1
|
Bolouri N, Mansouri R, Farhadi E, Soltani S, Akhtari M, Madreseh E, Faezi ST, Jafarinejad-Farsangi S, Jamshidi A, Mahmoudi M. Evaluation of survivin expression and regulating miRNAs of survivin expression in peripheral blood mononuclear cells in systemic lupus erythematous patients. Lupus 2024; 33:1203-1211. [PMID: 39162618 DOI: 10.1177/09612033241276280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
BACKGROUND Systemic lupus erythematosus is a multisystemic rheumatic disease with different clinical features. Disturbance in apoptosis regulation seems to be a major factor in SLE development. OBJECTIVE Survivin plays a key role in mitosis and inhibiting apoptosis. A study was conducted to examine the expression level of survivin and miRNAs that affect survivin transcript levels in patients with SLE. METHODS We isolated peripheral blood mononuclear cells from 50 inactive SLE patients and 50 healthy controls. RNA is extracted and converted to cDNA. The quantitative real-time polymerase chain reaction is conducted to assess the expression levels of survivin total and its variants with effective miRNAs in PBMCs. RESULTS Expression levels of miR-34a-5p (fold change = 1.5, p++ = 0.027), and 218-5p (fold change = 1.5, p++ = 0.020) were significantly increased. While miR-150-5p (fold change = 0.56, p++ = 0.003) was significantly decreased. The mRNA expression of survivin-WT (fold change = 0.63, p++ = 0.002) was significantly downregulated in SLE patients compared to the healthy controls. Survivin total and its two major variants (survivin-2B, and survivin-ΔEx3) did not differ significantly between SLE patients and controls. CONCLUSION Although survivin-TS and its two variants (survivin-2B, and survivin-ΔEx3) were not differently expressed in SLE patients, survivin-WT had altered expression. Despite aberrant miRNA expression in PBMCs from SLE patients, survivin and miRNA expression were not associated with leukopenia. The pathogenesis of SLE disorder might be linked to survivin's other roles in the immune system aside from anti-apoptotic functions.
Collapse
Affiliation(s)
- Nasim Bolouri
- Immunology Department, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Mansouri
- Immunology Department, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Elham Farhadi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Chronic Inflammatory Diseases, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Soltani
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Akhtari
- Tobacco Prevention and Control Research Center (TPCRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Madreseh
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Chronic Inflammatory Diseases, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Ahmadreza Jamshidi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Chronic Inflammatory Diseases, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Gao X, Ren X, Wang F, Ren X, Liu M, Cui G, Liu X. Immunotherapy and drug sensitivity predictive roles of a novel prognostic model in hepatocellular carcinoma. Sci Rep 2024; 14:9509. [PMID: 38664521 PMCID: PMC11045740 DOI: 10.1038/s41598-024-59877-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most significant causes of cancer-related deaths in the worldwide. Currently, predicting the survival of patients with HCC and developing treatment drugs still remain a significant challenge. In this study, we employed prognosis-related genes to develop and externally validate a predictive risk model. Furthermore, the correlation between signaling pathways, immune cell infiltration, immunotherapy response, drug sensitivity, and risk score was investigated using different algorithm platforms in HCC. Our results showed that 11 differentially expressed genes including UBE2C, PTTG1, TOP2A, SPP1, FCN3, SLC22A1, ADH4, CYP2C8, SLC10A1, F9, and FBP1 were identified as being related to prognosis, which were integrated to construct a prediction model. Our model could accurately predict patients' overall survival using both internal and external datasets. Moreover, a strong correlation was revealed between the signaling pathway, immune cell infiltration, immunotherapy response, and risk score. Importantly, a novel potential drug candidate for HCC treatment was discovered based on the risk score and also validated through ex vivo experiments. Our finds offer a novel perspective on prognosis prediction and drug exploration for cancer patients.
Collapse
Affiliation(s)
- Xiaoge Gao
- Cancer Institute, Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, People's Republic of China
| | - Xin Ren
- Cancer Institute, Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, People's Republic of China
- Department of Oncology, Jiangyin Clinical College, Xuzhou Medical University, Jiangyin, 214400, Jiangsu Province, People's Republic of China
| | - Feitong Wang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, People's Republic of China
| | - Xinxin Ren
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Mengchen Liu
- School of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519040, Guangdong Province, People's Republic of China
| | - Guozhen Cui
- School of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519040, Guangdong Province, People's Republic of China
| | - Xiangye Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu Province, People's Republic of China.
- National Demonstration Center for Experimental Basic Medical Science Education (Xuzhou Medical University), Xuzhou, 221002, Jiangsu Province, People's Republic of China.
| |
Collapse
|
3
|
Butt NUH, Baytas SN. Advancements in Hepatocellular Carcinoma: Potential Preclinical Drugs and their Future. Curr Pharm Des 2023; 29:2-14. [PMID: 36529919 DOI: 10.2174/1381612829666221216114350] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/12/2022] [Accepted: 10/27/2022] [Indexed: 12/23/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the foremost causes of tumor-affiliated demises globally. The HCC treatment has undergone numerous developments in terms of both drug and non-drug treatments. The United States Food and Drug Administration (FDA) has authorized the usage of a variety of drugs for the treatment of HCC in recent years, involving multi-kinase inhibitors (lenvatinib, regorafenib, ramucirumab, and cabozantinib), immune checkpoint inhibitors (ICIs) (pembrolizumab and nivolumab), and combination therapies like atezolizumab along with bevacizumab. There are currently over a thousand ongoing clinical and preclinical studies for novel HCC drugs, which portrays a competent setting in the field. This review discusses the i. FDA-approved HCC drugs, their molecular targets, safety profiles, and potential disadvantages; ii. The intrial agents/drugs, their molecular targets, and possible benefits compared to alternatives, and iii. The current and future status of potential preclinical drugs with novel therapeutic targets for HCC. Consequently, existing drug treatments and novel strategies with their balanced consumption could ensure a promising future for a universal remedy of HCC in the near future.
Collapse
Affiliation(s)
- Noor-Ul-Huda Butt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330, Ankara, Turkiye
| | - Sultan Nacak Baytas
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330, Ankara, Turkiye
| |
Collapse
|
4
|
Blanco I, Marquina M, Tura-Ceide O, Ferrer E, Ramírez AM, Lopez-Meseguer M, Callejo M, Perez-Vizcaino F, Peinado VI, Barberà JA. Survivin inhibition with YM155 ameliorates experimental pulmonary arterial hypertension. Front Pharmacol 2023; 14:1145994. [PMID: 37188265 PMCID: PMC10176173 DOI: 10.3389/fphar.2023.1145994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Background: Imbalance between cell proliferation and apoptosis underlies the development of pulmonary arterial hypertension (PAH). Current vasodilator treatment of PAH does not target the uncontrolled proliferative process in pulmonary arteries. Proteins involved in the apoptosis pathway may play a role in PAH and their inhibition might represent a potential therapeutic target. Survivin is a member of the apoptosis inhibitor protein family involved in cell proliferation. Objectives: This study aimed to explore the potential role of survivin in the pathogenesis of PAH and the effects of its inhibition. Methods: In SU5416/hypoxia-induced PAH mice we assessed the expression of survivin by immunohistochemistry, western-blot analysis, and RT-PCR; the expression of proliferation-related genes (Bcl2 and Mki67); and the effects of the survivin inhibitor YM155. In explanted lungs from patients with PAH we assessed the expression of survivin, BCL2 and MKI67. Results: SU5416/hypoxia mice showed increased expression of survivin in pulmonary arteries and lung tissue extract, and upregulation of survivin, Bcl2 and Mki67 genes. Treatment with YM155 reduced right ventricle (RV) systolic pressure, RV thickness, pulmonary vascular remodeling, and the expression of survivin, Bcl2, and Mki67 to values similar to those in control animals. Lungs of patients with PAH also showed increased expression of survivin in pulmonary arteries and lung extract, and also that of BCL2 and MKI67 genes, compared with control lungs. Conclusion: We conclude that survivin might be involved in the pathogenesis of PAH and that its inhibition with YM155 might represent a novel therapeutic approach that warrants further evaluation.
Collapse
Affiliation(s)
- Isabel Blanco
- Department of Pulmonary Medicine, Hospital Clínic-University of Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
- *Correspondence: Isabel Blanco,
| | - Maribel Marquina
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Olga Tura-Ceide
- Department of Pulmonary Medicine, Hospital Clínic-University of Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
- Biomedical Research Institute-IDIBGI, Girona, Spain
| | - Elisabet Ferrer
- Department of Pulmonary Medicine, Hospital Clínic-University of Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Medicine, Addenbrooke’s Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Ana M. Ramírez
- Department of Pulmonary Medicine, Hospital Clínic-University of Barcelona, Barcelona, Spain
| | | | - Maria Callejo
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
- Departament of Pharmacology and Toxicology, School of Medicine, Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Universidad Complutense de Madrid, Madrid, Spain
| | - Francisco Perez-Vizcaino
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
- Departament of Pharmacology and Toxicology, School of Medicine, Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Universidad Complutense de Madrid, Madrid, Spain
| | - Victor Ivo Peinado
- Department of Pulmonary Medicine, Hospital Clínic-University of Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
- Department of Experimental Pathology, Institut d’Investigacions Biomèdiques de Barcelona (IIBB-CSIC), Barcelona, Spain
| | - Joan Albert Barberà
- Department of Pulmonary Medicine, Hospital Clínic-University of Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| |
Collapse
|
5
|
What can we learn from mice lacking pro-survival BCL-2 proteins to advance BH3 mimetic drugs for cancer therapy? Cell Death Differ 2022; 29:1079-1093. [PMID: 35388168 DOI: 10.1038/s41418-022-00987-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 03/04/2022] [Accepted: 03/15/2022] [Indexed: 12/21/2022] Open
Abstract
In many human cancers the control of apoptosis is dysregulated, for instance as a result of the overexpression of pro-survival BCL-2 proteins. This promotes tumorigenesis by protecting nascent neoplastic cells from stress and renders malignant cells resistant to anti-cancer agents. Therefore, several BH3 mimetic drugs targeting distinct pro-survival proteins have been developed. The BCL-2 inhibitor Venetoclax/ABT-199, has been approved for treatment of certain blood cancers and tens of thousands of patients have already been treated effectively with this drug. To advance the clinical development of MCL-1 and BCL-XL inhibitors, a more detailed understanding of their distinct and overlapping roles in the survival of malignant as well as non-transformed cells in healthy tissues is required. Here, we discuss similarities and differences in pro-survival BCL-2 protein structure, subcellular localisation and binding affinities to the pro-apoptotic BCL-2 family members. We summarise the findings from gene-targeting studies in mice to discuss the specific roles of distinct pro-survival BCL-2 family members during embryogenesis and the survival of non-transformed cells in healthy tissues in adults. Finally, we elaborate how these findings align with or differ from the observations from the clinical development and use of BH3 mimetic drugs targeting different pro-survival BCL-2 proteins.
