1
|
Mlynarczyk-Bonikowska B, Rudnicka L. HPV Infections-Classification, Pathogenesis, and Potential New Therapies. Int J Mol Sci 2024; 25:7616. [PMID: 39062859 PMCID: PMC11277246 DOI: 10.3390/ijms25147616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
To date, more than 400 types of human papillomavirus (HPV) have been identified. Despite the creation of effective prophylactic vaccines against the most common genital HPVs, the viruses remain among the most prevalent pathogens found in humans. According to WHO data, they are the cause of 5% of all cancers. Even more frequent are persistent and recurrent benign lesions such as genital and common warts. HPVs are resistant to many disinfectants and relatively unsusceptible to external conditions. There is still no drug available to inhibit viral replication, and treatment is based on removing lesions or stimulating the host immune system. This paper presents the systematics of HPV and the differences in HPV structure between different genetic types, lineages, and sublineages, based on the literature and GenBank data. We also present the pathogenesis of diseases caused by HPV, with a special focus on the role played by E6, E7, and other viral proteins in the development of benign and cancerous lesions. We discuss further prospects for the treatment of HPV infections, including, among others, substances that block the entry of HPV into cells, inhibitors of viral early proteins, and some substances of plant origin that inhibit viral replication, as well as new possibilities for therapeutic vaccines.
Collapse
|
2
|
Mejías-Molina C, Pico-Tomàs A, Martínez-Puchol S, Itarte M, Torrell H, Canela N, Borrego CM, Corominas L, Rusiñol M, Bofill-Mas S. Wastewater-based epidemiology applied at the building-level reveals distinct virome profiles based on the age of the contributing individuals. Hum Genomics 2024; 18:10. [PMID: 38303015 PMCID: PMC10832175 DOI: 10.1186/s40246-024-00580-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/24/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Human viruses released into the environment can be detected and characterized in wastewater. The study of wastewater virome offers a consolidated perspective on the circulation of viruses within a population. Because the occurrence and severity of viral infections can vary across a person's lifetime, studying the virome in wastewater samples contributed by various demographic segments can provide valuable insights into the prevalence of viral infections within these segments. In our study, targeted enrichment sequencing was employed to characterize the human virome in wastewater at a building-level scale. This was accomplished through passive sampling of wastewater in schools, university settings, and nursing homes in two cities in Catalonia. Additionally, sewage from a large urban wastewater treatment plant was analysed to serve as a reference for examining the collective excreted human virome. RESULTS The virome obtained from influent wastewater treatment plant samples showcased the combined viral presence from individuals of varying ages, with astroviruses and human bocaviruses being the most prevalent, followed by human adenoviruses, polyomaviruses, and papillomaviruses. Significant variations in the viral profiles were observed among the different types of buildings studied. Mamastrovirus 1 was predominant in school samples, salivirus and human polyomaviruses JC and BK in the university settings while nursing homes showed a more balanced distribution of viral families presenting papillomavirus and picornaviruses and, interestingly, some viruses linked to immunosuppression. CONCLUSIONS This study shows the utility of building-level wastewater-based epidemiology as an effective tool for monitoring the presence of viruses circulating within specific age groups. It provides valuable insights for public health monitoring and epidemiological studies.
Collapse
Affiliation(s)
- Cristina Mejías-Molina
- Laboratory of Viruses Contaminants of Water and Food, Genetics, Microbiology and Statistics Department, Universitat de Barcelona, Barcelona, Catalonia, Spain.
- The Water Research Institute (IdRA), Universitat de Barcelona, Barcelona, Catalonia, Spain.
