1
|
Kim JT, Han SW, Youn DH, Jung H, Lee EH, Kang SM, Cho YJ, Jeon JP. Advanced hydrogel mesh platform with neural stem cells and human umbilical vein endothelial cells for enhanced axonal regeneration. APL Bioeng 2025; 9:026101. [PMID: 40181802 PMCID: PMC11964475 DOI: 10.1063/5.0244057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 03/15/2025] [Indexed: 04/05/2025] Open
Abstract
One of the major obstacles to neural recovery following intracerebral hemorrhage (ICH) is the cavity-like lesion that occurs at the site of the hemorrhage, which impedes axonal regeneration. Here, we aim to address this challenge by investigating the migratory mechanisms of neural stem cells (NSCs) within the cavity in vitro using a hydrogel and endothelial cells. Mouse NSCs (mNSCs) isolated from the subventricular and subgranular zones using the 3D hydrogel culture were evaluated for their neurogenic, extracellular matrix (ECM), and adhesion-related mRNA expression compared to microglia (BV2) and secretory factors of human umbilical vein endothelial cells (HUVECs) in vitro and in vivo conditions. A hydrogel mesh combining mNSCs and HUVECs was developed for its therapeutic potential. mNSCs exhibit high stemness, neurogenesis, and ECM remodeling capabilities. mNSCs demonstrated close interaction with HUVECs and the surrounding vascular structures in in vitro and in vivo studies. Furthermore, mNSCs could degrade high concentrations of fibrin to facilitate migration and adhesion. mNSCs and HUVECs formed mesh networks through cell-cell contacts and maintained the structure through Matrigel support, potentially ensuring sufficient survival and regeneration capabilities. Our proposed hydrogel mesh platform with mNSCs and HUVECs demonstrated successful maintenance of cell survival and provision of structural support for the delivered cells by promoting ECM remodeling and neurogenesis, which may aid in axonal regeneration in the cavity lesions following ICH.
Collapse
Affiliation(s)
- Jong-Tae Kim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| | - Sung Woo Han
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| | - Dong Hyuk Youn
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| | - Harry Jung
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| | - Eun-Ho Lee
- Department of Green Chemical Engineering, Sangmyung University, Cheonan 31066, Republic of Korea
| | - Sung-Min Kang
- Department of Green Chemical Engineering, Sangmyung University, Cheonan 31066, Republic of Korea
| | - Yong-Jun Cho
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| | - Jin Pyeong Jeon
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| |
Collapse
|
2
|
Sehara Y, Hashimotodani Y, Watano R, Ohba K, Uchibori R, Shimazaki K, Kawai K, Mizukami H. Adeno-associated Virus-mediated Ezh2 Knockdown Reduced the Increment of Newborn Neurons Induced by Forebrain Ischemia in Gerbil Dentate Gyrus. Mol Neurobiol 2024; 61:9623-9632. [PMID: 38676810 PMCID: PMC11496322 DOI: 10.1007/s12035-024-04200-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
It is established that neurogenesis of dentate gyrus is increased after ischemic insult, although the regulatory mechanisms have not yet been elucidated. In this study, we focused on Ezh2 which suppresses gene expression through catalyzing trimethylation of lysine 27 of histone 3. Male gerbils were injected with adeno-associated virus (AAV) carrying shRNA targeting to Ezh2 into right dentate gyrus 2 weeks prior to forebrain ischemia. One week after ischemia, animals were injected with thymidine analogue to label proliferating cells. Three weeks after ischemia, animals were killed for histological analysis. AAV-mediated knockdown of Ezh2 significantly decreased the ischemia-induced increment of proliferating cells, and the proliferated cells after ischemia showed significantly longer migration from subgranular zone (SGZ), compared to the control group. Furthermore, the number of neural stem cells in SGZ significantly decreased after ischemia with Ezh2 knockdown group. Of note, Ezh2 knockdown did not affect the number of proliferating cells or the migration from SGZ in the non-ischemic condition. Our data showed that, specifically after ischemia, Ezh2 knockdown shifted the balance between self-renewal and differentiation toward differentiation in adult dentate gyrus.
