.)
| | - Antony Braithwaite
- Department of Pathology, University of Otago, 9016 Dunedin, New Zealand; (M.A.); (C.M.); (K.P.); (L.H.); (M.L.G.); (P.B.); (R.H.); (A.G.W.); (A.B.)
- Maurice Wilkins Centre for Biodiscovery, University of Otago, 9016 Dunedin, New Zealand
- Children’s Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia; (T.S.-J.); (W.M.); (J.Z.); (T.K.B.); (V.P.M.); (M.C.); (S.B.C.); (A.J.C.)
- Malaghan Institute of Medical Research, 6242 Wellington, New Zealand
| |
Collapse
|
9
|
Bates M, Boland A, McDermott N, Marignol L. YB-1: The key to personalised prostate cancer management? Cancer Lett 2020; 490:66-75. [PMID: 32681926 DOI: 10.1016/j.canlet.2020.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/30/2020] [Accepted: 07/09/2020] [Indexed: 12/14/2022]
Abstract
Y-box-binding protein 1 (YB-1) is a DNA/RNA binding protein increasingly implicated in the regulation of cancer cell biology. Normally located in the cytoplasm, nuclear localisation in prostate cancer is associated with more aggressive, potentially treatment-resistant disease. This is attributed to the ability of YB-1 to act as a transcription factor for various target genes associated with androgen receptor signalling, survival, DNA repair, proliferation, invasion, differentiation, angiogenesis and hypoxia. This review aims to examine the clinical potential of YB-1 in the detection and therapeutic management of prostate cancer.
Collapse
Affiliation(s)
- Mark Bates
- Translational Radiobiology and Molecular Oncology Group, Applied Radiation Therapy Trinity, Discipline of Radiation Therapy, Trinity College Dublin, Dublin 2, Ireland
| | - Anna Boland
- Translational Radiobiology and Molecular Oncology Group, Applied Radiation Therapy Trinity, Discipline of Radiation Therapy, Trinity College Dublin, Dublin 2, Ireland
| | - Niamh McDermott
- Translational Radiobiology and Molecular Oncology Group, Applied Radiation Therapy Trinity, Discipline of Radiation Therapy, Trinity College Dublin, Dublin 2, Ireland
| | - Laure Marignol
- Translational Radiobiology and Molecular Oncology Group, Applied Radiation Therapy Trinity, Discipline of Radiation Therapy, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
10
|
Bansal T, Tanveer N, Singh UR, Sharma S, Kaur N. Y-Box binding protein 1 expression in breast cancer and its correlation with hormone receptors and other prognostic markers. J Lab Physicians 2020; 10:420-425. [PMID: 30498315 PMCID: PMC6210848 DOI: 10.4103/jlp.jlp_58_18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION: The present histologic and immunohistochemical prognostic markers of breast carcinoma do not effectively identify the subset of patients with poor prognosis. Y-Box binding protein 1 (YB1) is a novel biomarker which may identify and aid in targeted personalized therapy for such patients. MATERIALS AND METHODS: The study was conducted on histopathology specimens of 74 patients of breast carcinoma who had undergone modified radical mastectomy. YB1 immunohistochemistry (IHC) was performed on manual tissue microarray blocks (each having 15 cores). The YB1 expression was quantified in terms of “immunoreactive score” which was correlated with clinical parameters, hormone receptor status, and Her2neu overexpression by IHC. The Her2neu status of the equivocal cases was further evaluated by fluorescent in situ hybridization (FISH). RESULTS: YB1 was positive in 36/74 (48.6%) cases. On IHC and analysis by FISH, 25/74 (34%) cases had Her2neu overexpression. Estrogen receptor (ER) and progesterone receptor (PR) positivity was found in 42% and 36.5% cases, respectively. YB1 immunopositivity was negatively correlated with ER and PR expression, but showed a significant positive correlation with Her2neu expression. No correlation was found with other clinical parameters, tumor stage, and grade, except lymph node involvement, which showed a positive association with YB1 expression. Triple-negative breast carcinoma constituted 25.6% of the total cases, out of which 73.6% were YB1 positive. CONCLUSION: This study found that YB1 has an association with Her2neu expression. It may in future provide a therapeutic target in Her2neu overexpressing tumors.
Collapse
Affiliation(s)
- Taruna Bansal
- Department of Pathology, University College of Medical Sciences, New Delhi, India
| | - Nadeem Tanveer
- Department of Pathology, University College of Medical Sciences, New Delhi, India
| | - Usha Rani Singh
- Department of Pathology, University College of Medical Sciences, New Delhi, India
| | - Sonal Sharma
- Department of Pathology, University College of Medical Sciences, New Delhi, India
| | - Navneet Kaur
- Department of Surgery, University College of Medical Sciences, New Delhi, India
| |
Collapse
|
11
|
Dephosphorylation of YB-1 is Required for Nuclear Localisation During G 2 Phase of the Cell Cycle. Cancers (Basel) 2020; 12:cancers12020315. [PMID: 32013098 PMCID: PMC7072210 DOI: 10.3390/cancers12020315] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/18/2020] [Accepted: 01/25/2020] [Indexed: 01/25/2023] Open
Abstract
Elevated levels of nuclear Y-box binding protein 1 (YB-1) are linked to poor prognosis in cancer. It has been proposed that entry into the nucleus requires specific proteasomal cleavage. However, evidence for cleavage is contradictory and high YB-1 levels are prognostic regardless of cellular location. Here, using confocal microscopy and mass spectrometry, we find no evidence of specific proteolytic cleavage. Doxorubicin treatment, and the resultant G2 arrest, leads to a significant increase in the number of cells where YB-1 is not found in the cytoplasm, suggesting that its cellular localisation is variable during the cell cycle. Live cell imaging reveals that the location of YB-1 is linked to progression through the cell cycle. Primarily perinuclear during G1 and S phases, YB-1 enters the nucleus as cells transition through late G2/M and exits at the completion of mitosis. Atomistic modelling and molecular dynamics simulations show that dephosphorylation of YB-1 at serine residues 102, 165 and 176 increases the accessibility of the nuclear localisation signal (NLS). We propose that this conformational change facilitates nuclear entry during late G2/M. Thus, the phosphorylation status of YB-1 determines its cellular location.