| | | | - Sandra Martínez-Puchol
- Laboratory of Viruses Contaminants of Water and Food, Genetics, Microbiology and Statistics Department, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Marta Itarte
- Laboratory of Viruses Contaminants of Water and Food, Genetics, Microbiology and Statistics Department, Universitat de Barcelona, Barcelona, Catalonia, Spain
- The Water Research Institute (IdRA), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Helena Torrell
- Centre for Omic Sciences (COS), Joint Unit Universitat Rovira I Virgili-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Eurecat, Centre Tecnològic de Catalunya, Reus, Catalonia, Spain
| | - Núria Canela
- Centre for Omic Sciences (COS), Joint Unit Universitat Rovira I Virgili-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Eurecat, Centre Tecnològic de Catalunya, Reus, Catalonia, Spain
| | - Carles M Borrego
- Catalan Institute for Water Research (ICRA), Girona, Spain
- Group of Molecular Microbial Ecology, Institute of Aquatic Ecology, University of Girona, Girona, Catalonia, Spain
| | | | - Marta Rusiñol
- Laboratory of Viruses Contaminants of Water and Food, Genetics, Microbiology and Statistics Department, Universitat de Barcelona, Barcelona, Catalonia, Spain
- The Water Research Institute (IdRA), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Sílvia Bofill-Mas
- Laboratory of Viruses Contaminants of Water and Food, Genetics, Microbiology and Statistics Department, Universitat de Barcelona, Barcelona, Catalonia, Spain
- The Water Research Institute (IdRA), Universitat de Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
3
|
Molecular Characterization of Human Papillomavirus Type 159 (HPV159). Viruses 2021; 13:v13081668. [PMID: 34452532 PMCID: PMC8402796 DOI: 10.3390/v13081668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022] Open
Abstract
Human papillomavirus type 159 (HPV159) was identified in an anal swab sample and preliminarily genetically characterized by our group in 2012. Here we present a detailed molecular in silico analysis that showed that the HPV159 viral genome is 7443 bp in length and divided into five early and two late genes, with conserved functional domains and motifs, and a non-coding long control region (LCR) with significant regulatory sequences that allow the virus to complete its life cycle and infect novel host cells. HPV159, clustering into the cutaneotropic Betapapillomavirus (Beta-PV) genus, is phylogenetically most similar to HPV9, forming an individual phylogenetic group in the viral species Beta-2. After testing a large representative collection of clinical samples with HPV159 type-specific RT-PCR, in addition to the anal canal from which the first HPV159 isolate was obtained, HPV159 was further detected in other muco-cutaneous (4/181, 2.2%), mucosal (22/764, 2.9%), and cutaneous (14/554, 2.5%) clinical samples, suggesting its extensive tissue tropism. However, because very low HPV159 viral loads were estimated in the majority of positive samples, it seemed that HPV159 mainly caused clinically insignificant infections of the skin and mucosa. Using newly developed, highly sensitive HPV159-specific nested PCRs, two additional HPV159 LCR viral variants were identified. Nevertheless, all HPV159 mutations were demonstrated outside important functional domains of the LCR, suggesting that the HPV159 viral variants were most probably not pathogenically different. This complete molecular characterization of HPV159 enhances our knowledge of the genome characteristics, tissue tropism, and phylogenetic diversity of Beta-PVs that infect humans.
Collapse
|
4
|
Molecular and Phylogenetic Characterization of Novel Papillomaviruses Isolated from Oral and Anogenital Neoplasms of Japanese Macaques ( Macaca fuscata). Viruses 2021; 13:v13040630. [PMID: 33916990 PMCID: PMC8067741 DOI: 10.3390/v13040630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/04/2022] Open
Abstract
Papillomaviruses (PVs) are a diverse group of host species-specific DNA viruses, etiologically linked with various benign and malignant neoplasms of cutaneous and mucosal epithelia. Here, we describe the detection and characterization of the first two PVs naturally infecting Japanese macaques (Macaca fuscata), including the determination of their etiological association(s) with the development of original neoplasms. The molecular and phylogenetic analyses were performed on complete genome sequences of Macaca fuscata PV types 1 (MfuPV1) and 2 (MfuPV2), which were completely sequenced in samples of a malignant oral tumor and benign anogenital neoplasm of Japanese macaques, respectively. Subsequently, two type-specific quantitative real-time PCRs were developed to estimate viral loads of MfuPV1 and MfuPV2 and to evaluate their etiological roles. The in silico molecular analyses revealed that both viral genomes encode characteristic PV proteins with conserved functional domains and have a non-coding genomic region with regulatory sequences to regulate and complete the viral life cycle. However, additional experimental evidence is needed to finally confirm the presence and biological functionality of the molecular features of both novel PVs. While MfuPV1, together with PVs identified in other macaques, is classified into the Alphapapillomavirus (Alpha-PV) species 12, MfuPV2 is most likely a representative of the novel viral species within the Alpha-PV genus. Their relatively high viral loads suggest that both PVs are etiologically linked with the development of the original neoplasms.