Collapse
Affiliation(s)
- Yoshihide Sehara
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.
| | | | - Ryota Watano
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Kenji Ohba
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Ryosuke Uchibori
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Kuniko Shimazaki
- Department of Neurosurgery, Jichi Medical University, Shimotsuke, Japan
| | - Kensuke Kawai
- Department of Neurosurgery, Jichi Medical University, Shimotsuke, Japan
| | - Hiroaki Mizukami
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| |
Collapse
|
3
|
Ganguly K, Adhikary K, Acharjee A, Acharjee P, Trigun SK, Mutlaq AS, Ashique S, Yasmin S, Alshahrani AM, Ansari MY. Biological significance and pathophysiological role of Matrix Metalloproteinases in the Central Nervous System. Int J Biol Macromol 2024; 280:135967. [PMID: 39322129 DOI: 10.1016/j.ijbiomac.2024.135967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/21/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
Matrix Metalloproteinases (MMPs), which are endopeptidase reliant on zinc, are low in embryonic tissues but increases in response to a variety of physiological stimulus and pathological stresses. Neuro-glial cells, endothelial cells, fibroblasts, and leucocytes secrete MMPs, which cleave extracellular matrix proteins in a time-dependent manner. MMPs affect synaptic plasticity and the development of short-term memory by controlling the size, shape, and excitatory synapses' function through the lateral diffusion of receptors. In addition, MMPs influence the Extracellular Matrix proteins in the Peri-Neuronal Net at the Neuro-glial interface, which aids in the establishment of long-term memory. Through modulating neuronal, and glial cells migration, differentiation, Neurogenesis, and survival, MMPs impact brain development in mammals. In adult brains, MMPs play a beneficial role in physiological plasticity, which includes learning, memory consolidation, social interaction, and complex behaviors, by proteolytically altering a wide variety of factors, including growth factors, cytokines, receptors, DNA repair enzymes, and matrix proteins. Additionally, stress, depression, addiction, hepatic encephalopathy, and stroke may all have negative effects on MMPs. In addition to their role in glioblastoma development, MMPs influence neurological diseases such as epilepsy, schizophrenia, autism spectrum disorder, brain damage, pain, neurodegeneration, and Alzheimer's and Parkinson's. To help shed light on the potential of MMPs as a therapeutic target for neurodegenerative diseases, this review summarizes their regulation, mode of action, and participation in brain physiological plasticity and pathological damage. Finally, by employing different MMP-based nanotools and inhibitors, MMPs may also be utilized to map the anatomical and functional connectome of the brain, analyze its secretome, and treat neurodegenerative illnesses.
Collapse
Affiliation(s)
- Krishnendu Ganguly
- Department of Medical Lab Technology, Paramedical College Durgapur, Helen Keller Sarani, Durgapur 713212, West Bengal, India.
| | - Krishnendu Adhikary
- Department of Medical Lab Technology, Paramedical College Durgapur, Helen Keller Sarani, Durgapur 713212, West Bengal, India.
| | - Arup Acharjee
- Molecular Omics Laboratory, Department of Zoology, University of Allahabad, Allahabad, Uttar Pradesh, India.
| | - Papia Acharjee
- Biochemistry Section, Department of Zoology, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| | - Surendra Kumar Trigun
- Biochemistry Section, Department of Zoology, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| | | | - Sumel Ashique
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Department of Pharmaceutics, Bengal College of Pharmaceutical Sciences & Research, Durgapur 713212, West Bengal, India.
| | - Sabina Yasmin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia.
| | - Asma M Alshahrani
- Department of Clinical Pharmacy, Faculty of Pharmacy, King Khalid University, Abha, Saudi Arabia; Department of Clinical Pharmacy, Shaqra University, Saudi Arabia.
