1
|
Li H, Ma C, Wang L. The complete plastome of Acalypha australis (Euphorbiaceae) and its phylogenetic analysis. Mitochondrial DNA B Resour 2024; 9:636-640. [PMID: 38770147 PMCID: PMC11104693 DOI: 10.1080/23802359.2023.2294891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/10/2023] [Indexed: 05/22/2024] Open
Abstract
Acalypha australis L. 1753 is a potherb popular among Asian populations and is a traditional herbal medicine. In the current study, the overall genetic diversity of A. australis still needs to be better. Here, we assembled and characterized the complete plastome of A. australis. The plastome is 168,885 bp in length with a large single-copy (LSC) of 94,576 bp, a small single-copy (SSC) of 19,715 bp, and two copies of inverted repeat region (IRs) of 27,297 bp each. The overall GC content is 34.9%. The plastome contains 127 genes, including 83 protein-coding genes, 36 tRNA genes, and eight rRNA genes. Phylogenomic analysis of the representative species of Euphorbiaceae showed that A. australis and A. hispida formed a monophyletic sister clade. The results of this study will support further research on the evolution and conservation of the Euphorbiaceae species; they will benefit pharmaceutical applications and ornamentation of the medicinal plant A. australis.
Collapse
Affiliation(s)
- Hongqin Li
- College of Pharmacy, Heze University, Heze, Shandong Province, P. R. China
| | - Changhao Ma
- Inspection Department Three, Shandong Center for Food and Drug Evaluation and Inspection, Jinan, Shandong Province, P. R. China
| | - Liqiang Wang
- College of Pharmacy, Heze University, Heze, Shandong Province, P. R. China
| |
Collapse
|
2
|
Niu Y, Gao C, Liu J. Mitochondrial genome variation and intergenomic sequence transfers in Hevea species. FRONTIERS IN PLANT SCIENCE 2024; 15:1234643. [PMID: 38660449 PMCID: PMC11039855 DOI: 10.3389/fpls.2024.1234643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
Among the Hevea species, rubber tree (Hevea brasiliensis) is the most important source of natural rubber. In previous studies, we sequenced the complete nuclear and chloroplast genomes of Hevea species, providing an invaluable resource for studying their phylogeny, disease resistance, and breeding. However, given that plant mitochondrial genomes are more complex and more difficult to assemble than that of the other organelles, little is known about their mitochondrial genome, which limits the comprehensive understanding of Hevea genomic evolution. In this study, we sequenced and assembled the mitochondrial genomes of four Hevea species. The four mitochondrial genomes had consistent GC contents, codon usages and AT skews. However, there were significant differences in the genome lengths and sequence repeats. Specifically, the circular mitochondrial genomes of the four Hevea species ranged from 935,732 to 1,402,206 bp, with 34-35 unique protein-coding genes, 35-38 tRNA genes, and 6-13 rRNA genes. In addition, there were 17,294-46,552 bp intergenomic transfer fragments between the chloroplast and mitochondrial genomes, consisting of eight intact genes (psaA, rrn16S, tRNA-Val, rrn5S, rrn4.5S, tRNA-Arg, tRNA-Asp, and tRNA-Asn), intergenic spacer regions and partial gene sequences. The evolutionary position of Hevea species, crucial for understanding its adaptive strategies and relation to other species, was verified by phylogenetic analysis based on the protein-coding genes in the mitochondrial genomes of 21 Malpighiales species. The findings from this study not only provide valuable insights into the structure and evolution of the Hevea mitochondrial genome but also lay the foundation for further molecular, evolutionary studies, and genomic breeding studies on rubber tree and other Hevea species, thereby potentially informing conservation and utilization strategies.
Collapse
Affiliation(s)
- Yingfeng Niu
- Yunnan Institute of Tropical Crops, National Key Laboratory for Biological Breeding of Tropical Crops, Yunnan Key Laboratory of Sustainable Utilization Research on Rubber Tree, Xishuangbanna, China
| | - Chengwen Gao
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jin Liu
- Yunnan Institute of Tropical Crops, National Key Laboratory for Biological Breeding of Tropical Crops, Yunnan Key Laboratory of Sustainable Utilization Research on Rubber Tree, Xishuangbanna, China
| |
Collapse
|
3
|
Patel R, Menon J, Kumar S, Nóbrega MB, Patel DA, Sakure AA, Vaja MB. Modern day breeding approaches for improvement of castor. Heliyon 2024; 10:e27048. [PMID: 38463846 PMCID: PMC10920369 DOI: 10.1016/j.heliyon.2024.e27048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 02/12/2024] [Accepted: 02/22/2024] [Indexed: 03/12/2024] Open
Abstract
Castor (Ricinus communis L.) is an industrially important oil producing crop belongs to Euphorbiaceae family. Castor oil has unique chemical properties make it industrially important crop. It is a member of monotypic genus even though it has ample amount of variability. Using this variability, conventionally many varieties and hybrids have been developed. But, like other crops, the modern and unconventional methods of crop improvement has not fully explored in castor. This article discusses the use of polyploidy induction, distant/wide hybridization and mutation breeding as tools for generating variety. Modern approaches accelerate the speed of crop breeding as an alternative tool. To achieve this goal, molecular markers are employed in breeding to capture the genetic variability through molecular analysis and population structuring. Allele mining is used to trace the evolution of alleles, identify new haplotypes and produce allele specific markers for use in marker aided selection using Genome wide association studies (GWAS) and quantitative trait loci (QTL) mapping. Plant genetic transformation is a rapid and effective mode of castor improvement is also discussed here. The efforts towards developing stable regeneration protocol provide a wide range of utility like embryo rescue in distant crosses, development of somaclonal variation, haploid development using anther culture and callus development for stable genetic transformation has reviewed in this article. Omics has provided intuitions to the molecular mechanisms of (a)biotic stress management in castor along with dissected out the possible genes for improving the yield. Relating genes to traits offers additional scientific inevitability leading to enhancement and sympathetic mechanisms of yield improvement and several stress tolerance.
Collapse
Affiliation(s)
- Rumit Patel
- Department of Agricultural Biotechnology, Anand Agricultural University, Anand, 388110, India
- Department of Genetics & Plant Breeding, B. A. College of Agriculture, Anand Agricultural University, Anand, 388110, India
| | - Juned Menon
- Department of Genetics & Plant Breeding, B. A. College of Agriculture, Anand Agricultural University, Anand, 388110, India
| | - Sushil Kumar
- Department of Agricultural Biotechnology, Anand Agricultural University, Anand, 388110, India
| | - Márcia B.M. Nóbrega
- Embrapa Algodão, Rua Oswaldo Cruz, nº 1.143, Centenário, CEP 58428-095, Campina Grande, PB, Brazil
| | - Dipak A. Patel
- Department of Agricultural Biotechnology, Anand Agricultural University, Anand, 388110, India
| | - Amar A. Sakure
- Department of Agricultural Biotechnology, Anand Agricultural University, Anand, 388110, India
| | - Mahesh B. Vaja
- Department of Agricultural Biotechnology, Anand Agricultural University, Anand, 388110, India
| |
Collapse
|
4
|
Mahdieh M, Talebi SM, Dehghan T, Tabaripour R, Matsyura A. Molecular genetics, seed morphology and fatty acids diversity in castor (Ricinus communis L., Euphorbiaceae) Iranian populations. Mol Biol Rep 2023; 50:9859-9873. [PMID: 37848759 DOI: 10.1007/s11033-023-08904-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/06/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND Castor (Ricinus communis L.) seeds contain a large amount of oil that has several biological activities. In the current research, phytogeographic distribution, seed morphological characteristics, molecular genetic diversity and structure, and fatty acid composition were investigated in nine Iranian castor populations. METHODS AND RESULTS The cetyltrimethylammonium bromide (CTAB) protocol was used to extract the nuclear genomes. These were later amplified using 13 SCoT molecular primers. The phytogeographic distribution was determined based on the Zohary mapping, GC apparatus determined the fatty acid composition of the seeds. GenAlex, STRUCTURE, GenoDive, PopGene, and PopART software were used for the statistical analyzes. On phytogeographic mapping, the harvested populations belonged to different districts of the Euro-Siberian and Irano-Turanian regions (Holarctic kingdom). Most of the quantitative morphological traits of the seeds differed significantly (P ≤ 0.05) between the populations. The AMOVA test demonstrated a large proportion of significant genetic diversity assigned among populations, which were approved by some estimated parameters of genetic diversity such as Nm, Ht, Hs, and Gst. Nei's genetic distance and structure analysis confirmed the existence of two main genotype groups and some intermediates. However, there was no isolation by distance between the genotypes. Unsaturated fatty acids were detected as the main component of seed oil with linoleic and ricinoleic acids. Significant correlations were detected between the main fatty acids of seed oil with seed morphological traits, geographic distance and the geographic parameters of habitats. According to the composition of the seed fatty acids, four chemotypes groups were detected. CONCLUSIONS The classification patterns of the populations based on molecular genetic data, fatty acid composition, and phytogeographic mapping were not identical. These findings indicated that Iranian castor populations had unusual seed fatty acid composition which strongly depended on habitat geographic factors and seed morphological traits. However, the identified chemotypes and genotypes can be used in future breeding programs.
Collapse
Affiliation(s)
- Majid Mahdieh
- Department of Biology, Faculty of Sciences, Arak University, Arak, 38156-8-8349, Iran
| | - Seyed Mehdi Talebi
- Department of Biology, Faculty of Sciences, Arak University, Arak, 38156-8-8349, Iran.
| | - Tahereh Dehghan
- Department of Biology, Faculty of Sciences, Arak University, Arak, 38156-8-8349, Iran
| | - Raheleh Tabaripour
- Department of Plant Sciences, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | | |
Collapse
|
5
|
Shim S, Ha J. The complete mitochondrial genome of the biodiesel plant Jatropha curcas L. Mitochondrial DNA B Resour 2023; 8:1016-1020. [PMID: 37753242 PMCID: PMC10519264 DOI: 10.1080/23802359.2023.2260541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/13/2023] [Indexed: 09/28/2023] Open
Abstract
Jatropha curcas (Linnaeus, 1753) is a plant species in the order Malpighiales and the family Euphorbiaceae and is native to the tropical regions of America, such as Mexico and Argentina. Currently, this plant species inhabits tropical and subtropical regions of the world. Jatropha has been widely used as a biofuel plant to produce high-quality diesel engine fuel. In this study, the complete mitochondrial genome sequence of J. curcas was assembled into 561,839 bp circular nucleotides with a GC content of 44.6%. The mitochondrial genome of J. curcas comprises 33 known protein-coding genes, 22 tRNA genes, three rRNA genes, one ncRNA gene, and 85 open reading frame genes. Phylogenetic analysis showed this species is closely related to the castor bean (Ricinus communis).
Collapse
Affiliation(s)
- Sangrea Shim
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Jungmin Ha
- Department of Plant Science, Gangneung-Wonju National University, Gangneung, Republic of Korea
- Haeram Institute of Bakery Science, Gangneung-Wonju National University, Gangneung, Republic of Korea
| |
Collapse
|
6
|
Wang Y, Jiang D, Guo K, Zhao L, Meng F, Xiao J, Niu Y, Sun Y. Comparative analysis of codon usage patterns in chloroplast genomes of ten Epimedium species. BMC Genom Data 2023; 24:3. [PMID: 36624369 PMCID: PMC9830715 DOI: 10.1186/s12863-023-01104-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The Phenomenon of codon usage bias exists in the genomes of prokaryotes and eukaryotes. The codon usage pattern is affected by environmental factors, base mutation, gene flow and gene expression level, among which natural selection and mutation pressure are the main factors. The study of codon preference is an effective method to analyze the source of evolutionary driving forces in organisms. Epimedium species are perennial herbs with ornamental and medicinal value distributed worldwide. The chloroplast genome is self-replicating and maternally inherited which is usually used to study species evolution, gene expression and genetic transformation. RESULTS The results suggested that chloroplast genomes of Epimedium species preferred to use codons ending with A/U. 17 common high-frequency codons and 2-6 optimal codons were found in the chloroplast genomes of Epimedium species, respectively. According to the ENc-plot, PR2-plot and neutrality-plot, the formation of codon preference in Epimedium was affected by multiple factors, and natural selection was the dominant factor. By comparing the codon usage frequency with 4 common model organisms, it was found that Arabidopsis thaliana, Populus trichocarpa, and Saccharomyces cerevisiae were suitable exogenous expression receptors. CONCLUSION The evolutionary driving force in the chloroplast genomes of 10 Epimedium species probably comes from mutation pressure. Our results provide an important theoretical basis for evolutionary analysis and transgenic research of chloroplast genes.