Collapse
|
12
|
Johnson TG, Schelch K, Mehta S, Burgess A, Reid G. Why Be One Protein When You Can Affect Many? The Multiple Roles of YB-1 in Lung Cancer and Mesothelioma. Front Cell Dev Biol 2019; 7:221. [PMID: 31632972 PMCID: PMC6781797 DOI: 10.3389/fcell.2019.00221] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/18/2019] [Indexed: 12/14/2022] Open
Abstract
Lung cancers and malignant pleural mesothelioma (MPM) have some of the worst 5-year survival rates of all cancer types, primarily due to a lack of effective treatment options for most patients. Targeted therapies have shown some promise in thoracic cancers, although efficacy is limited only to patients harboring specific mutations or target expression. Although a number of actionable mutations have now been identified, a large population of thoracic cancer patients have no therapeutic options outside of first-line chemotherapy. It is therefore crucial to identify alternative targets that might lead to the development of new ways of treating patients diagnosed with these diseases. The multifunctional oncoprotein Y-box binding protein-1 (YB-1) could serve as one such target. Recent studies also link this protein to many inherent behaviors of thoracic cancer cells such as proliferation, invasion, metastasis and involvement in cancer stem-like cells. Here, we review the regulation of YB-1 at the transcriptional, translational, post-translational and sub-cellular levels in thoracic cancer and discuss its potential use as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Thomas G Johnson
- Asbestos Diseases Research Institute, Sydney, NSW, Australia.,Cell Division Laboratory, The ANZAC Research Institute, Sydney, NSW, Australia.,School of Medicine, The University of Sydney, Sydney, NSW, Australia.,Sydney Catalyst Translational Cancer Research Centre, The University of Sydney, Sydney, NSW, Australia
| | - Karin Schelch
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Sunali Mehta
- Department of Pathology, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre, University of Otago, Dunedin, New Zealand
| | - Andrew Burgess
- Cell Division Laboratory, The ANZAC Research Institute, Sydney, NSW, Australia.,School of Medicine, The University of Sydney, Sydney, NSW, Australia
| | - Glen Reid
- Department of Pathology, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre, University of Otago, Dunedin, New Zealand
| |
Collapse
|
13
|
Guarino AM, Mauro GD, Ruggiero G, Geyer N, Delicato A, Foulkes NS, Vallone D, Calabrò V. YB-1 recruitment to stress granules in zebrafish cells reveals a differential adaptive response to stress. Sci Rep 2019; 9:9059. [PMID: 31227764 PMCID: PMC6588705 DOI: 10.1038/s41598-019-45468-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 06/04/2019] [Indexed: 01/14/2023] Open
Abstract
The survival of cells exposed to adverse environmental conditions entails various alterations in cellular function including major changes in the transcriptome as well as a radical reprogramming of protein translation. While in mammals this process has been extensively studied, stress responses in non-mammalian vertebrates remain poorly understood. One of the key cellular responses to many different types of stressors is the transient generation of structures called stress granules (SGs). These represent cytoplasmic foci where untranslated mRNAs are sorted or processed for re-initiation, degradation, or packaging into mRNPs. Here, using the evolutionarily conserved Y-box binding protein 1 (YB-1) and G3BP1 as markers, we have studied the formation of stress granules in zebrafish (D. rerio) in response to different environmental stressors. We show that following heat shock, zebrafish cells, like mammalian cells, form stress granules which contain both YB-1 and G3BP1 proteins. Moreover, zfYB-1 knockdown compromises cell viability, as well as recruitment of G3BP1 into SGs, under heat shock conditions highlighting the essential role played by YB-1 in SG assembly and cell survival. However, zebrafish PAC2 cells do not assemble YB-1-positive stress granules upon oxidative stress induced by arsenite, copper or hydrogen peroxide treatment. This contrasts with the situation in human cells where SG formation is robustly induced by exposure to oxidative stressors. Thus, our findings point to fundamental differences in the mechanisms whereby mammalian and zebrafish cells respond to oxidative stress.
Collapse
Affiliation(s)
- Andrea Maria Guarino
- University of Naples Federico II, Department of Biology, Monte Sant'Angelo Campus, Via Cinthia 4, Naples, 80126, Italy
| | - Giuseppe Di Mauro
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.,University of Ferrara, Department of Life Sciences and Biotechnology, Via Borsari 46, 44121, Ferrara, Italy
| | - Gennaro Ruggiero
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Nathalie Geyer
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Antonella Delicato
- University of Naples Federico II, Department of Biology, Monte Sant'Angelo Campus, Via Cinthia 4, Naples, 80126, Italy
| | - Nicholas S Foulkes
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Daniela Vallone
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| | - Viola Calabrò
- University of Naples Federico II, Department of Biology, Monte Sant'Angelo Campus, Via Cinthia 4, Naples, 80126, Italy.
| |
Collapse
|
14
|
Tiwari A, Rebholz S, Maier E, Dehghan Harati M, Zips D, Sers C, Rodemann HP, Toulany M. Stress-Induced Phosphorylation of Nuclear YB-1 Depends on Nuclear Trafficking of p90 Ribosomal S6 Kinase. Int J Mol Sci 2018; 19:ijms19082441. [PMID: 30126195 PMCID: PMC6121600 DOI: 10.3390/ijms19082441] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/14/2018] [Accepted: 08/17/2018] [Indexed: 12/24/2022] Open
Abstract
Ionizing radiation (IR) and epidermal growth factor (EGF) stimulate Y-box binding protein-1 (YB-1) phosphorylation at Ser-102 in KRAS wild-type (KRASwt) cells, whereas in KRAS mutated (KRASmut) cells, YB-1 is constitutively phosphorylated, independent of IR or EGF. YB-1 activity stimulates the repair of IR-induced DNA double-strand breaks (DSBs) in the nucleus. Thus far, the YB-1 nuclear translocation pattern after cell exposure to various cellular stressors is not clear. In the present study, we investigated the pattern of YB-1 phosphorylation and its possible translocation to the nucleus in KRASwt cells after exposure to IR, EGF treatment, and conditional expression of mutated KRAS(G12V). IR, EGF, and conditional KRAS(G12V) expression induced YB-1 phosphorylation in both the cytoplasmic and nuclear fractions of KRASwt cells. None of the stimuli induced YB-1 nuclear translocation, while p90 ribosomal s6 kinase (RSK) translocation was enhanced in KRASwt cells after any of the stimuli. EGF-induced RSK translocation to the nucleus and nuclear YB-1 phosphorylation were completely blocked by the EGF receptor kinase inhibitor erlotinib. Likewise, RSK inhibition blocked RSK nuclear translocation and nuclear YB-1 phosphorylation after irradiation and KRAS(G12V) overexpression. In summary, acute stimulation of YB-1 phosphorylation does not lead to YB-1 translocation from the cytoplasm to the nucleus. Rather, irradiation, EGF treatment, or KRAS(G12V) overexpression induces RSK activation, leading to its translocation to the nucleus, where it activates already-existing nuclear YB-1. Our novel finding illuminates the signaling pathways involved in nuclear YB-1 phosphorylation and provides a rationale for designing appropriate targeting strategies to block YB-1 in oncology as well as in radiation oncology.