| | - Mohammad Yousuf Ansari
- MM college of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India.
| |
Collapse
|
4
|
Kucherova KS, Koroleva ES, Alifirova VM. The role of matrix metalloproteinases in the pathogenetic mechanisms of ischemic stroke. RUSSIAN NEUROLOGICAL JOURNAL 2024; 29:5-15. [DOI: 10.30629/2658-7947-2024-29-3-5-15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Modern understanding of the mechanisms of the pathogenesis of ischemic stroke has expanded due to the study of neuroinfl ammation processes, in which matrix metalloproteinases (MMPs) play an important role. This literature review describes the main types of MMPs and provides current data on the pathophysiological role of this group of proteases in acute cerebral ischemia, which have multidirectional eff ects depending on the stage of the disease. Clinical studies assessing the role of MMPs in ischemic stroke are in most cases based on experimental models, and their results are ambiguous, which is determined by the versatility of their actions. MMPs are an important regulator of infl ammatory processes, the permeability of the blood-brain barrier and, as a consequence, cerebral edema. However, the positive eff ect of MMPs in the processes of angiogenesis, neurogenesis and neuroplasticity has been proven. Thus, further study of MMPs is relevant from the point of view of their role in functional recovery after ischemic stroke.
Collapse
|
5
|
Foster EG, Palermo NY, Liu Y, Edagwa B, Gendelman HE, Bade AN. Inhibition of matrix metalloproteinases by HIV-1 integrase strand transfer inhibitors. FRONTIERS IN TOXICOLOGY 2023; 5:1113032. [PMID: 36896351 PMCID: PMC9988942 DOI: 10.3389/ftox.2023.1113032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
More than fifteen million women with the human immunodeficiency virus type-1 (HIV-1) infection are of childbearing age world-wide. Due to improved and affordable access to antiretroviral therapy (ART), the number of in utero antiretroviral drug (ARV)-exposed children has exceeded a million and continues to grow. While most recommended ART taken during pregnancy suppresses mother to child viral transmission, the knowledge of drug safety linked to fetal neurodevelopment remains an area of active investigation. For example, few studies have suggested that ARV use can be associated with neural tube defects (NTDs) and most notably with the integrase strand transfer inhibitor (INSTI) dolutegravir (DTG). After risk benefit assessments, the World Health Organization (WHO) made recommendations for DTG usage as a first and second-line preferred treatment for infected populations including pregnant women and those of childbearing age. Nonetheless, long-term safety concerns remain for fetal health. This has led to a number of recent studies underscoring the need for biomarkers to elucidate potential mechanisms underlying long-term neurodevelopmental adverse events. With this goal in mind, we now report the inhibition of matrix metalloproteinases (MMPs) activities by INSTIs as an ARV class effect. Balanced MMPs activities play a crucial role in fetal neurodevelopment. Inhibition of MMPs activities by INSTIs during neurodevelopment could be a potential mechanism for adverse events. Thus, comprehensive molecular docking testing of the INSTIs, DTG, bictegravir (BIC), and cabotegravir (CAB), against twenty-three human MMPs showed broad-spectrum inhibition. With a metal chelating chemical property, each of the INSTI were shown to bind Zn++ at the MMP's catalytic domain leading to MMP inhibition but to variable binding energies. These results were validated in myeloid cell culture experiments demonstrating MMP-2 and 9 inhibitions by DTG, BIC and CAB and even at higher degree than doxycycline (DOX). Altogether, these data provide a potential mechanism for how INSTIs could affect fetal neurodevelopment.