Collapse
Affiliation(s)
- Yingzhe Wang
- grid.449428.70000 0004 1797 7280College of Pharmacy, Jining Medical University, Rizhao, Shandong China ,grid.440665.50000 0004 1757 641XSchool of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin China
| | - Dacheng Jiang
- grid.440665.50000 0004 1757 641XSchool of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin China
| | - Kun Guo
- grid.440665.50000 0004 1757 641XSchool of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin China
| | - Lei Zhao
- grid.440665.50000 0004 1757 641XSchool of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin China
| | - Fangfang Meng
- grid.440665.50000 0004 1757 641XSchool of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin China
| | - Jinglei Xiao
- grid.440665.50000 0004 1757 641XSchool of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin China
| | - Yuan Niu
- Lanzhou Agro-Technical Research and Popularization Center, Lanzhou, Gansu China
| | - Yunlong Sun
- grid.449428.70000 0004 1797 7280College of Pharmacy, Jining Medical University, Rizhao, Shandong China
| |
Collapse
|
7
|
A High-Quality Genome Assembly of the Mitochondrial Genome of the Oil-Tea Tree Camellia gigantocarpa (Theaceae). DIVERSITY 2022. [DOI: 10.3390/d14100850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Camellia gigantocarpa is one of the oil-tea trees whose seeds can be used to extract high-quality vegetable oil. To date, there are no data on the mitochondrial genome of the oil-tea tree, in contrast to the tea-tree C. sinensis, which belongs to the same genus. In this paper, we present the first complete mitochondrial genomes of C. gigantocarpa obtained using PacBio Hi-Fi (high-fidelity) and Hi-C sequencing technologies to anchor the 970,410 bp genome assembly into a single sequence. A set of 44 protein-coding genes, 22 non-coding genes, 746 simple sequence repeats (SSRs), and more than 201 kb of repetitive sequences were annotated in the genome assembly. The high percentage of repetitive sequences in the mitochondrial genome of C. gigantocarpa (20.81%) and C.sinensis (22.15%, tea tree) compared to Arabidopsis thaliana (4.96%) significantly increased the mitogenome size in the genus Camellia. The comparison of the mitochondrial genomes between C. gigantocarpa and C. sinensis revealed genes exhibit high variance in gene order and low substitution rate within the genus Camellia. Information on the mitochondrial genome provides a better understanding of the structure and evolution of the genome in Camellia and may contribute to further study of the after-ripening process of oil-tea trees.
Collapse
|
8
|
Jin Q, Yang Z, Yang W, Gao X, Liu C. Genome-Wide Identification and Analysis of Lbd Transcription Factor Genes in Jatropha curcas and Related Species. PLANTS 2022; 11:plants11182397. [PMID: 36145796 PMCID: PMC9504267 DOI: 10.3390/plants11182397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022]
Abstract
Lateral organ boundaries domain (LBD) proteins are plant-specific transcription factors that play important roles in organ development and stress response. However, the function of LBD genes has not been reported in Euphorbiaceae. In this paper, we used Jatropha curcas as the main study object and added rubber tree (Hevea brasiliensis), cassava (Manihot esculenta Crantz) and castor (Ricinus communis L.) to take a phylogenetic analysis of LBD genes. Of LBD, 33, 58, 54 and 30 members were identified in J. curcas, rubber tree, cassava and castor, respectively. The phylogenetic analysis showed that LBD members of Euphorbiaceae could be classified into two major classes and seven subclasses (Ia-Ie,IIa-IIb), and LBD genes of Euphorbiaceae tended to cluster in the same branch. Further analysis showed that the LBD genes of Euphorbiaceae in the same clade usually had similar protein motifs and gene structures, and tissue expression patterns showed that they also have similar expression profiles. JcLBDs in class Ia and Ie are mainly expressed in male and female flowers, and there are multiple duplication genes with similar expression profiles in these clades. It was speculated that they are likely to play important regulatory roles in flower development. Our study provided a solid foundation for further investigation of the role of LBD genes in the sexual differentiaion of J. curcas.
Collapse
Affiliation(s)
- Qi Jin
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Zitian Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Wenjing Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Xiaoyang Gao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Changning Liu
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- Correspondence:
| |
Collapse
|
9
|
Liu H, Zhao W, Hua W, Liu J. A large-scale population based organelle pan-genomes construction and phylogeny analysis reveal the genetic diversity and the evolutionary origins of chloroplast and mitochondrion in Brassica napus L. BMC Genomics 2022; 23:339. [PMID: 35501686 PMCID: PMC9063048 DOI: 10.1186/s12864-022-08573-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/19/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Allotetraploid oilseed rape (Brassica napus L.) is an important worldwide oil-producing crop. The origin of rapeseed is still undetermined due to the lack of wild resources. Despite certain genetic architecture and phylogenetic studies have been done focus on large group of Brassica nuclear genomes, the organelle genomes information under global pattern is largely unknown, which provide unique material for phylogenetic studies of B. napus. Here, based on de novo assemblies of 1,579 B. napus accessions collected globally, we constructed the chloroplast and mitochondrial pan-genomes of B. napus, and investigated the genetic diversity, phylogenetic relationships of B. napus, B. rapa and B. oleracea. RESULTS Based on mitotype-specific markers and mitotype-variant ORFs, four main cytoplasmic haplotypes were identified in our groups corresponding the nap, pol, ole, and cam mitotypes, among which the structure of chloroplast genomes was more conserved without any rearrangement than mitochondrial genomes. A total of 2,092 variants were detected in chloroplast genomes, whereas only 326 in mitochondrial genomes, indicating that chloroplast genomes exhibited a higher level of single-base polymorphism than mitochondrial genomes. Based on whole-genome variants diversity analysis, eleven genetic difference regions among different cytoplasmic haplotypes were identified on chloroplast genomes. The phylogenetic tree incorporating accessions of the B. rapa, B. oleracea, natural and synthetic populations of B. napus revealed multiple origins of B. napus cytoplasm. The cam-type and pol-type were both derived from B. rapa, while the ole-type was originated from B. oleracea. Notably, the nap-type cytoplasm was identified in both the B. rapa population and the synthetic B. napus, suggesting that B. rapa might be the maternal ancestor of nap-type B. napus. CONCLUSIONS The phylogenetic results provide novel insights into the organelle genomic evolution of Brassica species. The natural rapeseeds contained at least four cytoplastic haplotypes, of which the predominant nap-type might be originated from B. rapa. Besides, the organelle pan-genomes and the overall variation data offered useful resources for analysis of cytoplasmic inheritance related agronomical important traits of rapeseed, which can substantially facilitate the cultivation and improvement of rapeseed varieties.
Collapse
Affiliation(s)
- Hongfang Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China
| | - Wei Zhao
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China
| | - Wei Hua
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
| | - Jing Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
| |
Collapse
|
10
|
Cai QN, Wang HX, Chen DJ, Ke XR, Zhu ZX, Wang HF. The complete chloroplast genome sequence of a Citrus australasica cultivar (Rutaceae). Mitochondrial DNA B Resour 2022; 7:54-55. [PMID: 34926822 PMCID: PMC8676588 DOI: 10.1080/23802359.2021.2008842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Citrus australasica (F. Muell.) Swingle belongs to the family Rutaceae. Citrus australasica is native to eastern Australia and southeastern New Guinea, and is mainly concentrated in a small region of northern New South Wales and tropical rainforest areas in southern Queensland. The complete plastome length of C. australasica is 160,335 bp, with the typical structure and gene content of angiosperm plastids, including a 26,592 bp repeat B (IRB) region, 26,952 bp IRA, 87,678 bp large single copy (LSC) region and 18,756 bp small single copy (SSC) region. The plastid contains 135 genes, including 89 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. The total G/C content of the C. australasica plastome is 38.4%. The complete plastome sequence of C. australasica will provide useful resources for conservation genetics research of this species and phylogenetic research of Rutaceae.
Collapse
Affiliation(s)
- Qin-Nan Cai
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Hong-Xin Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
- Zhai Mingguo Academician Work Station, Sanya University, Sanya, China
| | - Da-Juan Chen
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Xiu-Rong Ke
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Zhi-Xin Zhu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Hua-Feng Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| |
Collapse
|
11
|
Chen Y, Ke XR, Zhang XF, Zhu ZX, Wang HF. Complete plastome sequence of Bridelia tomentosa Blume (Phyllanthaceae): a medicinal shrub species in South Asia. MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:2330-2331. [PMID: 34345687 PMCID: PMC8284139 DOI: 10.1080/23802359.2021.1951134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Bridelia tomentosa is a deciduous shrub in the family of Phyllanthaceae. It grows in the evergreen primary or secondary thickets or forests in the sea level from 1000 to 1500 m. It distributed in.south China (e.g., Fujian, Guangdong, Guangxi, Hainan etc) and other south Asian countries (e.g. Bangladesh, Bhutan, Cambodia etc). Here, we report and characterize the complete plastome of B. tomentosa. The complete plastome is of 149,958 bp in length with a typical structure and gene content of angiosperm plastome, including two inverted repeat (IRs) regions of 26,354 bp, a large single-copy (LSC) region of 81,355 bp and a small single-copy (SSC) region of 15,895 bp. The plastome contains 129 genes, consisting of 84 protein-coding genes, 37 tRNA genes, eight rRNA genes. The overall G/C content in the plastome of B. tomentosa is 36.0%. The complete plastome sequence of B. tomentosa will provide a useful resource for the conservation genetics of this species as well as for phylogenetic studies in Phyllanthaceae.
Collapse
Affiliation(s)
- Yan Chen
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Xiu-Rong Ke
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Xiao-Feng Zhang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Zhi-Xin Zhu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Hua-Feng Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| |
Collapse
|
12
|
Wu WP, Zhang XF, Zhu ZX, Wang HF. Complete plastome sequence of Mallotus japonicus (Linn. f.) Müll. Arg. (Euphorbiaceae): a medicinal plant species endemic in East Asia. MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:1409-1410. [PMID: 33969189 PMCID: PMC8079058 DOI: 10.1080/23802359.2021.1911707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Mallotus japonicus is a shrub species in the family of Euphorbiaceae. The study of plastome would be helpful for its phylogenetic study and species identification. The total length of complete plastome for Mallotus japonicus is of 164,912 bp, with typical part-four structure and gene content of angiosperm plastome, including two inverted repeat (IR) regions of 27,829 bp, a large single-copy (LSC) region of 90,319 bp, and a small single-copy (SSC) region of 18,935 bp. The plastome contains 125 genes, consisting of 80 unique protein-coding genes, 31 unique tRNA gene, four unique rRNA genes (5S rRNA, 4.5S rRNA, 16S rRNA, and 23S rRNA), and five pseudogenes. The overall G/C content in the plastome of Mallotus japonicus is 40.2%. The phylogenetic analysis indicates that M. japonicus is closer to M. peltatus than other species in this study. The complete plastome sequence is conducive to the exploitation and utilization of Euphorbiaceae resources and the phylogenetic study in future.
Collapse
Affiliation(s)
- Wan-Ping Wu
- College of Tropical Crops, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, China
| | - Xiao-Feng Zhang
- College of Tropical Crops, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, China
| | - Zhi-Xin Zhu
- College of Tropical Crops, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, China
| | - Hua-Feng Wang
- College of Tropical Crops, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, China
| |
Collapse
|
13
|
Guo LY, Zhang XF, Zhu ZX, Wang HF. Complete plastome sequence of Balakata baccata (Roxb.) Esser (Euphorbiaceae). Mitochondrial DNA B Resour 2021; 6:1387-1388. [PMID: 33969187 PMCID: PMC8078922 DOI: 10.1080/23802359.2021.1910083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Balakata baccata belongs to the family Euphorbiaceae and is distributed in Yunnan province, China, and other southeast Asian countries, e.g., Bangladesh, Cambodia, India, Indonesia, etc. Here, we report and characterize the complete plastome of B. baccata. The complete plastome is 163,988 bp in length and contains a typical quadripartite structure and gene content found in angiosperms, including two inverted repeat (IR) regions of 27,274 bp, a large single-copy (LSC) region of 90,946 bp and a small single-copy (SSC) region of 18,494 bp. The plastome contains 129 genes, consisting of 84 protein-coding genes, 37 tRNA genes, and eight rRNA genes. The overall G/C content in the plastome of B. baccata is 35.6%. Phylogenetic results show that B. baccata is the earliest diverging lineage of Euphorbioideae. Euphorbia helioscopia + E. esula, E. tirucalli + E. milii and B. baccata have a closer phylogenetic relationship than other taxa within Euphorbiaceae. The complete plastome sequence of B. baccata will provide a useful resource for the conservation genetics of this species as well as for phylogenetic studies in Euphorbiaceae.