Collapse
|
6
|
Jiang H, Tang W, Song Y, Jin W, Du Q. Induction of Apoptosis by Metabolites of Rhei Radix et Rhizoma (Da Huang): A Review of the Potential Mechanism in Hepatocellular Carcinoma. Front Pharmacol 2022; 13:806175. [PMID: 35308206 PMCID: PMC8924367 DOI: 10.3389/fphar.2022.806175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/24/2022] [Indexed: 11/28/2022] Open
Abstract
Liver cancer is a global disease with a high mortality rate and limited treatment options. Alternations in apoptosis of tumor cells and immune cells have become an important method for detailing the underlying mechanisms of hepatocellular carcinoma (HCC). Bcl-2 family, Caspase family, Fas and other apoptosis-related proteins have also become antagonistic targets of HCC. Da Huang (Rhei Radix et Rhizoma, RR), a traditional Chinese herb, has recently demonstrated antitumor behaviors. Multiple active metabolites of RR, including emodin, rhein, physcion, aloe-emodin, gallic acid, and resveratrol, can successfully induce apoptosis and inhibit HCC. However, the underlying mechanisms of these metabolites inhibiting the occurrence and development of HCC by inducing apoptosis is complicated owing to the multi-target and multi-pathway characteristics of traditional Chinese herbs. Accordingly, this article reviews the pathways of apoptosis, the relationship between HCC and apoptosis, the role and mechanism of apoptosis induced by mitochondrial endoplasmic reticulum pathway and death receptor pathway in HCC and the mechanism of six RR metabolites inhibiting HCC by inducing apoptosis.
Collapse
Affiliation(s)
- Huanyu Jiang
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wuyinuo Tang
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yang Song
- Emergency Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Jin
- Emergency Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Quanyu Du
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Qiao Y, Pei Y, Luo M, Rajasekaran M, Hui KM, Chen J. Cytokinesis regulators as potential diagnostic and therapeutic biomarkers for human hepatocellular carcinoma. Exp Biol Med (Maywood) 2021; 246:1343-1354. [PMID: 33899543 DOI: 10.1177/15353702211008380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cytokinesis, the final step of mitosis, is critical for maintaining the ploidy level of cells. Cytokinesis is a complex, highly regulated process and its failure can lead to genetic instability and apoptosis, contributing to the development of cancer. Human hepatocellular carcinoma is often accompanied by a high frequency of aneuploidy and the DNA ploidy pattern observed in human hepatocellular carcinoma results mostly from impairments in cytokinesis. Many key regulators of cytokinesis are abnormally expressed in human hepatocellular carcinoma, and their expression levels are often correlated with patient prognosis. Moreover, preclinical studies have demonstrated that the inhibition of key cytokinesis regulators can suppress the growth of human hepatocellular carcinoma. Here, we provide an overview of the current understanding of the signaling networks regulating cytokinesis, the key cytokinesis regulators involved in the initiation and development of human hepatocellular carcinoma, and their applications as potential diagnostic and therapeutic biomarkers.
Collapse
Affiliation(s)
- Yiting Qiao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, P. R. China
| | - Yunxin Pei
- Pharmacy Institute and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Collaborative Innovation Center of Traditional Chinese Medicines from Zhejiang Province, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China
| | - Miao Luo
- Pharmacy Institute and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Collaborative Innovation Center of Traditional Chinese Medicines from Zhejiang Province, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China
| | - Muthukumar Rajasekaran
- Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, National Cancer Centre, Singapore 169610, Singapore
| | - Kam M Hui
- Pharmacy Institute and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Collaborative Innovation Center of Traditional Chinese Medicines from Zhejiang Province, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China.,Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, National Cancer Centre, Singapore 169610, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore.,Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore.,Duke-NUS Medical School, Singapore 169857, Singapore
| | - Jianxiang Chen
- Pharmacy Institute and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Collaborative Innovation Center of Traditional Chinese Medicines from Zhejiang Province, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China.,Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, National Cancer Centre, Singapore 169610, Singapore
| |
Collapse
|
8
|
Gestational arsenite exposure augments hepatic tumors of C3H mice by promoting senescence in F1 and F2 offspring via different pathways. Toxicol Appl Pharmacol 2020; 408:115259. [PMID: 33010264 DOI: 10.1016/j.taap.2020.115259] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
Previous studies showed that gestational arsenite exposure increases incidence of hepatic tumors in the F1 and F2 male offspring in C3H mice. However, the mechanisms are largely unknown. In this study, we focused on whether cellular senescence and the senescence-associated secretory phenotype (SASP) contribute to tumor formation in C3H mice, and whether gestational arsenite exposure augments hepatic tumors through enhancement of cellular senescence. Three senescence markers (p16, p21 and p15) and two SASP factors (Cxcl1 and Mmp14) were increased in hepatic tumor tissues of 74- or 100-weeks-old C3H mice without arsenite exposure, and treatment with a senolytic drug (ABT-263) diminished hepatic tumor formation. Gestational arsenite exposure enhanced the expression of p16, p21 and Mmp14 in F1 and p15 and Cxcl1 in F2, respectively. Exploring the mechanisms by which arsenite exposure promotes cellular senescence, we found that the expression of antioxidant enzymes (Sod1 and Cat) were reduced in the tumors of F1 in the arsenite group, and Tgf-β and the receptors of Tgf-β were increased in the tumors of F2 in the arsenite group. Furthermore, the analysis of the Cancer Genome Atlas database showed that gene expression levels of the senescence markers and SASP factors were increased and associated with poor prognosis in human hepatocellular carcinoma (HCC). These results suggest that cellular senescence and SASP have important roles in hepatic tumorigenesis in C3H mice as well as HCC in humans, and gestational arsenite exposure of C3H mice enhances senescence in F1 and F2 via oxidative stress and Tgf-β activation, respectively.
Collapse
|
9
|
El-Daly SM, Gouhar SA, Gamal-Eldeen AM, Abdel Hamid FF, Ashour MN, Hassan NS. Synergistic Effect of α-Solanine and Cisplatin Induces Apoptosis and Enhances Cell Cycle Arrest in Human Hepatocellular Carcinoma Cells. Anticancer Agents Med Chem 2020; 19:2197-2210. [PMID: 31566136 DOI: 10.2174/1871520619666190930123520] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/01/2019] [Accepted: 06/03/2019] [Indexed: 01/09/2023]
Abstract
AIM The clinical application of cisplatin is limited by severe side effects associated with high applied doses. The synergistic effect of a combination treatment of a low dose of cisplatin with the natural alkaloid α-solanine on human hepatocellular carcinoma cells was evaluated. METHODS HepG2 cells were exposed to low doses of α-solanine and cisplatin, either independently or in combination. The efficiency of this treatment modality was evaluated by investigating cell growth inhibition, cell cycle arrest, and apoptosis enhancement. RESULTS α-solanine synergistically potentiated the effect of cisplatin on cell growth inhibition and significantly induced apoptosis. This synergistic effect was mediated by inducing cell cycle arrest at the G2/M phase, enhancing DNA fragmentation and increasing apoptosis through the activation of caspase 3/7 and/or elevating the expression of the death receptors DR4 and DR5. The induced apoptosis from this combination treatment was also mediated by reducing the expression of the anti-apoptotic mediators Bcl-2 and survivin, as well as by modulating the miR-21 expression. CONCLUSION Our study provides strong evidence that a combination treatment of low doses of α-solanine and cisplatin exerts a synergistic anticancer effect and provides an effective treatment strategy against hepatocellular carcinoma.