Collapse
Affiliation(s)
- Emma G. Foster
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Nicholas Y. Palermo
- Computational Chemistry Core, University of Nebraska Medical Center, Omaha, NE, United States
| | - Yutong Liu
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NeE, United States
| | - Aditya N. Bade
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
6
|
Abstract
In the adult mammalian hippocampus, new neurons arise from stem and progenitor cell division, in a process known as adult neurogenesis. Adult-generated neurons are sensitive to experience and may participate in hippocampal functions, including learning and memory, anxiety and stress regulation, and social behavior. Increasing evidence emphasizes the importance of new neuron connectivity within hippocampal circuitry for understanding the impact of adult neurogenesis on brain function. In this Review, we discuss how the functional consequences of new neurons arise from the collective interactions of presynaptic and postsynaptic neurons, glial cells, and the extracellular matrix, which together form the "tetrapartite synapse."
Collapse
Affiliation(s)
- Elise C Cope
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ 08544, USA
| | - Elizabeth Gould
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
7
|
Montaner J, Ramiro L, Simats A, Hernández-Guillamon M, Delgado P, Bustamante A, Rosell A. Matrix metalloproteinases and ADAMs in stroke. Cell Mol Life Sci 2019; 76:3117-3140. [PMID: 31165904 PMCID: PMC11105215 DOI: 10.1007/s00018-019-03175-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 12/27/2022]
Abstract
Stroke is a leading cause of death and disability worldwide. However, after years of in-depth research, the pathophysiology of stroke is still not fully understood. Increasing evidence shows that matrix metalloproteinases (MMPs) and "a disintegrin and metalloproteinase" (ADAMs) participate in the neuro-inflammatory cascade that is triggered during stroke but also in recovery phases of the disease. This review covers the involvement of these proteins in brain injury following cerebral ischemia which has been widely studied in recent years, with efforts to modulate this group of proteins in neuroprotective therapies, together with their implication in neurorepair mechanisms. Moreover, the review also discusses the role of these proteins in specific forms of neurovascular disease, such as small vessel diseases and intracerebral hemorrhage. Finally, the potential use of MMPs and ADAMs as guiding biomarkers of brain injury and repair for decision-making in cases of stroke is also discussed.
Collapse
Affiliation(s)
- Joan Montaner
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain.
| | - Laura Ramiro
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Alba Simats
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Mar Hernández-Guillamon
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Pilar Delgado
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Alejandro Bustamante
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Anna Rosell
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| |
Collapse
|
8
|
Raz L, Yang Y, Thompson J, Hobson S, Pesko J, Mobashery S, Chang M, Rosenberg G. MMP-9 inhibitors impair learning in spontaneously hypertensive rats. PLoS One 2018; 13:e0208357. [PMID: 30533010 PMCID: PMC6289411 DOI: 10.1371/journal.pone.0208357] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/15/2018] [Indexed: 12/18/2022] Open
Abstract
Vascular cognitive impairment dementia (VCID) is a major cause of cognitive loss in the elderly. Matrix metalloproteinases (MMPs) are a family of proteases involved in remodeling the extracellular matrix in development, injury and repair. Blood-brain barrier (BBB) disruption due to inflammation mediated by MMPs is a mechanism of white matter injury. Currently there are no treatments besides the control of vascular risk factors. We tested two MMP-9 inhibitors that improved outcome in acute stroke: DP-460 and SB-3CT. We hypothesized that these inhibitors would have a beneficial effect in chronic stroke by reducing edema in white matter and improving behavioral outcomes. Spontaneously hypertensive stroke-prone rats (SHRSPs) with unilateral carotid artery occlusion (UCAO) fed a Japanese Permissive Diet (JPD) were used as a model of VCID. JPD was begun in the 12th week of life. Rats were treated with DP-460 (500 mg/kg) for 4 weeks, or SB-3CT (10 mg/kg) for 8 weeks, beginning at the UCAO/JPD onset. Rats treated with a dextrose or DMSO solution served as vehicle controls. Naïve SHRSPs on a standard diet served as sham control. Magnetic resonance imaging (MRI) analyses of the corpus callosum, external capsule, hippocampus and Morris water maze behavioral tests were conducted. We found an increase in body weight (p = 0.004) and blood pressure (p = 0.007) at 15 weeks with the DP-460 drug. SB-3CT increased body weight at 14 weeks (p = 0.015) and had significant but variable effects on blood pressure. Neither drug affected imaging parameters. Behavioral studies showed an impaired ability to learn with DP-460 (p<0.001) and no effect on learning with SB-3CT. Unchanged MMP-9 levels were detected in DP-460-treated rats via gel zymography. Our findings suggest that MMPs are not major factors in white matter damage in the SHRSP model of VCID and that drugs that are relatively selective for MMP-9 can interfere with learning.
