1
|
Chen Y, Khan MZ, Wang X, Liang H, Ren W, Kou X, Liu X, Chen W, Peng Y, Wang C. Structural variations in livestock genomes and their associations with phenotypic traits: a review. Front Vet Sci 2024; 11:1416220. [PMID: 39600883 PMCID: PMC11588642 DOI: 10.3389/fvets.2024.1416220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Genomic structural variation (SV) refers to differences in gene sequences between individuals on a genomic scale. It is widely distributed in the genome, primarily in the form of insertions, deletions, duplications, inversions, and translocations. Due to its characterization by long segments and large coverage, SVs significantly impact the genetic characteristics and production performance of livestock, playing a crucial role in studying breed diversity, biological evolution, and disease correlation. Research on SVs contributes to an enhanced understanding of chromosome function and genetic characteristics and is important for understanding hereditary diseases mechanisms. In this article, we review the concept, classification, main formation mechanisms, detection methods, and advancement of research on SVs in the genomes of cattle, buffalo, equine, sheep, and goats, aiming to reveal the genetic basis of differences in phenotypic traits and adaptive genetic mechanisms through genomic research, which will provide a theoretical basis for better understanding and utilizing the genetic resources of herbivorous livestock.
Collapse
Affiliation(s)
| | - Muhammad Zahoor Khan
- College of Agronomy and Agricultural Engineering Liaocheng University, Liaocheng, China
| | | | | | | | | | | | | | - Yongdong Peng
- College of Agronomy and Agricultural Engineering Liaocheng University, Liaocheng, China
| | - Changfa Wang
- College of Agronomy and Agricultural Engineering Liaocheng University, Liaocheng, China
| |
Collapse
|
2
|
Olagunju TA, Rosen BD, Neibergs HL, Becker GM, Davenport KM, Elsik CG, Hadfield TS, Koren S, Kuhn KL, Rhie A, Shira KA, Skibiel AL, Stegemiller MR, Thorne JW, Villamediana P, Cockett NE, Murdoch BM, Smith TPL. Telomere-to-telomere assemblies of cattle and sheep Y-chromosomes uncover divergent structure and gene content. Nat Commun 2024; 15:8277. [PMID: 39333471 PMCID: PMC11436988 DOI: 10.1038/s41467-024-52384-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 09/05/2024] [Indexed: 09/29/2024] Open
Abstract
Reference genomes of cattle and sheep have lacked contiguous assemblies of the sex-determining Y chromosome. Here, we assemble complete and gapless telomere to telomere (T2T) Y chromosomes for these species. We find that the pseudo-autosomal regions are similar in length, but the total chromosome size is substantially different, with the cattle Y more than twice the length of the sheep Y. The length disparity is accounted for by expanded ampliconic region in cattle. The genic amplification in cattle contrasts with pseudogenization in sheep suggesting opposite evolutionary mechanisms since their divergence 19MYA. The centromeres also differ dramatically despite the close relationship between these species at the overall genome sequence level. These Y chromosomes have been added to the current reference assemblies in GenBank opening new opportunities for the study of evolution and variation while supporting efforts to improve sustainability in these important livestock species that generally use sire-driven genetic improvement strategies.
Collapse
Affiliation(s)
- Temitayo A Olagunju
- Department of Animal, Veterinary and Food Sciences (AVFS), University of Idaho, Moscow, ID, USA
| | - Benjamin D Rosen
- Animal Genomics and Improvement Laboratory (AGIL), ARS, USDA, Beltsville, MD, USA
| | - Holly L Neibergs
- Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Gabrielle M Becker
- Department of Animal, Veterinary and Food Sciences (AVFS), University of Idaho, Moscow, ID, USA
| | | | - Christine G Elsik
- Divisions of Animal Sciences and Plant Science & Technology, University of Missouri, Columbia, MO, USA
| | - Tracy S Hadfield
- Animal, Dairy and Veterinary Sciences (ADVS), Utah State University, Logan, UT, USA
| | - Sergey Koren
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kristen L Kuhn
- U.S. Meat Animal Research Center (USMARC), ARS, USDA, Clay Center, NE, USA
| | - Arang Rhie
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Katie A Shira
- Department of Animal, Veterinary and Food Sciences (AVFS), University of Idaho, Moscow, ID, USA
| | - Amy L Skibiel
- Department of Animal, Veterinary and Food Sciences (AVFS), University of Idaho, Moscow, ID, USA
| | - Morgan R Stegemiller
- Department of Animal, Veterinary and Food Sciences (AVFS), University of Idaho, Moscow, ID, USA
| | | | - Patricia Villamediana
- Department of Dairy and Food Science, South Dakota State University, Brookings, SD, USA
| | - Noelle E Cockett
- Animal, Dairy and Veterinary Sciences (ADVS), Utah State University, Logan, UT, USA
| | - Brenda M Murdoch
- Department of Animal, Veterinary and Food Sciences (AVFS), University of Idaho, Moscow, ID, USA.
| | - Timothy P L Smith
- U.S. Meat Animal Research Center (USMARC), ARS, USDA, Clay Center, NE, USA.
| |
Collapse
|
3
|
Camargo GS, de Barros LD, Oliveira-Filho JP, Bromberger CR, Dias-Melicio LA, Alves Dos Santos L, Bergfelt DR, Ferraz de Andrade ER, Canesin HS, de Meira C, Ignácio FS. Evaluation of blastocyst re-expansion, quality in relation to storage temperature, and sexing using blastocoel fluid after manual perforation with a hand-held needle involving in vivo produced equine embryos. Theriogenology 2024; 219:39-48. [PMID: 38382216 DOI: 10.1016/j.theriogenology.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
The present study was designed to evaluate equine blastocyst re-expansion rate, quality, and sex following perforation of the blastocoel, collection of blastocoel fluid (BF), and PCR amplification of free DNA. Experiment 1 tested the feasibility of the BF sample collection with a hand-held, small-gauged needle (26g) and subsequent PCR amplification of the TSP-Y gene for males and AMEL-Y gene for males and AMEL-X gene for females. Experiment 2 tested the application of the technique. Equine embryos were collected via uterine flushes 8d after ovulation. Thereafter, embryos (n = 19) were initially assessed and transferred to a 50 μL droplet of holding medium in which the blastocoel was manually perforated as in Experiment 1. Within 1 min of detecting a diameter decrease or collapse, the entire volume of each droplet of medium was collected and stored at -20 °C until PCR. In Experiment 1, amplification of the TSP-Y gene was positive for males at 60% (9/15) and negative for females at 40% (6/15). In Experiment 2, a total of 42 embryos were randomly assigned to a collapsed embryo (CE) or intact embryo (IE) groups and stored at room temperature (RT, 25 °C) or cold temperature (CT, 5 °C) for 24h as follows: 1) CERT, n = 11; 2) CECT n = 11; 3) IERT, n = 10; and 4) IECT, n = 10. After 24h, embryo diameter and quality were reassessed. For all collapsed embryos (n = 19), blastocoel fluid was subjected to double PCR amplification of the TSPY gene with blood from adult male and female horses as controls. Positive gene amplification indicated 57.9% (11/19) of embryos were male and negative amplification indicated 31.6% (6/19) of embryos were female. Relative to the least diameter (0%) after perforation of collapsed embryos or fullest diameter (100%) of intact embryos at T0, percentage change in diameter and quality Grade 1 or 2 embryos after 24h of storage for all groups were, respectively: 31.2% and 54% for CERT group, 28.2% and 0% for CECT group, 25.9% and 100% for IERT group, 4.3% and 80% for IECT group, respectively. Thus, needle-induced leakage and collapse of the blastocoel at T0 resulted in a high rate of blastocyst re-expansion (69%) with many embryos (54%) achieving good quality at T24 with potential for transfer as either male or female embryos. For both collapsed and intact embryos, it was observed that storage for 24h at room temperature (25 °C) was associated with improved embryo growth and morphological quality compared to storage at cold temperature (5 °C).
Collapse
Affiliation(s)
- Giovana Siqueira Camargo
- Sao Paulo State University (UNESP), School of Veterinary Medicine and Animal Science, Botucatu, Sao Paulo, 18618-681, Brazil
| | - Luiz Daniel de Barros
- Sao Paulo State University (UNESP), School of Veterinary Medicine and Animal Science, Botucatu, Sao Paulo, 18618-681, Brazil
| | - José Paes Oliveira-Filho
- Sao Paulo State University (UNESP), School of Veterinary Medicine and Animal Science, Botucatu, Sao Paulo, 18618-681, Brazil
| | - Cristiana Raach Bromberger
- Sao Paulo State University (UNESP), School of Veterinary Medicine and Animal Science, Botucatu, Sao Paulo, 18618-681, Brazil
| | - Luciane Alarcao Dias-Melicio
- Laboratory of Immunopathology and Infectious Agents-LIAI, UNIPEX-Experimental Research Unity-Sector 5, Medical School of Botucatu, São Paulo State University (UNESP), Botucatu, 18618-687, SP, Brazil
| | - Leandro Alves Dos Santos
- Laboratory of Immunopathology and Infectious Agents-LIAI, UNIPEX-Experimental Research Unity-Sector 5, Medical School of Botucatu, São Paulo State University (UNESP), Botucatu, 18618-687, SP, Brazil
| | - Don R Bergfelt
- Ross University School of Veterinary Medicine, Basseterre, West Indies, Saint Kitts and Nevis, USA
| | - Erica Rodrigues Ferraz de Andrade
- Department of Veterinary Medicine, University Center of the Integrated Faculties of Ourinhos (Unifio), Ourinhos, São Paulo, 19909-100, Brazil
| | | | - Cezinande de Meira
- Sao Paulo State University (UNESP), School of Veterinary Medicine and Animal Science, Botucatu, Sao Paulo, 18618-681, Brazil
| | - Fernanda Saules Ignácio
- Sao Paulo State University (UNESP), School of Veterinary Medicine and Animal Science, Botucatu, Sao Paulo, 18618-681, Brazil.
| |
Collapse
|
4
|
Smith T, Olagunju T, Rosen B, Neibergs H, Becker G, Davenport K, Elsik C, Hadfield T, Koren S, Kuhn K, Rhie A, Shira K, Skibiel A, Stegemiller M, Thorne J, Villamediana P, Cockett N, Murdoch B. The first complete T2T Assemblies of Cattle and Sheep Y-Chromosomes uncover remarkable divergence in structure and gene content. RESEARCH SQUARE 2024:rs.3.rs-4033388. [PMID: 38712074 PMCID: PMC11071540 DOI: 10.21203/rs.3.rs-4033388/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Reference genomes of cattle and sheep have lacked contiguous assemblies of the sex-determining Y chromosome. We assembled complete and gapless telomere to telomere (T2T) Y chromosomes for these species. The pseudo-autosomal regions were similar in length, but the total chromosome size was substantially different, with the cattle Y more than twice the length of the sheep Y. The length disparity was accounted for by expanded ampliconic region in cattle. The genic amplification in cattle contrasts with pseudogenization in sheep suggesting opposite evolutionary mechanisms since their divergence 18MYA. The centromeres also differed dramatically despite the close relationship between these species at the overall genome sequence level. These Y chromosome have been added to the current reference assemblies in GenBank opening new opportunities for the study of evolution and variation while supporting efforts to improve sustainability in these important livestock species that generally use sire-driven genetic improvement strategies.
Collapse
Affiliation(s)
- Timothy Smith
- USDA, ARS, U.S. Meat Animal Research Center (USMARC)
| | | | | | | | | | | | | | | | - Sergey Koren
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health
| | | | - Arang Rhie
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Pompermayer E, Ysebaert MP, Vinardell T, Oikawa MA, Johnson JP, Fernandes T, David F. One-stage surgical case management of a two-year-old Arabian horse affected by male-pseudo hermaphroditism. J Equine Vet Sci 2024; 133:105007. [PMID: 38237706 DOI: 10.1016/j.jevs.2024.105007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
A two-year-old Arabian horse presented for abnormal external genitalia and dangerous stallion-like behavior was diagnosed with disorder of sexual development (DSD), also known as intersex/hermaphroditism. Standing 1-stage surgical procedure performed under sedation, and local anesthesia to concurrently eliminate stallion-like behavior, risk of neoplastic transformation of intraabdominal gonads, and to replace ambiguous external genital with a functional, and cosmetically more acceptable anatomy. Step-1) Laparoscopic abdominal exploration and gonadectomy; Step-2) Rudimentary penis resection and perineal urethrostomy. The horse tolerated surgery well (combined surgery time 185 min) with no complications. At macroscopic examination of the gonads, they resembled hypoplastic testis-like tissues. Microscopic examination confirmed presence of seminiferous tubules, Leydig and Sertoli/granulosa cells. Cytogenetic evaluation revealed a 64,XX karyotype, SRY-negative. The stallion-like behavior subsided within days post-operatively. Long-term follow-up revealed the genitoplasty site healed without urine scalding or urethral stricture. The owner satisfaction was excellent and the horse could be used post-surgery as an athlete.