Collapse
|
5
|
Bolatti EM, Hošnjak L, Chouhy D, Re-Louhau MF, Casal PE, Bottai H, Kocjan BJ, Stella EJ, Gorosito MD, Sanchez A, Bussy RF, Poljak M, Giri AA. High prevalence of Gammapapillomaviruses (Gamma-PVs) in pre-malignant cutaneous lesions of immunocompetent individuals using a new broad-spectrum primer system, and identification of HPV210, a novel Gamma-PV type. Virology 2018; 525:182-191. [PMID: 30292127 DOI: 10.1016/j.virol.2018.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/05/2018] [Accepted: 09/07/2018] [Indexed: 12/13/2022]
Abstract
Genus Gammapapillomavirus (Gamma-PV) is the most diverse and largest clade within the Papillomaviridae family. A novel set of degenerate primers targeting the E1 gene was designed and further used in combination with the well-known CUT PCR assay to assess HPV prevalence and genus distribution in a variety of cutaneous samples from 448 immunocompetent individuals. General HPV, Gamma-PV and mixed infections prevalence were significantly higher in actinic keratosis with respect to benign and malignant neoplasms, respectively (p = 0.0047, p = 0.0172, p = 0.00001). Gamma-PVs were significantly more common in actinic keratosis biopsies than Beta- and Alpha-PVs (p = 0.002). The full-length genome sequence of a novel putative Gamma-PV type was amplified by 'hanging droplet' long-range PCR and cloned. The novel virus, designated HPV210, clustered within species Gamma-12. This study provides an additional tool enabling detection of HPV infections in skin and adds new insights about possible early roles of Gamma-PVs in the development of cutaneous malignant lesions.
Collapse
Affiliation(s)
- Elisa M Bolatti
- Grupo Virología Humana, Instituto de Biología Molecular y Celular de Rosario (CONICET), Suipacha 590, 2000 Rosario, Argentina; Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Lea Hošnjak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
| | - Diego Chouhy
- Grupo Virología Humana, Instituto de Biología Molecular y Celular de Rosario (CONICET), Suipacha 590, 2000 Rosario, Argentina; Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Maria F Re-Louhau
- Grupo Virología Humana, Instituto de Biología Molecular y Celular de Rosario (CONICET), Suipacha 590, 2000 Rosario, Argentina
| | - Pablo E Casal
- Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Hebe Bottai
- Área Estadística y Procesamiento de Datos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Boštjan J Kocjan
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
| | - Emma J Stella
- Grupo Virología Humana, Instituto de Biología Molecular y Celular de Rosario (CONICET), Suipacha 590, 2000 Rosario, Argentina
| | - Mario D Gorosito
- División de Anatomía Patológica, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Santa Fe 3100, 2000 Rosario, Argentina
| | - Adriana Sanchez
- División de Dermatología, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Santa Fe 3100, 2000 Rosario, Argentina
| | - Ramón Fernandez Bussy
- División de Dermatología, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Santa Fe 3100, 2000 Rosario, Argentina
| | - Mario Poljak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia.
| | - Adriana A Giri
- Grupo Virología Humana, Instituto de Biología Molecular y Celular de Rosario (CONICET), Suipacha 590, 2000 Rosario, Argentina; Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina.