Collapse
Affiliation(s)
- Lin-Yuan Guo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Xiao-Feng Zhang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Zhi-Xin Zhu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Hua-Feng Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| |
Collapse
|
14
|
Yao JF, Zhang XF, Zhu ZX, Wang HF. Complete plastome sequence of Vernicia Montana Lour. (Euphorbiaceae): a deciduous tree species in southeast Asia. Mitochondrial DNA B Resour 2021; 6:1075-1076. [PMID: 33796744 PMCID: PMC7995848 DOI: 10.1080/23802359.2021.1899864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Vernicia montana Lour. is a deciduous tree species belonging to the family of Euphorbiaceae, distributed in southeast Asia. Here, we report and characterize the complete plastome of Vernicia montana Lour. The complete plastome is of 164,506 bp in length with a typical structure and gene content of angiosperm plastome, including two inverted repeat (IRs) regions of 27,965 bp, a large single-copy (LSC) region of 91,427 bp and a small single-copy (SSC) region of 17,149 bp. The plastome contains 130 genes, consisting of 81 protein-coding genes (six of which are repetitive in IR), 38 tRNA genes (seven of which are repetitive in IR), seven rRNA genes (5S rRNA, 4.5S rRNA, 23S rRNA and 16S rRNA) (three of which are repetitive in the IR), and four pseudogenes. The overall G/C content in the plastome of Vernicia montana Lour. is 35.8%. The complete plastome sequence of montana Lour. will provide a useful resource for the conservation genetics of this species as well as for phylogenetic studies in Euphorbiaceae.
Collapse
Affiliation(s)
- Jian-Feng Yao
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Xiao-Feng Zhang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Zhi-Xin Zhu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Hua-Feng Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| |
Collapse
|
15
|
Tang JQ, Zhang XF, Zhu ZX, Wang HF. Complete plastome sequence of Macaranga tanarius (L.) Muell. Arg. (Euphorbiaceae): a fast-growing timber species. Mitochondrial DNA B Resour 2021; 6:929-930. [PMID: 33796686 PMCID: PMC7971212 DOI: 10.1080/23802359.2021.1888332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Jiang-Qu Tang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Xiao-Feng Zhang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Zhi-Xin Zhu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Hua-Feng Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| |
Collapse
|
16
|
Chen P, Zhang XF, Landis JB, Zhu ZX, Wang HF. Complete plastome sequence of Xylosma longifolia Clos. (Salicaceae). Mitochondrial DNA B Resour 2021; 6:1085-1086. [PMID: 33796748 PMCID: PMC7995910 DOI: 10.1080/23802359.2021.1899870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Xylosma longifolia is a tree species within Salicaceae and is distributed in Guizhou, Yunnan, Fujian, Guangxi, Guangdong, and Hainan provinces of China as well as in Vietnam, Laos, and India. There are no studies utilizing the complete plastome of Xylosma longifolia in the current literature. Therefore, this report provides a reference for the plastid gene sequence of Xylosma longifolia, and it contributes to the phylogenetic placement and species identification. In this report, we described the complete plastome sequence of Xylosma longifolia. The complete plastome length of Xylosma longifolia is 156,938 bp and has the typical quadripartite structure and gene content of angiosperms, including two inverted repeat (IR) regions of 27,514 bp, a large single-copy (LSC) region of 85,221 bp and a small single-copy (SSC) region of 16,689 bp. The plastome contains 130 genes, including 86 protein coding genes, 36 tRNA genes, eight rRNA genes (5S rRNA, 4.5S rRNA, 16S rRNA, and 23S rRNA). The GC content of the plastome is 36.8%. The complete plastome sequence will be a valuable resource for studies involving the phylogenetic inference of Salicaceae.
Collapse
Affiliation(s)
- Peng Chen
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Xiao-Feng Zhang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Jacob B. Landis
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, USA
| | - Zhi-Xin Zhu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Hua-Feng Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| |
Collapse
|
17
|
Daniell H, Jin S, Zhu X, Gitzendanner MA, Soltis DE, Soltis PS. Green giant-a tiny chloroplast genome with mighty power to produce high-value proteins: history and phylogeny. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:430-447. [PMID: 33484606 PMCID: PMC7955891 DOI: 10.1111/pbi.13556] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/11/2021] [Accepted: 01/16/2021] [Indexed: 05/04/2023]
Abstract
Free-living cyanobacteria were entrapped by eukaryotic cells ~2 billion years ago, ultimately giving rise to chloroplasts. After a century of debate, the presence of chloroplast DNA was demonstrated in the 1960s. The first chloroplast genomes were sequenced in the 1980s, followed by ~100 vegetable, fruit, cereal, beverage, oil and starch/sugar crop chloroplast genomes in the past three decades. Foreign genes were expressed in isolated chloroplasts or intact plant cells in the late 1980s and stably integrated into chloroplast genomes, with typically maternal inheritance shown in the 1990s. Since then, chloroplast genomes conferred the highest reported levels of tolerance or resistance to biotic or abiotic stress. Although launching products with agronomic traits in important crops using this concept has been elusive, commercial products developed include enzymes used in everyday life from processing fruit juice, to enhancing water absorption of cotton fibre or removal of stains as laundry detergents and in dye removal in the textile industry. Plastid genome sequences have revealed the framework of green plant phylogeny as well as the intricate history of plastid genome transfer events to other eukaryotes. Discordant historical signals among plastid genes suggest possible variable constraints across the plastome and further understanding and mitigation of these constraints may yield new opportunities for bioengineering. In this review, we trace the evolutionary history of chloroplasts, status of autonomy and recent advances in products developed for everyday use or those advanced to the clinic, including treatment of COVID-19 patients and SARS-CoV-2 vaccine.
Collapse
Affiliation(s)
- Henry Daniell
- Department of Basic and Translational SciencesSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Xin‐Guang Zhu
- State Key Laboratory for Plant Molecular Genetics and Center of Excellence for Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | | | - Douglas E. Soltis
- Florida Museum of Natural History and Department of BiologyUniversity of FloridaGainesvilleFLUSA
- Florida Museum of Natural HistoryUniversity of FloridaGainesvilleFLUSA
| | - Pamela S. Soltis
- Florida Museum of Natural HistoryUniversity of FloridaGainesvilleFLUSA
| |
Collapse
|
18
|
Villanueva-Corrales S, García-Botero C, Garcés-Cardona F, Ramírez-Ríos V, Villanueva-Mejía DF, Álvarez JC. The Complete Chloroplast Genome of Plukenetia volubilis Provides Insights Into the Organelle Inheritance. FRONTIERS IN PLANT SCIENCE 2021; 12:667060. [PMID: 33968119 PMCID: PMC8103035 DOI: 10.3389/fpls.2021.667060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/24/2021] [Indexed: 05/04/2023]
Abstract
Plukenetia volubilis L. (Malpighiales: Euphorbiaceae), also known as Sacha inchi, is considered a promising crop due to its high seed content of unsaturated fatty acids (UFAs), all of them highly valuable for food and cosmetic industries, but the genetic basis of oil biosynthesis of this non-model plant is still insufficient. Here, we sequenced the total DNA of Sacha inchi by using Illumina and Nanopore technologies and approached a de novo reconstruction of the whole nucleotide sequence and the organization of its 164,111 bp length of the chloroplast genome, displaying two copies of an inverted repeat sequence [inverted repeat A (IRA) and inverted repeat B (IRB)] of 28,209 bp, each one separating a small single copy (SSC) region of 17,860 bp and a large single copy (LSC) region of 89,833 bp. We detected two large inversions on the chloroplast genome that were not presented in the previously reported sequence and studied a promising cpDNA marker, useful in phylogenetic approaches. This chloroplast DNA (cpDNA) marker was used on a set of five distinct Colombian cultivars of P. volubilis from different geographical locations to reveal their phylogenetic relationships. Thus, we evaluated if it has enough resolution to genotype cultivars, intending to crossbreed parents and following marker's trace down to the F1 generation. We finally elucidated, by using molecular and cytological methods on cut flower buds, that the inheritance mode of P. volubilis cpDNA is maternally transmitted and proposed that it occurs as long as it is physically excluded during pollen development. This de novo chloroplast genome will provide a valuable resource for studying this promising crop, allowing the determination of the organellar inheritance mechanism of some critical phenotypic traits and enabling the use of genetic engineering in breeding programs to develop new varieties.
Collapse
Affiliation(s)
| | - Camilo García-Botero
- CIBIOP Research Group, Biological Sciences Department, EAFIT University, Medellín, Colombia
| | - Froilán Garcés-Cardona
- CIBIOP Research Group, Biological Sciences Department, EAFIT University, Medellín, Colombia
| | - Viviana Ramírez-Ríos
- CIBIOP Research Group, Biological Sciences Department, EAFIT University, Medellín, Colombia
| | | | - Javier C. Álvarez
- BEC Research Group, Biological Sciences Department, EAFIT University, Medellín, Colombia
- CIBIOP Research Group, Biological Sciences Department, EAFIT University, Medellín, Colombia
- *Correspondence: Javier C. Álvarez,
| |
Collapse
|
19
|
Mader M, Schroeder H, Schott T, Schöning-Stierand K, Leite Montalvão AP, Liesebach H, Liesebach M, Fussi B, Kersten B. Mitochondrial Genome of Fagus sylvatica L. as a Source for Taxonomic Marker Development in the Fagales. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1274. [PMID: 32992588 PMCID: PMC7650814 DOI: 10.3390/plants9101274] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 11/16/2022]
Abstract
European beech, Fagus sylvatica L., is one of the most important and widespread deciduous tree species in Central Europe and is widely managed for its hard wood. The complete DNA sequence of the mitochondrial genome of Fagus sylvatica L. was assembled and annotated based on Illumina MiSeq reads and validated using long reads from nanopore MinION sequencing. The genome assembled into a single DNA sequence of 504,715 bp in length containing 58 genes with predicted function, including 35 protein-coding, 20 tRNA and three rRNA genes. Additionally, 23 putative protein-coding genes were predicted supported by RNA-Seq data. Aiming at the development of taxon-specific mitochondrial genetic markers, the tool SNPtax was developed and applied to select genic SNPs potentially specific for different taxa within the Fagales. Further validation of a small SNP set resulted in the development of four CAPS markers specific for Fagus, Fagaceae, or Fagales, respectively, when considering over 100 individuals from a total of 69 species of deciduous trees and conifers from up to 15 families included in the marker validation. The CAPS marker set is suitable to identify the genus Fagus in DNA samples from tree tissues or wood products, including wood composite products.
Collapse
Affiliation(s)
- Malte Mader
- Thünen Institute of Forest Genetics, D-22927 Grosshansdorf, Germany; (M.M.); (H.S.); (T.S.); (K.S.-S.); (A.P.L.M.); (H.L.); (M.L.)
| | - Hilke Schroeder
- Thünen Institute of Forest Genetics, D-22927 Grosshansdorf, Germany; (M.M.); (H.S.); (T.S.); (K.S.-S.); (A.P.L.M.); (H.L.); (M.L.)
| | - Thomas Schott
- Thünen Institute of Forest Genetics, D-22927 Grosshansdorf, Germany; (M.M.); (H.S.); (T.S.); (K.S.-S.); (A.P.L.M.); (H.L.); (M.L.)
| | - Katrin Schöning-Stierand
- Thünen Institute of Forest Genetics, D-22927 Grosshansdorf, Germany; (M.M.); (H.S.); (T.S.); (K.S.-S.); (A.P.L.M.); (H.L.); (M.L.)