Collapse
Affiliation(s)
- E Pompermayer
- Equine Veterinary Medical Center - Member of Qatar Foundation, Al Shaqab Street, Al Rayyan, Doha, Qatar
| | - M P Ysebaert
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80523-1601, USA
| | - T Vinardell
- Equine Care Group, Paalstraat 8, 3560 Lummen, Belgium
| | - M-A Oikawa
- Equine Veterinary Medical Center - Member of Qatar Foundation, Al Shaqab Street, Al Rayyan, Doha, Qatar
| | - J P Johnson
- Equine & Camel Hospital, Abu Dhabi, United Arab Emirates
| | - T Fernandes
- Equine Veterinary Medical Center - Member of Qatar Foundation, Al Shaqab Street, Al Rayyan, Doha, Qatar
| | - F David
- EquiTom - Namur, member of the Equine Care Group, 15 Chaussée de Nivelles, 5032 Mazy, Belgium.
| |
Collapse
|
6
|
De Coster T, Van Poucke M, Bogado Pascottini O, Angel-Velez D, Van den Branden E, Peere S, Papas M, Gerits I, Govaere J, Peelman L, Vermeesch JR, Van Soom A, Smits K. Single closed-tube quantitative real-time PCR assay with dual-labelled probes for improved sex determination of equine embryos. Animal 2023; 17:100952. [PMID: 37913607 DOI: 10.1016/j.animal.2023.100952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 11/03/2023] Open
Abstract
In addition to fulfilling many breeders' curiosity, equine embryonic sex determination can have a profound commercial impact. However, the application of currently described assays for equine embryonic sexing has rendered variable diagnosis and validation rates, with sensitivity being the main problem. In addition, while pregnancy results of in vivo-flushed equine embryos following a needle aspiration biopsy equal those of non-biopsied embryos, the effect on in vitro-produced embryos is unknown. Here, we aimed to develop a highly sensitive and specific assay for equine sex determination that can be directly performed on few embryonic cells, and to test the effect of a needle aspiration biopsy on the viability of the in vitro-produced embryo. To this end, a multiplex quantitative real-time PCR (qPCR) assay with dual-labelled probes was designed to allow the simultaneous generation of both male-specific and control fragments in a single closed-tube reaction, avoiding potential sample loss or contamination. To improve sensitivity, multicopy and polymeric genes were chosen to be specifically amplified, i.e., eight copies of Y-chromosomal ETSTY5 as male-specific and four autosomal UBC monomers as control fragment. Specificity was enhanced by the equine-specific character of ETSTY5 and by using dual-labelled probes. The assay was optimised with equine male and female genomic DNA and demonstrated a 100% accuracy and a >95% qPCR efficiency down to 10 pg of DNA. The assay was subsequently applied to determine the sex of 44 in vitro-produced embryos, collecting trophectoderm biopsies by means of a needle aspiration biopsy and herniating cells. Of all trophectoderm biopsies and herniating cell samples (n = 54), 87% could be diagnosed. Assay results were validated on a second sample obtained from the biopsied embryo (n = 18) or, by ultrasound-based sex determination of the foetus (n = 7) following the transfer of the biopsied embryo to a recipient mare, with about half of the embryos being fillies and colts. The needle aspiration biopsy procedure did not impair initial pregnancy rate or early pregnancy losses as compared to non-biopsied embryos. In conclusion, we report a safe, reliable, fast, and cost-effective assay for equine sex determination which was validated for the sex determination of in vitro-produced embryos based on few embryonic cells, and needle aspiration biopsy did not impair the embryo's viability. The assay and safe biopsy strategy hold potential for other applications.
Collapse
Affiliation(s)
- T De Coster
- Reproductive Biology Unit, Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, 9820 Merelbeke, Belgium; Laboratory for Cytogenetics and Genome Research, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium.
| | - M Van Poucke
- Laboratory of Animal Genetics, Department of Veterinary and Biosciences, Ghent University, 9820 Merelbeke, Belgium
| | - O Bogado Pascottini
- Reproductive Biology Unit, Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - D Angel-Velez
- Reproductive Biology Unit, Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, 9820 Merelbeke, Belgium; Research Group in Animal Sciences - INCA-CES, Universidad CES, Medellin, Colombia
| | - E Van den Branden
- Clinic of Large Animal Reproduction, Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - S Peere
- Clinic of Large Animal Reproduction, Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - M Papas
- Clinic of Large Animal Reproduction, Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - I Gerits
- Clinic of Large Animal Reproduction, Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - J Govaere
- Clinic of Large Animal Reproduction, Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - L Peelman
- Laboratory of Animal Genetics, Department of Veterinary and Biosciences, Ghent University, 9820 Merelbeke, Belgium
| | - J R Vermeesch
- Laboratory for Cytogenetics and Genome Research, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - A Van Soom
- Reproductive Biology Unit, Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - K Smits
- Reproductive Biology Unit, Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, 9820 Merelbeke, Belgium
| |
Collapse
|
7
|
Cardinali I, Giontella A, Tommasi A, Silvestrelli M, Lancioni H. Unlocking Horse Y Chromosome Diversity. Genes (Basel) 2022; 13:genes13122272. [PMID: 36553539 PMCID: PMC9777570 DOI: 10.3390/genes13122272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022] Open
Abstract
The present equine genetic variation mirrors the deep influence of intensive breeding programs during the last 200 years. Here, we provide a comprehensive current state of knowledge on the trends and prospects on the variation in the equine male-specific region of the Y chromosome (MSY), which was assembled for the first time in 2018. In comparison with the other 12 mammalian species, horses are now the most represented, with 56 documented MSY genes. However, in contrast to the high variability in mitochondrial DNA observed in many horse breeds from different geographic areas, modern horse populations demonstrate extremely low genetic Y-chromosome diversity. The selective pressures employed by breeders using pedigree data (which are not always error-free) as a predictive tool represent the main cause of this lack of variation in the Y-chromosome. Nevertheless, the detailed phylogenies obtained by recent fine-scaled Y-chromosomal genotyping in many horse breeds worldwide have contributed to addressing the genealogical, forensic, and population questions leading to the reappraisal of the Y-chromosome as a powerful genetic marker to avoid the loss of biodiversity as a result of selective breeding practices, and to better understand the historical development of horse breeds.
Collapse
Affiliation(s)
- Irene Cardinali
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
- Correspondence: (I.C.); (A.G.)
| | - Andrea Giontella
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy
- Correspondence: (I.C.); (A.G.)
| | - Anna Tommasi
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | | | - Hovirag Lancioni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
8
|
Castaneda C, Radović L, Felkel S, Juras R, Davis BW, Cothran EG, Wallner B, Raudsepp T. Copy number variation of horse Y chromosome genes in normal equine populations and in horses with abnormal sex development and subfertility: relationship of copy number variations with Y haplogroups. G3 (BETHESDA, MD.) 2022; 12:jkac278. [PMID: 36227030 PMCID: PMC9713435 DOI: 10.1093/g3journal/jkac278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/08/2022] [Indexed: 11/03/2023]
Abstract
Structural rearrangements like copy number variations in the male-specific Y chromosome have been associated with male fertility phenotypes in human and mouse but have been sparsely studied in other mammalian species. Here, we designed digital droplet PCR assays for 7 horse male-specific Y chromosome multicopy genes and SRY and evaluated their absolute copy numbers in 209 normal male horses of 22 breeds, 73 XY horses with disorders of sex development and/or infertility, 5 Przewalski's horses and 2 kulans. This established baseline copy number for these genes in horses. The TSPY gene showed the highest copy number and was the most copy number variable between individuals and breeds. SRY was a single-copy gene in most horses but had 2-3 copies in some indigenous breeds. Since SRY is flanked by 2 copies of RBMY, their copy number variations were interrelated and may lead to SRY-negative XY disorders of sex development. The Przewalski's horse and kulan had 1 copy of SRY and RBMY. TSPY and ETSTY2 showed significant copy number variations between cryptorchid and normal males (P < 0.05). No significant copy number variations were observed in subfertile/infertile males. Notably, copy number of TSPY and ETSTY5 differed between successive male generations and between cloned horses, indicating germline and somatic mechanisms for copy number variations. We observed no correlation between male-specific Y chromosome gene copy number variations and male-specific Y chromosome haplotypes. We conclude that the ampliconic male-specific Y chromosome reference assembly has deficiencies and further studies with an improved male-specific Y chromosome assembly are needed to determine selective constraints over horse male-specific Y chromosome gene copy number and their relation to stallion reproduction and male biology.
Collapse
Affiliation(s)
- Caitlin Castaneda
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 7784-4458, USA
| | - Lara Radović
- Department of Biomedical Sciences, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna 1210, Austria
- Vienna Graduate School of Population Genetics, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| | - Sabine Felkel
- Department of Biomedical Sciences, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna 1210, Austria
- Vienna Graduate School of Population Genetics, University of Veterinary Medicine Vienna, Vienna 1210, Austria
- Department of Biotechnology, Institute of Computational Biology, BOKU University of Life Sciences and Natural Resources, Vienna 1190, Austria
| | - Rytis Juras
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 7784-4458, USA
| | - Brian W Davis
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 7784-4458, USA
| | - Ernest Gus Cothran
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 7784-4458, USA
| | - Barbara Wallner
- Department of Biomedical Sciences, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| | - Terje Raudsepp
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 7784-4458, USA
| |
Collapse
|
9
|
Cristina R, Viviana G, Domenico I, Filomena M, Angela P, Alfredo P. State of the art on the physical mapping of the Y-chromosome in the <i>Bovidae</i> and comparison with other species. Anim Biosci 2022; 35:1289-1302. [PMID: 35240029 PMCID: PMC9449390 DOI: 10.5713/ab.21.0480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/01/2022] [Indexed: 11/27/2022] Open
Abstract
The next generation sequencing has significantly contributed to clarify the genome structure of many species of zootechnical interest. However, to date, some portions of the genome, especially those linked to a heterogametic nature such as the Y chromosome, are difficult to assemble and many gaps are still present. It is well known that the fluorescence in situ hybridization (FISH) is an excellent tool for identifying genes unequivocably mapped on chromosomes. Therefore, FISH can contribute to the localization of unplaced genome sequences, as well as to correct assembly errors generated by comparative bioinformatics. To this end, it is necessary to have starting points; therefore, in this study, we reviewed the physically mapped genes on the Y chromosome of cattle, buffalo, sheep, goats, pigs, horses and alpacas. A total of 208 loci were currently mapped by FISH. 89 were located in the male-specific region of the Y chromosome (MSY) and 119 were identified in the pseudoautosomal region (PAR). The loci reported in MSY and PAR were respectively: 18 and 25 in Bos taurus, 5 and 7 in Bubalus bubalis, 5 and 24 in Ovis aries, 5 and 19 in Capra hircus, 10 and 16 in Sus scrofa, 46 and 18 in Equus caballus. While in Vicugna pacos only 10 loci are reported in the PAR region. The correct knowledge and assembly of all genome sequences, including those of genes mapped on the Y chromosome, will help to elucidate their biological processes, as well as to discover and exploit potentially epistasis effects useful for selection breeding programs.