Collapse
Affiliation(s)
- Sherien M El-Daly
- Medical Biochemistry Department, Medical Research Division, National Research Centre, Dokki, 12622, Cairo, Egypt.,Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Dokki 12622, Cairo, Egypt
| | - Shaimaa A Gouhar
- Medical Biochemistry Department, Medical Research Division, National Research Centre, Dokki, 12622, Cairo, Egypt
| | - Amira M Gamal-Eldeen
- Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Dokki 12622, Cairo, Egypt.,Biochemistry Department, National Research Centre, Dokki, Cairo, Egypt.,Clinical Laboratory Department, College of Applied Medical Sciences, Taif University, At Taif 26521, Saudi Arabia
| | - Fatma F Abdel Hamid
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Magdi N Ashour
- Medical Biochemistry Department, Medical Research Division, National Research Centre, Dokki, 12622, Cairo, Egypt
| | - Nahla S Hassan
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
10
|
Li CL, Lin YK, Chen HA, Huang CY, Huang MT, Chang YJ. Smoking as an Independent Risk Factor for Hepatocellular Carcinoma Due to the α7-Nachr Modulating the JAK2/STAT3 Signaling Axis. J Clin Med 2019; 8:jcm8091391. [PMID: 31492006 PMCID: PMC6780871 DOI: 10.3390/jcm8091391] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a worldwide health problem. Currently, there is no effective clinical therapeutic strategy for HCC. Smoking is associated with several malignant diseases including cancers. EXPERIMENTAL APPROACH However, the impact of smoking on HCC is still unresolved. Retrospectively reviewed HCC patients diagnosed between 1 January 2010 and 31 December 2015 at Taipei Medical University-Shuang Ho Hospital (Ministry of Health and Welfare). We found that smoking was associated with a poor prognosis, especially recurrence and patient survival after curative surgery using a clinicopathological analysis. RESULTS Our univariate and multivariate analyses showed that the α7-nicotinic acetylcholine receptor (α7-nAChR) was an oncogene and risk factor for post-resection recurrence. The α7-nAChR was overexpressed in HCC tissues compared to their non-tumor counterparts. Silencing the α7-nAChR reduced the viability of HCC cells, suppressed cellular proliferation, attenuated migration and invasion, and diminished the tumor's sphere-formation ability, with concurrent downregulation of expression levels of the TGR5, p-JAK2, p-STAT3 (Tyr705/Ser727), RhoA, ROCK1, MMP2, and MMP9 proteins. Furthermore, a positive correlation was found between α7-nAChR and JAK2 expressions (p = 0.01) in HCC specimens, as well as their membranous co-localization. CONCLUSION Together, we demonstrated that the α7-nAChR may be an independent prognosticator of the progression and prognosis of HCC patients. These findings suggest that the α7-nAChR drives the progression and recurrence of HCC through JAK2/STAT3 signaling and is a novel target for anti-HCC therapy.
Collapse
Affiliation(s)
- Ching-Li Li
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Department of Surgery, Sijhih Cathay General Hospital, New Taipei City 221, Taiwan.
| | - Yen-Kuang Lin
- Biostatistics Center, Taipei Medical University, Taipei 110, Taiwan.
| | - Hsin-An Chen
- Department of Surgery, Taipei Medical University, Shuang Ho Hospital, New Taipei City 235, Taiwan.
- Division of General Surgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Chien-Yu Huang
- Department of Surgery, Taipei Medical University, Shuang Ho Hospital, New Taipei City 235, Taiwan.
| | - Ming-Te Huang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Department of Surgery, Taipei Medical University, Shuang Ho Hospital, New Taipei City 235, Taiwan.
- Division of General Surgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Yu-Jia Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- International PhD Program in Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan.
- Cancer Research Center and Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
11
|
Kim K, Kwon O, Ryu TY, Jung CR, Kim J, Min JK, Kim DS, Son MY, Cho HS. Propionate of a microbiota metabolite induces cell apoptosis and cell cycle arrest in lung cancer. Mol Med Rep 2019; 20:1569-1574. [PMID: 31257531 PMCID: PMC6625448 DOI: 10.3892/mmr.2019.10431] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/17/2019] [Indexed: 12/14/2022] Open
Abstract
Short-chain fatty acids (SCFAs; butyrate, propionate and acetate) are metabolites derived from the gut microbiota via dietary fiber fermentation. In colon cancer, treatment with SCFAs, mainly butyrate and propionate, suppresses cell proliferation, migration and invasion. Furthermore, although sodium butyrate is known to induce cell apoptosis in lung cancer, the anticancer effects of sodium propionate (SP) on lung cancer are not well understood. In the present study, SP treatment induced cell cycle arrest, especially in the G2/M phase, and cell apoptosis in the H1299 and H1703 lung cancer cell lines. As determined by reverse transcription-quantitative PCR and western blotting, Survivin and p21 expression levels were significantly affected by SP treatment, suggesting that SP treatment suppressed cell proliferation in these lung cancer cell lines. Thus, it was proposed that the SP-mediated regulation of Survivin and p21 in lung cancer may be applicable to lung cancer therapy.
Collapse
Affiliation(s)
- Kwangkho Kim
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Ohman Kwon
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Tae Young Ryu
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Cho-Rok Jung
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Janghwan Kim
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jeong-Ki Min
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Dae-Soo Kim
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Mi-Young Son
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Hyun-Soo Cho
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| |
Collapse
|
12
|
Moehler M, Heo J, Lee HC, Tak WY, Chao Y, Paik SW, Yim HJ, Byun KS, Baron A, Ungerechts G, Jonker D, Ruo L, Cho M, Kaubisch A, Wege H, Merle P, Ebert O, Habersetzer F, Blanc JF, Rosmorduc O, Lencioni R, Patt R, Leen AM, Foerster F, Homerin M, Stojkowitz N, Lusky M, Limacher JM, Hennequi M, Gaspar N, McFadden B, De Silva N, Shen D, Pelusio A, Kirn DH, Breitbach CJ, Burke JM. Vaccinia-based oncolytic immunotherapy Pexastimogene Devacirepvec in patients with advanced hepatocellular carcinoma after sorafenib failure: a randomized multicenter Phase IIb trial (TRAVERSE). Oncoimmunology 2019; 8:1615817. [PMID: 31413923 PMCID: PMC6682346 DOI: 10.1080/2162402x.2019.1615817] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 04/15/2019] [Accepted: 04/19/2019] [Indexed: 02/07/2023] Open
Abstract
Pexastimogene devacirepvec (Pexa-Vec) is a vaccinia virus-based oncolytic immunotherapy designed to preferentially replicate in and destroy tumor cells while stimulating anti-tumor immunity by expressing GM-CSF. An earlier randomized Phase IIa trial in predominantly sorafenib-naïve hepatocellular carcinoma (HCC) demonstrated an overall survival (OS) benefit. This randomized, open-label Phase IIb trial investigated whether Pexa-Vec plus Best Supportive Care (BSC) improved OS over BSC alone in HCC patients who failed sorafenib therapy (TRAVERSE). 129 patients were randomly assigned 2:1 to Pexa-Vec plus BSC vs. BSC alone. Pexa-Vec was given as a single intravenous (IV) infusion followed by up to 5 IT injections. The primary endpoint was OS. Secondary endpoints included overall response rate (RR), time to progression (TTP) and safety. A high drop-out rate in the control arm (63%) confounded assessment of response-based endpoints. Median OS (ITT) for Pexa-Vec plus BSC vs. BSC alone was 4.2 and 4.4 months, respectively (HR, 1.19, 95% CI: 0.78–1.80; p = .428). There was no difference between the two treatment arms in RR or TTP. Pexa-Vec was generally well-tolerated. The most frequent Grade 3 included pyrexia (8%) and hypotension (8%). Induction of immune responses to vaccinia antigens and HCC associated antigens were observed. Despite a tolerable safety profile and induction of T cell responses, Pexa-Vec did not improve OS as second-line therapy after sorafenib failure. The true potential of oncolytic viruses may lie in the treatment of patients with earlier disease stages which should be addressed in future studies. ClinicalTrials.gov: NCT01387555
Collapse
Affiliation(s)
- M Moehler
- First Department of Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - J Heo
- College of Medicine, Pusan National University and Medical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - H C Lee
- Asan Medical Center, University of Ulsan College of Medicine, Ulsan, Republic ofKorea
| | - W Y Tak
- School of Medicine, Kyungpook National University Medical Center, Daegu, Republic of Korea
| | - Y Chao
- Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - S W Paik
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - H J Yim
- Department of Internal Medicine, Korea University Ansan Hospital, Ansan-si, Republic of Korea
| | - K S Byun
- Department of Internal Medicine, Korea UniversityCollege of Medicine, Seoul, Republic of Korea
| | - A Baron
- Department of Medicine, California Pacific Medical Center, San Francisco, CA, USA
| | - G Ungerechts
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) and Heidelberg University Hospital, Heidelberg, Germany
| | - D Jonker
- The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Canada
| | - L Ruo
- Department of Surgery, Juravinski Hospital and Cancer Centre, McMaster University, Hamilton, Canada
| | - M Cho
- Department of Internal Medicine, Pusan National University Yangsan Hospital, Busan, Republic of Korea
| | - A Kaubisch
- Department of Medicine, Montefiore Medical Center, New York, NY, USA
| | - H Wege
- Department of Medicine, Gastroenterology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - P Merle
- Hepatology Unit, Croix-Rousse Hospital, Lyon, France
| | - O Ebert
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University, Munich, Germany
| | - F Habersetzer
- Pôle Hépato-Digestif, Hôpitaux Universitaires de Strasbourg, INSERM 1110, IHU de Strasbourg and Université de Strasbourg, Strasbourg, France
| | - J F Blanc
- Hepato-Gastroenterology and Digestive Oncology Department, CHU Bordeaux, Bordeaux, France
| | | | - R Lencioni
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - R Patt
- Rad-MD, New York, NY, USA
| | - A M Leen
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - F Foerster
- First Department of Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - M Homerin
- Medical Affairs, Transgene S.A., Illkirch-Graffenstaden, France
| | - N Stojkowitz
- Clinical Operations, Transgene S.A., 400 Bd Gonthier d'Andernach, Parc d'Innovation, 67405 Illkirch-Graffenstaden, France
| | - M Lusky
- Program Management, Transgene S.A., 400 Bd Gonthier d'Andernach, Parc d'Innovation, 67405 Illkirch-Graffenstaden, France
| | - J M Limacher
- Medical Affairs, Transgene S.A., 400 Bd Gonthier d'Andernach, Parc d'Innovation, 67405 Illkirch-Graffenstaden, France
| | - M Hennequi
- Biostatistics, Transgene S.A., 400 Bd Gonthier d'Andernach, Parc d'Innovation, 67405 Illkirch-Graffenstaden, France
| | - N Gaspar
- Clinical Assays, SillaJen Inc., San Francisco, CA, USA
| | - B McFadden
- Analytical Development and Quality Control, SillaJen Inc., San Francisco, CA, USA
| | - N De Silva
- Clinical, SillaJen Inc., San Francisco, CA, USA
| | - D Shen
- Clinical, SillaJen Inc., San Francisco, CA, USA
| | - A Pelusio
- Clinical, SillaJen Inc., San Francisco, CA, USA
| | - D H Kirn
- SillaJen Inc., San Francisco, CA, USA
| | | | - J M Burke
- Clinical, SillaJen Inc., San Francisco, CA, USA
| |
Collapse
|
13
|
Mahmoudi MB, Farashahi Yazd E, Gharibdoost F, Sheikhha MH, Karimizadeh E, Jamshidi A, Mahmoudi M. Overexpression of apoptosis-related protein, survivin, in fibroblasts from patients with systemic sclerosis. Ir J Med Sci 2019; 188:1443-1449. [PMID: 30761457 DOI: 10.1007/s11845-019-01978-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 01/29/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND/OBJECTIVES Recent studies suggest that, in addition to activation and hypersecretion of matrix components, fibroblasts from patients with systemic sclerosis (SSc) are resistant to apoptosis. Previous studies have shown that survivin, a member of inhibition of apoptosis (IAP) family, plays an important role in apoptosis resistance. Accordingly, we decided to study the expression of the most important members of IAP family in SSc fibroblasts, which can block apoptosis either by binding and inhibiting caspases or through caspase-independent mechanisms. METHOD Skin biopsy samples were obtained from 19 patients with diffuse cutaneous SSc (DcSSc) and 16 healthy controls. Dermal fibroblasts were cultured and the total RNA was isolated from cells followed by cDNA synthesis. Real-time PCR was performed using SYBR Green PCR master mix and specific primers for cIAP1, cIAP2, XIAP, and Survivin mRNA quantification. RESULTS A significantly increased expression level of Survivin was observed in fibroblasts from SSc patients compared to controls (2.26-fold, P = 0.04). However, mRNA expression of cIAP1, cIAP2, and XIAP did not change significantly between cases and controls. CONCLUSIONS Our results showed that survivin is upregulated in SSc skin fibroblast which may lead to resistance to apoptosis. Further studies should be performed to reveal the role of survivin in apoptosis pathway of SSc fibroblasts.