- Center for Bioinformatics, Universität Hamburg, 20146 Hamburg, Germany
| | - Ana Paula Leite Montalvão
- Thünen Institute of Forest Genetics, D-22927 Grosshansdorf, Germany; (M.M.); (H.S.); (T.S.); (K.S.-S.); (A.P.L.M.); (H.L.); (M.L.)
| | - Heike Liesebach
- Thünen Institute of Forest Genetics, D-22927 Grosshansdorf, Germany; (M.M.); (H.S.); (T.S.); (K.S.-S.); (A.P.L.M.); (H.L.); (M.L.)
| | - Mirko Liesebach
- Thünen Institute of Forest Genetics, D-22927 Grosshansdorf, Germany; (M.M.); (H.S.); (T.S.); (K.S.-S.); (A.P.L.M.); (H.L.); (M.L.)
| | - Barbara Fussi
- Bavarian Office for Forest Genetics, 83317 Teisendorf, Germany;
| | - Birgit Kersten
- Thünen Institute of Forest Genetics, D-22927 Grosshansdorf, Germany; (M.M.); (H.S.); (T.S.); (K.S.-S.); (A.P.L.M.); (H.L.); (M.L.)
| |
Collapse
|
20
|
Qi W, Lu H, Zhang Y, Cheng J, Huang B, Lu X, Sheteiwy MSA, Kuang S, Shao H. Oil crop genetic modification for producing added value lipids. Crit Rev Biotechnol 2020; 40:777-786. [PMID: 32605455 DOI: 10.1080/07388551.2020.1785384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Plant lipids, mainly stored in seeds and other plant parts, are not only a crucial resource for food and fodder but are also a promising alternative to fossil oils as a chemical industry feedstock. Oil crop cultivation and processing are always important parts of agriculture worldwide. Vegetable oils containing polyunsaturated fatty acids, very long chain fatty acids, conjugated fatty acids, hydroxy fatty acids and wax esters, have outstanding nutritional, lubricating, surfactant, and artificial-fibre-synthesis properties, amongst others. Enhancing the production of such specific lipid components is of economic interest. There has been a considerable amount of information reported about plant lipid biosynthesis, including identification of the pathway map of carbon flux, key enzymes (and the coding genes), and substrate affinities. Plant lipid biosynthesis engineering to produce special oil compounds has become feasible, although until now, only limited progress has been made in the laboratory. It is relatively easy to achieve the experimental objectives, for example, accumulating novel lipid compounds in given plant tissues facilitated by genetic modification. Applying such technologies to agricultural production is difficult, and the challenge is to make engineered crops economically attractive, which is impeded by only moderate success. To achieve this goal, more complicated and systematic strategies should be developed and discussed based on the relevant results currently available.
Collapse
Affiliation(s)
- Weicong Qi
- Salt-soil Agricultural Center, Key Laboratory of Agricultural Environment in the Lower Reaches of Yangtze River Plain, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences(JAAS), Nanjing, PR China.,Key Laboratory of Oil Crops in Huanghuaihai Plain, Ministry of Agriculture, PR China,Henan Provincial Key Laboratory for Oil Crops Improvement, Zheng Zhou, PR China
| | - Haiying Lu
- Salt-soil Agricultural Center, Key Laboratory of Agricultural Environment in the Lower Reaches of Yangtze River Plain, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences(JAAS), Nanjing, PR China
| | - Yang Zhang
- Key Laboratory of Oil Crops in Huanghuaihai Plain, Ministry of Agriculture, PR China,Henan Provincial Key Laboratory for Oil Crops Improvement, Zheng Zhou, PR China
| | - Jihua Cheng
- Yuan Longping High-tech Agriculture Co., LTD, Changsha, PR China
| | - Bangquan Huang
- College of Life Sciences, Hubei University, Wuhan, PR China
| | - Xin Lu
- Salt-soil Agricultural Center, Key Laboratory of Agricultural Environment in the Lower Reaches of Yangtze River Plain, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences(JAAS), Nanjing, PR China
| | - Mohamed Salah Amr Sheteiwy
- Salt-soil Agricultural Center, Key Laboratory of Agricultural Environment in the Lower Reaches of Yangtze River Plain, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences(JAAS), Nanjing, PR China.,Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - Shaoping Kuang
- College of Environment and Safety Engineering, Qingdao University of Science & Technology, Qingdao, PR China
| | - Hongbo Shao
- Salt-soil Agricultural Center, Key Laboratory of Agricultural Environment in the Lower Reaches of Yangtze River Plain, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences(JAAS), Nanjing, PR China.,College of Environment and Safety Engineering, Qingdao University of Science & Technology, Qingdao, PR China.,Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng, PR China
| |
Collapse
|
21
|
Zhu ZX, Wang HX, Wang HF. Complete plastome sequence of Nephelium topengii (Merr.) H. S. Lo (Sapindaceae): an endemic species in Hainan. Mitochondrial DNA B Resour 2020; 5:2736-2737. [PMID: 33457927 PMCID: PMC7781924 DOI: 10.1080/23802359.2020.1778556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Nephelium topengii is an evergreen tree of the Sapindaceae family, which can be used as timber. Here, we report and characterize the complete plastome of N. topengii. The complete plastome is 162,944 bp in length and contains the typical structure and gene content of angiosperm plastome, including two inverted repeat (IR) regions of 30,092 bp, a large single-copy (LSC) region of 85,909 bp and a small single-copy (SSC) region of 16,851bp. The plastome contains 130 genes, consisting of 80 unique protein-coding genes, 30 unique tRNA gene, 4 unique rRNA genes (5S rRNA, 4.5S rRNA, 23S rRNA and 16S rRNA). The overall A/T content in the plastome of N. topengii is 62.30%. The complete plastome sequence of N. topengii will provide a useful resource for the conservation genetics of this species as well as for phylogenetic studies in Sapindaceae.
Collapse
Affiliation(s)
- Zhi-Xin Zhu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Hong-Xin Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Hua-Feng Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| |
Collapse
|
22
|
Wang HT, Wang HX, Zhu ZX, Wang HF. Complete plastome sequence of Flueggea virosa (Roxburgh ex Willdenow) Voigt (Phyllanthaceae): a medicinal plant. Mitochondrial DNA B Resour 2020; 5:2650-2651. [PMID: 33457893 PMCID: PMC7782946 DOI: 10.1080/23802359.2020.1778554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Flueggea virosa is a tropical plant of the Phyllanthaceae family, which has high medicinal value. Here, we report and characterize the complete plastome of F. virosa. The complete plastome is 154,961 bp in length and contains the typical structure and gene content of angiosperm plastome, including two inverted repeat (IR) regions of 27,575 bp, a large single-copy (LSC) region of 83,397 bp and a small single-copy (SSC) region of 16,414 bp. The plastome contains 130 genes, consisting of 80 unique protein-coding genes, 30 unique tRNA gene, 4 unique rRNA genes (5S rRNA, 4.5S rRNA, 23S rRNA and 16S rRNA). The overall A/T content in the plastome of F. virosa is 63.10%. The complete plastome sequence of F. virosa will provide a useful resource for the conservation genetics of this species as well as for phylogenetic studies in Phyllanthaceae.
Collapse
Affiliation(s)
- Hong-Tao Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Hong-Xin Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Zhi-Xin Zhu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Hua-Feng Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| |
Collapse
|
23
|
Ke XR, Zhang XF, Wang HX, Zhu ZX, Li JL, Wang HF. Complete plastome sequence of Mallotus peltatus (Geiseler) Müll. Arg. (Euphorbiaceae): A beverage and medicinal plant in Hainan, China. MITOCHONDRIAL DNA PART B-RESOURCES 2020; 5:953-954. [PMID: 33366823 PMCID: PMC7748731 DOI: 10.1080/23802359.2020.1719935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Mallotus peltatus is a tropical plant of the Euphorbiaceae family, which could be used as a beverage and medicine in Hainan, China. Here, we report and characterize the complete plastome of M. peltatus. The complete plastome is 163,304 bp in length and contains a typical structure and gene content of angiosperm plastome, including two inverted repeat (IR) regions of 27,112 bp, a large single-copy (LSC) region of 89,886 bp and a small single-copy (SSC) region of 18,840 bp. The plastome contains 131 genes, consisting of 78 unique protein-coding genes, 30 unique tRNA gene, four unique rRNA genes (5S rRNA, 4.5S rRNA, 23S rRNA and 16S rRNA), and eight pseudogenes. The overall A/T content in the plastome of M. peltatus is 64.02%. The complete plastome sequence of M. peltatus will provide a useful resource for the conservation genetics of this species as well as for phylogenetic studies in Euphorbiaceae.
Collapse
Affiliation(s)
- Xiu-Rong Ke
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Xiao-Feng Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Hong-Xin Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Zhi-Xin Zhu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Juan-Ling Li
- College of Forestry, Hainan University, Haikou, China
| | - Hua-Feng Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| |
Collapse
|
24
|
Liao X, Wang HX, Zhu ZX, Wang HF. Complete plastome sequence of Croton laevigatus Vahl (Euphorbiaceae): an endemic species in Hainan, China. MITOCHONDRIAL DNA PART B-RESOURCES 2020; 5:457-458. [PMID: 33366600 PMCID: PMC7748857 DOI: 10.1080/23802359.2019.1704659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Croton laevigatus grows as an evergreen tree or shrub with 15 meters height. It is distributed in the dense or open forests of Hainan province, China. Here, we report and characterize the complete plastome of C. laevigatus in an effort to provide genomic resources useful for promoting its systematics research. The plastome of C. laevigatus is found to possess a total length 162,515 bp with the typical quadripartite structure of angiosperms, contains two Inverted Repeats (IRs) of 26,866 bp, a Large Single-Copy (LSC) region of 90,234 bp and a Small Single-Copy (SSC) region of 18,549 bp. The plastome contains 113 genes, consisting of 79 unique protein-coding genes, 30 unique tRNA genes and four unique rRNA genes. The overall A/T content in the plastome of C. laevigatus is 64.10%. The phylogenetic analysis indicated that C. laevigatus is close to C. tiglium within Euphorbiaceae in this study. The complete plastome sequence of C. laevigatus will provide a useful resource for the conservation genetics of this species as well as for the phylogenetic studies of Euphorbiaceae.
Collapse
Affiliation(s)
- Xin Liao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Hong-Xin Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Zhi-Xin Zhu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Hua-Feng Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| |
Collapse
|
25
|
Wang Z, Xu B, Li B, Zhou Q, Wang G, Jiang X, Wang C, Xu Z. Comparative analysis of codon usage patterns in chloroplast genomes of six Euphorbiaceae species. PeerJ 2020; 8:e8251. [PMID: 31934501 PMCID: PMC6951282 DOI: 10.7717/peerj.8251] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/20/2019] [Indexed: 12/11/2022] Open
Abstract
Euphorbiaceae plants are important as suppliers of biodiesel. In the current study, the codon usage patterns and sources of variance in chloroplast genome sequences of six different Euphorbiaceae plant species have been systematically analyzed. Our results revealed that the chloroplast genomes of six Euphorbiaceae plant species were biased towards A/T bases and A/T-ending codons, followed by detection of 17 identical high-frequency codons including GCT, TGT, GAT, GAA, TTT, GGA, CAT, AAA, TTA, AAT, CCT, CAA, AGA, TCT, ACT, TAT and TAA. It was found that mutation pressure was a minor factor affecting the variation of codon usage, however, natural selection played a significant role. Comparative analysis of codon usage frequencies of six Euphorbiaceae plant species with four model organisms reflected that Arabidopsis thaliana, Populus trichocarpa, and Saccharomyces cerevisiae should be considered as suitable exogenous expression receptor systems for chloroplast genes of six Euphorbiaceae plant species. Furthermore, it is optimal to choose Saccharomyces cerevisiae as the exogenous expression receptor. The outcome of the present study might provide important reference information for further understanding the codon usage patterns of chloroplast genomes in other plant species.