Collapse
|
10
|
Naftaly AS, Pau S, White MA. Long-read RNA sequencing reveals widespread sex-specific alternative splicing in threespine stickleback fish. Genome Res 2021; 31:1486-1497. [PMID: 34131005 PMCID: PMC8327910 DOI: 10.1101/gr.274282.120] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 06/15/2021] [Indexed: 01/07/2023]
Abstract
Alternate isoforms are important contributors to phenotypic diversity across eukaryotes. Although short-read RNA-sequencing has increased our understanding of isoform diversity, it is challenging to accurately detect full-length transcripts, preventing the identification of many alternate isoforms. Long-read sequencing technologies have made it possible to sequence full-length alternative transcripts, accurately characterizing alternative splicing events, alternate transcription start and end sites, and differences in UTR regions. Here, we use Pacific Biosciences (PacBio) long-read RNA-sequencing (Iso-Seq) to examine the transcriptomes of five organs in threespine stickleback fish (Gasterosteus aculeatus), a widely used genetic model species. The threespine stickleback fish has a refined genome assembly in which gene annotations are based on short-read RNA sequencing and predictions from coding sequence of other species. This suggests some of the existing annotations may be inaccurate or alternative transcripts may not be fully characterized. Using Iso-Seq we detected thousands of novel isoforms, indicating many isoforms are absent in the current Ensembl gene annotations. In addition, we refined many of the existing annotations within the genome. We noted many improperly positioned transcription start sites that were refined with long-read sequencing. The Iso-Seq-predicted transcription start sites were more accurate and verified through ATAC-seq. We also detected many alternative splicing events between sexes and across organs. We found a substantial number of genes in both somatic and gonadal samples that had sex-specific isoforms. Our study highlights the power of long-read sequencing to study the complexity of transcriptomes, greatly improving genomic resources for the threespine stickleback fish.
Collapse
Affiliation(s)
- Alice S Naftaly
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| | - Shana Pau
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
- Department of Biology, University of Texas Arlington, Arlington, Texas 76019, USA
| | - Michael A White
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
11
|
An 8.22 Mb Assembly and Annotation of the Alpaca ( Vicugna pacos) Y Chromosome. Genes (Basel) 2021; 12:genes12010105. [PMID: 33467186 PMCID: PMC7830431 DOI: 10.3390/genes12010105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/07/2021] [Accepted: 01/14/2021] [Indexed: 12/26/2022] Open
Abstract
The unique evolutionary dynamics and complex structure make the Y chromosome the most diverse and least understood region in the mammalian genome, despite its undisputable role in sex determination, development, and male fertility. Here we present the first contig-level annotated draft assembly for the alpaca (Vicugna pacos) Y chromosome based on hybrid assembly of short- and long-read sequence data of flow-sorted Y. The latter was also used for cDNA selection providing Y-enriched testis transcriptome for annotation. The final assembly of 8.22 Mb comprised 4.5 Mb of male specific Y (MSY) and 3.7 Mb of the pseudoautosomal region. In MSY, we annotated 15 X-degenerate genes and two novel transcripts, but no transposed sequences. Two MSY genes, HSFY and RBMY, are multicopy. The pseudoautosomal boundary is located between SHROOM2 and HSFY. Comparative analysis shows that the small and cytogenetically distinct alpaca Y shares most of MSY sequences with the larger dromedary and Bactrian camel Y chromosomes. Most of alpaca X-degenerate genes are also shared with other mammalian MSYs, though WWC3Y is Y-specific only in alpaca/camels and the horse. The partial alpaca Y assembly is a starting point for further expansion and will have applications in the study of camelid populations and male biology.
Collapse
|
12
|
Ghosh S, Carden CF, Juras R, Mendoza MN, Jevit MJ, Castaneda C, Phelps O, Dube J, Kelley DE, Varner DD, Love CC, Raudsepp T. Two Novel Cases of Autosomal Translocations in the Horse: Warmblood Family Segregating t(4;30) and a Cloned Arabian with a de novo t(12;25). Cytogenet Genome Res 2020; 160:688-697. [PMID: 33326979 DOI: 10.1159/000512206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/07/2020] [Indexed: 11/19/2022] Open
Abstract
We report 2 novel autosomal translocations in the horse. In Case 1, a breeding stallion with a balanced t(4p;30) had produced normal foals and those with congenital abnormalities. Of his 9 phenotypically normal offspring, 4 had normal karyotypes, 4 had balanced t(4p;30), and 1 carried an unbalanced translocation with tertiary trisomy of 4p. We argue that unbalanced forms of t(4p;30) are more tolerated and result in viable congenital abnormalities, without causing embryonic death like all other known equine autosomal translocations. In Case 2, two stallions produced by somatic cell nuclear transfer from the same donor were karyotyped because of fertility issues. A balanced translocation t(12q;25) was found in one, but not in the other clone. The findings underscore the importance of routine cytogenetic screening of breeding animals and animals produced by assisted reproductive technologies. These cases will contribute to molecular studies of translocation breakpoints and their genetic consequences in the horse.
Collapse
Affiliation(s)
- Sharmila Ghosh
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | | | - Rytis Juras
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Mayra N Mendoza
- Estación Experimental Agraria Chincha, Dirección de Recursos Genéticos y Biotecnología, Instituto Nacional de Innovación Agraria, Ica, Peru
| | - Matthew J Jevit
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Caitlin Castaneda
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Olivia Phelps
- Powder River Veterinary Hospital & Supply, Kaycee, Wyoming, USA
| | - Jessie Dube
- Powder River Veterinary Hospital & Supply, Kaycee, Wyoming, USA
| | - Dale E Kelley
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Dickson D Varner
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Charley C Love
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Terje Raudsepp
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA,
| |
Collapse
|
13
|
Peichel CL, McCann SR, Ross JA, Naftaly AFS, Urton JR, Cech JN, Grimwood J, Schmutz J, Myers RM, Kingsley DM, White MA. Assembly of the threespine stickleback Y chromosome reveals convergent signatures of sex chromosome evolution. Genome Biol 2020; 21:177. [PMID: 32684159 PMCID: PMC7368989 DOI: 10.1186/s13059-020-02097-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/08/2020] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Heteromorphic sex chromosomes have evolved repeatedly across diverse species. Suppression of recombination between X and Y chromosomes leads to degeneration of the Y chromosome. The progression of degeneration is not well understood, as complete sequence assemblies of heteromorphic Y chromosomes have only been generated across a handful of taxa with highly degenerate sex chromosomes. Here, we describe the assembly of the threespine stickleback (Gasterosteus aculeatus) Y chromosome, which is less than 26 million years old and at an intermediate stage of degeneration. Our previous work identified that the non-recombining region between the X and the Y spans approximately 17.5 Mb on the X chromosome. RESULTS We combine long-read sequencing with a Hi-C-based proximity guided assembly to generate a 15.87 Mb assembly of the Y chromosome. Our assembly is concordant with cytogenetic maps and Sanger sequences of over 90 Y chromosome BAC clones. We find three evolutionary strata on the Y chromosome, consistent with the three inversions identified by our previous cytogenetic analyses. The threespine stickleback Y shows convergence with more degenerate sex chromosomes in the retention of haploinsufficient genes and the accumulation of genes with testis-biased expression, many of which are recent duplicates. However, we find no evidence for large amplicons identified in other sex chromosome systems. We also report an excellent candidate for the master sex-determination gene: a translocated copy of Amh (Amhy). CONCLUSIONS Together, our work shows that the evolutionary forces shaping sex chromosomes can cause relatively rapid changes in the overall genetic architecture of Y chromosomes.
Collapse
Affiliation(s)
- Catherine L. Peichel
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
- Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland
| | - Shaugnessy R. McCann
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
| | - Joseph A. Ross
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195 USA
| | | | - James R. Urton
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195 USA
| | - Jennifer N. Cech
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195 USA
| | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806 USA
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806 USA
| | - Richard M. Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806 USA
| | - David M. Kingsley
- Department of Developmental Biology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Michael A. White
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
- Department of Genetics, University of Georgia, Athens, GA 30602 USA
| |
Collapse
|
14
|
Comparative Transcriptomics Analysis of Testicular miRNA from Cryptorchid and Normal Horses. Animals (Basel) 2020; 10:ani10020338. [PMID: 32098036 PMCID: PMC7070967 DOI: 10.3390/ani10020338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/10/2020] [Accepted: 02/17/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary The testis is an important organ for mammals, and testicular microRNA expression is associated with male fertility to a certain extent. Cryptorchidism is the failure of one or both testes to descend into the scrotal sac. It is a common congenital malformation in horses. The major clinical consequence of this abnormality is impaired fertility. The expression of testicular microRNAs is influenced by many factors, including high temperature and disease, in cryptorchid horses. Here, we investigated the microRNA expression levels of normal and retained testes. Their expression patterns showed significant differences. In addition, we obtained comprehensive expression data for equine testicular microRNA, which is fundamental information for further analysis. Abstract In the biological process of testicular spermatogenesis, the expression and interaction of many genes are regulated by microRNAs (miRNAs). However, comparisons of miRNA expression between descended testes (DTs) and undescended testes (UDTs) are rarely done in horses. In this study, we selected two UDTs (CKY2b and GU4b) from Chakouyi (CKY) and Guanzhong (GU) horses and eight DTs (GU1–3, CKY1, CKY3, CKY2a, GU4a, and GU5). Three groups were compared to evaluate expression patterns of testicular miRNA in stallion testes. Group 1 compared normal CKY horses and GU horses (CKY1 and CKY3 vs. GU1–3). Group 2 (CKY2a and GU4a (DTs) vs. CKY2b and GU4b (UDTs)) and group 3 (GU1–3, CKY1, CKY3 (DTs) vs. CKY2b and GU4b (UDTs)) compared the expression levels in unilateral retained testes to normal testes. The results show that 42 miRNAs (7 upregulated and 35 downregulated) had significantly different expression levels in both comparisons. The expression levels of eca-miR-545, eca-miR-9084, eca-miR-449a, eca-miR-9024, eca-miR-9121, eca-miR-8908e, eca-miR-136, eca-miR-329b, eca-miR-370, and eca-miR-181b were further confirmed by quantitative real-time PCR assay. The target genes of differentially expressed miRNAs in three comparisons were predicted, and the functions were annotated. The putative target genes of the 42 co-differentially expressed miRNAs were annotated to 15 functional terms, including metal ion binding, GTPase activator activity, zinc ion binding, intracellular, cytoplasm, and cancer pathways, and osteoclast differentiation. Our data indicate that the differentially expressed miRNAs in undescended testis suggests a potential role in male fertility and a relationship with cryptorchidism in horses. The discovery of miRNAs in stallion testes might contribute to a new direction in the search for biomarkers of stallion fertility.
Collapse
|
15
|
Androgen Receptor Gene Variants in New Cases of Equine Androgen Insensitivity Syndrome. Genes (Basel) 2020; 11:genes11010078. [PMID: 31936796 PMCID: PMC7017088 DOI: 10.3390/genes11010078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/02/2020] [Accepted: 01/09/2020] [Indexed: 11/16/2022] Open
Abstract
In the domestic horse; failure of normal masculinization and virilization due to deficiency of androgenic action leads to a specific disorder of sexual development known as equine androgen insensitivity syndrome (AIS). Affected individuals appear to demonstrate an incoherency between their genetic sex and sexual phenotype; i.e., XY-sex chromosome constitution and female phenotypic appearance. AIS is well documented in humans. Here we report the finding of two novel genetic variants for the AR-gene identified in a Tennessee Walking Horse and a Thoroughbred horse mare; each in individual clinical cases of horse AIS syndrome.