| |
Collapse
|
6
|
Šterbenc A, Hošnjak L, Chouhy D, Bolatti EM, Oštrbenk A, Seme K, Kocjan BJ, Luzar B, Giri AA, Poljak M. Molecular characterization, tissue tropism, and genetic variability of the novel Mupapillomavirus type HPV204 and phylogenetically related types HPV1 and HPV63. PLoS One 2017; 12:e0175892. [PMID: 28426749 PMCID: PMC5398564 DOI: 10.1371/journal.pone.0175892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/02/2017] [Indexed: 11/18/2022] Open
Abstract
HPV204 is the only newly identified Mupapillomavirus (Mu-PV) type in more than a decade. To comprehensively characterize HPV204, we performed a detailed molecular analysis of the viral genome and evaluated its clinical relevance in comparison to the other Mu-PVs, HPV1 and HPV63. The 7,227-bp long genome of HPV204 exhibits typical genomic organization of Mu-PVs with eight open reading frames (ORFs) (E6, E7, E1, E2, E8, E4, L2, and L1). We developed three type-specific quantitative real-time PCRs and used them to test a representative collection (n = 1,006) of various HPV-associated benign and malignant neoplasms, as well as samples of clinically normal cutaneous, mucosal, and mucocutaneous origins. HPV204, HPV1, and HPV63 were detected in 1.1%, 2.7%, and 1.9% of samples tested, respectively, and were present in skin and mucosa, suggesting dual tissue tropism of all Mu-PVs. To evaluate the etiological role of Mu-PVs in the development of HPV-associated neoplasms, Mu-PV viral loads per single cell were estimated. HPV1 and HPV63 were present in high viral copy numbers in 3/43 and 1/43 cutaneous warts, respectively, and were identified as the most likely causative agents of these warts. HPV204 viral load was extremely low in a single HPV204-positive cutaneous wart (7.4 × 10−7 viral copies/cell). Hence, etiological association between HPV204 and the development of cutaneous warts could not be established. To the best of our knowledge, this is the first study to evaluate the genetic variability of Mu-PVs by sequencing complete LCR genomic regions of HPV204, HPV1, and HPV63. We detected several nucleotide substitutions and deletions within the LCR genomic regions of Mu-PVs and identified two genetic variants of HPV204 and HPV63 and five genetic variants of HPV1.
Collapse
Affiliation(s)
- Anja Šterbenc
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Lea Hošnjak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Diego Chouhy
- Virology Area, School of Biochemistry and Pharmaceutical Sciences, Rosario National University, Rosario, Argentina
| | - Elisa M. Bolatti
- Virology Area, School of Biochemistry and Pharmaceutical Sciences, Rosario National University, Rosario, Argentina
| | - Anja Oštrbenk
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Katja Seme
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Boštjan J. Kocjan
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Boštjan Luzar
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Adriana A. Giri
- Virology Area, School of Biochemistry and Pharmaceutical Sciences, Rosario National University, Rosario, Argentina
| | - Mario Poljak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- * E-mail:
| |
Collapse
|
7
|
Liu Z, Yang S, Wang Y, Shen Q, Yang Y, Deng X, Zhang W, Delwart E. Identification of a novel human papillomavirus by metagenomic analysis of vaginal swab samples from pregnant women. Virol J 2016; 13:122. [PMID: 27411548 PMCID: PMC4943014 DOI: 10.1186/s12985-016-0583-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/01/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The number of members in the genus Gammapapillomavirus of Family Papillomaviridae has recently been expanding most rapidly. The aim of this study was to characterize a novel human gammapapillomavirus type identified in a vaginal swab from a 25-year-old pregnant woman suffering from vaginitis. METHODS Viral metagenomics method was used to detect the viral sequences in 88 vaginal swab samples collected from 88 pregnant women with vaginitis. A novel papillomavirus, named HPV-ZJ01 (GenBank no. KX082661), was detected in one sample and its complete genome sequence was amplified by PCR and sequenced by Sanger walking. Phylogenetic analyses based on the complete genome and the L1 protein of HPV-ZJ01 and other representative human papillomaviruses were done, respectively. Further PCR screening was performed in vaginal swabs (n = 135), cervical smears (n = 40) and cervical cancer tissues (n = 40) using nested-PCR primers designed based on HPV-ZJ01 sequence to investigate the prevalence of HPV-ZJ01. RESULTS The genome of HPV-ZJ01 is 7,358 bp in length with a GC content of 37.8 %. HPV-ZJ01 was predicted to contain six open reading frames (E6, E7, E1, E2, L2, and L1) and a non-coding long control region (LCR). The genome shared the highest overall similarity to HPV-166, with 70.6 % nucleotide sequence identity while its L1 gene shared the highest nucleotide similarity to HPV-162, with 71.1 % sequence identity. Phylogenetic analysis suggested that HPV-ZJ01 belongs to a novel HPV type in the Gamma-PV genus, species Gamma-19, already containing HPV161, HPV162 and HPV166. PCR screening results indicated that none of the other samples were positive for HPV-ZJ01 except the original HPV-ZJ01 positive vaginal swab specimen. CONCLUSION The genome sequence of a novel type of species Gamma-19 HPV was characterized. The screening PCR results suggested that HPV-ZJ01 is not associated with any of the cervical cancer samples tested. In order to confirm the prevalence and disease association, if any, for HPV-ZJ01, a further study with different sample types and a larger sample size is needed.