Collapse
Affiliation(s)
- Aadhya Tiwari
- Division of Radiobiology & Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany.
- German Consortium for Translational Cancer Research (DKTK), Partner Site Tuebingen and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Simone Rebholz
- Division of Radiobiology & Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany.
- German Consortium for Translational Cancer Research (DKTK), Partner Site Tuebingen and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Eva Maier
- Division of Radiobiology & Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany.
- German Consortium for Translational Cancer Research (DKTK), Partner Site Tuebingen and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Mozhgan Dehghan Harati
- Division of Radiobiology & Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany.
- German Consortium for Translational Cancer Research (DKTK), Partner Site Tuebingen and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Daniel Zips
- Division of Radiobiology & Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany.
- German Consortium for Translational Cancer Research (DKTK), Partner Site Tuebingen and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Christine Sers
- Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, Charité Universitätsmedizin Berlin, Berlin, Germany.
- German Consortium for Translational Cancer Research (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - H Peter Rodemann
- Division of Radiobiology & Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany.
- German Consortium for Translational Cancer Research (DKTK), Partner Site Tuebingen and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Mahmoud Toulany
- Division of Radiobiology & Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany.
- German Consortium for Translational Cancer Research (DKTK), Partner Site Tuebingen and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
15
|
Kosnopfel C, Sinnberg T, Sauer B, Busch C, Niessner H, Schmitt A, Forchhammer S, Grimmel C, Mertens PR, Hailfinger S, Dunn SE, Garbe C, Schittek B. YB-1 Expression and Phosphorylation Regulate Tumorigenicity and Invasiveness in Melanoma by Influencing EMT. Mol Cancer Res 2018; 16:1149-1160. [PMID: 29743296 DOI: 10.1158/1541-7786.mcr-17-0528] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 12/20/2017] [Accepted: 01/16/2018] [Indexed: 11/16/2022]
Abstract
Cutaneous melanoma represents one of the most aggressive human tumor entities possessing a high tendency to metastasize. Cancer cells frequently exploit a highly conserved developmental program, the epithelial-to-mesenchymal transition (EMT), to gain migratory and invasive properties promoting their metastatic spread. Cytoplasmic localization of the oncogenic transcription and translation factor Y-box binding protein 1 (YB-1) is a powerful inducer of EMT in breast carcinoma cells. Interestingly, EMT-like processes have also been observed in cutaneous melanoma despite its neural crest origin. Here, increased expression of YB-1 negatively affects patient survival in malignant melanoma and promotes melanoma cell tumorigenicity both in vitro and in vivo Intriguingly, this effect seems to be mainly mediated by cytoplasmic YB-1 that does not exhibit phosphorylation at serine-102 (S102). Moreover, S102 unphosphorylated YB-1 enhances the migratory and invasive potential of human melanoma cells in two-dimensional (2D) and three-dimensional (3D) culture systems and facilitates acquisition of a mesenchymal-like invasive phenotype in the chick embryo model. Collectively, these data demonstrate that the cytoplasmic activity of YB-1 stimulates tumorigenicity and metastatic potential of melanoma cells by promoting EMT-like properties.Implications: This study reveals for the first time that YB-1 efficiently drives tumorigenicity and invasiveness of melanoma cells in its S102 unphosphorylated cytoplasmic state and that YB-1 expression represents a negative prognostic factor in primary melanoma patients. Mol Cancer Res; 16(7); 1149-60. ©2018 AACR.
Collapse
Affiliation(s)
- Corinna Kosnopfel
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, Tübingen, Germany
| | - Tobias Sinnberg
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, Tübingen, Germany
| | - Birgit Sauer
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, Tübingen, Germany
| | - Christian Busch
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, Tübingen, Germany
- Dermateam, Winterthur, Switzerland
| | - Heike Niessner
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, Tübingen, Germany
| | - Anja Schmitt
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Stephan Forchhammer
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, Tübingen, Germany
| | - Cornelia Grimmel
- FACS Core Facility, Department of Dermatology, University of Tübingen, Tübingen, Germany
| | - Peter R Mertens
- Department of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, Magdeburg, Germany
| | - Stephan Hailfinger
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Sandra E Dunn
- Phoenix Molecular Designs, Vancouver, British Columbia, Canada
| | - Claus Garbe
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, Tübingen, Germany
| | - Birgit Schittek
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
16
|
Huber MC, Falkenberg N, Hauck SM, Priller M, Braselmann H, Feuchtinger A, Walch A, Schmitt M, Aubele M. Cyr61 and YB-1 are novel interacting partners of uPAR and elevate the malignancy of triple-negative breast cancer. Oncotarget 2018; 7:44062-44075. [PMID: 27286449 PMCID: PMC5190079 DOI: 10.18632/oncotarget.9853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/16/2016] [Indexed: 11/29/2022] Open
Abstract
The triple-negative breast cancer (TNBC) is a very aggressive tumor type often occurring in young women and is associated with a bad prognosis for the patients. TNBC lacks established targets for breast cancer therapy, such as the estrogen receptor (ER), progesterone receptor (PR) and the human epidermal growth factor receptor 2 (HER2). Therefore, novel therapeutic targets and strategies are needed for an improved treatment of this breast cancer subtype. TNBC and respective cell lines often overexpress proteins of the urokinase plasminogen activator system (uPAS) including uPA, its receptor uPAR and inhibitor PAI-1, which together with co-factors contribute to the malignancy of TNBC. Here, two novel interacting partners of uPAR, the cysteine-rich angiogenic inducer 61 (Cyr61) and the Y-box-binding protein 1 (YB-1) were identified and their differential expression demonstrated in TNBC cells as well as in tumors. In the TNBC cohort, both interactors significantly correlated with expression levels of cathepsin B, c-Met and the tumor grade. In addition, expression levels of Cyr61 significantly correlated with cathepsin D (p=0.03), insulin receptor (p≤0.001), insulin-like growth factor receptor 1 (IGF1R, p=0.015) and also with YB-1 (p=0.0004) levels. The interactions of uPAR with Cyr61 significantly correlated with expression levels of tumor-promoting biomarkers including plasminogen (p=0.0014), cathepsin B (p=0.032), c-Met (p=0.0192) as well as with the tumor grade (p=0.02). In multivariate survival analysis, YB-1 showed independent prognostic value (p=0.01). As the novel interacting partners, also together with uPAR, contribute to tumor progression and metastasis, both may be potential therapeutic targets in breast cancer.