Collapse
|
16
|
Han H, Dong H, Chen Q, Gao Y, Li J, Li W, Dang R, Lei C. Transcriptomic Analysis of Testicular Gene Expression in Normal and Cryptorchid Horses. Animals (Basel) 2020; 10:ani10010102. [PMID: 31936283 PMCID: PMC7022935 DOI: 10.3390/ani10010102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/30/2019] [Accepted: 01/06/2020] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Cryptorchidism is a common congenital malformation that results in impaired fertility in horses. The high abdominal temperature and the effects of this disease lead to differences in gene expression between retained testes and descended testes (DTs). Here, we focus on the genetic effects of cryptorchidism. All the differentially expressed genes (DEGs) between undescended testes (UDTs) and DTs were analyzed in this study. A total of 84 DEGs were associated with functions related to sperm development and male reproductive performance. Our study has provided fundamental transcriptomic data for future studies on equine testes and cryptorchidism. Abstract Testes produce sperm, and investigations into gene expression in the testes will enhance the understanding of the roles of testicular genes in male reproduction. Cryptorchidism, the failure of one or both testes to descend into the scrotal sac, is a common congenital malformation in horses. The major clinical consequence of this abnormality is impaired fertility. The aim of this study was to analyze the expression patterns of testicular genes and to identify the differentially expressed genes (DEGs) in testes between cryptorchid and normal horses. In this study, the gene expression patterns in equine testes and the DEGs between mature descended testes (DTs) and undescended testes (UDTs) were identified by RNA-seq and validated by real-time qPCR. Our results provide comprehensive transcriptomic data on equine testes. The transcriptomic analysis revealed 11 affected genes that were downregulated in UDTs, possibly as a result of the higher temperature in the abdomen than in the scrotal sac. These 11 genes have previously been associated with male reproduction, and their downregulation might explain the impaired fertility of cryptorchid horses. Two homozygous missense mutations detected in horses with cryptorchidism were absent in normal horses and were listed as potential pathogenic mutations; these mutations should be verified in the future.
Collapse
Affiliation(s)
- Haoyuan Han
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China (J.L.)
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Hong Dong
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Qiuming Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yuan Gao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jun Li
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China (J.L.)
| | - Wantao Li
- Henan Genetic Protection Engineering Research Center for Livestock and Poultry, Zhengzhou 450046, China
| | - Ruihua Dang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Correspondence:
| |
Collapse
|
17
|
Sun T, Hanif Q, Chen H, Lei C, Dang R. Copy Number Variations of Four Y-Linked Genes in Swamp Buffaloes. Animals (Basel) 2019; 10:ani10010031. [PMID: 31877875 PMCID: PMC7023270 DOI: 10.3390/ani10010031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/12/2019] [Accepted: 12/18/2019] [Indexed: 12/25/2022] Open
Abstract
Simple Summary The amplification of the male-specific region of the Y chromosome was a unique phenomenon during mammalian sex chromosome evolution. The Y-linked copy number variations of many species have been confirmed. However, the Y-linked copy number variations (CNVs) in water buffalo are still unknown. In this study, we investigated the copy number variations of four Y-linked genes (SRY, UTY, DBY, and OFD1Y) in buffalo. Our results showed that UTY was a single-copy gene in buffalo, while DBY, OFD1Y, and SRY exhibited copy number variations in buffalo. Abstract Copy number variation (CNV), a significant source of genetic diversity in the mammalian Y chromosome, is associated with the development of many complex phenotypes, such as spermatogenesis and male fertility. The contribution of Y-linked CNVs has been studied in various species, however, water buffalo has not been explored in this area and the genetic information still remains unknown. The aim of the current study was to investigate the CNVs of four Y-linked genes, including, sex determining Region of Y-Chromosome (SRY), ubiquitously transcribed tetratricopeptide repeat gene protein on the chromosome Y (UTY), DEAD-box helicase 3 Y-linked (DDX3Y, also known as DBY), and oral-facial-digital syndrome 1 Y-linked (OFD1Y) in 254 swamp buffaloes from 15 populations distributed across China, Vietnam, and Laos using quantitative real-time PCR (qPCR). Our results revealed the prevalence of a single-copy UTY gene in buffaloes. The DBY and OFD1Y represented CNVs among and within different buffalo breeds. The SRY showed CNVs only in Vietnamese and Laotian buffaloes. In conclusion, this study indicated that DBY, OFD1Y, and SRY showed CNVs, while the UTY was a single-copy gene in swamp buffaloes.
Collapse
Affiliation(s)
- Ting Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Quratulain Hanif
- National Institute for Biotechnology and Genetic Engineering, Pakistan Institute of Engineering and Applied Sciences, Faisalabad 577, Pakistan
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ruihua Dang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
- Correspondence: ; Tel.: +86-153-8862-7637
| |
Collapse
|
18
|
Sex-Specific Differences in Fat Storage, Development of Non-Alcoholic Fatty Liver Disease and Brain Structure in Juvenile HFD-Induced Obese Ldlr-/-.Leiden Mice. Nutrients 2019; 11:nu11081861. [PMID: 31405127 PMCID: PMC6723313 DOI: 10.3390/nu11081861] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/01/2019] [Accepted: 08/07/2019] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Sex-specific differences play a role in metabolism, fat storage in adipose tissue, and brain structure. At juvenile age, brain function is susceptible to the effects of obesity; little is known about sex-specific differences in juvenile obesity. Therefore, this study examined sex-specific differences in adipose tissue and liver of high-fat diet (HFD)-induced obese mice, and putative alterations between male and female mice in brain structure in relation to behavioral changes during the development of juvenile obesity. METHODS In six-week-old male and female Ldlr-/-.Leiden mice (n = 48), the impact of 18 weeks of HFD-feeding was examined. Fat distribution, liver pathology and brain structure and function were analyzed imunohisto- and biochemically, in cognitive tasks and with MRI. RESULTS HFD-fed female mice were characterized by an increased perigonadal fat mass, pronounced macrovesicular hepatic steatosis and liver inflammation. Male mice on HFD displayed an increased mesenteric fat mass, pronounced adipose tissue inflammation and microvesicular hepatic steatosis. Only male HFD-fed mice showed decreased cerebral blood flow and reduced white matter integrity. CONCLUSIONS At young age, male mice are more susceptible to the detrimental effects of HFD than female mice. This study emphasizes the importance of sex-specific differences in obesity, liver pathology, and brain function.
Collapse
|
19
|
Azoospermia and Y Chromosome-Autosome Translocation in a Friesian Stallion. J Equine Vet Sci 2019; 82:102781. [PMID: 31732110 DOI: 10.1016/j.jevs.2019.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 01/06/2023]
Abstract
This case report describes spermatogenic arrest and azoospermia in a stallion with a unique Y chromosome-autosome translocation. Clinical diagnosis of azoospermia was based on history of infertility and evaluation of ejaculates collected for artificial insemination. Clinical and ultrasonographic evaluation of the external and internal genitalia did not reveal any abnormalities except for smaller than normal testicular size. Azoospermia of testicular origin was confirmed by determining alkaline phosphatase concentration in semen. Histological evaluation of testicular tissue after castration confirmed early spermatogenic arrest. Cytogenetic evaluation showed the presence of translocation between the Y chromosome and chromosome 13. To the authors' knowledge, this is the first case of azoospermia with a cytogenetically detected Y chromosome abnormality, suggesting that the horse Y chromosome may carry sequences critical for normal spermatogenesis.
Collapse
|
20
|
Fan H, Hu Y, Shan L, Yu L, Wang B, Li M, Wu Q, Wei F. Synteny search identifies carnivore Y chromosome for evolution of male specific genes. Integr Zool 2019; 14:224-234. [PMID: 30019860 DOI: 10.1111/1749-4877.12352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The explosive accumulation of mammalian genomes has provided a valuable resource to characterize the evolution of the Y chromosome. Unexpectedly, the Y-chromosome sequence has been characterized in only a small handful of species, with the majority being model organisms. Thus, identification of Y-linked scaffolds from unordered genome sequences is becoming more important. Here, we used a syntenic-based approach to generate the scaffolds of the male-specific region of the Y chromosome (MSY) from the genome sequence of 6 male carnivore species. Our results identified 14, 15, 9, 28, 14 and 11 Y-linked scaffolds in polar bears, pacific walruses, red pandas, cheetahs, ferrets and tigers, covering 1.55 Mbp, 2.62 Mbp, 964 Kb, 1.75 Mb, 2.17 Mbp and 1.84 Mb MSY, respectively. All the candidate Y-linked scaffolds in 3 selected species (red pandas, polar bears and tigers) were successfully verified using polymerase chain reaction. We re-annotated 8 carnivore MSYs including these 6 Y-linked scaffolds and domestic dog and cat MSY; a total of 11 orthologous genes conserved in at least 7 of the 8 carnivores were identified. These 11 Y-linked genes have significantly higher evolutionary rates compared with their X-linked counterparts, indicating less purifying selection for MSY genes. Taken together, our study shows that the approach of synteny search is a reliable and easily affordable strategy to identify Y-linked scaffolds from unordered carnivore genomes and provides a preliminary evolutionary study for carnivore MSY genes.
Collapse
Affiliation(s)
- Huizhong Fan
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yibo Hu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Lei Shan
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lijun Yu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bing Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Min Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qi Wu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Fuwen Wei
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
21
|
Das PP, Krishnan G, Doley J, Biswas TK, Paul V, Chakravarty P, Mohan Deb S, Das PJ. Identification and expression profiling of MSY genes of yak for bull fertility. J Genet 2019; 98:41. [PMID: 31204701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Yak (Bos grunniens) is a unique bovine species and considered as lifeline of highlanders. The male subfertility in yak is a matter of concern that causes huge economic loses. The spermatogenesis and male reproduction machinery are critically governed by Y-linked genes which tend to acquire necessary information in the course of evolution. The Y-linked fertility genes are present in multiple copies with testis-limited expression. To understand this novel complexity, 12 male-specific region of Y chromosome (MSY) genes have been studied in the yak. Targeted genes are amplified in male and female genomic DNA and confirmed the male derived specificity. Moreover, testis and sperm-specific expressions of MSY genes are distinct among different tissues. The quantitative polymerase chain reaction results validate the expression pattern of these genes in various tissues with predominant expression intestis and sperm. The sequencing of resultant yak MSY genes gives significant result and shows similarity with cattle (Bos indicus), but few nucleotide mismatches define the proposition of infertile male in the F1 hybrid of cattle and yak. The identified MSY genes can be used to establish male-specific characteristics and to differentiate male and female yak genotypically. Further, these genes may act as valuable resources to understand the capacity of spermatogenesis, embryogenesis, cellular growth, azoospermia and malesubfertility in the yak.
Collapse
Affiliation(s)
- Partha Pratim Das
- Indian Council of Agricultural Research-National Research Centre on Yak, West Kameng, India.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Rando HM, Wadlington WH, Johnson JL, Stutchman JT, Trut LN, Farré M, Kukekova AV. The Red Fox Y-Chromosome in Comparative Context. Genes (Basel) 2019; 10:E409. [PMID: 31142040 PMCID: PMC6627929 DOI: 10.3390/genes10060409] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 12/15/2022] Open
Abstract
While the number of mammalian genome assemblies has proliferated, Y-chromosome assemblies have lagged behind. This discrepancy is caused by biological features of the Y-chromosome, such as its high repeat content, that present challenges to assembly with short-read, next-generation sequencing technologies. Partial Y-chromosome assemblies have been developed for the cat (Feliscatus), dog (Canislupusfamiliaris), and grey wolf (Canislupuslupus), providing the opportunity to examine the red fox (Vulpesvulpes) Y-chromosome in the context of closely related species. Here we present a data-driven approach to identifying Y-chromosome sequence among the scaffolds that comprise the short-read assembled red fox genome. First, scaffolds containing genes found on the Y-chromosomes of cats, dogs, and wolves were identified. Next, analysis of the resequenced genomes of 15 male and 15 female foxes revealed scaffolds containing male-specific k-mers and patterns of inter-sex copy number variation consistent with the heterogametic chromosome. Analyzing variation across these two metrics revealed 171 scaffolds containing 3.37 Mbp of putative Y-chromosome sequence. The gene content of these scaffolds is consistent overall with that of the Y-chromosome in other carnivore species, though the red fox Y-chromosome carries more copies of BCORY2 and UBE1Y than has been reported in related species and fewer copies of SRY than in other canids. The assignment of these scaffolds to the Y-chromosome serves to further characterize the content of the red fox draft genome while providing resources for future analyses of canid Y-chromosome evolution.