Collapse
Affiliation(s)
- Zhijian Liu
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212023, People's Republic of China
| | - Shixing Yang
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212023, People's Republic of China
| | - Yan Wang
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212023, People's Republic of China
| | - Quan Shen
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212023, People's Republic of China
| | - Yan Yang
- The Fourth Affiliated Hospital of Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu, 212001, China
| | - Xutao Deng
- Blood Systems Research Institute, Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, 94118, USA
| | - Wen Zhang
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212023, People's Republic of China. .,Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Eric Delwart
- Blood Systems Research Institute, Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, 94118, USA
| |
Collapse
|
8
|
Oštrbenk A, Kocjan BJ, Hošnjak L, Li J, Deng Q, Šterbenc A, Poljak M. Identification of a Novel Human Papillomavirus, Type HPV199, Isolated from a Nasopharynx and Anal Canal, and Complete Genomic Characterization of Papillomavirus Species Gamma-12. PLoS One 2015; 10:e0138628. [PMID: 26375679 PMCID: PMC4574437 DOI: 10.1371/journal.pone.0138628] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/31/2015] [Indexed: 01/04/2023] Open
Abstract
The novel human papillomavirus type 199 (HPV199) was initially identified in a nasopharyngeal swab sample obtained from a 25 year-old immunocompetent male. The complete genome of HPV199 is 7,184 bp in length with a GC content of 36.5%. Comparative genomic characterization of HPV199 and its closest relatives showed the classical genomic organization of Gammapapillomaviruses (Gamma-PVs). HPV199 has seven major open reading frames (ORFs), encoding five early (E1, E2, E4, E6, and E7) and two late (L1 and L2) proteins, while lacking the E5 ORF. The long control region (LCR) of 513 bp is located between the L1 and E6 ORFs. Phylogenetic analysis additionally confirmed that HPV-199 clusters into the Gamma-PV genus, species Gamma-12, additionally containing HPV127, HV132, HPV148, HPV165, and three putative HPV types: KC5, CG2 and CG3. HPV199 is most closely related to HPV127 (nucleotide identity 77%). The complete viral genome sequence of additional HPV199 isolate was determined from anal canal swab sample. Two HPV199 complete viral sequences exhibit 99.4% nucleotide identity. To the best of our knowledge, this is the first member of Gamma-PV with complete nucleotide sequences determined from two independent clinical samples. To evaluate the tissue tropism of the novel HPV type, 916 clinical samples were tested using HPV199 type-specific real-time PCR: HPV199 was detected in 2/76 tissue samples of histologically confirmed common warts, 2/108 samples of eyebrow hair follicles, 2/137 anal canal swabs obtained from individuals with clinically evident anal pathology, 4/184 nasopharyngeal swabs and 3/411 cervical swabs obtained from women with normal cervical cytology. Although HPV199 was found in 1.4% of cutaneous and mucosal samples only, it exhibits dual tissue tropism. According to the results of our study and literature data, dual tropism of all Gamma-12 members is highly possible.