Collapse
Affiliation(s)
- Michaela C Huber
- Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Natalie Falkenberg
- Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Stefanie M Hauck
- Research Unit of Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Markus Priller
- Research Unit of Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Herbert Braselmann
- Research Unit of Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Annette Feuchtinger
- Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany.,Research Unit of Analytical Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Axel Walch
- Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany.,Research Unit of Analytical Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Manfred Schmitt
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technische Universität München, München 81675, Germany
| | - Michaela Aubele
- Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
| |
Collapse
|
17
|
Up regulation and nuclear translocation of Y-box binding protein 1 (YB-1) is linked to poor prognosis in ERG-negative prostate cancer. Sci Rep 2017; 7:2056. [PMID: 28515422 PMCID: PMC5435682 DOI: 10.1038/s41598-017-02279-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 04/10/2017] [Indexed: 12/13/2022] Open
Abstract
Y-box binding protein 1 (YB-1) is an RNA and DNA binding factor with potential prognostic cancer. To evaluate the clinical impact of YB-1, a tissue microarray with 11,152 prostate cancers was analysed by immunohistochemistry. Cytoplasmic and nuclear staining was separately analysed. Cytoplasmic YB-1 was absent or weak in normal epithelium but seen in 86,3% of carcinomas. Cytoplasmic staining was weak, moderate, and strong in 29.6%, 43.7% and 13.0% of tumours and was accompanied by nuclear YB-1 staining in 32.1% of cases. Particularly nuclear staining was strongly linked to poor patient prognosis (p < 0.0001). YB-1 protein was more abundant in ERG positive (95.1%) than in ERG negative cancers (80.4%; p < 0.0001), but any prognostic impact of YB-1 staining was limited to the ERG-negative subset. Similarly, significant associations with pT stage and Gleason grade (p < 0.0001 each) were driven by the ERG negative subset. The significant association of YB-1 protein detection with deletions of PTEN, 5q21 and 6q15 fits well in the protein’s role as an inhibitor of DNA damage dependent cell cycle arrest, a role that is likely to induce genomic instability. In summary, the data show, that the prognostic impact of YB-1 expression is limited to ERG negative prostate cancers.
Collapse
|
18
|
Lasham A, Mehta SY, Fitzgerald SJ, Woolley AG, Hearn JI, Hurley DG, Ruza I, Algie M, Shelling AN, Braithwaite AW, Print CG. A novel EGR-1 dependent mechanism for YB-1 modulation of paclitaxel response in a triple negative breast cancer cell line. Int J Cancer 2016; 139:1157-70. [PMID: 27072400 DOI: 10.1002/ijc.30137] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/01/2016] [Accepted: 03/03/2016] [Indexed: 12/18/2022]
Abstract
Chemotherapy with taxanes such as paclitaxel (PTX) is a key component of triple negative breast cancer (TNBC) treatment. PTX is used in combination with other drugs in both the adjuvant setting and in advanced breast cancer. Because a proportion of patients respond poorly to PTX or relapse after its use, a greater understanding of the mechanisms conferring resistance to PTX is required. One protein shown to be involved in drug resistance is Y-box binding protein 1 (YB-1). High levels of YB-1 have previously been associated with resistance to PTX in TNBCs. In this study, we aimed to determine mechanisms by which YB-1 confers PTX resistance. We generated isogenic TNBC cell lines that differed by YB-1 levels and treated these with PTX. Using microarray analysis, we identified EGR1 as a potential target of YB-1. We found that low EGR1 mRNA levels are associated with poor breast cancer patient prognosis, and that EGR1 and YBX1 mRNA expression was inversely correlated in a TNBC line and in a proportion of TNBC tumours. Reducing the levels of EGR1 caused TNBC cells to become more resistant to PTX. Given that PTX targets cycling cells, we propose a model whereby high YB-1 levels in some TNBC cells can lead to reduced levels of EGR1, which in turn promotes slow cell cycling and resistance to PTX. Therefore YB-1 and EGR1 levels are biologically linked and may provide a biomarker for TNBC response to PTX.
Collapse
Affiliation(s)
- Annette Lasham
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand
| | - Sunali Y Mehta
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand
| | - Sandra J Fitzgerald
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Adele G Woolley
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - James I Hearn
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Daniel G Hurley
- Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand.,Bioinformatics Institute, University of Auckland, Auckland, New Zealand.,Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Systems Biology Laboratory, Melbourne School of Engineering, University of Melbourne, Melbourne, Australia
| | - Igor Ruza
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Michael Algie
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Andrew N Shelling
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Antony W Braithwaite
- Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand.,Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Cristin G Print
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand.,Bioinformatics Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
19
|
Uncoupling of EGFR-RAS signaling and nuclear localization of YBX1 in colorectal cancer. Oncogenesis 2016; 5:e187. [PMID: 26779809 PMCID: PMC4728680 DOI: 10.1038/oncsis.2015.51] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/12/2015] [Accepted: 12/16/2015] [Indexed: 02/06/2023] Open
Abstract
The transcription factor YBX1 can act as a mediator of signals transmitted via the EGFR-RAS-MAPK axis. YBX1 expression has been associated with tumor progression and prognosis in multiple types of cancer. Immunohistochemical studies have revealed dependency between YBX1 expression and individual EGFR family members. We analyzed YBX1 and EGFR family proteins in a colorectal cancer (CRC) cohort and provide functional analyses of YBX1 in the context of EGFR-RAS-MAPK signaling. Immunohistochemistry for YBX1 and EGFR family receptors with two antibodies for YBX1 and EGFR were performed and related to clinicopathological data. We employed Caco2 cells expressing an inducible KRASV12 gene to determine effects on localization and levels of YBX1. Mouse xenografts of Caco2-KRASV12 cells were used to determine YBX1 dynamics in a tissue context. The two different antibodies against YBX1 showed discordant immunohistochemical stainings in cell culture and clinical specimens. Expression of YBX1 and EGFR family members were not correlated in CRC. Analysis of Caco2 xenografts displayed again heterogeneity of YBX1 staining with both antibodies. Our results suggest that YBX1 is controlled via complex regulatory mechanisms involving tumor stroma interaction and signal transduction processes. Our study highlights that YBX1 antibodies have different specificities, advocating their use in a combined manner.