Collapse
Affiliation(s)
- Zhanjun Wang
- College of Life Sciences, Hefei Normal University, Hefei, Anhui, China
| | - Beibei Xu
- College of Life Sciences, Hefei Normal University, Hefei, Anhui, China.,Cyrus Tang Hematology Center, Soochow University, Soochow, Jiangsu, China
| | - Bao Li
- College of Life Sciences, Hefei Normal University, Hefei, Anhui, China
| | - Qingqing Zhou
- College of Life Sciences, Hefei Normal University, Hefei, Anhui, China
| | - Guiyi Wang
- College of Life Sciences, Hefei Normal University, Hefei, Anhui, China
| | - Xingzhou Jiang
- College of Life Sciences, Hefei Normal University, Hefei, Anhui, China
| | - Chenchen Wang
- College of Life Sciences, Hefei Normal University, Hefei, Anhui, China
| | - Zhongdong Xu
- College of Life Sciences, Hefei Normal University, Hefei, Anhui, China
| |
Collapse
|
26
|
Zhao N, Grover CE, Chen Z, Wendel JF, Hua J. Intergenomic gene transfer in diploid and allopolyploid Gossypium. BMC PLANT BIOLOGY 2019; 19:492. [PMID: 31718541 PMCID: PMC6852956 DOI: 10.1186/s12870-019-2041-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/20/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND Intergenomic gene transfer (IGT) between nuclear and organellar genomes is a common phenomenon during plant evolution. Gossypium is a useful model to evaluate the genomic consequences of IGT for both diploid and polyploid species. Here, we explore IGT among nuclear, mitochondrial, and plastid genomes of four cotton species, including two allopolyploids and their model diploid progenitors (genome donors, G. arboreum: A2 and G. raimondii: D5). RESULTS Extensive IGT events exist for both diploid and allotetraploid cotton (Gossypium) species, with the nuclear genome being the predominant recipient of transferred DNA followed by the mitochondrial genome. The nuclear genome has integrated 100 times more foreign sequences than the mitochondrial genome has in total length. In the nucleus, the integrated length of chloroplast DNA (cpDNA) was between 1.87 times (in diploids) to nearly four times (in allopolyploids) greater than that of mitochondrial DNA (mtDNA). In the mitochondrion, the length of nuclear DNA (nuDNA) was typically three times than that of cpDNA. Gossypium mitochondrial genomes integrated three nuclear retrotransposons and eight chloroplast tRNA genes, and incorporated chloroplast DNA prior to divergence between the diploids and allopolyploid formation. For mitochondrial chloroplast-tRNA genes, there were 2-6 bp conserved microhomologies flanking their insertion sites across distantly related genera, which increased to 10 bp microhomologies for the four cotton species studied. For organellar DNA sequences, there are source hotspots, e.g., the atp6-trnW intergenic region in the mitochondrion and the inverted repeat region in the chloroplast. Organellar DNAs in the nucleus were rarely expressed, and at low levels. Surprisingly, there was asymmetry in the survivorship of ancestral insertions following allopolyploidy, with most numts (nuclear mitochondrial insertions) decaying or being lost whereas most nupts (nuclear plastidial insertions) were retained. CONCLUSIONS This study characterized and compared intracellular transfer among nuclear and organellar genomes within two cultivated allopolyploids and their ancestral diploid cotton species. A striking asymmetry in the fate of IGTs in allopolyploid cotton was discovered, with numts being preferentially lost relative to nupts. Our results connect intergenomic gene transfer with allotetraploidy and provide new insight into intracellular genome evolution.
Collapse
Affiliation(s)
- Nan Zhao
- Laboratory of Cotton Genetics, Genomics and Breeding /Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education / Key Laboratory of Crop Heterosis and Utilization of Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Corrinne E. Grover
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011 USA
| | - Zhiwen Chen
- Laboratory of Cotton Genetics, Genomics and Breeding /Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education / Key Laboratory of Crop Heterosis and Utilization of Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Jonathan F. Wendel
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011 USA
| | - Jinping Hua
- Laboratory of Cotton Genetics, Genomics and Breeding /Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education / Key Laboratory of Crop Heterosis and Utilization of Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
27
|
Xu W, Yang T, Qiu L, Chapman MA, Li D, Liu A. Genomic analysis reveals rich genetic variation and potential targets of selection during domestication of castor bean from perennial woody tree to annual semi-woody crop. PLANT DIRECT 2019; 3:e00173. [PMID: 31641699 PMCID: PMC6802463 DOI: 10.1002/pld3.173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 09/05/2019] [Accepted: 09/10/2019] [Indexed: 06/10/2023]
Abstract
Relatively, little is known about the genetic variation of woody trees during domestication. Castor bean (Ricinus communis L. Euphorbiaceae) is a commercially important nonedible annual oilseed crop and differs from its wild progenitors that have a perennial woody habit. Although castor bean is one of the oldest cultivated crops, its domestication origin, genomic variation, and potential targets of selection underlying domestication traits remain unknown. Here, we performed a phylogenetic analysis, which suggests that the wild accessions were distinctively separated from the cultivated accessions. Genome sequencing of three accessions (one each wild, landrace, and cultivar) showed a large number of genetic variants between wild and cultivated castor bean (ZB306 or Hale), and relatively few variants between cultivar ZB306 and Hale. Comparative genome analysis revealed many candidate genes of selection and key pathways potentially involved in the transition from a perennial woody tree to annual crop. Interestingly, among 16 oil-related genes only three showed evidence of selection and the remainder showed low genetic variation at the population level, suggesting strong purifying selection in both the wild and domesticated gene pools. These results extend our understanding of the origin, genomic variation, and domestication, and provide a valuable resource for future gene-trait associations and castor bean breeding.
Collapse
Affiliation(s)
- Wei Xu
- Department of Economic Plants and BiotechnologyYunnan Key Laboratory for Wild Plant ResourcesKunming Institute of BotanyChinese Academy of SciencesKunmingChina
| | - Tianquan Yang
- Germplasm Bank of Wild SpeciesKunming Institute of BotanyChinese Academy of SciencesKunmingChina
| | - Lijun Qiu
- Department of Economic Plants and BiotechnologyYunnan Key Laboratory for Wild Plant ResourcesKunming Institute of BotanyChinese Academy of SciencesKunmingChina
| | - Mark A. Chapman
- Biological Sciences and Centre for Underutilised CropsUniversity of SouthamptonSouthamptonUK
| | - De‐Zhu Li
- Germplasm Bank of Wild SpeciesKunming Institute of BotanyChinese Academy of SciencesKunmingChina
| | - Aizhong Liu
- Department of Economic Plants and BiotechnologyYunnan Key Laboratory for Wild Plant ResourcesKunming Institute of BotanyChinese Academy of SciencesKunmingChina
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of ChinaMinistry of EducationSouthwest Forestry UniversityKunmingChina
| |
Collapse
|
28
|
Yu A, Li F, Xu W, Wang Z, Sun C, Han B, Wang Y, Wang B, Cheng X, Liu A. Application of a high-resolution genetic map for chromosome-scale genome assembly and fine QTLs mapping of seed size and weight traits in castor bean. Sci Rep 2019; 9:11950. [PMID: 31420567 PMCID: PMC6697702 DOI: 10.1038/s41598-019-48492-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/07/2019] [Indexed: 01/27/2023] Open
Abstract
Castor bean (Ricinus communis L., Euphorbiaceae) is a critical biodiesel crop and its seed derivatives have important industrial applications. Due to lack of a high-density genetic map, the breeding and genetic improvement of castor bean has been largely restricted. In this study, based on a recombinant inbred line (RIL) population consisting of 200 individuals, we generated 8,896 high-quality genomic SNP markers and constructed a high-resolution genetic map with 10 linkage groups (LGs), spanning 1,852.33 centiMorgan (cM). Based on the genetic map, 996 scaffolds from the draft reference genome were anchored onto 10 pseudo-chromosomes, covering 84.43% of the castor bean genome. Furthermore, the quality of the pseudo-chromosome scale assembly genome was confirmed via genome collinearity analysis within the castor bean genome as well as between castor bean and cassava. Our results provide new evidence that the phylogenetic position of castor bean is relatively solitary from other taxa in the Euphorbiaceae family. Based on the genetic map, we identified 16 QTLs that control seed size and weight (covering 851 candidate genes). The findings will be helpful for further research into potential new mechanisms controlling seed size and weight in castor bean. The genetic map and improved pseudo-chromosome scale genome provide crucial foundations for marker-assisted selection (MAS) of QTL governing important agronomic traits, as well as the accelerated molecular breeding of castor bean in a cost-effective pattern.
Collapse
Affiliation(s)
- Anmin Yu
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei Li
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Wei Xu
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Zaiqing Wang
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Sun
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Bing Han
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yue Wang
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Bo Wang
- Wuhan Genoseq Technology Co., Ltd, Wuhan, 430070, China
| | - Xiaomao Cheng
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| | - Aizhong Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China.
| |
Collapse
|
29
|
Kistenich S, Halvorsen R, Schrøder-Nielsen A, Thorbek L, Timdal E, Bendiksby M. DNA Sequencing Historical Lichen Specimens. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
30
|
De Novo Sequencing and Hybrid Assembly of the Biofuel Crop Jatropha curcas L.: Identification of Quantitative Trait Loci for Geminivirus Resistance. Genes (Basel) 2019; 10:genes10010069. [PMID: 30669588 PMCID: PMC6356885 DOI: 10.3390/genes10010069] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/03/2018] [Accepted: 12/07/2018] [Indexed: 12/26/2022] Open
Abstract
Jatropha curcas is an important perennial, drought tolerant plant that has been identified as a potential biodiesel crop. We report here the hybrid de novo genome assembly of J. curcas generated using Illumina and PacBio sequencing technologies, and identification of quantitative loci for Jatropha Mosaic Virus (JMV) resistance. In this study, we generated scaffolds of 265.7 Mbp in length, which correspond to 84.8% of the gene space, using Benchmarking Universal Single-Copy Orthologs (BUSCO) analysis. Additionally, 96.4% of predicted protein-coding genes were captured in RNA sequencing data, which reconfirms the accuracy of the assembled genome. The genome was utilized to identify 12,103 dinucleotide simple sequence repeat (SSR) markers, which were exploited in genetic diversity analysis to identify genetically distinct lines. A total of 207 polymorphic SSR markers were employed to construct a genetic linkage map for JMV resistance, using an interspecific F₂ mapping population involving susceptible J. curcas and resistant Jatropha integerrima as parents. Quantitative trait locus (QTL) analysis led to the identification of three minor QTLs for JMV resistance, and the same has been validated in an alternate F₂ mapping population. These validated QTLs were utilized in marker-assisted breeding for JMV resistance. Comparative genomics of oil-producing genes across selected oil producing species revealed 27 conserved genes and 2986 orthologous protein clusters in Jatropha. This reference genome assembly gives an insight into the understanding of the complex genetic structure of Jatropha, and serves as source for the development of agronomically improved virus-resistant and oil-producing lines.
Collapse
|
31
|
de Santana Lopes A, Pacheco TG, Santos KGD, Vieira LDN, Guerra MP, Nodari RO, de Souza EM, de Oliveira Pedrosa F, Rogalski M. The Linum usitatissimum L. plastome reveals atypical structural evolution, new editing sites, and the phylogenetic position of Linaceae within Malpighiales. PLANT CELL REPORTS 2018; 37:307-328. [PMID: 29086003 DOI: 10.1007/s00299-017-2231-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/18/2017] [Indexed: 05/12/2023]
Abstract
The plastome of Linum usitatissimum was completely sequenced allowing analyses of evolution of genome structure, RNA editing sites, molecular markers, and indicating the position of Linaceae within Malpighiales. Flax (Linum usitatissimum L.) is an economically important crop used as food, feed, and industrial feedstock. It belongs to the Linaceae family, which is noted by high morphological and ecological diversity. Here, we reported the complete sequence of flax plastome, the first species within Linaceae family to have the plastome sequenced, assembled and characterized in detail. The plastome of flax is a circular DNA molecule of 156,721 bp with a typical quadripartite structure including two IRs of 31,990 bp separating the LSC of 81,767 bp and the SSC of 10,974 bp. It shows two expansion events from IRB to LSC and from IRB to SSC, and a contraction event in the IRA-LSC junction, which changed significantly the size and the gene content of LSC, SSC and IRs. We identified 109 unique genes and 2 pseudogenes (rpl23 and ndhF). The plastome lost the conserved introns of clpP gene and the complete sequence of rps16 gene. The clpP, ycf1, and ycf2 genes show high nucleotide and aminoacid divergence, but they still possibly retain the functionality. Moreover, we also identified 176 SSRs, 20 tandem repeats, and 39 dispersed repeats. We predicted in 18 genes a total of 53 RNA editing sites of which 32 were not found before in other species. The phylogenetic inference based on 63 plastid protein-coding genes of 38 taxa supports three major clades within Malpighiales order. One of these clades has flax (Linaceae) sister to Chrysobalanaceae family, differing from earlier studies that included Linaceae into the euphorbioid clade.