Collapse
Affiliation(s)
- Halie M Rando
- Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
- Department of Animal Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - William H Wadlington
- Tropical Research and Education Center, Agronomy Department, University of Florida, Homestead, FL 33031, USA.
| | - Jennifer L Johnson
- Department of Animal Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Jeremy T Stutchman
- Department of Animal Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Lyudmila N Trut
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia.
| | - Marta Farré
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| | - Anna V Kukekova
- Department of Animal Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
23
|
Das PP, Krishnan G, Doley J, Biswas TK, Paul V, Chakravarty P, Deb SM, Das PJ. Identification and expression profiling of MSY genes of yak for bull fertility. J Genet 2019. [DOI: 10.1007/s12041-019-1091-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Felkel S, Vogl C, Rigler D, Dobretsberger V, Chowdhary BP, Distl O, Fries R, Jagannathan V, Janečka JE, Leeb T, Lindgren G, McCue M, Metzger J, Neuditschko M, Rattei T, Raudsepp T, Rieder S, Rubin CJ, Schaefer R, Schlötterer C, Thaller G, Tetens J, Velie B, Brem G, Wallner B. The horse Y chromosome as an informative marker for tracing sire lines. Sci Rep 2019; 9:6095. [PMID: 30988347 PMCID: PMC6465346 DOI: 10.1038/s41598-019-42640-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 04/04/2019] [Indexed: 12/31/2022] Open
Abstract
Analysis of the Y chromosome is the best-established way to reconstruct paternal family history in humans. Here, we applied fine-scaled Y-chromosomal haplotyping in horses with biallelic markers and demonstrate the potential of our approach to address the ancestry of sire lines. We de novo assembled a draft reference of the male-specific region of the Y chromosome from Illumina short reads and then screened 5.8 million basepairs for variants in 130 specimens from intensively selected and rural breeds and nine Przewalski's horses. Among domestic horses we confirmed the predominance of a young'crown haplogroup' in Central European and North American breeds. Within the crown, we distinguished 58 haplotypes based on 211 variants, forming three major haplogroups. In addition to two previously characterised haplogroups, one observed in Arabian/Coldblooded and the other in Turkoman/Thoroughbred horses, we uncovered a third haplogroup containing Iberian lines and a North African Barb Horse. In a genealogical showcase, we distinguished the patrilines of the three English Thoroughbred founder stallions and resolved a historic controversy over the parentage of the horse 'Galopin', born in 1872. We observed two nearly instantaneous radiations in the history of Central and Northern European Y-chromosomal lineages that both occurred after domestication 5,500 years ago.
Collapse
Affiliation(s)
- Sabine Felkel
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, 1210, Austria
- Vienna Graduate School of Population Genetics, Vienna, Austria
| | - Claus Vogl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, 1210, Austria
| | - Doris Rigler
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, 1210, Austria
| | - Viktoria Dobretsberger
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, 1210, Austria
| | | | - Ottmar Distl
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, 30559, Germany
| | - Ruedi Fries
- Lehrstuhl fuer Tierzucht, Technische Universitaet Muenchen, Freising, 85354, Germany
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, 3001, Switzerland
| | - Jan E Janečka
- Department of Biological Sciences, Duquesne University, Pittsburgh, 15282, USA
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, 3001, Switzerland
| | - Gabriella Lindgren
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, 75007, Sweden
- Department of Biosystems, KU Leuven, Leuven, 3001, Belgium
| | - Molly McCue
- Veterinary Population Medicine Department, University of Minnesota, St. Paul, MN, 55108, USA
| | - Julia Metzger
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, 30559, Germany
| | | | - Thomas Rattei
- Department of Microbiology and Ecosystem Science, Division of Computational Systems Biology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Terje Raudsepp
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4458, USA
| | - Stefan Rieder
- Agroscope, Swiss National Stud Farm, Avenches, 1580, Switzerland
| | - Carl-Johan Rubin
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, 75123, Sweden
| | - Robert Schaefer
- Agroscope, Swiss National Stud Farm, Avenches, 1580, Switzerland
| | - Christian Schlötterer
- Institut fuer Populationsgenetik, University of Veterinary Medicine Vienna, Vienna, 1210, Austria
| | - Georg Thaller
- Institute of Animal Breeding and Husbandry, University of Kiel, Kiel, 24098, Germany
| | - Jens Tetens
- Institute of Animal Breeding and Husbandry, University of Kiel, Kiel, 24098, Germany
- Functional Breeding Group, Department of Animal Sciences, Georg-August-University Göttingen, Göttingen, 37077, Germany
| | - Brandon Velie
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, 75007, Sweden
- School of Life and Environmental Sciences, University of Sydney, Sydney, 2006, Australia
| | - Gottfried Brem
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, 1210, Austria
| | - Barbara Wallner
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, 1210, Austria.
| |
Collapse
|
25
|
Brashear WA, Raudsepp T, Murphy WJ. Evolutionary conservation of Y Chromosome ampliconic gene families despite extensive structural variation. Genome Res 2018; 28:1841-1851. [PMID: 30381290 PMCID: PMC6280758 DOI: 10.1101/gr.237586.118] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 10/27/2018] [Indexed: 12/20/2022]
Abstract
Despite claims that the mammalian Y Chromosome is on a path to extinction, comparative sequence analysis of primate Y Chromosomes has shown the decay of the ancestral single-copy genes has all but ceased in this eutherian lineage. The suite of single-copy Y-linked genes is highly conserved among the majority of eutherian Y Chromosomes due to strong purifying selection to retain dosage-sensitive genes. In contrast, the ampliconic regions of the Y Chromosome, which contain testis-specific genes that encode the majority of the transcripts on eutherian Y Chromosomes, are rapidly evolving and are thought to undergo species-specific turnover. However, ampliconic genes are known from only a handful of species, limiting insights into their long-term evolutionary dynamics. We used a clone-based sequencing approach employing both long- and short-read sequencing technologies to assemble ∼2.4 Mb of representative ampliconic sequence dispersed across the domestic cat Y Chromosome, and identified the major ampliconic gene families and repeat units. We analyzed fluorescence in situ hybridization, qPCR, and whole-genome sequence data from 20 cat species and revealed that ampliconic gene families are conserved across the cat family Felidae but show high transcript diversity, copy number variation, and structural rearrangement. Our analysis of ampliconic gene evolution unveils a complex pattern of long-term gene content stability despite extensive structural variation on a nonrecombining background.
Collapse
Affiliation(s)
- Wesley A Brashear
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843, USA.,Interdisciplinary Program in Genetics, Texas A&M University, College Station, Texas 77843, USA
| | - Terje Raudsepp
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843, USA.,Interdisciplinary Program in Genetics, Texas A&M University, College Station, Texas 77843, USA
| | - William J Murphy
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843, USA.,Interdisciplinary Program in Genetics, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
26
|
Albarella S, De Lorenzi L, Catone G, Magi GE, Petrucci L, Vullo C, D'Anza E, Parma P, Raudsepp T, Ciotola F, Peretti V. Diagnosis of XX/XY Blood Cell Chimerism at a Low Percentage in Horses. J Equine Vet Sci 2018. [DOI: 10.1016/j.jevs.2018.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
27
|
Neuhauser S, Handler J, Schelling C, Pieńkowska-Schelling A. Disorder of Sexual Development in a Mare with an Unusual Tentative Mosaic Karyotype: 63,X/64,Xdel(Y). Sex Dev 2018; 12:232-238. [PMID: 30071527 DOI: 10.1159/000490861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2018] [Indexed: 11/19/2022] Open
Abstract
The present report describes a 4-year-old Trakehner mare which was referred to the clinic for a breeding soundness evaluation. Clinical, histological, and postmortem examination revealed an underdeveloped genital tract, the absence of a cervix uteri, and small inactive ovaries without male gonadal tissue. Blood lymphocyte analysis revealed an unusual mosaic karyotype consisting of 2 cell lines. For the majority of cells (70%), monosomy X (63,X) was observed. The remaining cells (30%) contained 64 chromosomes including one X chromosome and a small rudimentary Y chromosome consisting mostly of heterochromatin. The centromere was retained, but its full functionality was questionable. PCR analysis revealed that the entire male-specific region of Y (Yq14), including the SRY gene, was deleted. It remained unclear if the pseudoautosomal region (Yq15) and parts of the heterochromatic region (Yq13) were affected by this deletion. The phenotype of the mare with this disorder of sex development associated with sex chromosome abnormalities is genetically comparable to 63,X monosomy which fully explains the clinical findings.
Collapse
|
28
|
Janečka JE, Davis BW, Ghosh S, Paria N, Das PJ, Orlando L, Schubert M, Nielsen MK, Stout TAE, Brashear W, Li G, Johnson CD, Metz RP, Zadjali AMA, Love CC, Varner DD, Bellott DW, Murphy WJ, Chowdhary BP, Raudsepp T. Horse Y chromosome assembly displays unique evolutionary features and putative stallion fertility genes. Nat Commun 2018; 9:2945. [PMID: 30054462 PMCID: PMC6063916 DOI: 10.1038/s41467-018-05290-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 05/23/2018] [Indexed: 01/08/2023] Open
Abstract
Dynamic evolutionary processes and complex structure make the Y chromosome among the most diverse and least understood regions in mammalian genomes. Here, we present an annotated assembly of the male specific region of the horse Y chromosome (eMSY), representing the first comprehensive Y assembly in odd-toed ungulates. The eMSY comprises single-copy, equine specific multi-copy, PAR transposed, and novel ampliconic sequence classes. The eMSY gene density approaches that of autosomes with the highest number of retained X-Y gametologs recorded in eutherians, in addition to novel Y-born and transposed genes. Horse, donkey and mule testis RNAseq reveals several candidate genes for stallion fertility. A novel testis-expressed XY ampliconic sequence class, ETSTY7, is shared with the parasite Parascaris genome, providing evidence for eukaryotic horizontal transfer and inter-chromosomal mobility. Our study highlights the dynamic nature of the Y and provides a reference sequence for improved understanding of equine male development and fertility.
Collapse
Affiliation(s)
| | - Brian W Davis
- Texas A&M University, College Station, TX, 77843, USA
| | | | - Nandina Paria
- Texas Scottish Rite Hospital for Children, Dallas, TX, 75219, USA
| | - Pranab J Das
- ICAR-National Research Centre on Pig, Guwahati, Assam, 781131, India
| | - Ludovic Orlando
- Natural History Museum of Denmark, 1350K, Copenhagen, Denmark.,Université de Toulouse, Université Paul Sabatier, 31000, Toulouse, France
| | - Mikkel Schubert
- Natural History Museum of Denmark, 1350K, Copenhagen, Denmark
| | | | | | | | - Gang Li
- Texas A&M University, College Station, TX, 77843, USA
| | | | - Richard P Metz
- Texas A&M AgriLife Research, College Station, TX, 77843, USA
| | | | | | | | | | | | - Bhanu P Chowdhary
- Texas A&M University, College Station, TX, 77843, USA. .,United Arab Emirates University, Al Ain, 15551, UAE.
| | | |
Collapse
|
29
|
Han H, Zhang X, Zhao X, Xia X, Lei C, Dang R. Eight Y chromosome genes show copy number variations in horses. Arch Anim Breed 2018. [DOI: 10.5194/aab-61-263-2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Abstract. Copy number variations (CNVs), which represent a significant source of genetic diversity on the Y chromosome in mammals, have been shown to be associated with the development of many complex phenotypes, such as reproduction and male fertility. The occurrence of CNVs has been confirmed on the Y chromosome in horses. However, the copy numbers (CNs) of Equus caballus Y chromosome (ECAY) genes are largely unknown. To demonstrate the copy number variations of Y chromosome genes in horses, the quantitative real-time polymerase chain reaction (qPCR) method was applied to measure the CNVs of the eukaryotic translation initiation factor 1A Y (EIF1AY), equine testis-specific transcript on Y 1 (ETSTY1), equine testis-specific transcript on Y 4 (ETSTY4), equine testis-specific transcript on Y 5 (ETSTY5), equine transcript Y4 (ETY4), ubiquitin activating enzyme Y (UBE1Y), sex determining region Y (SRY), and inverted repeat 2 Y (YIR2) across 14 Chinese domestic horse breeds in this study. Our results revealed that these eight genes were multi-copy; furthermore, some of the well acknowledged single-copy genes such as SRY and EIF1AY were found to be multi-copy in this research. The median copy numbers (MCNs) varied among different breeds for the same gene. The CNVs of Y chromosome genes showed different distribution patterns among Chinese horse breeds, indicating the impact of natural selection on copy numbers. Our results will provide fundamental information for future functional studies.