Collapse
Affiliation(s)
- Mohammad Bagher Mahmoudi
- Department of Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Rheumatology Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Farashahi Yazd
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Farhad Gharibdoost
- Rheumatology Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Hasan Sheikhha
- Department of Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Elham Karimizadeh
- Rheumatology Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Jamshidi
- Rheumatology Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Zhao X, Wen F, Wang W, Lu Z, Guo Q. Actinidia arguta (Hardy Kiwi) Root Extract Exerts Anti-cancer Effects via Mcl-1-Mediated Apoptosis in Cholangiocarcinoma. Nutr Cancer 2019; 71:246-256. [PMID: 30633583 DOI: 10.1080/01635581.2018.1557218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cholangiocarcinoma (CCA) is a highly aggressive and chemoresistant liver malignancy. Thus, identification of strategies to overcome insensitivity to apoptosis and growth inhibition is a growing focus of research in this malignancy. This study evaluated the potential anti-cancer effects of an ethanol extract from the Actinidia arguta (Hardy Kiwi) root (RAE) on CCA. Our data demonstrated that RAE decreased cell viability and induced apoptosis by activation of Caspase 3, Caspase 8, and Poly (ADP-ribose) polymerase (PARP) in two CCA cell lines. RAE induced a decrease in Mcl-1 in cultured CCA cells and in xenograft CCA tumors. Administration of RAE every other day led to significant growth inhibition in tumor burden xenograft CCA mice. Western blotting analysis of paired human CCA and normal adjacent tissues from the same patient revealed that CCA tissues exhibited significantly higher Mcl-1 expression than normal tissues. Taken together, our findings demonstrated the anti-cancer effects of RAE on CCA both in vitro and in vivo. These data suggest that RAE may be a promising anti-CCA agent and could be beneficial in the treatment of CCA through the targeting of Mcl-1.
Collapse
Affiliation(s)
- Xiangxuan Zhao
- a Department of Radiology , Shengjing Hospital of China Medical University , Shenyang , China
| | - Feng Wen
- a Department of Radiology , Shengjing Hospital of China Medical University , Shenyang , China
| | - Wei Wang
- a Department of Radiology , Shengjing Hospital of China Medical University , Shenyang , China
| | - Zaiming Lu
- a Department of Radiology , Shengjing Hospital of China Medical University , Shenyang , China
| | - Qiyong Guo
- a Department of Radiology , Shengjing Hospital of China Medical University , Shenyang , China
| |
Collapse
|
15
|
Wang MY, Liang JW, Li XY, Olounfeh KM, Li SL, Wang S, Wang L, Meng FH. Study of Imidazolium Salt Derivatives as PIK3CA Inhibitors Using a Comprehensive in Silico Method. Int J Mol Sci 2018; 19:ijms19030896. [PMID: 29562629 PMCID: PMC5877757 DOI: 10.3390/ijms19030896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/23/2018] [Accepted: 03/13/2018] [Indexed: 11/16/2022] Open
Abstract
A series of imidazolium salt derivatives have demonstrated potent antitumor activity in prior research. A comprehensive in silicon method was carried out to identify the putative protein target and detailed structure-activity relationship of the compounds. The Topomer CoMFA and CoMSIA techniques were implemented during the investigation to obtain the relationship between the properties of the substituent group and the contour map of around 77 compounds; the Topomer CoMFA and CoMSIA models were reliable with the statistical data. The protein-protein interaction network was constructed by combining the Pharmmapper platform and STRING database. After generating the sub-network, the phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit α (PIK3CA with protein data bank ID: 3ZIM) was selected as the putative target of imidazolium salt derivatives. A docking study was carried out to correlate interactions of amino acids in protein active pockets surrounded by the ligand with contour maps generated by the structure-activity relationship method. Then the molecular dynamics simulations demonstrated that the imidazolium salt derivatives have potent binding capacity and stability to receptor 3ZIM, and the two ligand-receptor complex was stable in the last 2 ns. Finally, the ligand-based structure-activity relationship and receptor-based docking were combined together to identify the structural requirement of the imidazolium salt derivatives, which will be used to design and synthesize the novel PIK3CA inhibitors.
Collapse
Affiliation(s)
- Ming-Yang Wang
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Jing-Wei Liang
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Xin-Yang Li
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | | | - Shi-Long Li
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Shan Wang
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Lin Wang
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Fan-Hao Meng
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
16
|
Zhao X, Sun W, Puszyk WM, Wallet S, Hochwald S, Robertson K, Liu C. Focal adhesion kinase inhibitor PF573228 and death receptor 5 agonist lexatumumab synergistically induce apoptosis in pancreatic carcinoma. Tumour Biol 2017; 39:1010428317699120. [PMID: 28459212 DOI: 10.1177/1010428317699120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Pancreatic cancer has one of the lowest survival rates of all cancers. The mechanism underlying chemo-resistance of pancreatic cancer is not well understood. Our previous article reported that small molecule YM155 induced apoptosis in pancreatic cancer cells via activation of death receptor 5. In this study, we aim to continuously address death receptor 5-mediated apoptosis in chemo-resistant pancreatic carcinoma. We found that in comparison to paired pancreatic cancer tissues and adjacent normal tissues, five of the six cancer tissues had downregulated death receptor 5 and upregulated Bcl-xL. Mono treatment with lexatumumab was not sufficient to induce apoptosis in pancreatic cancer cells, whereas focal adhesion kinase inhibitor PF573228 significantly sensitized lexatumumab-induced apoptosis. Western blotting analysis revealed that lexatumumab and PF573228 combination treatment increased death receptor 5 but decreased Bcl-xL expression. Interestingly, pre-treatment with Bcl-xL inhibitor ABT263 reversed the insensitivity of panc-1 cells to lexatumumab or PF573228-induced apoptosis. Specific small interfering RNA-mediated gene silencing of Bcl-xL effectively sensitized pancreatic cancer cells to lexatumumab or PF573228-induced apoptosis. Furthermore, lexatumumab and PF573228 combination was shown to exhibit significant xenograft pancreatic tumor growth inhibition in SCID mice. Our data provide fundamental evidence to support the notion that lexatumumab and PF573228 co-treatment could be a potentially effective regime for patients with pancreatic cancer.
Collapse
Affiliation(s)
- Xiangxuan Zhao
- 1 Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
- 2 Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Wei Sun
- 1 Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - William M Puszyk
- 2 Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Shannon Wallet
- 3 Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Steve Hochwald
- 4 Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Keith Robertson
- 5 Departments of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Chen Liu
- 2 Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
17
|
Novel multi-substituted benzyl acridone derivatives as survivin inhibitors for hepatocellular carcinoma treatment. Eur J Med Chem 2017; 129:337-348. [PMID: 28237663 DOI: 10.1016/j.ejmech.2017.02.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/07/2017] [Accepted: 02/10/2017] [Indexed: 11/24/2022]
Abstract
Sorafenib was the only small-molecule drug approved by FDA for treatment of the advanced hepatocellular carcinoma (HCC). Recent study indicated that YM155 was a promising agent for HCC cells with high survivin expression, however, the antitumor activity needs to be further improved. Based on molecular docking and rational design method, a series of multi-substituted benzyl acridone derivatives were designed and synthesized. MTT assay indicated that some of the synthesized compounds displayed better antiproliferative activity against HepG2 cells than YM155. Later study indicated that the representive compound 8u may directly interact with survivin protein and induce HepG2 cells apoptosis, which is different from YM155. In addition, ADME property was predicted in silico, and it performed well. Moreover, in vivo preliminary experiments showed that 8u may be a good lead compound in the treatment of HCC.