Collapse
Affiliation(s)
- Limor Raz
- Department of Neurology, University of New Mexico, Albuquerque, New Mexico, United States of America
- * E-mail:
| | - Yi Yang
- Department of Neurology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Jeffrey Thompson
- UNM Memory and Aging Center, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Sasha Hobson
- UNM Memory and Aging Center, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - John Pesko
- AbbVie, Data and Statistical Sciences, North Chicago, Illinois, United States of America
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Mayland Chang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Gary Rosenberg
- Department of Neurology, University of New Mexico, Albuquerque, New Mexico, United States of America
| |
Collapse
|
9
|
Hsu WC, Yu CH, Kung WM, Huang KF. Enhancement of matrix metalloproteinases 2 and 9 accompanied with neurogenesis following collagen glycosaminoglycan matrix implantation after surgical brain injury. Neural Regen Res 2018; 13:1007-1012. [PMID: 29926827 PMCID: PMC6022476 DOI: 10.4103/1673-5374.233443] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2018] [Indexed: 02/05/2023] Open
Abstract
Surgical brain injury may result in irreversible neurological deficits. Our previous report showed that partial regeneration of a traumatic brain lesion is achieved by implantation of collagen glycosaminoglycan (CGM). Matrix metalloproteinases (MMPs) may play an important role in neurogenesis but there is currently a lack of studies displaying the relationship between the stimulation of MMPs and neurogenesis after collagen glycosaminoglycan implantation following surgical brain trauma. The present study was carried out to further examine the expression of MMP2 and MMP9 after implantation of collagen glycosaminoglycan (CGM) following surgical brain trauma. Using the animal model of surgically induced brain lesion, we implanted CGM into the surgical trauma. Rats were thus divided into three groups: (1) sham operation group: craniotomy only; (2) lesion (L) group: craniotomy + surgical trauma lesion; (3) lesion + CGM (L + CGM) group: CGM implanted following craniotomy and surgical trauma lesion. Cells positive for SOX2 (marker of proliferating neural progenitor cells) and matrix metalloproteinases (MMP2 and MMP9) in the lesion boundary zone were assayed and analyzed by immunofluorescence and ELISA commercial kits, respectively. Our results demonstrated that following implantation of CGM after surgical brain trauma, significant increases in MMP2+/SOX2+ cells and MMP9+/SOX2+ cells were seen within the lesion boundary zone in the L + CGM group. Tissue protein concentrations of MMP2 and MMP9 also increased after CGM scaffold implantation. These findings suggest that implantation of a CGM scaffold alone after surgical brain trauma can enhance the expression of MMP2 and MMP9 accompanied by neurogenesis.