Collapse
|
30
|
Chen H, Ren Z, Zhao J, Zhang C, Yang X. Y-chromosome polymorphisms of the domestic Bactrian camel in China. J Genet 2018; 97:3-10. [PMID: 29666320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Single-nucleotide polymorphisms (SNPs), microsatellites and copy number variation (CNV) were studied on the Y chromosome to understand the paternal origin and phylogenetic relationships for resource protection, rational development and utilization of the domestic Bactrian camel in China. Our sample set consisted of 94 Chinese domestic Bactrian camels from four regions (Inner Mongolia, Gansu, Qinghai and Xinjiang), we screened 29 Y-chromosome-specific loci for SNPs, analysed 40 bovine-derived microsatellite loci and measured CNVs of HSFY and SRY through Sanger sequencing, automated fluorescence-based microsatellite analysis and quantitative real-time PCR, respectively. A multicopy gene, SRY, was first found, and sequence variation was only detected in SRY in a screen of 29 loci in 13 DNA pools of individual camels. In addition, a TG repeat in the USP9Y gene was identified as the first polymorphic microsatellite in the camel Y chromosome, whereas microsatellite based on bovine sequences were not detected. The frequency of each allele varied among different populations. For the Nanjiang, Hexi and Alashan populations, a 243-bp allele was found. For the Sunite population, 241-bp, 243-bp and 247-bp alleles were detected, and the frequencies of these alleles were 22.2%, 44.5% and 33.3%, respectively; 241-bp and 243-bp alleles were found in other populations. Finally, CNVs in two Y-chromosomal genes were detected; CNV for HSFY and SRY ranged from 1 to 3 and from 1 to 9, respectively.
Collapse
Affiliation(s)
- Huiling Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | | | | | | | | |
Collapse
|
31
|
Chen H, Ren Z, Zhao J, Zhang C, Yang X. Y-chromosome polymorphisms of the domestic Bactrian camel in China. J Genet 2018. [DOI: 10.1007/s12041-017-0852-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Han H, Zhao X, Xia X, Chen H, Lei C, Dang R. Copy number variations of five Y chromosome genes in donkeys. Arch Anim Breed 2017. [DOI: 10.5194/aab-60-391-2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Abstract. In mammals, the Y chromosome plays a pivotal role in male sex determination and is essential for normal sperm production. A number of studies were conducted on Y chromosome genes of various species and identified single-copy and multi-copy genes. However, limited studies about donkey Y chromosome genes have been done. In this study, 263 male samples from 13 Chinese donkey breeds were collected to analyze the copy number variations (CNVs) of five Y chromosome genes using the quantitative PCR (qPCR) method. These five genes (cullin 4 B Y (CUL4BY), equus testis-specific transcript y1 (ETSTY1), equus testis-specific transcript y4 (ETSTY4), equus testis-specific transcript Y 5 (ETSTY5), and sex-determining region Y (SRY) were identified as multi-copy, whose median copy numbers (MCNs) were 5, 45, 2, and 2, and 13 with CNV ranges of 1–57, 1–227, 1–37, 1–86 and 1–152, respectively. The CNVs of these five genes were shared in different breeds. Compared to previous studies, the copy numbers of five genes showed some distinct consequences in this study. In particular, the well-known single-copy SRY gene showed CNVs in donkeys. Our results provided genetic variations of donkey Y chromosome genes.
Collapse
|
33
|
Wallner B, Palmieri N, Vogl C, Rigler D, Bozlak E, Druml T, Jagannathan V, Leeb T, Fries R, Tetens J, Thaller G, Metzger J, Distl O, Lindgren G, Rubin CJ, Andersson L, Schaefer R, McCue M, Neuditschko M, Rieder S, Schlötterer C, Brem G. Y Chromosome Uncovers the Recent Oriental Origin of Modern Stallions. Curr Biol 2017; 27:2029-2035.e5. [PMID: 28669755 DOI: 10.1016/j.cub.2017.05.086] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/19/2017] [Accepted: 05/26/2017] [Indexed: 11/25/2022]
Abstract
The Y chromosome directly reflects male genealogies, but the extremely low Y chromosome sequence diversity in horses has prevented the reconstruction of stallion genealogies [1, 2]. Here, we resolve the first Y chromosome genealogy of modern horses by screening 1.46 Mb of the male-specific region of the Y chromosome (MSY) in 52 horses from 21 breeds. Based on highly accurate pedigree data, we estimated the de novo mutation rate of the horse MSY and showed that various modern horse Y chromosome lineages split much later than the domestication of the species. Apart from few private northern European haplotypes, all modern horse breeds clustered together in a roughly 700-year-old haplogroup that was transmitted to Europe by the import of Oriental stallions. The Oriental horse group consisted of two major subclades: the Original Arabian lineage and the Turkoman horse lineage. We show that the English Thoroughbred MSY was derived from the Turkoman lineage and that English Thoroughbred sires are largely responsible for the predominance of this haplotype in modern horses.
Collapse
Affiliation(s)
- Barbara Wallner
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna 1210, Austria.
| | - Nicola Palmieri
- Institut für Populationsgenetik, University of Veterinary Medicine Vienna, Vienna 1210, Austria; Institute of Parasitology, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| | - Claus Vogl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| | - Doris Rigler
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| | - Elif Bozlak
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| | - Thomas Druml
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern 3001, Switzerland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern 3001, Switzerland
| | - Ruedi Fries
- Lehrstuhl für Tierzucht, Technische Universität München, Freising 85354, Germany
| | - Jens Tetens
- Institute of Animal Breeding and Husbandry, University of Kiel, Kiel 24098, Germany; Functional Breeding Group, Department of Animal Sciences, Georg-August-University Göttingen, Göttingen 37077, Germany
| | - Georg Thaller
- Institute of Animal Breeding and Husbandry, University of Kiel, Kiel 24098, Germany
| | - Julia Metzger
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover 30559, Germany
| | - Ottmar Distl
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover 30559, Germany
| | - Gabriella Lindgren
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala 75007, Sweden
| | - Carl-Johan Rubin
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala 75123, Sweden
| | - Leif Andersson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala 75007, Sweden; Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala 75123, Sweden; Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4461, USA
| | - Robert Schaefer
- Veterinary Population Medicine Department, University of Minnesota, St. Paul, MN 55108, USA
| | - Molly McCue
- Veterinary Population Medicine Department, University of Minnesota, St. Paul, MN 55108, USA
| | | | - Stefan Rieder
- Agroscope, Swiss National Stud Farm, Avenches 1580, Switzerland
| | - Christian Schlötterer
- Institut für Populationsgenetik, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| | - Gottfried Brem
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| |
Collapse
|
34
|
Oluwole OA, Mahboubi K, Favetta LA, Revay T, Kroetsch T, King WA. Highly dynamic temporal changes of TSPY gene copy number in aging bulls. PLoS One 2017; 12:e0178558. [PMID: 28552978 PMCID: PMC5446161 DOI: 10.1371/journal.pone.0178558] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 05/15/2017] [Indexed: 12/30/2022] Open
Abstract
The Y-chromosomal TSPY gene is one of the highest copy number mammalian protein coding gene and represents a unique biological model to study various aspects of genomic copy number variations. This study investigated the age-related copy number variability of the bovine TSPY gene, a new and unstudied aspect of the biology of TSPY that has been shown to vary among cattle breeds, individual bulls and somatic tissues. The subjects of this prospective 30-month long study were 25 Holstein bulls, sampled every six months. Real-time quantitative PCR was used to determine the relative TSPY copy number (rTSPY CN) and telomere length in the DNA samples extracted from blood. Twenty bulls showed an altered rTSPY CN after 30 months, although only 9 bulls showed a significant change (4 significant increase while 5 significant decrease, P<0.01). The sequential sampling provided the flow of rTSPY CN over six observations in 30 months and wide-spread variation of rTSPY CN was detected. Although a clear trend of the direction of change was not identifiable, the highly dynamic changes of individual rTSPY CN in aging bulls were observed here for the first time. In summary we have observed a highly variable rTSPY CN in bulls over a short period of time. Our results suggest the importance of further long term studies of the dynamics of rTSPY CN variablility.
Collapse
Affiliation(s)
- Olutobi A. Oluwole
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Kiana Mahboubi
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Laura A. Favetta
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Tamas Revay
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
- * E-mail:
| | | | - William Allan King
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
35
|
Abstract
The great apes (orangutans, gorillas, chimpanzees, bonobos and humans) descended from a common ancestor around 13 million years ago, and since then their sex chromosomes have followed very different evolutionary paths. While great-ape X chromosomes are highly conserved, their Y chromosomes, reflecting the general lability and degeneration of this male-specific part of the genome since its early mammalian origin, have evolved rapidly both between and within species. Understanding great-ape Y chromosome structure, gene content and diversity would provide a valuable evolutionary context for the human Y, and would also illuminate sex-biased behaviours, and the effects of the evolutionary pressures exerted by different mating strategies on this male-specific part of the genome. High-quality Y-chromosome sequences are available for human and chimpanzee (and low-quality for gorilla). The chromosomes differ in size, sequence organisation and content, and while retaining a relatively stable set of ancestral single-copy genes, show considerable variation in content and copy number of ampliconic multi-copy genes. Studies of Y-chromosome diversity in other great apes are relatively undeveloped compared to those in humans, but have nevertheless provided insights into speciation, dispersal, and mating patterns. Future studies, including data from larger sample sizes of wild-born and geographically well-defined individuals, and full Y-chromosome sequences from bonobos, gorillas and orangutans, promise to further our understanding of population histories, male-biased behaviours, mutation processes, and the functions of Y-chromosomal genes.
Collapse
|
36
|
Abstract
The association between chromosomal abnormalities and reduced fertility in domestic animals is well recorded and has been studied for decades. Chromosome aberrations directly affect meiosis, gametogenesis, and the viability of zygotes and embryos. In some instances, balanced structural rearrangements can be transmitted, causing fertility problems in subsequent generations. Here, we aim to give a comprehensive overview of the current status and future prospects of clinical cytogenetics of animal reproduction by focusing on the advances in molecular cytogenetics during the genomics era. We describe how advancing knowledge about animal genomes has improved our understanding of connections between gross structural or molecular chromosome variations and reproductive disorders. Further, we expand on a key area of reproduction genetics: cytogenetics of animal gametes and embryos. Finally, we describe how traditional cytogenetics is interfacing with advanced genomics approaches, such as array technologies and next-generation sequencing, and speculate about the future prospects.
Collapse
Affiliation(s)
- Terje Raudsepp
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843-4458;
| | | |
Collapse
|
37
|
Murata C, Kuroki Y, Imoto I, Kuroiwa A. Ancestral Y-linked genes were maintained by translocation to the X and Y chromosomes fused to an autosomal pair in the Okinawa spiny rat Tokudaia muenninki. Chromosome Res 2016; 24:407-19. [DOI: 10.1007/s10577-016-9531-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/14/2016] [Indexed: 11/29/2022]
|
38
|
Bolzon C, Joonè CJ, Schulman ML, Harper CK, Villagómez DA, King WA, Révay T. Missense Mutation in the Ligand-Binding Domain of the Horse Androgen Receptor Gene in a Thoroughbred Family with Inherited 64,XY (SRY+) Disorder of Sex Development. Sex Dev 2016; 10:37-44. [DOI: 10.1159/000444991] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Indexed: 11/19/2022] Open
|
39
|
Skinner BM, Sargent CA, Churcher C, Hunt T, Herrero J, Loveland JE, Dunn M, Louzada S, Fu B, Chow W, Gilbert J, Austin-Guest S, Beal K, Carvalho-Silva D, Cheng W, Gordon D, Grafham D, Hardy M, Harley J, Hauser H, Howden P, Howe K, Lachani K, Ellis PJI, Kelly D, Kerry G, Kerwin J, Ng BL, Threadgold G, Wileman T, Wood JMD, Yang F, Harrow J, Affara NA, Tyler-Smith C. The pig X and Y Chromosomes: structure, sequence, and evolution. Genome Res 2015; 26:130-9. [PMID: 26560630 PMCID: PMC4691746 DOI: 10.1101/gr.188839.114] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 11/09/2015] [Indexed: 12/19/2022]
Abstract
We have generated an improved assembly and gene annotation of the pig X Chromosome, and a first draft assembly of the pig Y Chromosome, by sequencing BAC and fosmid clones from Duroc animals and incorporating information from optical mapping and fiber-FISH. The X Chromosome carries 1033 annotated genes, 690 of which are protein coding. Gene order closely matches that found in primates (including humans) and carnivores (including cats and dogs), which is inferred to be ancestral. Nevertheless, several protein-coding genes present on the human X Chromosome were absent from the pig, and 38 pig-specific X-chromosomal genes were annotated, 22 of which were olfactory receptors. The pig Y-specific Chromosome sequence generated here comprises 30 megabases (Mb). A 15-Mb subset of this sequence was assembled, revealing two clusters of male-specific low copy number genes, separated by an ampliconic region including the HSFY gene family, which together make up most of the short arm. Both clusters contain palindromes with high sequence identity, presumably maintained by gene conversion. Many of the ancestral X-related genes previously reported in at least one mammalian Y Chromosome are represented either as active genes or partial sequences. This sequencing project has allowed us to identify genes--both single copy and amplified--on the pig Y Chromosome, to compare the pig X and Y Chromosomes for homologous sequences, and thereby to reveal mechanisms underlying pig X and Y Chromosome evolution.