Collapse
|
20
|
Arena V, Riccardi M, Pennacchia I, Franceschini G, Di Leone A, Masetti R. YB-1 in breast cancer. Our laboratory data. Eur J Surg Oncol 2015; 42:433-4. [PMID: 26687068 DOI: 10.1016/j.ejso.2015.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 11/10/2015] [Indexed: 10/22/2022] Open
Affiliation(s)
- V Arena
- Institute of Pathology, Catholic University, Roma, Italy
| | - M Riccardi
- Department of Surgery, Catholic University, Roma, Italy.
| | - I Pennacchia
- Institute of Pathology, Catholic University, Roma, Italy
| | | | - A Di Leone
- Department of Surgery, Catholic University, Roma, Italy
| | - R Masetti
- Department of Surgery, Catholic University, Roma, Italy
| |
Collapse
|
21
|
Paquet ÉR, Hovington H, Brisson H, Lacombe C, Larue H, Têtu B, Lacombe L, Fradet Y, Lebel M. Low level of the X-linked ribosomal protein S4 in human urothelial carcinomas is associated with a poor prognosis. Biomark Med 2015; 9:187-97. [PMID: 25731206 DOI: 10.2217/bmm.14.115] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM We determined whether the Y-box binding protein-1 (YB-1) and its binding partner, the X-linked ribosomal protein S4 (RPS4X), are associated with clinical outcome in bladder cancer. MATERIALS & METHODS A population of 167 patients with muscle-invasive bladder tumor without evidence of metastasis at time of cystectomy was analyzed retrospectively. YB-1 and RPS4X expressions were evaluated immunohistochemically in tumors and analyzed for association with clinical variables and survival. RESULTS Kaplan-Meier and multivariate Cox regression analyses indicated that low expression of RPS4X was associated with a higher risk of death or disease recurrence. In contrast, YB-1 was not significantly associated with either recurrence-free or overall survival. CONCLUSION Low RPS4X expression is associated with poor disease-specific and recurrence-free survival in bladder cancer.
Collapse
Affiliation(s)
- Éric R Paquet
- Centre de Recherche sur le Cancer de l'Université Laval, 9 McMahon Street, Québec City, Québec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Bloy N, Buqué A, Aranda F, Castoldi F, Eggermont A, Cremer I, Sautès-Fridman C, Fucikova J, Galon J, Spisek R, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Naked and vectored DNA-based anticancer vaccines. Oncoimmunology 2015; 4:e1026531. [PMID: 26155408 PMCID: PMC4485755 DOI: 10.1080/2162402x.2015.1026531] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 02/27/2015] [Indexed: 12/28/2022] Open
Abstract
One type of anticancer vaccine relies on the administration of DNA constructs encoding one or multiple tumor-associated antigens (TAAs). The ultimate objective of these preparations, which can be naked or vectored by non-pathogenic viruses, bacteria or yeast cells, is to drive the synthesis of TAAs in the context of an immunostimulatory milieu, resulting in the (re-)elicitation of a tumor-targeting immune response. In spite of encouraging preclinical results, the clinical efficacy of DNA-based vaccines employed as standalone immunotherapeutic interventions in cancer patients appears to be limited. Thus, efforts are currently being devoted to the development of combinatorial regimens that allow DNA-based anticancer vaccines to elicit clinically relevant immune responses. Here, we discuss recent advances in the preclinical and clinical development of this therapeutic paradigm.
Collapse
Key Words
- AFP, α-fetoprotein
- APC, antigen-presenting cell
- CDR, complementarity-determining region
- CEA, carcinoembryonic antigen
- CIN, cervical intraepithelial neoplasia
- CTLA4, cytotoxic T lymphocyte protein 4
- DAMP, damage-associated molecular pattern
- DC, dendritic cell
- FDA, Food and Drug Administration
- GM-CSF, granulocyte macrophage colony-stimulating factor
- GX-188E
- HCC, hepatocellular carcinoma
- HNSCC, head and neck squamous cell carcinoma
- HPV, human papillomavirus
- IL, interleukin
- OS, overall survival
- OVA, ovalbumin
- PAP, prostate acid phosphatase
- SCGB2A2, secretoglobin, family 2A, member 2
- SOX2, SRY (sex determining region Y)-box 2
- T, brachyury homolog
- TAA, tumor-associated antigen
- TLR, Toll-like receptor
- TRA, tumor rejection antigen
- Treg, regulatory T cell
- VGX-3100
- WT1, Wilms tumor 1
- adjuvants
- dendritic cell
- electroporation
- mucosal immunity
Collapse
Affiliation(s)
- Norma Bloy
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
| | - Aitziber Buqué
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
| | - Fernando Aranda
- Group of Immune receptors of the Innate and Adaptive System; Institut d’Investigacions Biomédiques August Pi i Sunyer (IDIBAPS); Barcelona, Spain
| | - Francesca Castoldi
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- Faculté de Medicine; Université Paris Sud/Paris XI; Le Kremlin-Bicêtre, France
- Sotio a.c; Prague, Czech Republic
| | | | - Isabelle Cremer
- INSERM, U1138; Paris, France
- Equipe 13; Center de Recherche des Cordeliers; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
| | - Catherine Sautès-Fridman
- INSERM, U1138; Paris, France
- Equipe 13; Center de Recherche des Cordeliers; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
| | - Jitka Fucikova
- Sotio a.c; Prague, Czech Republic
- Dept. of Immunology; 2 Faculty of Medicine and University Hospital Motol; Charles University; Prague, Czech Republic
| | - Jérôme Galon
- INSERM, U1138; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
- Laboratory of Integrative Cancer Immunology; Center de Recherche des Cordeliers; Paris, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
| | - Radek Spisek
- Sotio a.c; Prague, Czech Republic
- Dept. of Immunology; 2 Faculty of Medicine and University Hospital Motol; Charles University; Prague, Czech Republic
| | - Eric Tartour
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- INSERM, U970; Paris, France
- Paris-Cardiovascular Research Center (PARCC); Paris, France
- Service d'Immunologie Biologique; Hôpital Européen Georges Pompidou (HEGP); AP-HP; Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1015, CICBT507; Villejuif, France
| | - Guido Kroemer
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Pôle de Biologie; Hôpital Européen Georges Pompidou; AP-HP; Paris, France
- Metabolomics and Cell Biology Platforms; Gustave Roussy Cancer Campus; Villejuif, France