Collapse
Affiliation(s)
- Amanda de Santana Lopes
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Túlio Gomes Pacheco
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Karla Gasparini Dos Santos
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Leila do Nascimento Vieira
- Laboratório de Fisiologia do Desenvolvimento e Genética Vegetal, Programa de Pós-Graduação em Recursos Genéticos Vegetais, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Miguel Pedro Guerra
- Laboratório de Fisiologia do Desenvolvimento e Genética Vegetal, Programa de Pós-Graduação em Recursos Genéticos Vegetais, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Rubens Onofre Nodari
- Laboratório de Fisiologia do Desenvolvimento e Genética Vegetal, Programa de Pós-Graduação em Recursos Genéticos Vegetais, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Emanuel Maltempi de Souza
- Departamento de Bioquímica e Biologia Molecular, Núcleo de Fixação Biológica de Nitrogênio, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Fábio de Oliveira Pedrosa
- Departamento de Bioquímica e Biologia Molecular, Núcleo de Fixação Biológica de Nitrogênio, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Marcelo Rogalski
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| |
Collapse
|
32
|
Zou Z, Huang Q, Xie G, Yang L. Genome-wide comparative analysis of papain-like cysteine protease family genes in castor bean and physic nut. Sci Rep 2018; 8:331. [PMID: 29321580 PMCID: PMC5762910 DOI: 10.1038/s41598-017-18760-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 12/18/2017] [Indexed: 11/09/2022] Open
Abstract
Papain-like cysteine proteases (PLCPs) are a class of proteolytic enzymes involved in many plant processes. Compared with the extensive research in Arabidopsis thaliana, little is known in castor bean (Ricinus communis) and physic nut (Jatropha curcas), two Euphorbiaceous plants without any recent whole-genome duplication. In this study, a total of 26 or 23 PLCP genes were identified from the genomes of castor bean and physic nut respectively, which can be divided into nine subfamilies based on the phylogenetic analysis: RD21, CEP, XCP, XBCP3, THI, SAG12, RD19, ALP and CTB. Although most of them harbor orthologs in Arabidopsis, several members in subfamilies RD21, CEP, XBCP3 and SAG12 form new groups or subgroups as observed in other species, suggesting specific gene loss occurred in Arabidopsis. Recent gene duplicates were also identified in these two species, but they are limited to the SAG12 subfamily and were all derived from local duplication. Expression profiling revealed diverse patterns of different family members over various tissues. Furthermore, the evolution characteristics of PLCP genes were also compared and discussed. Our findings provide a useful reference to characterize PLCP genes and investigate the family evolution in Euphorbiaceae and species beyond.
Collapse
Affiliation(s)
- Zhi Zou
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Baodaoxincun, Danzhou, 571737, Hainan Province, China.
| | - Qixing Huang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, 570100, Hainan Province, China
| | - Guishui Xie
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Baodaoxincun, Danzhou, 571737, Hainan Province, China
| | - Lifu Yang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Baodaoxincun, Danzhou, 571737, Hainan Province, China
| |
Collapse
|
33
|
He S, Xu W, Li F, Wang Y, Liu A. Intraspecific DNA methylation polymorphism in the non-edible oilseed plant castor bean. PLANT DIVERSITY 2017; 39:300-307. [PMID: 30159523 PMCID: PMC6112301 DOI: 10.1016/j.pld.2017.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 05/25/2017] [Accepted: 05/27/2017] [Indexed: 05/05/2023]
Abstract
Investigation of the relationships of phenotypic and epigenetic variations might be a good way to dissect the genetic or molecular basis of phenotypic variation and plasticity in plants. Castor bean (Ricinus communis L.), an important non-edible oilseed crop, is a mono-species genus plant in the family Euphorbiaceae. Since it displays rich phenotypic variations with low genetic diversity, castor bean is a good model to investigate the molecular basis of phenotypic and epigenetic variations. Cytosine DNA methylation represents a major molecular mechanism of epigenetic occurrence. In this study, epigenetic diversity of sixty landrace accessions collected worldwide was investigated using the methylation-sensitive amplification polymorphism (MSAP) technique. Results showed that the epigenetic diversity (based on the polymorphism of DNA methylated loci) exhibited a medium variation (Ne = 1.395, He = 0.242, I = 0.366) at the population level though the variation was great, ranging from 3.80% to 34.31% among accessions. Both population structure analysis and the phylogenetic construction (using the neighbor-joining criteria) revealed that the two main clades were identified, but they did not display a distinct geographic structure. After inspecting the location of polymorphic methylated loci on genome we identified that the polymorphic methylated loci occur widely in nuclear and organelle genomes. This study provides new data to understand phenotypic and epigenetic variations in castor bean.
Collapse
Affiliation(s)
- Shan He
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Xu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Fei Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yue Wang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Aizhong Liu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| |
Collapse
|
34
|
Yoshida T, Furihata HY, Kawabe A. Analysis of nuclear mitochondrial DNAs and factors affecting patterns of integration in plant species. Genes Genet Syst 2017; 92:27-33. [PMID: 28228607 DOI: 10.1266/ggs.16-00039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Sequences homologous to organellar DNA that have been integrated into nuclear genomes are referred to as nuclear mitochondrial DNAs (NUMTs) and nuclear plastid DNAs (NUPTs). NUMTs in nine plant species were analyzed to reveal the integration patterns and possible factors involved. The cumulative lengths of NUMTs in two-thirds of species analyzed were greater than those of NUPTs observed in a previous study. The age distribution of NUMTs was similar to that of NUPTs, suggesting similar mechanisms for integration and degradation of both NUPTs and NUMTs. Nuclear genome size and the cumulative length of NUMTs showed a significant positive correlation for older but not younger NUMTs. The same correlation was also found between nuclear genome size and older NUPTs in 17 species. These results suggested that genome size is a key factor to determine the cumulative length of relatively older NUPTs/NUMTs. Although the factor(s) determining the cumulative length of younger NUPTs/NUMTs is unclear, these sequences may be more deleterious, which could explain the different manner of determining the cumulative length of younger NUPTs/NUMTs in nuclear genomes. In addition, a relationship between the cumulative length of integrated NUMTs and complexity of mitochondrial genomes (i.e., the number of repeats) was found. The results indicate that the structural complexity of both NUMTs and their original mitochondrial sequences affects integration and degradation processes.
Collapse
Affiliation(s)
| | | | - Akira Kawabe
- Faculty of Life Sciences, Kyoto Sangyo University
| |
Collapse
|
35
|
Wang ML, Dzievit M, Chen Z, Morris JB, Norris JE, Barkley NA, Tonnis B, Pederson GA, Yu J. Genetic diversity and population structure of castor (Ricinus communis L.) germplasm within the US collection assessed with EST-SSR markers. Genome 2017; 60:193-200. [PMID: 28094539 DOI: 10.1139/gen-2016-0116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Castor is an important oilseed crop and although its oil is inedible, it has multiple industrial and pharmaceutical applications. The entire US castor germplasm collection was previously screened for oil content and fatty acid composition, but its genetic diversity and population structure has not been determined. Based on the screening results of oil content, fatty acid composition, and country origins, 574 accessions were selected and genotyped with 22 polymorphic EST-SSR markers. The results from cluster analysis, population structure, and principal component analysis were consistent, and partitioned accessions into four subpopulations. Although there were certain levels of admixtures among groups, these clusters and subpopulations aligned with geographic origins. Both divergent and redundant accessions were identified in this study. The US castor germplasm collection encompasses a moderately high level of genetic diversity (pairwise dissimilarity coefficient = 0.53). The results obtained here will be useful for choosing accessions as parents to make crosses in breeding programs and prioritizing accessions for regeneration to improve germplasm management. A subset of 230 accessions was selected and will be planted in the field for establishing a core collection of the US castor germplasm. Further evaluation of the US castor germplasm collection is also discussed.
Collapse
Affiliation(s)
- M L Wang
- a USDA-ARS, Plant Genetic Resources Conservation Unit, 1109 Experiment Street, Griffin, GA 30223, USA
| | - M Dzievit
- b Department of Agronomy, Iowa State University, 2014 Agronomy Hall, Ames, IA 50011, USA
| | - Z Chen
- c Department of Crop and Soil Sciences, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA
| | - J B Morris
- a USDA-ARS, Plant Genetic Resources Conservation Unit, 1109 Experiment Street, Griffin, GA 30223, USA
| | - J E Norris
- d Emory University Hospital, Emory University, 1364 Clifton Road, Atlanta, GA 30322, USA
| | - N A Barkley
- a USDA-ARS, Plant Genetic Resources Conservation Unit, 1109 Experiment Street, Griffin, GA 30223, USA
| | - B Tonnis
- a USDA-ARS, Plant Genetic Resources Conservation Unit, 1109 Experiment Street, Griffin, GA 30223, USA
| | - G A Pederson
- a USDA-ARS, Plant Genetic Resources Conservation Unit, 1109 Experiment Street, Griffin, GA 30223, USA
| | - J Yu
- b Department of Agronomy, Iowa State University, 2014 Agronomy Hall, Ames, IA 50011, USA
| |
Collapse
|
36
|
Cauz-Santos LA, Munhoz CF, Rodde N, Cauet S, Santos AA, Penha HA, Dornelas MC, Varani AM, Oliveira GCX, Bergès H, Vieira MLC. The Chloroplast Genome of Passiflora edulis (Passifloraceae) Assembled from Long Sequence Reads: Structural Organization and Phylogenomic Studies in Malpighiales. FRONTIERS IN PLANT SCIENCE 2017; 8:334. [PMID: 28344587 PMCID: PMC5345083 DOI: 10.3389/fpls.2017.00334] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 02/27/2017] [Indexed: 05/20/2023]
Abstract
The family Passifloraceae consists of some 700 species classified in around 16 genera. Almost all its members belong to the genus Passiflora. In Brazil, the yellow passion fruit (Passiflora edulis) is of considerable economic importance, both for juice production and consumption as fresh fruit. The availability of chloroplast genomes (cp genomes) and their sequence comparisons has led to a better understanding of the evolutionary relationships within plant taxa. In this study, we obtained the complete nucleotide sequence of the P. edulis chloroplast genome, the first entirely sequenced in the Passifloraceae family. We determined its structure and organization, and also performed phylogenomic studies on the order Malpighiales and the Fabids clade. The P. edulis chloroplast genome is characterized by the presence of two copies of an inverted repeat sequence (IRA and IRB) of 26,154 bp, each separating a small single copy region of 13,378 bp and a large single copy (LSC) region of 85,720 bp. The annotation resulted in the identification of 105 unique genes, including 30 tRNAs, 4 rRNAs, and 71 protein coding genes. Also, 36 repetitive elements and 85 SSRs (microsatellites) were identified. The structure of the complete cp genome of P. edulis differs from that of other species because of rearrangement events detected by means of a comparison based on 22 members of the Malpighiales. The rearrangements were three inversions of 46,151, 3,765 and 1,631 bp, located in the LSC region. Phylogenomic analysis resulted in strongly supported trees, but this could also be a consequence of the limited taxonomic sampling used. Our results have provided a better understanding of the evolutionary relationships in the Malpighiales and the Fabids, confirming the potential of complete chloroplast genome sequences in inferring evolutionary relationships and the utility of long sequence reads for generating very accurate biological information.
Collapse
Affiliation(s)
- Luiz A. Cauz-Santos
- Departamento de Genética, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, PiracicabaBrazil
| | - Carla F. Munhoz
- Departamento de Genética, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, PiracicabaBrazil
| | - Nathalie Rodde
- Institut National de la Recherche Agronomique, French Plant Genomic Resource Center, Castanet-TolosanFrance
| | - Stephane Cauet
- Institut National de la Recherche Agronomique, French Plant Genomic Resource Center, Castanet-TolosanFrance
| | - Anselmo A. Santos
- Departamento de Genética, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, PiracicabaBrazil
- FuturaGene Brasil Tecnologia Ltda., São PauloBrazil
| | - Helen A. Penha
- Departamento de Genética, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, PiracicabaBrazil
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, JaboticabalBrazil
| | - Marcelo C. Dornelas
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, CampinasBrazil
| | - Alessandro M. Varani
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, JaboticabalBrazil
| | - Giancarlo C. X. Oliveira
- Departamento de Genética, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, PiracicabaBrazil
| | - Hélène Bergès
- Institut National de la Recherche Agronomique, French Plant Genomic Resource Center, Castanet-TolosanFrance
| | - Maria Lucia C. Vieira
- Departamento de Genética, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, PiracicabaBrazil
- *Correspondence: Maria Lucia C. Vieira,
| |
Collapse
|
37
|
Grewe F, Zhu A, Mower JP. Loss of a Trans-Splicing nad1 Intron from Geraniaceae and Transfer of the Maturase Gene matR to the Nucleus in Pelargonium. Genome Biol Evol 2016; 8:3193-3201. [PMID: 27664178 PMCID: PMC5174742 DOI: 10.1093/gbe/evw233] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The mitochondrial nad1 gene of seed plants has a complex structure, including four introns in cis or trans configurations and a maturase gene (matR) hosted within the final intron. In the geranium family (Geraniaceae), however, sequencing of representative species revealed that three of the four introns, including one in a trans configuration and another that hosts matR, were lost from the nad1 gene in their common ancestor. Despite the loss of the host intron, matR has been retained as a freestanding gene in most genera of the family, indicating that this maturase has additional functions beyond the splicing of its host intron. In the common ancestor of Pelargonium, matR was transferred to the nuclear genome, where it was split into two unlinked genes that encode either its reverse transcriptase or maturase domain. Both nuclear genes are transcribed and contain predicted mitochondrial targeting signals, suggesting that they express functional proteins that are imported into mitochondria. The nuclear localization and split domain structure of matR in the Pelargonium nuclear genome offers a unique opportunity to assess the function of these two domains using transgenic approaches.