Collapse
Affiliation(s)
- Wei-Cherng Hsu
- Department of Ophthalmology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan, China
- School of Medicine, Buddhist Tzu Chi University, Hualien, Taiwan, China
| | - Chun-Hsien Yu
- School of Medicine, Buddhist Tzu Chi University, Hualien, Taiwan, China
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan, China
| | - Woon-Man Kung
- Division of Neurosurgery, Department of Surgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan, China
- Department of Exercise and Health Promotion, College of Education, Chinese Culture University, Taipei, Taiwan, China
| | - Kuo-Feng Huang
- School of Medicine, Buddhist Tzu Chi University, Hualien, Taiwan, China
- Division of Neurosurgery, Department of Surgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan, China
| |
Collapse
|
10
|
Casas BS, Vitória G, do Costa MN, Madeiro da Costa R, Trindade P, Maciel R, Navarrete N, Rehen SK, Palma V. hiPSC-derived neural stem cells from patients with schizophrenia induce an impaired angiogenesis. Transl Psychiatry 2018; 8:48. [PMID: 29467462 PMCID: PMC5821759 DOI: 10.1038/s41398-018-0095-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 12/30/2017] [Indexed: 12/18/2022] Open
Abstract
Schizophrenia is a neurodevelopmental disease characterized by cerebral connectivity impairment and loss of gray matter. It was described in adult schizophrenia patients (SZP) that concentration of VEGFA, a master angiogenic factor, is decreased. Recent evidence suggests cerebral hypoperfusion related to a dysfunctional Blood Brain Barrier (BBB) in SZP. Since neurogenesis and blood-vessel formation occur in a coincident and coordinated fashion, a defect in neurovascular development could result in increased vascular permeability and, therefore, in poor functionality of the SZP's neurons. Here, we characterized the conditioned media (CM) of human induced Pluripotent Stem Cells (hiPSC)-derived Neural Stem Cells of SZP (SZP NSC) versus healthy subjects (Ctrl NSC), and its impact on angiogenesis. Our results reveal that SZP NSC have an imbalance in the secretion and expression of several angiogenic factors, among them non-canonical neuro-angiogenic guidance factors. SZP NSC migrated less and their CM was less effective in inducing migration and angiogenesis both in vitro and in vivo. Since SZP originates during embryonic brain development, our findings suggest a defective crosstalk between NSC and endothelial cells (EC) during the formation of the neuro-angiogenic niche.
Collapse
Affiliation(s)
- Bárbara S Casas
- Laboratory of Stem Cells and Development, Universidad de Chile, Santiago, Chile
| | - Gabriela Vitória
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Marcelo N do Costa
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Pablo Trindade
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Renata Maciel
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Nelson Navarrete
- Universidad de Chile Clinical Hospital, Región Metropolitana, Chile
| | - Stevens K Rehen
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil.
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Verónica Palma
- Laboratory of Stem Cells and Development, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
11
|
Shu T, Liu C, Pang M, Wang J, Liu B, Zhou W, Wang X, Wu T, Wang Q, Rong L. Effects and mechanisms of matrix metalloproteinase2 on neural differentiation of induced pluripotent stem cells. Brain Res 2017; 1678:407-418. [PMID: 29137974 DOI: 10.1016/j.brainres.2017.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 11/03/2017] [Accepted: 11/08/2017] [Indexed: 01/22/2023]
Abstract
Induced pluripotent stem cells (iPSCs) possess the potential to differentiate into neural lineage cells. Matrix metalloproteinase 2 (MMP2), an endopeptidase in the extracellular matrix, has been shown to protect neural cells from injury. However, the mechanisms and effects of MMP2 on neural differentiation of iPSCs remain poorly understood. Here, we demonstrated a role for MMP2 in the differentiation of iPSCs to neurons via the AKT pathway. Treatment of iPSCs with MMP2 promoted their proliferation and differentiation into neural stem cells (NSCs), and then into neurons. The transcript and protein expression of Nestin and microtubule-associated protein 2 (MAP2) increased. Moreover, MMP2 markedly induced the expression of phospho-AKT (pAKT) during these differentiation stages. Consistently, silencing MMP2 using siRNA attenuated the expression of Nestin, MAP2 and pAKT, compared with the control group. In addition, the increasing levels of Nestin, MAP2 and pAKT in the MMP2 group were declined by pretreatment with the phosphoinositide 3-kinase (PI3K)/AKT inhibitor, LY294002. Furthermore, the study detected that TrkA and TrkB were perhaps the potential receptors for these effects of MMP2 on neural differentiation through PI3K/AKT signaling pathway. Taken together, these results suggest that MMP2 induces the differentiation of iPSCs into neurons by regulating the AKT signaling pathway.