| | - Lorenzo Galluzzi
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
| |
Collapse
|
23
|
Wu Y, Wang KY, Li Z, Liu YP, Izumi H, Yamada S, Uramoto H, Nakayama Y, Ito K, Kohno K. Y-box binding protein 1 expression in gastric cancer subtypes and association with cancer neovasculature. Clin Transl Oncol 2015; 17:152-159. [PMID: 25078572 DOI: 10.1007/s12094-014-1208-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 07/15/2014] [Indexed: 12/18/2022]
Abstract
PURPOSE Y-box binding protein 1 (YB-1) expression in cancer cells is closely associated with malignant progression and poor prognosis in various cancers. Recently, we demonstrated that YB-1 expression in cancer cells is an immunomarker for patient prognosis and liver metastasis of gastric cancer (GC), and identified YB-1 as an excellent biomarker of angiogenic and proliferating endothelial cells in cancers. We further explored the expression patterns of YB-1 in gastric vasculature and the relationship with the clinical pathologic characteristics, as well as YB-1 phenotype in cancer cells. METHODS/PATIENTS Immunohistochemical analysis of YB-1 was performed using 163 surgically resected primary GC specimens. RESULTS YB-1 expression in cancer cells significantly differed with respect to Lauren type, JGCA classification, vascular invasion (VI), and microvessel density (MVD) of cancers (P = 0.018, P = 0.002, P < 0.001, and P < 0.001, respectively). No correlation was found between cancer-cell YB-1 expression and TNM stage or lymphatic invasion. However, YB-1 expression in vascular endothelial cells significantly correlated with N stage, M stage, TNM stage, and MVD of cancers (P < 0.001, P = 0.013, P < 0.001, and P < 0.001, respectively). Notably, cases with YB-1 expression in cancer vasculature also demonstrated YB-1 expression in cancer cells (P = 0.040). CONCLUSIONS YB-1 may promote GC development through its function in both cancer cells and cancer vascular cells, and thus represent a potential biomarker in this disease.
Collapse
Affiliation(s)
- Y Wu
- Department of General Practice, The First Hospital, China Medical University, Shenyang, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Zhao Z, Liao Y, Li J, Wu J, Zhang Y, Feng G, Tan B, Reng S, Zhang Z, Feng X, Wang J, Du X. Association between higher expression of YB-1 and poor prognosis in early-stage extranodal nasal-type natural killer/T-cell lymphoma. Biomark Med 2014; 8:581-8. [PMID: 24796623 DOI: 10.2217/bmm.14.4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Aim: A recent study shows that YB-1-related biomarkers affect the prognosis of patients with natural killer/T-cell lymphoma (NKTCL). The aim of this study was to determine whether there is an association between YB-1 expression and the prognosis of patients with early-stage extranodal nasal-type NKTCL. Materials & methods: To clarify the roles of YB-1 in early-stage extranodal nasal-type NKTCL, we used immunohistochemical studies to examine YB-1 expression in 36 early-stage extranodal nasal-type NKTCL specimens. Results: Subsequently, YB-1 expression was correlated with clinicopathologic parameters. Higher expression of YB-1 was associated with an increased potential for relapse, poor disease-free survival and reduced overall survival. Discussion: Higher expression of YB-1 could be an independent risk factor for poor prognosis in patients with early-stage extranodal nasal-type NKTCL. Understanding the biology of YB-1-mediated pathways may lead to novel therapeutic strategies for early-stage extranodal nasal-type NKTCL.
Collapse
Affiliation(s)
- Zhenhua Zhao
- Department of Oncology, Mian Yang Central Hospital, Sichuan, People’s Republic of China
| | - Yao Liao
- Department of Oncology, Mian Yang Central Hospital, Sichuan, People’s Republic of China
- The Second Internal Department, The Affiliated Tumor Hospital of Guangzhou Medical College, Guangzhou, People’s Republic of China
| | - Jie Li
- Department of Oncology, Mian Yang Central Hospital, Sichuan, People’s Republic of China
- Department of Oncology, Attached Hospital to North Sichuan Medical College, Sichuan, People’s Republic of China
| | - Jingbo Wu
- Department of Oncology, Affiliated Hospital of Luzhou Medical College, Sichuan, People’s Republic of China
| | - Yu Zhang
- Department of Oncology, Mian Yang Central Hospital, Sichuan, People’s Republic of China
| | - Gang Feng
- Department of Oncology, Mian Yang Central Hospital, Sichuan, People’s Republic of China
| | - Bangxian Tan
- Department of Oncology, Attached Hospital to North Sichuan Medical College, Sichuan, People’s Republic of China
| | - Surong Reng
- Department of Oncology, Mian Yang Central Hospital, Sichuan, People’s Republic of China
| | - Zhikui Zhang
- Guangzhou Kingmed Center For Clinical Laboratory, Guangzhou, People’s Republic of China
| | - Xioaodong Feng
- Guangzhou Kingmed Center For Clinical Laboratory, Guangzhou, People’s Republic of China
| | - Jin Wang
- Department of Oncology, Mian Yang Central Hospital, Sichuan, People’s Republic of China
| | - Xiaobo Du
- Department of Oncology, Mian Yang Central Hospital, Sichuan, People’s Republic of China
| |
Collapse
|
25
|
Y-box binding protein 1--a prognostic marker and target in tumour therapy. Eur J Cell Biol 2013; 93:61-70. [PMID: 24461929 DOI: 10.1016/j.ejcb.2013.11.007] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/22/2013] [Accepted: 11/28/2013] [Indexed: 01/11/2023] Open
Abstract
Y-box binding protein 1 (YB-1) is a multifunctional protein involved in various cellular processes including both transcriptional and translational regulation of target gene expression. Significantly increased YB-1 levels have been reported in a number of human malignancies and shown to be associated with poor prognosis and disease recurrence. Indeed, YB-1 can act as a versatile oncoprotein playing an important role in tumour cell proliferation and progression. Consequently, YB-1 not only proves to be a good prognostic tumour marker, but also may be a promising emerging molecular target for the development of new therapeutical strategies. In this review, we discuss both the role of YB-1 in cancer and specifically in malignant melanoma as well as possible translations into the clinics derived thereof.