Collapse
|
18
|
YM155 enhances ABT-737-mediated apoptosis through Mcl-1 downregulation in Mcl-1-overexpressed cancer cells. Mol Cell Biochem 2017; 429:91-102. [PMID: 28120212 DOI: 10.1007/s11010-016-2938-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/23/2016] [Indexed: 10/20/2022]
Abstract
ABT-737 is a BH3 mimetic inhibitor of Bcl-xL, Bcl-2, and Bcl-w, and it has been reported for anti-cancer effects in various types of cancer cells. However, ABT-737 fails to induce apoptosis in cancer cell with high levels of Mcl-1 expression. The pharmacological survivin inhibitor YM155 has been reported to induce downregulation of Mcl-1 expression. Therefore, we investigated the effect of YM155 to sensitize resistance against ABT-737 in Mcl-1-overexpressed human renal carcinoma Caki cells. We found that ABT-737 alone and YM155 alone did not induce apoptosis, but YM155 markedly sensitized ABT-737-mediated apoptosis in Mcl-1-overexpressed Caki cells, human glioma cells (U251MG), and human lung carcinoma cells (A549). In contrast, combined treatment with ABT-737 and YM155 did not increase apoptosis in normal mouse kidney cells (TCMK-1) and human mesangial cells (MC). YM155 induced lysosome-dependent downregulation of Mcl-1 expression in Mcl-1-overexpressed Caki cells. In addition, combined treatment with ABT-737 and YM155 induced loss of mitochondrial membrane potential and inhibited interaction of Bcl-xL and Bax. Taken together, our results suggested that YM155 effectively improves sensitivity to ABT-737 through downregulation of Mcl-1 expression.
Collapse
|
19
|
Li W, Lee MR, Choi E, Cho MY. Clinicopathologic Significance of Survivin Expression in Relation to CD133 Expression in Surgically Resected Stage II or III Colorectal Cancer. J Pathol Transl Med 2016; 51:17-23. [PMID: 27989099 PMCID: PMC5267540 DOI: 10.4132/jptm.2016.09.23] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/20/2016] [Accepted: 09/23/2016] [Indexed: 02/06/2023] Open
Abstract
Background Cancer stem cells have been investigated as new targets for colorectal cancer (CRC) treatment. We recently reported that CD133+ colon cancer cells showed chemoresistance to 5-fluorouracil through increased survivin expression and proposed the survivin inhibitor YM155 as an effective therapy for colon cancer in an in vitro study. Here, we investigate the relationship between survivin and CD133 expression in surgically resected CRC to identify whether the results obtained in our in vitro study are applicable to clinical samples. Methods We performed immunohistochemical staining for survivin and CD133 in surgically resected tissue from 187 stage II or III CRC patients. We also comparatively analyzed apoptosis according to survivin and CD133 expression using terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling. Results The results of the Mantel-Haenszel test established a linear association between nuclear survivin and CD133 expression (p = .018), although neither had prognostic significance, according to immunohistochemical expression level. No correlation was found between survivin expression and the following pathological parameters: invasion depth, lymph node metastasis, or histologic differentiation (p > .05). The mean apoptotic index in survivin+ and CD133+ tumors was higher than that in negative tumors: 5.116 ± 4.894 in survivin+ versus 4.103 ± 3.691 in survivin– (p = .044); 5.165 ± 4.961 in CD133+ versus 4.231 ± 3.812 in CD133– (p = .034). Conclusions As observed in our in vitro study, survivin expression is significantly related to CD133 expression. Survivin may be considered as a new therapeutic target for chemoresistant CRC.
Collapse
Affiliation(s)
- Wanlu Li
- Department of Pathology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Mi-Ra Lee
- Department of Pathology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - EunHee Choi
- Institute of Lifestyle Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Mee-Yon Cho
- Department of Pathology, Yonsei University Wonju College of Medicine, Wonju, Korea.,Institute of Genomic Cohort, Yonsei University Wonju College of Medicine, Wonju, Korea
| |
Collapse
|
20
|
Das DK, Naidoo M, Ilboudo A, Park JY, Ali T, Krampis K, Robinson BD, Osborne JR, Ogunwobi OO. miR-1207-3p regulates the androgen receptor in prostate cancer via FNDC1/fibronectin. Exp Cell Res 2016; 348:190-200. [PMID: 27693493 PMCID: PMC5077722 DOI: 10.1016/j.yexcr.2016.09.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 09/22/2016] [Accepted: 09/28/2016] [Indexed: 02/02/2023]
Abstract
Prostate cancer (PCa) is frequently diagnosed in men, and dysregulation of microRNAs is characteristic of many cancers. MicroRNA-1207-3p is encoded at the non-protein coding gene locus PVT1 on the 8q24 human chromosomal region, an established PCa susceptibility locus. However, the role of microRNA-1207-3p in PCa is unclear. We discovered that microRNA-1207-3p is significantly underexpressed in PCa cell lines in comparison to normal prostate epithelial cells. Increased expression of microRNA-1207-3p in PCa cells significantly inhibits proliferation, migration, and induces apoptosis via direct molecular targeting of FNDC1, a protein which contains a conserved protein domain of fibronectin (FN1). FNDC1, FN1, and the androgen receptor (AR) are significantly overexpressed in PCa cell lines and human PCa, and positively correlate with aggressive PCa. Prostate tumor FN1 expression in patients that experienced PCa-specific death is significantly higher than in patients that remained alive. Furthermore, FNDC1, FN1 and AR are concomitantly overexpressed in metastatic PCa. Consequently, these studies have revealed a novel microRNA-1207-3p/FNDC1/FN1/AR regulatory pathway in PCa.
Collapse
Affiliation(s)
- Dibash K Das
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY 10065, USA; The Graduate Center Departments of Biology and Biochemistry, The City University of New York, New York, NY 10016, USA; Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Michelle Naidoo
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY 10065, USA
| | - Adeodat Ilboudo
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY 10065, USA
| | - Jong Y Park
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, USA
| | - Thahmina Ali
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY 10065, USA
| | - Konstantinos Krampis
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY 10065, USA; Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Brian D Robinson
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA; Department of Urology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Joseph R Osborne
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Olorunseun O Ogunwobi
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY 10065, USA; The Graduate Center Departments of Biology and Biochemistry, The City University of New York, New York, NY 10016, USA; Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA.
| |
Collapse
|
21
|
Zhao X, Cao M, Lu Z, Wang T, Ren Y, Liu C, Nelson D. Small-molecule inhibitor sorafenib regulates immunoreactions by inducing survival and differentiation of bone marrow cells. Innate Immun 2016; 22:493-502. [PMID: 27440860 DOI: 10.1177/1753425916659702] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/24/2016] [Indexed: 12/11/2022] Open
Abstract
Sorafenib has been used for the treatment of liver cancer. However, its clinical impact on human immunity system remains poorly known. Our previous study has shown that sorafenib modulates immunosuppressive cell populations in murine liver cancer models. Here, we continue to report that low doses of sorafenib promotes the survival of murine bone marrow cells (BMCs) in a dose-dependent manner by up-regulating the anti-apoptotic protein survivin. Sorafenib induces differentiation of BMCs into suppressive dendritic cells that inhibit autologous T-cell proliferation and stimulate CD4+ T cells to express increased IL-1β, IL-2, IL-4, IL-10, IFN-γ and TNF-α, and reduced levels of IL-6 and CD25, which indicates that sorafenib-induced dendritic cells represent a distinct cellular subset with unique properties. Taken together, our findings suggest that in addition to its anticancer effects, sorafenib has an immunoregulatory property that is apparent at low doses.
Collapse
Affiliation(s)
- Xiangxuan Zhao
- Department of Radiology, China Medical University Shengjing Hospital, Shenyang, China
- Department of Pathology, University of Florida College of Medicine, Gainesville, FL, USA
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, Dalian, China
| | - Mengde Cao
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | - Zaiming Lu
- Department of Radiology, China Medical University Shengjing Hospital, Shenyang, China
| | - Ton Wang
- Department of Pathology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Ying Ren
- Department of Radiology, China Medical University Shengjing Hospital, Shenyang, China
| | - Chen Liu
- Department of Pathology, University of Florida College of Medicine, Gainesville, FL, USA
| | - David Nelson
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
22
|
Chen Q, Song S, Wei S, Liu B, Honjo S, Scott A, Jin J, Ma L, Zhu H, Skinner HD, Johnson RL, Ajani JA. ABT-263 induces apoptosis and synergizes with chemotherapy by targeting stemness pathways in esophageal cancer. Oncotarget 2016; 6:25883-96. [PMID: 26317542 PMCID: PMC4694873 DOI: 10.18632/oncotarget.4540] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 07/06/2015] [Indexed: 01/22/2023] Open
Abstract
Activation of cancer stem cell signaling is central to acquired resistance to therapy in esophageal cancer (EC). ABT-263, a potent Bcl-2 family inhibitor, is active against many tumor types. However, effect of ABT-263 on EC cells and their resistant counterparts are unknown. Here we report that ABT-263 inhibited cell proliferation and induced apoptosis in human EC cells and their chemo-resistant counterparts. The combination of ABT-263 with 5-FU had synergistic lethal effects and amplified apoptosis that does not depend fully on its inhibition of BCL-2 family proteins in EC cells. To further explore the novel mechanisms of ABT-263, proteomic array (RPPAs) were performed and gene set enriched analysis demonstrated that ABT-263 suppresses the expression of many oncogenes including genes that govern stemness pathways. Immunoblotting and immunofluorescence further confirmed reduction in protein expression and transcription in Wnt/β-catenin and YAP/SOX9 axes. Furthermore, ABT263 strongly suppresses cancer stem cell properties in EC cells and the combination of ABT-263 and 5-FU significantly reduced tumor growth in vivo and suppresses the expression of stemness genes. Thus, our findings demonstrated a novel mechanism of ABT-263 antitumor effect in EC and indicating that combination of ABT-263 with cytotoxic drugs is worthy of pursuit in patients with EC.