Collapse
Affiliation(s)
- Tao Shu
- Department of Spine Surgery, The 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Chang Liu
- Department of Spine Surgery, The 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Mao Pang
- Department of Spine Surgery, The 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Juan Wang
- Department of Gynaecology, Common Splendor International Health Management, Guangzhou, Guangdong 510000, China
| | - Bin Liu
- Department of Spine Surgery, The 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Wei Zhou
- Department of Orthopedics, The 3rd Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Xuan Wang
- Department of Spine Surgery, The 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Tao Wu
- Department of Emergency, Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces, Guangzhou Medical University, Guangzhou, Guangdong 510000, China
| | - Qiyou Wang
- Department of Spine Surgery, The 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China.
| | - Limin Rong
- Department of Spine Surgery, The 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China.
| |
Collapse
|
12
|
Targeting Adult Neurogenesis for Poststroke Therapy. Stem Cells Int 2017; 2017:5868632. [PMID: 28808445 PMCID: PMC5541797 DOI: 10.1155/2017/5868632] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 06/27/2017] [Indexed: 12/20/2022] Open
Abstract
Adult neurogenesis mainly occurs at the subventricular zone (SVZ) on the walls of the lateral ventricle and the subgranular zone (SGZ) of the dentate gyrus (DG). However, the majority of newborn neurons undergo programmed cell death (PCD) during the period of proliferation, migration, and integration. Stroke activates neural stem cells (NSCs) in both SVZ and SGZ. This process is regulated by a wide variety of signaling pathways. However, the newborn neurons derived from adult neurogenesis are insufficient for tissue repair and function recovery. Thus, enhancing the endogenous neurogenesis driven by ischemia and promoting the survival of newborn neurons can be promising therapeutic interventions for stroke. Here, we present an overview of the process of adult neurogenesis and the potential of stroke-induced neurogenesis on brain repair.
Collapse
|
13
|
Bobińska K, Szemraj J, Czarny P, Gałecki P. Role of MMP-2, MMP-7, MMP-9 and TIMP-2 in the development of recurrent depressive disorder. J Affect Disord 2016; 205:119-129. [PMID: 27434116 DOI: 10.1016/j.jad.2016.03.068] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 03/09/2016] [Accepted: 03/13/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND MMPs play a role in modulating inflammation and their impact in many inflammatory diseases has been investigated. The aim of the study was to demonstrate the relationship between selected polymorphisms for MMP-2 (C-735T), MMP-7 (A-181G), MMP-9 (T-1702A, C1562T) and TIMP-2 (G-418C) and depression, as well as between the importance of distribution of genotypes and alleles for the examined polymorphisms and the risk of depression occurrence. METHODS The examined population comprised 203 individuals suffering from depression and 99 individuals who formed a control group. Designations were carried out for MMP-2 (C-735T), MMP-7 (A-181G), MMP-9 (T-1702A, C1562T) and TIMP-2 (G-418C). The distribution of haplotypes of the MMP-9T-1702A and MMP-9 C1562T was specified for MMP-9 (T-1702A, C1562T). RESULTS In rDD group and in the control group the presence of the T-1702A polymorphism for MMP-9 increases the risk of rDD development for the T/T genotype and T allele (OR=2.191). The A/A genotype (OR=0.120) and A allele (OR=0.442) reduce the risk of disease occurrence in the examined polymorphisms for MMP-2, MMP-7 and MMP-9. The C/C genotype and C allele of the C1562T MMP-9 polymorphism increase the risk of middle-age depression, while the T allele makes this risk smaller. The incidence of rDD was greater for the C/T C-735T/MMP-2/genotype and G/G A-181G /MMP-7/genotype. A similarly high risk of incidence was confirmed for the C/T - T/T genotypes of the MMP-2C-735T and MMP-9T-1702A polymorphisms. A higher risk of incidence (OR=9.376) was confirmed in the case of a set of T/T-G/C genotypes of the MMP-9T-1702A and TIMP-2G-418C polymorphisms. For the gene-gene interactions presented above, a statistically significant difference was found between the examined group and the control group. LIMITATIONS A small group of examined patients and the need for conducting the study in other populations in order to determine the impact of the stratification factor. CONCLUSIONS 1. The evaluated polymorphisms in MMP genes have significant importance for the development of depression; they also have an impact on depression onset. 2. Further studies focused on changes of MMPs in the development of rDD are required.