Collapse
|
26
|
Links between the oncoprotein YB-1 and small non-coding RNAs in breast cancer. PLoS One 2013; 8:e80171. [PMID: 24260353 PMCID: PMC3832415 DOI: 10.1371/journal.pone.0080171] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 10/07/2013] [Indexed: 12/21/2022] Open
Abstract
Background The nucleic acid-binding protein YB-1, a member of the cold-shock domain protein family, has been implicated in the progression of breast cancer and is associated with poor patient survival. YB-1 has sequence similarity to LIN28, another cold-shock protein family member, which has a role in the regulation of small noncoding RNAs (sncRNAs) including microRNAs (miRNAs). Therefore, to investigate whether there is an association between YB-1 and sncRNAs in breast cancer, we investigated whether sncRNAs were bound by YB-1 in two breast cancer cell lines (luminal A-like and basal cell-like), and whether the abundance of sncRNAs and mRNAs changed in response to experimental reduction of YB-1 expression. Results RNA-immunoprecipitation with an anti-YB-1 antibody showed that several sncRNAs are bound by YB-1. Some of these were bound by YB-1 in both breast cancer cell lines; others were cell-line specific. The small RNAs bound by YB-1 were derived from various sncRNA families including miRNAs such as let-7 and miR-320, transfer RNAs, ribosomal RNAs and small nucleolar RNAs (snoRNA). Reducing YB-1 expression altered the abundance of a number of transcripts encoding miRNA biogenesis and processing proteins but did not alter the abundance of mature or precursor miRNAs. Conclusions YB-1 binds to specific miRNAs, snoRNAs and tRNA-derived fragments and appears to regulate the expression of miRNA biogenesis and processing machinery. We propose that some of the oncogenic effects of YB-1 in breast cancer may be mediated through its interactions with sncRNAs.
Collapse
|
27
|
Chang YW, Mai RT, Fang WH, Lin CC, Chiu CC, Wu Lee YH. YB-1 disrupts mismatch repair complex formation, interferes with MutSα recruitment on mismatch and inhibits mismatch repair through interacting with PCNA. Oncogene 2013; 33:5065-77. [PMID: 24141788 DOI: 10.1038/onc.2013.450] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 09/04/2013] [Accepted: 09/20/2013] [Indexed: 12/17/2022]
Abstract
Y-box binding protein-1 (YB-1) is highly expressed in tumors and it participates in various cellular processes. Previous studies indicated that YB-1 binds to mispaired DNA and interacts with several mismatch repair (MMR)-related factors. However, its role in the MMR system remains undefined. Here, we found that YB-1 represses mutS homolog 6 (MSH6)-containing MMR complex formation and reduces MutSα mismatch binding activity by disrupting interactions among MMR-related factors. In an effort to elucidate how YB-1 exerts this inhibitory effect, we have identified two functional proliferating cell nuclear antigen (PCNA)-interacting protein (PIP)-boxes that mediate YB-1/PCNA interaction and locate within the C-terminal region of YB-1. This interaction is critical for the regulatory role of YB-1 in repressing MutSα mismatch binding activity, disrupting MutSα/PCNA/G/T heteroduplex ternary complex formation and inhibiting in vitro MMR activity. The differential regulation of 3' and 5' nick-directed MMR activity by YB-1 was also observed. Moreover, YB-1 overexpression is associated with the alteration of microsatellite pattern and the enhancement of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced and spontaneous mutations. Furthermore, upregulation of other PIP-box-containing proteins, such as myeloid cell leukemia-1 (Mcl-1) and inhibitor of growth protein 1b (ING1b), has no impact on MMR complex formation and mutation accumulation, thus revealing the significant effect of YB-1 on regulating the MMR system. In conclusion, our study suggests that YB-1 functions as a PCNA-interacting factor to exert its regulatory role on the MMR process and involves in the induction of genome instability, which may partially account for the oncogenic potential of YB-1.
Collapse
Affiliation(s)
- Y-W Chang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan
| | - R-T Mai
- 1] Institute of Biochemistry and Molecular Biology, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan [2] Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao-Tung University, Hsinchu, Taiwan
| | - W-H Fang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University Hospital, Taipei, Taiwan
| | - C-C Lin
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan
| | - C-C Chiu
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Y-H Wu Lee
- 1] Institute of Biochemistry and Molecular Biology, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan [2] Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao-Tung University, Hsinchu, Taiwan
| |
Collapse
|
28
|
van Roeyen CRC, Scurt FG, Brandt S, Kuhl VA, Martinkus S, Djudjaj S, Raffetseder U, Royer HD, Stefanidis I, Dunn SE, Dooley S, Weng H, Fischer T, Lindquist JA, Mertens PR. Cold shock Y-box protein-1 proteolysis autoregulates its transcriptional activities. Cell Commun Signal 2013; 11:63. [PMID: 24103640 PMCID: PMC3766096 DOI: 10.1186/1478-811x-11-63] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 08/12/2013] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The Y-box protein-1 (YB-1) fulfills pleiotropic functions relating to gene transcription, mRNA processing, and translation. It remains elusive how YB-1 shuttling into the nuclear and cytoplasmic compartments is regulated and whether limited proteolysis by the 20S proteasome releases fragments with distinct function(s) and subcellular distribution(s). RESULTS To address these questions, mapping of domains responsible for subcellular targeting was performed. Three nuclear localization signals (NLS) were identified. NLS-1 (aa 149-156) and NLS-2 (aa 185-194) correspond to residues with unknown function(s), whereas NLS-3 (aa 276-292) matches with a designated multimerization domain. Nuclear export signal(s) were not identified. Endoproteolytic processing by the 20S proteasome before glycine 220 releases a carboxy-terminal fragment (CTF), which localized to the nucleus, indicating that NLS-3 is operative. Genotoxic stress induced proteolytic cleavage and nuclear translocation of the CTF. Co-expression of the CTF and full-length YB-1 resulted in an abrogated transcriptional activation of the MMP-2 promoter, indicating an autoregulatory inhibitory loop, whereas it fulfilled similar trans-repressive effects on the collagen type I promoter. CONCLUSION Compartmentalization of YB-1 protein derivatives is controlled by distinct NLS, one of which targets a proteolytic cleavage product to the nucleus. We propose a model for an autoregulatory negative feedback loop that halts unlimited transcriptional activation.