Collapse
Affiliation(s)
- Qiongrong Chen
- Departments of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Hubei Cancer Hospital, Wuhan 430079, China
| | - Shumei Song
- Departments of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | - Bin Liu
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Soichiro Honjo
- Departments of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ailing Scott
- Departments of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jiankang Jin
- Departments of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Lang Ma
- Departments of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Haitao Zhu
- Departments of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Heath D Skinner
- Departments of Biochemistry & Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Randy L Johnson
- Departments of Biochemistry & Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jaffer A Ajani
- Departments of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
23
|
Zhang C, Cao X, Gei Y, Wang Y, Liu G, Cheng G, Liu Q. Silencing of survivin by YM155 induces apoptosis and growth arrest in hepatocellular carcinoma cells. Oncol Lett 2015; 10:1627-1631. [PMID: 26622722 DOI: 10.3892/ol.2015.3451] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 04/24/2015] [Indexed: 01/05/2023] Open
Abstract
Survivin overactivation is a frequent event in human hepatocellular carcinoma (HCC), due to its function in the induction of hepatocyte proliferation and apoptotic dysfunction. Recently, a novel survivin inhibitor named YM155, has demonstrated broad antitumor effects against various malignant tumors. Therefore, the present study aimed to explore how this agent may impact on HCC and elucidate its underlying mechanism of action. Immunohistochemical analysis was performed on 8 specimens of human HCC, to assess the protein expression of survivin and phosphorylated retinoblastoma tumor suppressor (p-Rb). In addition, in vitro, HepG2 and Huh7 human HCC cell lines were exposed to 100 µM YM155 for up to 72 h and the cell viability was subsequently determined using MTT assay. Furthermore, the apoptotic status of YM155-treated HCC cells was investigated by flow cytometry, and the protein levels of survivin, procaspase-3 and p-Rb in YM155-treated HCC cells were assessed by immunoblotting analysis. The results demonstrated that HCC specimens expressed high levels of survivin and p-Rb protein compared with those of adjacent noncancerous liver tissues. In vitro, YM155 significantly induced HCC cell apoptosis and growth arrest. At the protein level, YM155 markedly inhibited survivin and p-Rb expression, and elevated procaspase-3. YM155 demonstrated significant antitumor effects on HCC cells in the present study. These effects were associated with its anti-proliferative and apoptosis-induction activities. YM155 requires further investigation as a novel agent for potential use as a therapeutic strategy for the treatment of HCC.
Collapse
Affiliation(s)
- Changhe Zhang
- Department of General Surgery, Taizhou Peoples' Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Xiaofei Cao
- Department of General Surgery, Taizhou Peoples' Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Yongxiang Gei
- Department of General Surgery, Taizhou Peoples' Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Yong Wang
- Department of General Surgery, Taizhou Peoples' Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Guiyuan Liu
- Department of General Surgery, Taizhou Peoples' Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Guochang Cheng
- Department of General Surgery, Taizhou Peoples' Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Qinghong Liu
- Department of General Surgery, Taizhou Peoples' Hospital, Taizhou, Jiangsu 225300, P.R. China
| |
Collapse
|
24
|
Baeten JT, Lilly B. Differential Regulation of NOTCH2 and NOTCH3 Contribute to Their Unique Functions in Vascular Smooth Muscle Cells. J Biol Chem 2015; 290:16226-37. [PMID: 25957400 DOI: 10.1074/jbc.m115.655548] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Indexed: 11/06/2022] Open
Abstract
Notch signaling is a key regulator of vascular smooth muscle cell (VSMC) phenotypes, including differentiation, proliferation, and cell survival. However, the exact contribution of the individual Notch receptors has not been thoroughly delineated. In this study, we identify unique roles for NOTCH2 and NOTCH3 in regulating proliferation and cell survival in cultured VSMCs. Our results indicate that NOTCH2 inhibits PDGF-B-dependent proliferation and its expression is decreased by PDGF-B. In contrast, NOTCH3 promotes proliferation and receptor expression is increased by PDGF-B. Additionally, data show that NOTCH3, but not NOTCH2 protects VSMCs from apoptosis and apoptosis mediators degrade NOTCH3 protein. We identified three pro-survival genes specifically regulated by NOTCH3 in cultured VSMCs and in mouse aortas. This regulation is mediated through MAP kinase signaling, which we demonstrate can be activated by NOTCH3, but not NOTCH2. Overall, this study highlights discrete roles for NOTCH2 and NOTCH3 in VSMCs and connects these roles to specific upstream regulators that control their expression.
Collapse
Affiliation(s)
- Jeremy T Baeten
- From the Center for Cardiovascular and Pulmonary Research, and The Heart Center at Nationwide Children's Hospital, and the Department of Pediatrics, The Ohio State University, Columbus, Ohio 43205
| | - Brenda Lilly
- From the Center for Cardiovascular and Pulmonary Research, and The Heart Center at Nationwide Children's Hospital, and the Department of Pediatrics, The Ohio State University, Columbus, Ohio 43205
| |
Collapse
|
25
|
Inactivation of FoxM1 transcription factor contributes to curcumin-induced inhibition of survival, angiogenesis, and chemosensitivity in acute myeloid leukemia cells. J Mol Med (Berl) 2014; 92:1319-30. [PMID: 25179295 DOI: 10.1007/s00109-014-1198-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 08/02/2014] [Accepted: 08/06/2014] [Indexed: 12/14/2022]
Abstract
UNLABELLED Aberrant expression of forkhead box protein M1 (FoxM1) contributes to carcinogenesis in human cancers, including acute myeloid leukemia (AML), suggesting that the discovery of specific agents targeting FoxM1 would be extremely valuable for the treatment of AML. Curcumin, a naturally occurring phenolic compound, is suggested to possess anti-leukemic activity; however, the underlying mechanism has not been well elucidated. In this study, we found that curcumin inhibited cell survival accompanied by induction of G2/M cell cycle arrest and apoptosis in HL60, Kasumi, NB4, and KG1 cells. This was associated with concomitant attenuation of FoxM1 and its downstream genes, such as cyclin B1, cyclin-dependent kinase (CDK) 2, S-phase kinase-associated protein 2, Cdc25B, survivin, Bcl-2, matrix metalloproteinase (MMP)-2, MMP-9, and vascular endothelial growth factor (VEGF), as well as the reduction of the angiogenic effect of AML cells. We also found that specific downregulation of FoxM1 by siRNA prior to curcumin treatment resulted in enhanced cell survival inhibition and induction of apoptosis. Accordingly, FoxM1 siRNA increased the susceptibility of AML cells to doxorubicin-induced apoptosis. More importantly, curcumin suppressed FoxM1 expression, selectively inhibited cell survival as well as the combination of curcumin and doxorubicin exhibited a more inhibitory effect in primary CD34(+) AML cells, while showing limited lethality in normal CD34(+) hematopoietic progenitors. These results identify a novel role for FoxM1 in mediating the biological effects of curcumin in human AML cells. Our data provide the first evidence that curcumin together with chemotherapy or FoxM1 targeting agents may be effective strategies for the treatment of AML. KEY MESSAGE Curcumin inhibited AML cell survival and angiogenesis and induced chemosensitivity. Aberrant expression of FoxM1 induces AML cell survival and chemoresistance. Inactivation of FoxM1 contributes to curcumin-induced anti-leukemic effects. Curcumin together with FoxM1 targeting agents may be effective for AML therapy.
Collapse
|
26
|
Matteucci C, Sorrentino R, Bellis L, Ettorre GM, Svicher V, Santoro R, Vennarecci G, Biasiolo A, Pontisso P, Scacciatelli D, Beneduce L, Sarrecchia C, Casalino P, Bernardini S, Pierimarchi P, Garaci E, Puoti C, Rasi G. Detection of high levels of Survivin-immunoglobulin M immune complex in sera from hepatitis C virus infected patients with cirrhosis. Hepatol Res 2014; 44:1008-1018. [PMID: 24102797 DOI: 10.1111/hepr.12239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 09/09/2013] [Accepted: 09/09/2013] [Indexed: 12/13/2022]
Abstract
AIM The identification and surveillance of patients with liver dysfunctions and the discovering of new disease biomarkers are needed in the clinical practice. The aim of this study was to investigate on Survivin-immunoglobulin (Ig)M immune complex (IC) as a potential biomarker of chronic liver diseases. METHODS Serum levels of Survivin-IgM were measured using an enzyme-linked immunoassay that had been standardized and validated in our laboratory in 262 individuals, including healthy subjects and patients with chronic viral hepatitis, cirrhosis and hepatocellular carcinoma (HCC). RESULTS Survivin-IgM IC was lower in healthy subjects (median, 99.39 AU/mL) than in patients with chronic viral hepatitis (median, 148.03 AU/mL; P = 0.002) or with cirrhosis (median, 371.00 AU/mL; P < 0.001). Among patients with cirrhosis, those with hepatitis C virus (HCV) infection showed the highest level of Survivin-IgM IC (median, 633.71 AU/mL; P < 0.001). The receiver-operator curve analysis revealed that Survivin-IgM accurately distinguishes HCV correlated cirrhosis from chronic viral hepatitis (area under the curve [AUC], 0.738; sensitivity, 74.5%; specificity, 70.7%). A multivariate logistic regression model, including Survivin-IgM IC, aspartate aminotransferase (AST) and AST/alanine aminotransferase (ALT) ratio increased the prediction accuracy for the identification of the cirrhotic HCV patients (AUC, 0.818; sensitivity, 87.2%; specificity, 65.9%). Conversely, Survivin-IgM IC significantly decreased in HCC patients (median, 165.72 AU/mL; P = 0.022). CONCLUSION Our results suggest that Survivin-IgM immune complex may be used as a potential biomarker for liver damage, particularly for the identification of the HCV-related cirrhotic population.