Collapse
Affiliation(s)
- Anja Oštrbenk
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Boštjan J. Kocjan
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Lea Hošnjak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jingjing Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Qiuju Deng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Anja Šterbenc
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mario Poljak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- * E-mail:
| |
Collapse
|
9
|
Kocjan BJ, Bzhalava D, Forslund O, Dillner J, Poljak M. Molecular methods for identification and characterization of novel papillomaviruses. Clin Microbiol Infect 2015; 21:808-16. [PMID: 26003284 DOI: 10.1016/j.cmi.2015.05.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/27/2015] [Accepted: 05/12/2015] [Indexed: 02/02/2023]
Abstract
Papillomaviruses (PV) are a remarkably heterogeneous family of small DNA viruses that infect a wide variety of vertebrate species and are aetiologically linked with the development of various neoplastic changes of the skin and mucosal epithelia. Based on nucleotide similarity, PVs are hierarchically classified into genera, species and types. Novel human PV (HPV) types are given a unique number only after the whole genome has been cloned and deposited with the International HPV Reference Center. As of 9 March 2015, 200 different HPV types, belonging to 49 species, had been recognized by the International HPV Reference Center. In addition, 131 animal PV types identified from 66 different animal species exist. Recent advances in molecular techniques have resulted in an explosive increase in the identification of novel HPV types and novel subgenomic HPV sequences in the last few years. Among PV genera, the γ-PV genus has been growing most rapidly in recent years with 80 completely sequenced HPV types, followed by α-PV and β-PV genera that have 65 and 51 recognized HPV types, respectively. We reviewed in detail the contemporary molecular methods most often used for identification and characterization of novel PV types, including PCR, rolling circle amplification and next-generation sequencing. Furthermore, we present a short overview of 12 and 10 novel HPV types recently identified in Sweden and Slovenia, respectively. Finally, an update on the International Human Papillomavirus Reference Center is provided.
Collapse
Affiliation(s)
- B J Kocjan
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Slovenia
| | - D Bzhalava
- International Human Papillomavirus Reference Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - O Forslund
- Department of Laboratory Medicine, Lund University, Malmö, Sweden
| | - J Dillner
- International Human Papillomavirus Reference Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - M Poljak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Slovenia.
| |
Collapse
|
10
|
Hošnjak L, Kocjan BJ, Pirš B, Seme K, Poljak M. Characterization of two novel gammapapillomaviruses, HPV179 and HPV184, isolated from common warts of a renal-transplant recipient. PLoS One 2015; 10:e0119154. [PMID: 25748516 PMCID: PMC4351898 DOI: 10.1371/journal.pone.0119154] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/09/2015] [Indexed: 11/19/2022] Open
Abstract
Gammapapillomavirus (Gamma-PV) is a diverse and rapidly expanding PV-genus, currently consisting of 76 fully characterized human papillomavirus (HPV) types. In this study, DNA genomes of two novel HPV types, HPV179 and HPV184, obtained from two distinct facial verrucae vulgares specimens of a 64 year-old renal-transplant recipient, were fully cloned, sequenced and characterized. HPV179 and HPV184 genomes comprise 7,228-bp and 7,324-bp, respectively, and contain four early (E1, E2, E6 and E7) and two late genes (L1 and L2); the non-coding region is typically positioned between L1 and E6 genes. Phylogenetic analysis of the L1 nucleotide sequence placed both novel types within the Gamma-PV genus: HPV179 was classified as a novel member of species Gamma-15, additionally containing HPV135 and HPV146, while HPV184 was classified as a single member of a novel species Gamma-25. HPV179 and HPV184 type-specific quantitative real-time PCRs were further developed and used in combination with human beta-globin gene quantitative real-time PCR to determine the prevalence and viral load of the novel types in the patient's facial warts and several follow-up skin specimens, and in a representative collection, a total of 569 samples, of HPV-associated benign and malignant neoplasms, hair follicles and anal and oral mucosa specimens obtained from immunocompetent individuals. HPV179 and HPV184 viral loads in patients' facial warts were estimated to be 2,463 and 3,200 genome copies per single cell, respectively, suggesting their active role in the development of common warts in organ-transplant recipients. In addition, in this particular patient, both novel types had established a persistent infection of the skin for more than four years. Among immunocompetent individuals, HPV179 was further detected in low-copy numbers in a few skin specimens, indicating its cutaneous tissue tropism, while HPV184 was further detected in low-copy numbers in one mucosal and a few skin specimens, suggesting its dual tissue tropism.