Collapse
Affiliation(s)
- Felix Grewe
- Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska.,Department of Agronomy and Horticulture, University of Nebraska, Lincoln, Nebraska.,Integrative Research Center, The Field Museum of Natural History, Chicago, Illinois
| | - Andan Zhu
- Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska.,Department of Agronomy and Horticulture, University of Nebraska, Lincoln, Nebraska
| | - Jeffrey P Mower
- Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska .,Department of Agronomy and Horticulture, University of Nebraska, Lincoln, Nebraska
| |
Collapse
|
38
|
Patel VR, Dumancas GG, Kasi Viswanath LC, Maples R, Subong BJJ. Castor Oil: Properties, Uses, and Optimization of Processing Parameters in Commercial Production. Lipid Insights 2016; 9:1-12. [PMID: 27656091 PMCID: PMC5015816 DOI: 10.4137/lpi.s40233] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/07/2016] [Accepted: 08/09/2016] [Indexed: 12/19/2022] Open
Abstract
Castor oil, produced from castor beans, has long been considered to be of important commercial value primarily for the manufacturing of soaps, lubricants, and coatings, among others. Global castor oil production is concentrated primarily in a small geographic region of Gujarat in Western India. This region is favorable due to its labor-intensive cultivation method and subtropical climate conditions. Entrepreneurs and castor processors in the United States and South America also cultivate castor beans but are faced with the challenge of achieving high castor oil production efficiency, as well as obtaining the desired oil quality. In this manuscript, we provide a detailed analysis of novel processing methods involved in castor oil production. We discuss novel processing methods by explaining specific processing parameters involved in castor oil production.
Collapse
Affiliation(s)
- Vinay R Patel
- Department of Oils, Fats & Waxes, Sardar Patel University, Gujarat, India.; SDI Farms, Inc., Miami, FL, USA.; Jayant Oils and Derivatives Ltd., Vadodara, India
| | - Gerard G Dumancas
- Department of Mathematics and Physical Sciences, Louisiana State University-Alexandria, LA, USA.; Department of Chemistry, Oklahoma Baptist University, Shawnee, OK, USA.; Process Analytical Technology, GlaxoSmithKline, King of Prussia, PA, USA
| | | | - Randall Maples
- Department of Chemistry, East Central University, Ada, OK, USA
| | - Bryan John J Subong
- The Marine Science Institute, College of Science, University of the Philippines-Diliman, Quezon City, Philippines
| |
Collapse
|
39
|
Daniell H, Lin CS, Yu M, Chang WJ. Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biol 2016; 17:134. [PMID: 27339192 PMCID: PMC4918201 DOI: 10.1186/s13059-016-1004-2] [Citation(s) in RCA: 860] [Impact Index Per Article: 95.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chloroplasts play a crucial role in sustaining life on earth. The availability of over 800 sequenced chloroplast genomes from a variety of land plants has enhanced our understanding of chloroplast biology, intracellular gene transfer, conservation, diversity, and the genetic basis by which chloroplast transgenes can be engineered to enhance plant agronomic traits or to produce high-value agricultural or biomedical products. In this review, we discuss the impact of chloroplast genome sequences on understanding the origins of economically important cultivated species and changes that have taken place during domestication. We also discuss the potential biotechnological applications of chloroplast genomes.
Collapse
Affiliation(s)
- Henry Daniell
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, South 40th St, Philadelphia, PA, 19104-6030, USA.
| | - Choun-Sea Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Ming Yu
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, South 40th St, Philadelphia, PA, 19104-6030, USA
| | - Wan-Jung Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
40
|
Zhang Y, Mulpuri S, Liu A. High light exposure on seed coat increases lipid accumulation in seeds of castor bean (Ricinus communis L.), a nongreen oilseed crop. PHOTOSYNTHESIS RESEARCH 2016; 128:125-140. [PMID: 26589321 DOI: 10.1007/s11120-015-0206-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 11/14/2015] [Indexed: 06/05/2023]
Abstract
Little was known on how sunlight affects the seed metabolism in nongreen seeds. Castor bean (Ricinus communis L.) is a typical nongreen oilseed crop and its seed oil is an important feedstock in industry. In this study, photosynthetic activity of seed coat tissues of castor bean in natural conditions was evaluated in comparison to shaded conditions. Our results indicate that exposure to high light enhances photosynthetic activity in seed coats and consequently increases oil accumulation. Consistent results were also reached using cultured seeds. High-throughput RNA-Seq analyses further revealed that genes involved in photosynthesis and carbon conversion in both the Calvin-Benson cycle and malate transport were differentially expressed between seeds cultured under light and dark conditions, implying several venues potentially contributing to light-enhanced lipid accumulation such as increased reducing power and CO2 refixation which underlie the overall lipid biosynthesis. This study demonstrated the effects of light exposure on oil accumulation in nongreen oilseeds and greatly expands our understanding of the physiological roles that light may play during seed development in nongreen oilseeds. Essentially, our studies suggest that potential exists to enhance castor oil yield through increasing exposure of the inflorescences to sunlight either by genetically changing the plant architecture (smart canopy) or its growing environment.
Collapse
Affiliation(s)
- Yang Zhang
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sujatha Mulpuri
- Indian Institute of Oilseeds Research, Rajendranagar, Hyderabad, 500 030, India
| | - Aizhong Liu
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650204, China.
| |
Collapse
|
41
|
Perumal S, Jayakodi M, Kim DS, Yang TJ, Natesan S. The complete chloroplast genome sequence of Indian barnyard millet, Echinochloa frumentacea (Poaceae). MITOCHONDRIAL DNA PART B-RESOURCES 2016; 1:79-80. [PMID: 33644328 PMCID: PMC7871652 DOI: 10.1080/23802359.2015.1137832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We report the complete chloroplast genome sequence of the important nutritious millet crop Indian barnyard millet, Echinochloa frumentacea Link (Poaceae). The size of the circular chloroplast genome is 139 593 bp in length with a typical quadripartite structure, containing pair of inverted repeats of 22 618 bp, flanked by large single copy and small single copy regions of 81 839 bp, 12 518 bp, respectively. Overall GC content of the genome was 38.6% and consists of 112 individual genes, including 77 protein coding genes, 30 tRNA genes, four rRNA genes and one conserved open reading frame. In addition, phylogenetic analysis with grass species has revealed that E. frumentacea is diverged around 1.9–2.7 million years with its close relatives, E. oryzicola and E. crus-galli.
Collapse
Affiliation(s)
- Sampath Perumal
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Murukarthick Jayakodi
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Do-Soon Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Tae-Jin Yang
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Senthil Natesan
- Department of Biotechnology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai, India
| |
Collapse
|
42
|
Zou Z, Yang L, Wang D, Huang Q, Mo Y, Xie G. Gene Structures, Evolution and Transcriptional Profiling of the WRKY Gene Family in Castor Bean (Ricinus communis L.). PLoS One 2016; 11:e0148243. [PMID: 26849139 PMCID: PMC4743969 DOI: 10.1371/journal.pone.0148243] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 01/16/2016] [Indexed: 11/25/2022] Open
Abstract
WRKY proteins comprise one of the largest transcription factor families in plants and form key regulators of many plant processes. This study presents the characterization of 58 WRKY genes from the castor bean (Ricinus communis L., Euphorbiaceae) genome. Compared with the automatic genome annotation, one more WRKY-encoding locus was identified and 20 out of the 57 predicted gene models were manually corrected. All RcWRKY genes were shown to contain at least one intron in their coding sequences. According to the structural features of the present WRKY domains, the identified RcWRKY genes were assigned to three previously defined groups (I-III). Although castor bean underwent no recent whole-genome duplication event like physic nut (Jatropha curcas L., Euphorbiaceae), comparative genomics analysis indicated that one gene loss, one intron loss and one recent proximal duplication occurred in the RcWRKY gene family. The expression of all 58 RcWRKY genes was supported by ESTs and/or RNA sequencing reads derived from roots, leaves, flowers, seeds and endosperms. Further global expression profiles with RNA sequencing data revealed diverse expression patterns among various tissues. Results obtained from this study not only provide valuable information for future functional analysis and utilization of the castor bean WRKY genes, but also provide a useful reference to investigate the gene family expansion and evolution in Euphorbiaceus plants.
Collapse
Affiliation(s)
- Zhi Zou
- Danzhou Investigation & Experiment Station of Tropical Crops, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, P. R. China
| | - Lifu Yang
- Danzhou Investigation & Experiment Station of Tropical Crops, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, P. R. China
| | - Danhua Wang
- Danzhou Investigation & Experiment Station of Tropical Crops, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, P. R. China
| | - Qixing Huang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, P. R. China
| | - Yeyong Mo
- Danzhou Investigation & Experiment Station of Tropical Crops, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, P. R. China
| | - Guishui Xie
- Danzhou Investigation & Experiment Station of Tropical Crops, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, P. R. China
| |
Collapse
|
43
|
Genome Sequences of Populus tremula Chloroplast and Mitochondrion: Implications for Holistic Poplar Breeding. PLoS One 2016; 11:e0147209. [PMID: 26800039 PMCID: PMC4723046 DOI: 10.1371/journal.pone.0147209] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 12/30/2015] [Indexed: 11/28/2022] Open
Abstract
Complete Populus genome sequences are available for the nucleus (P. trichocarpa; section Tacamahaca) and for chloroplasts (seven species), but not for mitochondria. Here, we provide the complete genome sequences of the chloroplast and the mitochondrion for the clones P. tremula W52 and P. tremula x P. alba 717-1B4 (section Populus). The organization of the chloroplast genomes of both Populus clones is described. A phylogenetic tree constructed from all available complete chloroplast DNA sequences of Populus was not congruent with the assignment of the related species to different Populus sections. In total, 3,024 variable nucleotide positions were identified among all compared Populus chloroplast DNA sequences. The 5-prime part of the LSC from trnH to atpA showed the highest frequency of variations. The variable positions included 163 positions with SNPs allowing for differentiating the two clones with P. tremula chloroplast genomes (W52, 717-1B4) from the other seven Populus individuals. These potential P. tremula-specific SNPs were displayed as a whole-plastome barcode on the P. tremula W52 chloroplast DNA sequence. Three of these SNPs and one InDel in the trnH-psbA linker were successfully validated by Sanger sequencing in an extended set of Populus individuals. The complete mitochondrial genome sequence of P. tremula is the first in the family of Salicaceae. The mitochondrial genomes of the two clones are 783,442 bp (W52) and 783,513 bp (717-1B4) in size, structurally very similar and organized as single circles. DNA sequence regions with high similarity to the W52 chloroplast sequence account for about 2% of the W52 mitochondrial genome. The mean SNP frequency was found to be nearly six fold higher in the chloroplast than in the mitochondrial genome when comparing 717-1B4 with W52. The availability of the genomic information of all three DNA-containing cell organelles will allow a holistic approach in poplar molecular breeding in the future.
Collapse
|
44
|
Kim K, Lee SC, Lee J, Yu Y, Yang K, Choi BS, Koh HJ, Waminal NE, Choi HI, Kim NH, Jang W, Park HS, Lee J, Lee HO, Joh HJ, Lee HJ, Park JY, Perumal S, Jayakodi M, Lee YS, Kim B, Copetti D, Kim S, Kim S, Lim KB, Kim YD, Lee J, Cho KS, Park BS, Wing RA, Yang TJ. Complete chloroplast and ribosomal sequences for 30 accessions elucidate evolution of Oryza AA genome species. Sci Rep 2015; 5:15655. [PMID: 26506948 PMCID: PMC4623524 DOI: 10.1038/srep15655] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/30/2015] [Indexed: 12/15/2022] Open
Abstract
Cytoplasmic chloroplast (cp) genomes and nuclear ribosomal DNA (nR) are the primary sequences used to understand plant diversity and evolution. We introduce a high-throughput method to simultaneously obtain complete cp and nR sequences using Illumina platform whole-genome sequence. We applied the method to 30 rice specimens belonging to nine Oryza species. Concurrent phylogenomic analysis using cp and nR of several of specimens of the same Oryza AA genome species provides insight into the evolution and domestication of cultivated rice, clarifying three ambiguous but important issues in the evolution of wild Oryza species. First, cp-based trees clearly classify each lineage but can be biased by inter-subspecies cross-hybridization events during speciation. Second, O. glumaepatula, a South American wild rice, includes two cytoplasm types, one of which is derived from a recent interspecies hybridization with O. longistminata. Third, the Australian O. rufipogan-type rice is a perennial form of O. meridionalis.