Collapse
Affiliation(s)
- Claudia R C van Roeyen
- Department of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Leipziger Str 44, 39120 Magdeburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Tsofack SP, Meunier L, Sanchez L, Madore J, Provencher D, Mes-Masson AM, Lebel M. Low expression of the X-linked ribosomal protein S4 in human serous epithelial ovarian cancer is associated with a poor prognosis. BMC Cancer 2013; 13:303. [PMID: 23800275 PMCID: PMC3708827 DOI: 10.1186/1471-2407-13-303] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 06/20/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The X-linked ribosomal protein S4 (RPS4X), which is involved in cellular translation and proliferation, has previously been identified as a partner of the overexpressed multifunctional protein YB-1 in several breast cancer cells. Depletion of RPS4X results in consistent resistance to cisplatin in such cell lines. METHODS As platinum-based chemotherapy is a standard first line therapy used to treat patients with ovarian cancer, we evaluated the prognostic value of RPS4X and YB-1 at the protein level in specimen from 192 high-grade serous epithelial ovarian cancer patients. RESULTS Immunohistochemistry studies indicated that high expression of RPS4X was associated with a lower risk of death and later disease progression (HR = 0.713, P = 0.001 and HR = 0.761, P = 0.001, respectively) as compared to low expression of RPS4X. In contrast, YB-1 was not significantly associated with either recurrence or survival time in this cohort. Finally, the depletion of RPS4X with different siRNAs in two different ovarian cancer cell lines reduced their proliferative growth rate but more importantly increased their resistance to cisplatin. CONCLUSION Altogether, these results suggest that the levels of RPS4X could be a good indicator for resistance to platinum-based therapy and a prognostic marker for ovarian cancer. Our study also showed that RPS4X is an independent prognostic factor in patients with serous epithelial ovarian cancer.
Collapse
Affiliation(s)
- Serges P Tsofack
- Centre de Recherche en Cancérologie de l'Université Laval, Hôpital Hôtel-Dieu de Québec, Quebec City, QC, Canada
| | | | | | | | | | | | | |
Collapse
|
30
|
Guo TT, Yu YN, Cheong Yip GW, Matsumoto K, Bay BH. Silencing the YB-1Gene Inhibits Cell Migration in Gastric Cancer In Vitro. Anat Rec (Hoboken) 2013; 296:891-898. [DOI: 10.1002/ar.22702] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Tian Tian Guo
- Department of Anatomy; Yong Loo Lin School of Medicine, National University of Singapore; Singapore
| | - Ying Nan Yu
- Department of Anatomy; Yong Loo Lin School of Medicine, National University of Singapore; Singapore
| | - George Wai Cheong Yip
- Department of Anatomy; Yong Loo Lin School of Medicine, National University of Singapore; Singapore
| | - Ken Matsumoto
- Chemical Genetics Laboratory; the Institute of Physical and Chemical Research (RIKEN); Saitama Japan
| | - Boon Huat Bay
- Department of Anatomy; Yong Loo Lin School of Medicine, National University of Singapore; Singapore
| |
Collapse
|
31
|
Abstract
Hanahan and Weinberg have proposed the ‘hallmarks of cancer’ to cover the biological changes required for the development and persistence of tumours [Hanahan and Weinberg (2011) Cell 144, 646–674]. We have noted that many of these cancer hallmarks are facilitated by the multifunctional protein YB-1 (Y-box-binding protein 1). In the present review we evaluate the literature and show how YB-1 modulates/regulates cellular signalling pathways within each of these hallmarks. For example, we describe how YB-1 regulates multiple proliferation pathways, overrides cell-cycle check points, promotes replicative immortality and genomic instability, may regulate angiogenesis, has a role in invasion and metastasis, and promotes inflammation. We also argue that there is strong and sufficient evidence to suggest that YB-1 is an excellent molecular marker of cancer progression that could be used in the clinic, and that YB-1 could be a useful target for cancer therapy.
Collapse
|
32
|
Wu Y, Yamada S, Izumi H, Li Z, Shimajiri S, Wang KY, Liu YP, Kohno K, Sasaguri Y. Strong YB-1 expression is associated with liver metastasis progression and predicts shorter disease-free survival in advanced gastric cancer. J Surg Oncol 2012; 105:724-30. [PMID: 22215526 DOI: 10.1002/jso.23030] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 12/12/2011] [Indexed: 11/10/2022]
Abstract
BACKGROUND The most significant cause of gastric cancer (GC) death is metastasis, although the underlying mechanisms remain obscure. Y-box binding protein-1 (YB-1) is associated with tumor aggressiveness and poor prognosis in various cancers. In this study we investigated the relationship between YB-1 expression and the clinicopathologic features and metastasis-associated epithelial-mesenchymal transition (EMT) phenotype in advanced GC patients. PATIENTS AND METHODS Immunohistochemistry (IHC) was used to analyze YB-1, E-cadherin, and vimentin expression in 98 advanced GC cases. RESULTS Twenty-nine (29.6%) cases of GC exhibited strong YB-1 immunoreactivity. Strong YB-1 staining occurred more often in patients with intestinal or non-scirrhous cancer, and demonstrated a significant correlation with vascular invasion (VI), liver metastasis, and shorter disease-free survival (DFS). However, we observed no relationship between YB-1 expression and EMT phenotype or overall survival. Logistic regression analysis revealed that strong staining for YB-1 was the only predictive factor for liver metastasis. CONCLUSIONS Our results indicate that YB-1 plays a role in the process of GC metastasis, and that the immunohistochemical detection of this protein potentially delivers valuable insight regarding the prediction of liver metastasis and shorter DFS in patients undergoing curative resection for advanced GC.
Collapse
Affiliation(s)
- Ying Wu
- Department of Pathology and Cell Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu City, Fukuoka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|