Collapse
Affiliation(s)
- Lea Hošnjak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Boštjan J. Kocjan
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Branko Pirš
- Private Center for Laser and Aesthetic Dermatology, Ljubljana, Slovenia
| | - Katja Seme
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mario Poljak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- * E-mail:
| |
Collapse
|
11
|
Fischer NM, Favrot C, Birkmann K, Jackson M, Schwarzwald CC, Müller M, Tobler K, Geisseler M, Lange CE. Serum antibodies and DNA indicate a high prevalence of equine papillomavirus 2 (EcPV2) among horses in Switzerland. Vet Dermatol 2014; 25:210-e54. [DOI: 10.1111/vde.12129] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Nina. M. Fischer
- Dermatology Department; Clinic for Small Animal Internal Medicine; Vetsuisse Faculty; Winterthurerstrasse 260, 8057 Zurich Switzerland
| | - Claude Favrot
- Dermatology Department; Clinic for Small Animal Internal Medicine; Vetsuisse Faculty; Winterthurerstrasse 260, 8057 Zurich Switzerland
| | - Katharina Birkmann
- Equine Department; Vetsuisse Faculty; Winterthurerstrasse 260, 8057 Zurich Switzerland
| | - Michele Jackson
- Equine Department; Vetsuisse Faculty; Winterthurerstrasse 260, 8057 Zurich Switzerland
| | - Colin C. Schwarzwald
- Equine Department; Vetsuisse Faculty; Winterthurerstrasse 260, 8057 Zurich Switzerland
| | - Martin Müller
- Deutsches Krebsforschungszentrum; Im Neuenheimer Feld 242 69120 Heidelberg Germany
| | - Kurt Tobler
- Institute of Virology; Vetsuisse Faculty; Winterthurerstrasse 260, 8057 Zurich Switzerland
| | - Marco Geisseler
- Dermatology Department; Clinic for Small Animal Internal Medicine; Vetsuisse Faculty; Winterthurerstrasse 260, 8057 Zurich Switzerland
- Institute of Virology; Vetsuisse Faculty; Winterthurerstrasse 260, 8057 Zurich Switzerland
| | - Christian E. Lange
- Dermatology Department; Clinic for Small Animal Internal Medicine; Vetsuisse Faculty; Winterthurerstrasse 260, 8057 Zurich Switzerland
- Institute of Virology; Vetsuisse Faculty; Winterthurerstrasse 260, 8057 Zurich Switzerland
- Microbiology and Immunobiology Department; Harvard Medical School; 77 Ave Louis Pasteur, Boston MA 02115 USA
| |
Collapse
|
12
|
Human papillomavirus community in healthy persons, defined by metagenomics analysis of human microbiome project shotgun sequencing data sets. J Virol 2014; 88:4786-97. [PMID: 24522917 DOI: 10.1128/jvi.00093-14] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Human papillomavirus (HPV) causes a number of neoplastic diseases in humans. Here, we show a complex normal HPV community in a cohort of 103 healthy human subjects, by metagenomics analysis of the shotgun sequencing data generated from the NIH Human Microbiome Project. The overall HPV prevalence was 68.9% and was highest in the skin (61.3%), followed by the vagina (41.5%), mouth (30%), and gut (17.3%). Of the 109 HPV types as well as additional unclassified types detected, most were undetectable by the widely used commercial kits targeting the vaginal/cervical HPV types. These HPVs likely represent true HPV infections rather than transitory exposure because of strong organ tropism and persistence of the same HPV types in repeat samples. Coexistence of multiple HPV types was found in 48.1% of the HPV-positive samples. Networking between HPV types, cooccurrence or exclusion, was detected in vaginal and skin samples. Large contigs assembled from short HPV reads were obtained from several samples, confirming their genuine HPV origin. This first large-scale survey of HPV using a shotgun sequencing approach yielded a comprehensive map of HPV infections among different body sites of healthy human subjects. IMPORTANCE This nonbiased survey indicates that the HPV community in healthy humans is much more complex than previously defined by widely used kits that are target selective for only a few high- and low-risk HPV types for cervical cancer. The importance of nononcogenic viruses in a mixed HPV infection could be for stimulating or inhibiting a coexisting oncogenic virus via viral interference or immune cross-reaction. Knowledge gained from this study will be helpful to guide the designing of epidemiological and clinical studies in the future to determine the impact of nononcogenic HPV types on the outcome of HPV infections.