Collapse
Affiliation(s)
- Kyunghee Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea.,Phyzen Genome Institute, 501-1, Gwanak Century Tower, Kwanak-gu, Seoul, 151-836, Republic of Korea
| | - Sang-Choon Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Junki Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Yeisoo Yu
- Phyzen Genome Institute, 501-1, Gwanak Century Tower, Kwanak-gu, Seoul, 151-836, Republic of Korea.,Arizona Genomics Institute, School of Plant Sciences, The University of Arizona, Tucson, Arizona, 85721, USA
| | - Kiwoung Yang
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea.,Department of Horticulture, Sunchon National University, Suncheon, 540-950, Republic of Korea
| | - Beom-Soon Choi
- Phyzen Genome Institute, 501-1, Gwanak Century Tower, Kwanak-gu, Seoul, 151-836, Republic of Korea
| | - Hee-Jong Koh
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Nomar Espinosa Waminal
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Hong-Il Choi
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Nam-Hoon Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Woojong Jang
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Hyun-Seung Park
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Jonghoon Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Hyun Oh Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea.,Phyzen Genome Institute, 501-1, Gwanak Century Tower, Kwanak-gu, Seoul, 151-836, Republic of Korea
| | - Ho Jun Joh
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Hyeon Ju Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Jee Young Park
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Sampath Perumal
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Murukarthick Jayakodi
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Yun Sun Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Backki Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Dario Copetti
- Arizona Genomics Institute, School of Plant Sciences, The University of Arizona, Tucson, Arizona, 85721, USA
| | - Soonok Kim
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon, 404-170, Republic of Korea
| | - Sunggil Kim
- Department of Plant Biotechnology, Biotechnology Research Institute, Chonnam National University, Gwangju, 500-757, Republic of Korea
| | - Ki-Byung Lim
- Department of Horticultural Science, Kyungpook National University, Daegu, 702-701, Republic of Korea
| | - Young-Dong Kim
- Department of Life Science, Hallym University, Chuncheon, Kangwon-do, 200-702, Republic of Korea
| | - Jungho Lee
- Green Plant Institute, #2-202 Biovalley, 89 Seoho-ro, Kwonseon-gu, Suwon, Republic of Korea
| | - Kwang-Su Cho
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang-gun, Kangwon-do, 232-955, Republic of Korea
| | - Beom-Seok Park
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, Jeonju, 560-500, Republic of Korea
| | - Rod A Wing
- Arizona Genomics Institute, School of Plant Sciences, The University of Arizona, Tucson, Arizona, 85721, USA
| | - Tae-Jin Yang
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| |
Collapse
|
45
|
Zou Z, Gong J, Huang Q, Mo Y, Yang L, Xie G. Gene Structures, Evolution, Classification and Expression Profiles of the Aquaporin Gene Family in Castor Bean (Ricinus communis L.). PLoS One 2015; 10:e0141022. [PMID: 26509832 PMCID: PMC4625025 DOI: 10.1371/journal.pone.0141022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/02/2015] [Indexed: 01/13/2023] Open
Abstract
Aquaporins (AQPs) are a class of integral membrane proteins that facilitate the passive transport of water and other small solutes across biological membranes. Castor bean (Ricinus communis L., Euphobiaceae), an important non-edible oilseed crop, is widely cultivated for industrial, medicinal and cosmetic purposes. Its recently available genome provides an opportunity to analyze specific gene families. In this study, a total of 37 full-length AQP genes were identified from the castor bean genome, which were assigned to five subfamilies, including 10 plasma membrane intrinsic proteins (PIPs), 9 tonoplast intrinsic proteins (TIPs), 8 NOD26-like intrinsic proteins (NIPs), 6 X intrinsic proteins (XIPs) and 4 small basic intrinsic proteins (SIPs) on the basis of sequence similarities. Functional prediction based on the analysis of the aromatic/arginine (ar/R) selectivity filter, Froger's positions and specificity-determining positions (SDPs) showed a remarkable difference in substrate specificity among subfamilies. Homology analysis supported the expression of all 37 RcAQP genes in at least one of examined tissues, e.g., root, leaf, flower, seed and endosperm. Furthermore, global expression profiles with deep transcriptome sequencing data revealed diverse expression patterns among various tissues. The current study presents the first genome-wide analysis of the AQP gene family in castor bean. Results obtained from this study provide valuable information for future functional analysis and utilization.
Collapse
Affiliation(s)
- Zhi Zou
- Danzhou Investigation & Experiment Station of Tropical Crops, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, P. R. China
| | - Jun Gong
- Danzhou Investigation & Experiment Station of Tropical Crops, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, P. R. China
| | - Qixing Huang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, P. R. China
| | - Yeyong Mo
- Danzhou Investigation & Experiment Station of Tropical Crops, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, P. R. China
| | - Lifu Yang
- Danzhou Investigation & Experiment Station of Tropical Crops, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, P. R. China
| | - Guishui Xie
- Danzhou Investigation & Experiment Station of Tropical Crops, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, P. R. China
| |
Collapse
|
46
|
The Ku–Mar zinc finger: A segment-swapped zinc ribbon in MarR-like transcription regulators related to the Ku bridge. J Struct Biol 2015. [DOI: 10.1016/j.jsb.2015.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
47
|
Akande TO, Odunsi AA, Akinfala EO. A review of nutritional and toxicological implications of castor bean (Ricinus communis
L.) meal in animal feeding systems. J Anim Physiol Anim Nutr (Berl) 2015; 100:201-10. [DOI: 10.1111/jpn.12360] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 05/21/2015] [Indexed: 12/17/2022]
Affiliation(s)
- T. O. Akande
- Department of Animal Sciences; Obafemi Awolowo University; Ile ife Nigeria
| | - A. A. Odunsi
- Department of Animal Nutrition and Biotechnology; Ladoke Akintola University of Technology; Ogbomoso Nigeria
| | - E. O. Akinfala
- Department of Animal Sciences; Obafemi Awolowo University; Ile ife Nigeria
| |
Collapse
|
48
|
Schieltz DM, McWilliams LG, Kuklenyik Z, Prezioso SM, Carter AJ, Williamson YM, McGrath SC, Morse SA, Barr JR. Quantification of ricin, RCA and comparison of enzymatic activity in 18 Ricinus communis cultivars by isotope dilution mass spectrometry. Toxicon 2015; 95:72-83. [PMID: 25576235 PMCID: PMC5303535 DOI: 10.1016/j.toxicon.2015.01.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/20/2014] [Accepted: 01/06/2015] [Indexed: 11/22/2022]
Abstract
The seeds of the Ricinus communis (Castor bean) plant are the source of the economically important commodity castor oil. Castor seeds also contain the proteins ricin and R. communis agglutinin (RCA), two toxic lectins that are hazardous to human health. Radial immunodiffusion (RID) and the enzyme linked immunosorbent assay (ELISA) are two antibody-based methods commonly used to quantify ricin and RCA; however, antibodies currently used in these methods cannot distinguish between ricin and RCA due to the high sequence homology of the respective proteins. In this study, a technique combining antibody-based affinity capture with liquid chromatography and multiple reaction monitoring (MRM) mass spectrometry (MS) was used to quantify the amounts of ricin and RCA independently in extracts prepared from the seeds of eighteen representative cultivars of R. communis which were propagated under identical conditions. Additionally, liquid chromatography and MRM-MS was used to determine rRNA N-glycosidase activity for each cultivar and the overall activity in these cultivars was compared to a purified ricin standard. Of the cultivars studied, the average ricin content was 9.3 mg/g seed, the average RCA content was 9.9 mg/g seed, and the enzymatic activity agreed with the activity of a purified ricin reference within 35% relative activity.
Collapse
Affiliation(s)
- David M Schieltz
- Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway N.E., MS-F50, Atlanta, GA 30341, USA
| | - Lisa G McWilliams
- Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway N.E., MS-F50, Atlanta, GA 30341, USA
| | - Zsuzsanna Kuklenyik
- Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway N.E., MS-F50, Atlanta, GA 30341, USA
| | - Samantha M Prezioso
- Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Center for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, USA
| | - Andrew J Carter
- Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Center for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, USA
| | - Yulanda M Williamson
- Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway N.E., MS-F50, Atlanta, GA 30341, USA
| | - Sara C McGrath
- Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway N.E., MS-F50, Atlanta, GA 30341, USA
| | - Stephen A Morse
- Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Center for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, USA
| | - John R Barr
- Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway N.E., MS-F50, Atlanta, GA 30341, USA.
| |
Collapse
|
49
|
Radhika V, Rao VSH. Computational approaches for the classification of seed storage proteins. Journal of Food Science and Technology 2014; 52:4246-55. [PMID: 26139889 DOI: 10.1007/s13197-014-1500-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/21/2014] [Accepted: 07/29/2014] [Indexed: 12/27/2022]
Abstract
Seed storage proteins comprise a major part of the protein content of the seed and have an important role on the quality of the seed. These storage proteins are important because they determine the total protein content and have an effect on the nutritional quality and functional properties for food processing. Transgenic plants are being used to develop improved lines for incorporation into plant breeding programs and the nutrient composition of seeds is a major target of molecular breeding programs. Hence, classification of these proteins is crucial for the development of superior varieties with improved nutritional quality. In this study we have applied machine learning algorithms for classification of seed storage proteins. We have presented an algorithm based on nearest neighbor approach for classification of seed storage proteins and compared its performance with decision tree J48, multilayer perceptron neural (MLP) network and support vector machine (SVM) libSVM. The model based on our algorithm has been able to give higher classification accuracy in comparison to the other methods.
Collapse
Affiliation(s)
- V Radhika
- Indian Institute of Horticultural Research, Hessaraghatta Lake P.O., Bangalore, 560 089 India
| | - V Sree Hari Rao
- Foundation for Scientific Research and Technological Innovations, Hyderabad, 500 035 A.P India
| |
Collapse
|
50
|
Malé PJG, Bardon L, Besnard G, Coissac E, Delsuc F, Engel J, Lhuillier E, Scotti-Saintagne C, Tinaut A, Chave J. Genome skimming by shotgun sequencing helps resolve the phylogeny of a pantropical tree family. Mol Ecol Resour 2014; 14:966-75. [DOI: 10.1111/1755-0998.12246] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 02/09/2014] [Accepted: 02/22/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Pierre-Jean G. Malé
- UMR 5174 Laboratoire Évolution & Diversité Biologique; CNRS; Université Paul Sabatier; ENFA; 118 route de Narbonne F-31062 Toulouse France
- Department of Ecology & Evolutionary Biology; University of Toronto; Toronto ON M5S 3G5 Canada
| | - Léa Bardon
- UMR 5174 Laboratoire Évolution & Diversité Biologique; CNRS; Université Paul Sabatier; ENFA; 118 route de Narbonne F-31062 Toulouse France
| | - Guillaume Besnard
- UMR 5174 Laboratoire Évolution & Diversité Biologique; CNRS; Université Paul Sabatier; ENFA; 118 route de Narbonne F-31062 Toulouse France
| | - Eric Coissac
- Laboratoire d'Ecologie Alpine CNRS; UMR5553; Université Joseph Fourier; BP 53 F-38041 Grenoble Cedex 9 France
| | - Frédéric Delsuc
- Institut des Sciences de l'Evolution; UMR 5554-CNRS; Université Montpellier 2; Place Eugène Bataillon Montpellier France
| | - Julien Engel
- UMR ECOFOG; INRA; Université Antilles-Guyane; CNRS; CIRAD; AgroParisTech; Campus agronomique BP 709 F-97387 Kourou Cedex France
| | - Emeline Lhuillier
- INRA; UAR 1209 Département de Génétique Animale; INRA Auzeville; F-31326 Castanet-Tolosan France
- GeT-PlaGe; Genotoul; INRA Auzeville; F-31326 Castanet-Tolosan France
| | - Caroline Scotti-Saintagne
- UMR ECOFOG; INRA; Université Antilles-Guyane; CNRS; CIRAD; AgroParisTech; Campus agronomique BP 709 F-97387 Kourou Cedex France
| | - Alexandra Tinaut
- UMR ECOFOG; INRA; Université Antilles-Guyane; CNRS; CIRAD; AgroParisTech; Campus agronomique BP 709 F-97387 Kourou Cedex France
| | - Jérôme Chave
- UMR 5174 Laboratoire Évolution & Diversité Biologique; CNRS; Université Paul Sabatier; ENFA; 118 route de Narbonne F-31062 Toulouse France
| |
Collapse
|