Collapse
Affiliation(s)
- Benjamin M Skinner
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Carole A Sargent
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Carol Churcher
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Toby Hunt
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Javier Herrero
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, United Kingdom; Bill Lyons Informatics Centre, UCL Cancer Institute, University College London, London WC1E 6BT, United Kingdom
| | - Jane E Loveland
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Matt Dunn
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Sandra Louzada
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Beiyuan Fu
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - William Chow
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - James Gilbert
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | | | - Kathryn Beal
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Denise Carvalho-Silva
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - William Cheng
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Daria Gordon
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Darren Grafham
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Matt Hardy
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Jo Harley
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Heidi Hauser
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Philip Howden
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom; Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Kerstin Howe
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Kim Lachani
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Peter J I Ellis
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Daniel Kelly
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Giselle Kerry
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - James Kerwin
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Bee Ling Ng
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Glen Threadgold
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Thomas Wileman
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Jonathan M D Wood
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Fengtang Yang
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Jen Harrow
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Nabeel A Affara
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Chris Tyler-Smith
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| |
Collapse
|
40
|
Quach AT, Oluwole O, King WA, Revay T. The Porcine TSPY Gene Is Tricopy but Not a Copy Number Variant. PLoS One 2015; 10:e0131745. [PMID: 26133983 PMCID: PMC4489747 DOI: 10.1371/journal.pone.0131745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 06/05/2015] [Indexed: 12/02/2022] Open
Abstract
The testis-specific protein Y-encoded (TSPY) gene is situated on the mammalian Y-chromosome and exhibits some remarkable biological characteristics. It has the highest known copy number (CN) of all protein coding genes in the human and bovine genomes (up to 74 and 200, respectively) and also shows high individual variability. Although the biological function of TSPY has not yet been elucidated, its specific expression in the testis and several identified binding domains within the protein suggests roles in male reproduction. Here we describe the porcine TSPY, as a multicopy gene with three copies located on the short arm of the Y-chromosome with no variation at three exon loci among 20 animals of normal reproductive health from four breeds of domestic pigs (Piétrain, Landrace, Duroc and Yorkshire). To further investigate the speculation that porcine TSPY is not a copy number variant, we have included five Low-fertility boars and five boars with exceptional High-fertility records. Interestingly, there was no difference between the High- and Low-fertile groups, but we detected slightly lower TSPY CN at all three exons (2.56-2.85) in both groups, as compared to normal animals, which could be attributed to technical variability or somatic mosaicism. The results are based on both relative quantitative real-time PCR (qPCR) and droplet digital PCR (ddPCR). Chromosomal localization of the porcine TSPY was done using fluorescence in situ hybridization (FISH) with gene specific PCR probes.
Collapse
Affiliation(s)
- Anh T. Quach
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Olutobi Oluwole
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - William Allan King
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Tamas Revay
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
- * E-mail:
| |
Collapse
|
41
|
Han H, Zhang Q, Gao K, Yue X, Zhang T, Dang R, Lan X, Chen H, Lei C. Y-Single Nucleotide Polymorphisms Diversity in Chinese Indigenous Horse. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2015; 28:1066-74. [PMID: 26104513 PMCID: PMC4478473 DOI: 10.5713/ajas.14.0784] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/16/2014] [Accepted: 03/04/2015] [Indexed: 11/27/2022]
Abstract
In contrast to high genetic diversity of mitochondrial DNA (mtDNA), equine Y chromosome shows extremely low variability, implying limited patrilines in the domesticated horse. In this study, we applied direct sequencing and restriction fragment length polymorphism (RFLP) methods to investigate the polymorphisms of 33 Y chromosome specific loci in 304 Chinese indigenous horses from 13 breeds. Consequently, two Y-single nucleotide polymorphisms (SNPs) (Y-45701/997 and Y-50869) and one Y-indel (Y-45288) were identified. Of those, the Y-50869 (T>A) revealed the highest variation frequency (24.67%), whereas it was only 3.29% and 1.97% in Y-45288 (T/-) and Y-45701/997 (G>T) locus, respectively. These three mutations accounted for 27.96% of the total samples and identified five Y-SNP haplotypes, demonstrating genetic diversity of Y chromosome in Chinese horses. In addition, all the five Y-SNP haplotypes were shared by different breeds. Among 13 horse breeds analyzed, Balikun horse displayed the highest nucleotide diversity (π = 5.6×10(-4)) and haplotype diversity (h = 0.527), while Ningqiang horse showed the lowest nucleotide diversity (π = 0.00000) and haplotype diversity (h = 0.000). The results also revealed that Chinese horses had a different polymorphic pattern of Y chromosome from European and American horses. In conclusion, Chinese horses revealed genetic diversity of Y chromosome, however more efforts should be made to better understand the domestication and paternal origin of Chinese indigenous horses.
Collapse
Affiliation(s)
- Haoyuan Han
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qin Zhang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kexin Gao
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiangpeng Yue
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tao Zhang
- Shaanxi University of Technology, Hanzhong, Shaanxi 723001, China
| | - Ruihua Dang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xianyong Lan
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hong Chen
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chuzhao Lei
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
42
|
Mukherjee A, Dass G, Mohanarao G J, Katneni VK, Banerjee D, Das TK, Gohain M, Chakrabarty AK, Datta TK, De S. Copy number differences of Y chromosomal genes between superior and inferior quality semen producing crossbred (Bos taurus × Bos indicus) bulls. Anim Biotechnol 2015; 26:65-72. [PMID: 25153458 DOI: 10.1080/10495398.2014.887020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The removal of crossbred bulls from semen collection programs due to the production of poor quality semen causes substantial monetary losses to the dairy industry. Seminal quality, a quantitative trait, is greatly influenced by genome level variations. Deletion and/or duplication of Y chromosomal genes and subsequent changes in gene copy number have a major role in determining spermatogenic efficiency and, therefore, seminal quality. In this study, copy numbers of three Y chromosomal genes TSPY, DDX3Y, and USP9Y in genomic DNA were estimated and compared in two groups of crossbred (Bos taurus × Bos indicus) bulls of ten each, superior and inferior quality semen producing bulls, which were classified based on their seminal quality parameters. For TSPY gene, the inferior quality semen donor group has significantly lower copy number than superior quality semen donor group (p < 0.05). No significant difference was found in DDX3Y and USP9Y gene copy numbers between two groups (p > 0.05). In conclusion, this study demonstrates that the copy number of TSPY, a Y chromosomal spermatogenesis related gene, may be an important determinant to predict the quality of bull semen, facilitating better selection of bulls in a herd for semen collection program.
Collapse
Affiliation(s)
- Ayan Mukherjee
- a Animal Genomics Lab, Animal Biotechnology Center , National Dairy Research Institute , Karnal , India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Herrera C, Morikawa M, Castex CB, Pinto M, Ortega N, Fanti T, Garaguso R, Franco M, Castañares M, Castañeira C, Losinno L, Miragaya M, Mutto A. Blastocele fluid from in vitro– and in vivo–produced equine embryos contains nuclear DNA. Theriogenology 2015; 83:415-20. [DOI: 10.1016/j.theriogenology.2014.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 09/09/2014] [Accepted: 10/04/2014] [Indexed: 11/25/2022]
|
44
|
Soh YQS, Alföldi J, Pyntikova T, Brown LG, Graves T, Minx PJ, Fulton RS, Kremitzki C, Koutseva N, Mueller JL, Rozen S, Hughes JF, Owens E, Womack JE, Murphy WJ, Cao Q, de Jong P, Warren WC, Wilson RK, Skaletsky H, Page DC. Sequencing the mouse Y chromosome reveals convergent gene acquisition and amplification on both sex chromosomes. Cell 2014; 159:800-13. [PMID: 25417157 DOI: 10.1016/j.cell.2014.09.052] [Citation(s) in RCA: 240] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 09/04/2014] [Accepted: 09/22/2014] [Indexed: 01/27/2023]
Abstract
We sequenced the MSY (male-specific region of the Y chromosome) of the C57BL/6J strain of the laboratory mouse Mus musculus. In contrast to theories that Y chromosomes are heterochromatic and gene poor, the mouse MSY is 99.9% euchromatic and contains about 700 protein-coding genes. Only 2% of the MSY derives from the ancestral autosomes that gave rise to the mammalian sex chromosomes. Instead, all but 45 of the MSY's genes belong to three acquired, massively amplified gene families that have no homologs on primate MSYs but do have acquired, amplified homologs on the mouse X chromosome. The complete mouse MSY sequence brings to light dramatic forces in sex chromosome evolution: lineage-specific convergent acquisition and amplification of X-Y gene families, possibly fueled by antagonism between acquired X-Y homologs. The mouse MSY sequence presents opportunities for experimental studies of a sex-specific chromosome in its entirety, in a genetically tractable model organism.
Collapse
Affiliation(s)
- Y Q Shirleen Soh
- Whitehead Institute, 9 Cambridge Center, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Jessica Alföldi
- Whitehead Institute, 9 Cambridge Center, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | | | - Laura G Brown
- Whitehead Institute, 9 Cambridge Center, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA 02142, USA
| | - Tina Graves
- The Genome Institute, Washington University School of Medicine, 4444 Forest Park Boulevard, St. Louis, MO 63108, USA
| | - Patrick J Minx
- The Genome Institute, Washington University School of Medicine, 4444 Forest Park Boulevard, St. Louis, MO 63108, USA
| | - Robert S Fulton
- The Genome Institute, Washington University School of Medicine, 4444 Forest Park Boulevard, St. Louis, MO 63108, USA
| | - Colin Kremitzki
- The Genome Institute, Washington University School of Medicine, 4444 Forest Park Boulevard, St. Louis, MO 63108, USA
| | - Natalia Koutseva
- Whitehead Institute, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Jacob L Mueller
- Whitehead Institute, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Steve Rozen
- Whitehead Institute, 9 Cambridge Center, Cambridge, MA 02142, USA
| | | | - Elaine Owens
- College of Veterinary Medicine and Biomedical Sciences, 4458 Texas A&M University, College Station, TX 77843, USA
| | - James E Womack
- College of Veterinary Medicine and Biomedical Sciences, 4458 Texas A&M University, College Station, TX 77843, USA
| | - William J Murphy
- College of Veterinary Medicine and Biomedical Sciences, 4458 Texas A&M University, College Station, TX 77843, USA
| | - Qing Cao
- BACPAC Resources, Children's Hospital Oakland, 747 52nd Street, Oakland, CA 94609, USA
| | - Pieter de Jong
- BACPAC Resources, Children's Hospital Oakland, 747 52nd Street, Oakland, CA 94609, USA
| | - Wesley C Warren
- The Genome Institute, Washington University School of Medicine, 4444 Forest Park Boulevard, St. Louis, MO 63108, USA
| | - Richard K Wilson
- The Genome Institute, Washington University School of Medicine, 4444 Forest Park Boulevard, St. Louis, MO 63108, USA
| | - Helen Skaletsky
- Whitehead Institute, 9 Cambridge Center, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA 02142, USA
| | - David C Page
- Whitehead Institute, 9 Cambridge Center, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA 02142, USA.