Collapse
|
13
|
Identification and characterization of eleven novel human gamma-papillomavirus isolates from healthy skin, found at low frequency in a normal population. PLoS One 2013; 8:e77116. [PMID: 24155922 PMCID: PMC3796542 DOI: 10.1371/journal.pone.0077116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 08/30/2013] [Indexed: 11/22/2022] Open
Abstract
Eleven novel human papillomavirus (HPV) types were isolated and characterized from healthy individuals in China. HPV163 belongs to the γ-1 species, HPV 164 and HPV 168 fit in the γ-8 species, HPV 165 and KC5 belongs to the γ-12 species, HPV 168 is closely allied with the γ-4 species, HPV 169 is closely related to the γ-11 species, and HPV 170 is related to the γ-12 species. In addition, HPV 161, HPV 162, and HPV 166 may form a new HPV species of the γ-PV genus. The prevalence of these HPV types in the normal population is low.
Collapse
|
14
|
Al Bdour S, Akkash L, Shehabi AA. Detection and typing of common human papillomaviruses among Jordanian patients. J Med Virol 2013; 85:1058-62. [PMID: 23588732 DOI: 10.1002/jmv.23519] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2012] [Indexed: 11/07/2022]
Abstract
The epidemiology of human papillomaviruses (HPVs) genotype distribution of cutaneous warts in Jordanian patients were studied. A total of 200 samples were collected using skin swabs from patients with warts attending the dermatology clinic at the Jordan University Hospital over the period of June 2010 to October 2010. Another 100 control samples were taken from healthy Jordanian individuals with no current or previous history of warts. DNA extraction and sequencing was carried out using PCR with the FAP primer pair to detect HPV DNA, followed by multiple-type-specific (Multiplex) PCR combined with DNA sequencing. The prevalence of HPV among Jordanian patients tested with warts diagnosed clinically was 82% (157/192); of these 45% (87/192) were detected by FAP PCR method, and 37% (70/192) were detected by multiplex PCR method. Sequencing of the FAP positive samples shows that HPV 2 was associated with the highest prevalence (36%), followed by HPV 27 (28%) and HPV 57 (21%). A total of 6% of healthy persons were positive for HPV DNA. In conclusion, this study demonstrates that alpha HPV types (HPV 2, HPV 27, and HPV 57) are associated with the most prevalent cutaneous warts in Jordanian patients.
Collapse
Affiliation(s)
- Suzan Al Bdour
- Faculty of Medicine, Pathology, Microbiology, and Forensic Medicine, University of Jordan, Amman, Jordan
| | | | | |
Collapse
|
15
|
de Villiers EM. Cross-roads in the classification of papillomaviruses. Virology 2013; 445:2-10. [PMID: 23683837 DOI: 10.1016/j.virol.2013.04.023] [Citation(s) in RCA: 352] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/02/2013] [Accepted: 04/25/2013] [Indexed: 01/22/2023]
Abstract
Acceptance of an official classification for the family Papillomaviridae based purely on DNA sequence relatedness, was achieved as late as 2003. The rate of isolation and characterization of new papillomavirus types has greatly depended on and subjected to the development of new laboratory techniques. Introduction of every new technique led to a temporarily burst in the number of new isolates. In the following, the bumpy road towards achieving a classification system combined with the controversies of implementing and accepting new techniques will be summarized. An update of the classification of the 170 human papillomavirus (HPV) types presently known is presented. Arguments towards the implementation of metagenomic sequencing for this rapidly growing family will be presented.
Collapse
Affiliation(s)
- Ethel-Michele de Villiers
- Division for the Characterization of Papillomaviruses, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany.
| |
Collapse
|