Collapse
Affiliation(s)
- Claudia Matteucci
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy; Institute of Translational Pharmacology, CNR, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Decitabine and SAHA-induced apoptosis is accompanied by survivin downregulation and potentiated by ATRA in p53-deficient cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:165303. [PMID: 25140197 PMCID: PMC4130322 DOI: 10.1155/2014/165303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/26/2014] [Accepted: 07/05/2014] [Indexed: 12/18/2022]
Abstract
While p53-dependent apoptosis is triggered by combination of methyltransferase inhibitor decitabine (DAC) and histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) in leukemic cell line CML-T1, reactive oxygen species (ROS) generation as well as survivin and Bcl-2 deregulation participated in DAC + SAHA-induced apoptosis in p53-deficient HL-60 cell line. Moreover, decrease of survivin expression level is accompanied by its delocalization from centromere-related position in mitotic cells suggesting that both antiapoptotic and cell cycle regulation roles of survivin are affected by DAC + SAHA action. Addition of subtoxic concentration of all-trans-retinoic acid (ATRA) increases the efficiency of DAC + SAHA combination on viability, apoptosis induction, and ROS generation in HL-60 cells but has no effect in CML-T1 cell line. Peripheral blood lymphocytes from healthy donors showed no damage induced by DAC + SAHA + ATRA combination. Therefore, combination of ATRA with DAC and SAHA represents promising tool for therapy of leukemic disease with nonfunctional p53 signalization.
Collapse
|
28
|
Wang B, Ni Z, Dai X, Qin L, Li X, Xu L, Lian J, He F. The Bcl-2/xL inhibitor ABT-263 increases the stability of Mcl-1 mRNA and protein in hepatocellular carcinoma cells. Mol Cancer 2014; 13:98. [PMID: 24779770 PMCID: PMC4021276 DOI: 10.1186/1476-4598-13-98] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 04/24/2014] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the major causes of mortality. ABT-263 is a newly synthesized, orally available Bcl-2/xL inhibitor that shows promising efficacy in HCC therapy. ABT-263 inhibits the anti-apoptotic activity of Bcl-2 and Bcl-xL, but not Mcl-1. Previous reports have shown that ABT-263 upregulates Mcl-1 in various cancer cells, which contributes to ABT-263 resistance in cancer therapy. However, the associated mechanisms are not well known. METHODS Western blot, RNAi and CCK-8 assays were used to investigate the relationship between Mcl-1 upregulation and ABT-263 sensitivity in HCC cells. Real-time PCR and Western blot were used to detect Mcl-1 mRNA and protein levels. Luciferase reporter assay and RNA synthesis inhibition assay were adopted to analyze the mechanism of Mcl-1 mRNA upregulation. Western blot and the inhibition assays for protein synthesis and proteasome were used to explore the mechanisms of ABT-263-enhanced Mcl-1 protein stability. Trypan blue exclusion assay and flow cytometry were used to examine cell death and apoptosis. RESULTS ABT-263 upregulated Mcl-1 mRNA and protein levels in HCC cells, which contributes to ABT-263 resistance. ABT-263 increased the mRNA level of Mcl-1 in HCC cells by enhancing the mRNA stability without influencing its transcription. Furthermore, ABT-263 increased the protein stability of Mcl-1 through promoting ERK- and JNK-induced phosphorylation of Mcl-1Thr163 and increasing the Akt-mediated inactivation of GSK-3β. Additionally, the inhibitors of ERK, JNK or Akt sensitized ABT-263-induced apoptosis in HCC cells. CONCLUSIONS ABT-263 increases Mcl-1 stability at both mRNA and protein levels in HCC cells. Inhibition of ERK, JNK or Akt activity sensitizes ABT-263-induced apoptosis. This study may provide novel insights into the Bcl-2-targeted cancer therapeutics.
Collapse
Affiliation(s)
- Bin Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, 30 Gaotanyan, Chongqing 400038, China
| | - Zhenhong Ni
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, 30 Gaotanyan, Chongqing 400038, China
| | - Xufang Dai
- Department of Educational Science College, Chongqing Normal University, Chongqing 400038, China
| | - Liyan Qin
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, 30 Gaotanyan, Chongqing 400038, China
| | - Xinzhe Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, 30 Gaotanyan, Chongqing 400038, China
| | - Liang Xu
- Departments of Molecular Biosciences and Radiation Oncology, University of Kansas Cancer Center, University of Kansas, Lawrence 66045-7534, USA
| | - Jiqin Lian
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, 30 Gaotanyan, Chongqing 400038, China
| | - Fengtian He
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, 30 Gaotanyan, Chongqing 400038, China
| |
Collapse
|
29
|
Liu LP, Cao XC, Liu F, Quan MF, Sheng XF, Ren KQ. Casticin induces breast cancer cell apoptosis by inhibiting the expression of forkhead box protein M1. Oncol Lett 2014; 7:1711-1717. [PMID: 24765206 PMCID: PMC3997681 DOI: 10.3892/ol.2014.1911] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 01/27/2014] [Indexed: 11/25/2022] Open
Abstract
Casticin is an active ingredient derived from Fructus Viticis, a traditional Chinese medicine. This study aimed to investigate the role of forkhead box O3 (FOXO3a) in breast cancer cells and examine the regulatory mechanisms of FOXO3a in response to casticin treatment of the cells by ELISA, flow cytometry, small interfering RNA (siRNA) transfection and western blot analysis. Casticin treatment induced apoptosis and reduced the expression of the transcription factor forkhead box protein M1 (FOXM1). In addition, FOXM1 repression induced by casticin treatment was associated with the activation of FOXO3a via increased dephosphorylation. Notably, silencing FOXO3a expression by siRNA-mediated gene knockdown attenuated casticin-mediated apoptosis. Collectively, these findings suggest that FOXO3a is a critical mediator of the inhibitory effects of casticin on apoptosis in breast cancer cells.
Collapse
Affiliation(s)
- Li-Ping Liu
- The Breast Department, Hunan Province Tumor Hospital, Changsha, Hunan 410013, P.R. China
| | - Xiao-Cheng Cao
- Medical College, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - Fei Liu
- Medical College, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - Mei-Fang Quan
- Medical College, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - Xi-Feng Sheng
- Medical College, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - Kai-Qun Ren
- Medical College, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
30
|
Rauch A, Hennig D, Schäfer C, Wirth M, Marx C, Heinzel T, Schneider G, Krämer OH. Survivin and YM155: how faithful is the liaison? Biochim Biophys Acta Rev Cancer 2014; 1845:202-20. [PMID: 24440709 DOI: 10.1016/j.bbcan.2014.01.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 01/01/2014] [Accepted: 01/04/2014] [Indexed: 02/07/2023]
Abstract
Survivin belongs to the family of apoptosis inhibitors (IAPs), which antagonizes the induction of cell death. Dysregulated expression of IAPs is frequently observed in cancers, and the high levels of survivin in tumors compared to normal adult tissues make it an attractive target for pharmacological interventions. The small imidazolium-based compound YM155 has recently been reported to block the expression of survivin via inhibition of the survivin promoter. Recent data, however, question that this is the sole and main effect of this drug, which is already being tested in ongoing clinical studies. Here, we critically review the current data on YM155 and other new experimental agents supposed to antagonize survivin. We summarize how cells from various tumor entities and with differential expression of the tumor suppressor p53 respond to this agent in vitro and as murine xenografts. Additionally, we recapitulate clinical trials conducted with YM155. Our article further considers the potency of YM155 in combination with other anti-cancer agents and epigenetic modulators. We also assess state-of-the-art data on the sometimes very promiscuous molecular mechanisms affected by YM155 in cancer cells.
Collapse
Affiliation(s)
- Anke Rauch
- Center for Molecular Biomedicine, Institute for Biochemistry and Biophysics, Department of Biochemistry, Friedrich Schiller University of Jena, Hans-Knöll-Straße 2, 07745 Jena, Germany
| | - Dorle Hennig
- Center for Molecular Biomedicine, Institute for Biochemistry and Biophysics, Department of Biochemistry, Friedrich Schiller University of Jena, Hans-Knöll-Straße 2, 07745 Jena, Germany
| | - Claudia Schäfer
- Center for Molecular Biomedicine, Institute for Biochemistry and Biophysics, Department of Biochemistry, Friedrich Schiller University of Jena, Hans-Knöll-Straße 2, 07745 Jena, Germany
| | - Matthias Wirth
- II Department of Internal Medicine, Technical University of Munich, Munich, Germany
| | - Christian Marx
- Center for Molecular Biomedicine, Institute for Biochemistry and Biophysics, Department of Biochemistry, Friedrich Schiller University of Jena, Hans-Knöll-Straße 2, 07745 Jena, Germany
| | - Thorsten Heinzel
- Center for Molecular Biomedicine, Institute for Biochemistry and Biophysics, Department of Biochemistry, Friedrich Schiller University of Jena, Hans-Knöll-Straße 2, 07745 Jena, Germany
| | - Günter Schneider
- II Department of Internal Medicine, Technical University of Munich, Munich, Germany
| | - Oliver H Krämer
- Department of Toxicology, University Medical Center, Obere Zahlbacher Str. 67, 55131 Mainz, Germany.
| |
Collapse
|
31
|
Hepatitis B virus inhibits apoptosis of hepatoma cells by sponging the MicroRNA 15a/16 cluster. J Virol 2013; 87:13370-8. [PMID: 24089558 DOI: 10.1128/jvi.02130-13] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hepatitis B virus (HBV) causes chronic hepatitis in hundreds of millions of people worldwide, which can eventually lead to hepatocellular carcinoma (HCC). The molecular mechanisms underlying HBV persistence are not well understood. In this study, we found that HBV inhibited the chemotherapy drug etoposide-induced apoptosis of hepatoma cells. Further analysis revealed that HBV mRNAs possess a microRNA 15a/16 (miR-15a/16)-complementary site (HBV nucleotides [nt] 1362 to 1383) that acts as a sponge to bind and sequester endogenous miR-15a/16. Consequently, Bcl-2, known as the target of miR-15a/16, was upregulated in HBV-infected cells. The data from HBV-transgenic mice further confirmed that HBV transcripts cause the reduction of miR-15a/16 and increase of Bcl-2. More importantly, we examined the levels of HBV transcripts and miR-15a/16 in HBV-infected HCC from patients and found that the amount of HBV mRNA and the level of miR-15a/16 were negatively correlated. Consistently, the level of Bcl-2 mRNA was upregulated in HBV-infected patients. In conclusion, we identified a novel HBV mRNA-miR-15a/16-Bcl-2 regulatory pathway that is involved in inhibiting etoposide-induced apoptosis of hepatoma cells, which may contribute to facilitating chronic HBV infection and hepatoma development.