| |
Collapse
|
45
|
Abstract
We constructed a 400K WG tiling oligoarray for the horse and applied it for the discovery of copy number variations (CNVs) in 38 normal horses of 16 diverse breeds, and the Przewalski horse. Probes on the array represented 18,763 autosomal and X-linked genes, and intergenic, sub-telomeric and chrY sequences. We identified 258 CNV regions (CNVRs) across all autosomes, chrX and chrUn, but not in chrY. CNVs comprised 1.3% of the horse genome with chr12 being most enriched. American Miniature horses had the highest and American Quarter Horses the lowest number of CNVs in relation to Thoroughbred reference. The Przewalski horse was similar to native ponies and draft breeds. The majority of CNVRs involved genes, while 20% were located in intergenic regions. Similar to previous studies in horses and other mammals, molecular functions of CNV-associated genes were predominantly in sensory perception, immunity and reproduction. The findings were integrated with previous studies to generate a composite genome-wide dataset of 1476 CNVRs. Of these, 301 CNVRs were shared between studies, while 1174 were novel and require further validation. Integrated data revealed that to date, 41 out of over 400 breeds of the domestic horse have been analyzed for CNVs, of which 11 new breeds were added in this study. Finally, the composite CNV dataset was applied in a pilot study for the discovery of CNVs in 6 horses with XY disorders of sexual development. A homozygous deletion involving AKR1C gene cluster in chr29 in two affected horses was considered possibly causative because of the known role of AKR1C genes in testicular androgen synthesis and sexual development. While the findings improve and integrate the knowledge of CNVs in horses, they also show that for effective discovery of variants of biomedical importance, more breeds and individuals need to be analyzed using comparable methodological approaches. Genomes of individuals in a species vary in many ways, one of which is DNA copy number variation (CNV). This includes deletions, duplications, and complex rearrangements typically larger than 50 base-pairs. CNVs are part of normal genetic variation contributing to phenotypic diversity but can also be pathogenic and associated with diseases and disorders. In order to distinguish between the two, detailed knowledge about CNVs in the species of interest is needed. Here we studied the genomes of 38 normal horses of 16 diverse breeds, and identified 258 CNV regions. We integrated our findings with previously published horse CNVs and generated a composite dataset of ∼1400 CNVRs. Despite this large number, our analysis shows that CNV research in horses needs further improvement because the current data are based on 10% of horse breeds and that most CNVRs are study-specific and require validation. Finally, we analyzed CNVs in horses with disorders of sexual development and found in two male pseudo-hermaphrodites a large deletion disrupting a group of genes involved in sex hormone metabolism and sexual differentiation. The findings underline the possible role of CNVs in complex disorders such as development and reproduction.
Collapse
|
46
|
Torner E, Bussalleu E, Briz MD, Gutiérrez-Adán A, Bonet S. Sex determination of porcine embryos using a new developed duplex polymerase chain reaction procedure based on the amplification of repetitive sequences. Reprod Fertil Dev 2013; 25:417-25. [PMID: 23445818 DOI: 10.1071/rd12033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Accepted: 03/31/2012] [Indexed: 11/23/2022] Open
Abstract
Polymerase chain reaction (PCR)-based assays have become increasingly prevalent for sexing embryos. The aim of the present study was to develop a suitable duplex PCR procedure based on the amplification of porcine repetitive sequences for sexing porcine tissues, embryos and single cells. Primers were designed targeting the X12696 Y chromosome-specific repeat sequence (SUSYa and SUSYb; sex-related primer sets), the multicopy porcine-specific mitochondrial 12S rRNA gene (SUS12S; control primer set) and the X51555 1 chromosome repeat sequence (SUS1; control primer set). The specificity of the primer sets was established and the technique was optimised by testing combinations of two specific primer sets (SUSYa/SUS12S; SUSYb/SUS12S), different primer concentrations, two sources of DNA polymerase, different melting temperatures and different numbers of amplification cycles using genomic DNA from porcine ovarian and testicular tissue. The optimised SUSYa/SUS12S- and SUSYb/SUS12S-based duplex PCR procedures were applied to porcine in vitro-produced (IVP) blastocysts, cell-stage embryos and oocytes. The SUSYb/SUS12S primer-based procedure successfully sexed porcine single cells and IVP cell-stage embryos (100% efficiency), as well as blastocysts (96.6% accuracy; 96.7% efficiency). This is the first report to demonstrate the applicability of these repetitive sequences for this purpose. In conclusion, the SUSYb/SUS12S primer-based duplex PCR procedure is highly reliable and sensitive for sexing porcine IVP embryos.
Collapse
Affiliation(s)
- Eva Torner
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Institute of Food and Agricultural Technology, University of Girona, Campus Montilivi, s/n, 17071 Girona, Spain.
| | | | | | | | | |
Collapse
|
47
|
Male-specific region of the bovine Y chromosome is gene rich with a high transcriptomic activity in testis development. Proc Natl Acad Sci U S A 2013; 110:12373-8. [PMID: 23842086 DOI: 10.1073/pnas.1221104110] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The male-specific region of the mammalian Y chromosome (MSY) contains clusters of genes essential for male reproduction. The highly repetitive and degenerative nature of the Y chromosome impedes genomic and transcriptomic characterization. Although the Y chromosome sequence is available for the human, chimpanzee, and macaque, little is known about the annotation and transcriptome of nonprimate MSY. Here, we investigated the transcriptome of the MSY in cattle by direct testis cDNA selection and RNA-seq approaches. The bovine MSY differs radically from the primate Y chromosomes with respect to its structure, gene content, and density. Among the 28 protein-coding genes/families identified on the bovine MSY (12 single- and 16 multicopy genes), 16 are bovid specific. The 1,274 genes identified in this study made the bovine MSY gene density the highest in the genome; in comparison, primate MSYs have only 31-78 genes. Our results, along with the highly transcriptional activities observed from these Y-chromosome genes and 375 additional noncoding RNAs, challenge the widely accepted hypothesis that the MSY is gene poor and transcriptionally inert. The bovine MSY genes are predominantly expressed and are differentially regulated during the testicular development. Synonymous substitution rate analyses of the multicopy MSY genes indicated that two major periods of expansion occurred during the Miocene and Pliocene, contributing to the adaptive radiation of bovids. The massive amplification and vigorous transcription suggest that the MSY serves as a genomic niche regulating male reproduction during bovid expansion.
Collapse
|
48
|
Das PJ, Mishra DK, Ghosh S, Avila F, Johnson GA, Chowdhary BP, Raudsepp T. Comparative organization and gene expression profiles of the porcine pseudoautosomal region. Cytogenet Genome Res 2013; 141:26-36. [PMID: 23735614 DOI: 10.1159/000351310] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2013] [Indexed: 11/19/2022] Open
Abstract
The pseudoautosomal region (PAR) has important biological functions in spermatogenesis, male fertility and early development. Even though pig (Sus scrofa, SSC) is an agriculturally and biomedically important species, and its genome is sequenced, current knowledge about the porcine PAR is sparse. Here we defined the PAR in SSCXp/Yp by demarcating the sequence of the pseudoautosomal boundary at X:6,743,567 bp in intron 3-4 of SHROOM2 and showed that SHROOM2 is truncated in SSCY. Cytogenetic mapping of 20 BAC clones containing 15 PAR and X-specific genes revealed that the pig PAR is largely collinear with other mammalian PARs or Xp terminal regions. The results improved the current SSCX sequence assembly and facilitated distinction between the PAR and X-specific genes to study their expression in adult and embryonic tissues. A pilot analysis showed that the PAR genes are expressed at higher levels than X-specific genes during early development, whereas the expression of PAR genes was higher at day 60 compared to day 26, and higher in embryonic tissues compared to placenta. The findings advance the knowledge about the comparative organization of the PAR in mammals and suggest that the region might have important functions in early development in pigs.
Collapse
Affiliation(s)
- P J Das
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4458, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Mukherjee A, Dass G, G JM, Gohain M, Brahma B, Datta TK, De S. Absolute copy number differences of Y chromosomal genes between crossbred (Bos taurus × Bos indicus) and Indicine bulls. J Anim Sci Biotechnol 2013; 4:15. [PMID: 23556478 PMCID: PMC3668231 DOI: 10.1186/2049-1891-4-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 03/25/2013] [Indexed: 11/12/2022] Open
Abstract
Background The Y chromosome in mammal is paternally inherited and harbors genes related to male fertility and spermatogenesis. The unique intra-chromosomal recombination pattern of Y chromosome and morphological difference of this chromosome between Bos taurus and Bos indicus make it an ideal model for studying structural variation, especially in crossbred (Bos taurus × Bos indicus) bulls. Copy Number Variation (CNV) is a type of genomic structural variation that gives information complementary to SNP data. The purpose of this study was to find out copy number differences of four Y chromosomal spermatogenesis-related candidate genes in genomic DNA of crossbred and purebred Indicine bulls. Result Four Y chromosomal candidate genes of spermatogenesis namely, sex determining gene on Y chromosome (SRY), DEAD box polypeptide 3-Y chromosome (DDX3Y), Ubiquitin specific peptidase 9, Y-linked (USP9Y), testis-specific protein on Y chromosome (TSPY) were evaluated. Absolute copy numbers of Y chromosomal genes were determined by standard curve-based quantitative real time PCR. Copy numbers of SRY and TSPY genes per unit amount of genomic DNA are higher in crossbred than Indicine bulls. However, no difference was observed in DDX3Y and USP9Y gene copy numbers between two groups. Conclusion The present study demonstrates that the structural organization of Y chromosomes differs between crossbred and Indicine bulls which are reproductively healthy as observed from analysis of semen attributes. The absolute copy numbers of SRY and TSPY genes in unit mass of genomic DNA of crossbred bulls are significantly higher than Indicine bulls. No alteration in absolute copies of DDX3Y and USP9Y gene was found between the genome of crossbred and Indicine bulls. This study suggests that the DDX3Y and USP9Y are likely to be single copy genes in the genome of crossbred and Indicine bulls and variation in Y chromosome length between crossbred and Indicine bulls may be due to the copy number variation of SRY gene and TSPY array.
Collapse
Affiliation(s)
- Ayan Mukherjee
- Animal Genomics Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India.
| | | | | | | | | | | | | |
Collapse
|
50
|
Wallner B, Vogl C, Shukla P, Burgstaller JP, Druml T, Brem G. Identification of genetic variation on the horse y chromosome and the tracing of male founder lineages in modern breeds. PLoS One 2013; 8:e60015. [PMID: 23573227 PMCID: PMC3616054 DOI: 10.1371/journal.pone.0060015] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 02/20/2013] [Indexed: 11/19/2022] Open
Abstract
The paternally inherited Y chromosome displays the population genetic history of males. While modern domestic horses (Equus caballus) exhibit abundant diversity within maternally inherited mitochondrial DNA, no significant Y-chromosomal sequence diversity has been detected. We used high throughput sequencing technology to identify the first polymorphic Y-chromosomal markers useful for tracing paternal lines. The nucleotide variability of the modern horse Y chromosome is extremely low, resulting in six haplotypes (HT), all clearly distinct from the Przewalski horse (E. przewalskii). The most widespread HT1 is ancestral and the other five haplotypes apparently arose on the background of HT1 by mutation or gene conversion after domestication. Two haplotypes (HT2 and HT3) are widely distributed at high frequencies among modern European horse breeds. Using pedigree information, we trace the distribution of Y-haplotype diversity to particular founders. The mutation leading to HT3 occurred in the germline of the famous English Thoroughbred stallion “Eclipse” or his son or grandson and its prevalence demonstrates the influence of this popular paternal line on modern sport horse breeds. The pervasive introgression of Thoroughbred stallions during the last 200 years to refine autochthonous breeds has strongly affected the distribution of Y-chromosomal variation in modern horse breeds and has led to the replacement of autochthonous Y chromosomes. Only a few northern European breeds bear unique variants at high frequencies or fixed within but not shared among breeds. Our Y-chromosomal data complement the well established mtDNA lineages and document the male side of the genetic history of modern horse breeds and breeding practices.
Collapse
Affiliation(s)
- Barbara Wallner
- Department of Biomedical Sciences, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria.
| | | | | | | | | | | |
Collapse
|