Collapse
|
32
|
Gridley DS, Mao XW, Cao JD, Bayeta EJM, Pecaut MJ. Protracted low-dose radiation priming and response of liver to acute gamma and proton radiation. Free Radic Res 2013; 47:811-20. [DOI: 10.3109/10715762.2013.826351] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
33
|
Cao M, Prima V, Nelson D, Svetlov S. Composite fatty acid ether amides suppress growth of liver cancer cells in vitro and in an in vivo allograft mouse model. Cell Oncol (Dordr) 2013; 36:247-57. [PMID: 23619943 DOI: 10.1007/s13402-013-0132-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2013] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The heterogeneity of liver cancer, in particular hepatocellular carcinoma (HCC), portrays the requirement of multiple targets for both its treatment and prevention. Multifaceted agents, minimally or non-toxic for normal hepatocytes, are required to address the molecular diversity of HCC, including the resistance of putative liver cancer stem cells to chemotherapy. METHODS We designed and synthesized two fatty acid ethers of isopropylamino propanol, C16:0-AIP-1 and C18:1-AIP-2 (jointly named AIPs), and evaluated their anti-proliferative effects on the human HCC cell line Huh7 and the murine hepatoma cell line BNL 1MEA.7R.1, both in vitro and in an in vivo allograft mouse model. RESULTS We found that AIP-1 and AIP-2 inhibited proliferation and caused cell death in both Huh7 and BNL 1MEA.7R.1 cells. Importantly, AIP-1 and AIP-2 were found to block the activation of putative liver cancer stem cells as manifested by suppression of clonal 'carcinosphere' development in growth factor-free and anchorage-free medium. The AIPs exhibited a relatively low toxicity against normal human or rat hepatocytes in primary cultures. In addition, we found that the AIPs utilized multifaceted pathways that mediate both autophagy and apoptosis in HCC, including the inhibition of AKTs and CAMK-1. In immune-competent mice, the AIPs significantly reduced BNL 1MEA.7R.1 cell-driven tumor allograft development, with a higher efficiency than sorafenib. A combination of AIP-1 + AIP-2 was most effective in reducing the tumor allograft incidence. CONCLUSIONS AIPs represent a novel class of simple fatty acid derivatives that are effective against liver tumors via diverse pathways. They show a low toxicity towards normal hepatocytes. The addition of AIPs may represent a new avenue towards the management of chronic liver injury and, ultimately, the prevention and treatment of HCC.
Collapse
Affiliation(s)
- Mengde Cao
- Banyan Laboratories, Inc., Alachua, FL, 32615, USA.
| | | | | | | |
Collapse
|
34
|
Yu CC, Wu PJ, Hsu JL, Ho YF, Hsu LC, Chang YJ, Chang HS, Chen IS, Guh JH. Ardisianone, a natural benzoquinone, efficiently induces apoptosis in human hormone-refractory prostate cancers through mitochondrial damage stress and survivin downregulation. Prostate 2013; 73:133-45. [PMID: 22674285 DOI: 10.1002/pros.22548] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 05/14/2012] [Indexed: 11/08/2022]
Abstract
BACKGROUND Increasing evidence suggests that mitochondria play a central role in regulating cell apoptosis. Survivin, an inhibitor of apoptosis protein (IAP) family member, mediates resistance to cancer chemotherapy particularly in prostate cancers. Therefore, development of anticancer agents targeting mitochondria and survivin is a potential strategy. METHOD Cell proliferation was examined by sulforhodamine B, CFSE staining, and clonogenic assays. Mitochondrial membrane potential (ΔΨ(m) ) and reactive oxygen species (ROS) were detected by flow cytometric analysis. Protein expression was detected by Western blot. RNA levels were examined by reverse transcription polymerase chain reaction assay. Overexpression of constitutively active Akt was also used in this study. RESULTS Ardisianone, a natural benzoquinone derivative, displayed anti-proliferative and apoptotic activities against human hormone-refractory prostate cancer cells (HRPC), PC-3, and DU-145. Ardisianone dramatically induced mitochondrial damage, identified by downregulation of Bcl-2 family proteins, ROS production, and loss of ΔΨ(m) . Ardisianone also inhibited Akt and mTOR/p70S6K pathways and induced a fast downregulation of survivin, leading to activation of mitochondria-involved caspase cascades. Overexpression of constitutively active Akt partly rescued ardisianone-mediated apoptotic signaling cascades. Furthermore, a long-term treatment of ardisianone caused an increase of endoplasmic reticulum (ER) stress, upregulation of cIAP1 and cIAP2, and apoptosis-inducing factor (AIF)-mediated caspase-independent apoptosis. CONCLUSIONS The data suggest that the ardisianone induces apoptosis in human prostate cancers through mitochondrial damage stress, leading to the inhibition of mTOR/p70S6K pathway, downregulation of Bcl-2 family members, degradation of survivin, and activation of caspase cascades. The data provide evidence supporting that ardisianone is a potential anticancer agent against HRPCs.
Collapse
Affiliation(s)
- Chia-Chun Yu
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Jia-Jun T, Su-Mei L, Liang Y, Ju-Ke M, Ya-Kui M, Hai-Bo W, Wei X. Nimesulide inhibited the growth of hypopharyngeal carcinoma cells via suppressing Survivin expression. HEAD & NECK ONCOLOGY 2012; 4:7. [PMID: 22453101 PMCID: PMC3364892 DOI: 10.1186/1758-3284-4-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 03/27/2012] [Indexed: 12/18/2022]
Abstract
BACKGROUND The objective of this study was to evaluate the efficacy of Nimesulide, a selective cyclooxygenase-2 (COX-2) inhibitor, on the growth of hypopharyngeal carcinoma cells (FaDu) in vitro, and investigate its potential mechanism. METHODS After FaDu cells were treated with graded concentrations of Nimesulide for divergent time, sensitivity of cells to drug treatment was analyzed by MTT assay. Morphological changes of FaDu cells in the presence of Nimesulide were observed by acridine orange cytochemistry staining. Proliferating cells were detected using the 5-Bromo-2'-deoxy-uridine (BrdU) incorporation assay. Following cells were subjected to Nimesulide (500 μmol/l) for 6 h, 12 h and 24 h, the percentage of apoptosis was examined by flow cytometry. We detected COX-2 and Survivin expression change by RT-PCR and Western blot, and analyzed the correlation of them with the growth of FaDu cells. Additionally, we also analyzed Caspase-3, Bcl-2 and Bax expressions as markers to investigate the related pathway of Nimesulide-indued apoptosis. RESULTS Compared with the control group, the viabilities rates were decreased by Nimesulide in time- and dose-dependent manners, typical morphological changes of apoptotic cells were observed in the Nimesulide-treatment groups, Nimesulide could suppress the proliferation of FaDu cells significantly. The percentage of apoptosis in FaDu cells were markedly increased after Nimesulide-treatment for 6 h, 12 h and 24 h. Nimesulide down-regulated the Survivin and COX-2 expressions at mRNA and protein levels in FaDu cells. Additional analyses indicated that Bcl-2 expression was significantly decreased and the expressions of Caspase-3 as well as Bax were increased at both mRNA and protein levels. CONCLUSIONS Based on the induction of apoptosis and suppression of proliferation, Nimesulide could inhibit the growth of FaDu cells. Furthermore, the suppression of Survivin expression may play an important role in Nimesulide-induced growth inhibition. Nimesulide could act as an effective therapeutic agent for hypopharyngeal carcinoma therapy.
Collapse
Affiliation(s)
- Tian Jia-Jun
- Department of Otolaryngology-Head and Neck Surgery, Provincial Hospital affiliated to Shandong University, Jinan 250021, PR, China
| | - Lu Su-Mei
- Institute of Eye & Otolaryngology, Shandong Clinic Research Institute, Jinan 250021, PR, China
| | - Yu Liang
- Department of Otolaryngology-Head and Neck Surgery, Provincial Hospital affiliated to Shandong University, Jinan 250021, PR, China
| | - Ma Ju-Ke
- Department of Otolaryngology-Head and Neck Surgery, Provincial Hospital affiliated to Shandong University, Jinan 250021, PR, China
| | - Mu Ya-Kui
- Department of Otolaryngology-Head and Neck Surgery, Provincial Hospital affiliated to Shandong University, Jinan 250021, PR, China
| | - Wang Hai-Bo
- Department of Otolaryngology-Head and Neck Surgery, Provincial Hospital affiliated to Shandong University, Jinan 250021, PR, China.,Institute of Eye & Otolaryngology, Shandong Clinic Research Institute, Jinan 250021, PR, China
| | - Xu Wei
- Department of Otolaryngology-Head and Neck Surgery, Provincial Hospital affiliated to Shandong University, Jinan 250021, PR, China
| |
Collapse
|