Collapse
Affiliation(s)
- Kinga Bobińska
- Department of Adult Psychiatry, Medical University of Lodz, Aleksandrowska 159, Lodz 91-229, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, Czechoslowacka 8/10, 92-216 Lodz, Poland
| | - Piotr Czarny
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Piotr Gałecki
- Department of Adult Psychiatry, Medical University of Lodz, Aleksandrowska 159, Lodz 91-229, Poland.
| |
Collapse
|
14
|
Abstract
OBJECTIVE Among the 28 metalloproteinases described so far, 23 can be found in the human organism, but only few are expressed in the human brain. The main objective of this study was to analyse the relationship between MMP-2, MMP-9 and TIMP-2 gene expression and cognitive performance. METHODS The study comprised 234 subjects: patients suffering from recurrent depressive disorder (rDD, n=139) and healthy subjects (HS, n=95). The cognitive function assessment was carried out with the help of the following tests: Trail Making Test, The Stroop Test, Verbal Fluency Test and Auditory Verbal Learning Test. Gene expression on the mRNA and protein level was evaluated for MMP-2, MMP-9 and TIMP-2 in both groups using RNA extraction, reverse transcription and enzyme-linked immunosorbent assay. RESULTS Both mRNA and protein expression levels of all the genes were significantly lower in rDD subjects as compared with HS. Having analysed the entire experimental group (N=234), significant interrelations were found between the expression of the analysed genes and the results of the tests used to measure cognitive functions. Increased expression on both the mRNA and the protein level was associated in each case with better performance of all the tests conducted. After carrying out a separate analysis on the people from the rDD group and the HS group, similar dependencies were still observed. CONCLUSIONS The results of our study show decreased expression of MMP-2, MMP-9 and TIMP-2 genes on both mRNA and protein levels in depression. Elevated expression of MMP-2, MMP-9, TIMP-2 positively affects cognitive efficiency: working memory, executive functions, attention functions, direct and delayed auditory-verbal memory, the effectiveness of learning processes and verbal fluency. The study highlights the important role of peripheral matrix metalloproteinases genes in depression and cognitive functions.
Collapse
|
15
|
Vafadari B, Salamian A, Kaczmarek L. MMP-9 in translation: from molecule to brain physiology, pathology, and therapy. J Neurochem 2016; 139 Suppl 2:91-114. [PMID: 26525923 DOI: 10.1111/jnc.13415] [Citation(s) in RCA: 282] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/13/2015] [Accepted: 10/19/2015] [Indexed: 12/11/2022]
Abstract
Matrix metalloproteinase-9 (MMP-9) is a member of the metzincin family of mostly extracellularly operating proteases. Despite the fact that all of these enzymes might be target promiscuous, with largely overlapping catalogs of potential substrates, MMP-9 has recently emerged as a major and apparently unique player in brain physiology and pathology. The specificity of MMP-9 may arise from its very local and time-restricted actions, even when released in the brain from cells of various types, including neurons, glia, and leukocytes. In fact, the quantity of MMP-9 is very low in the naive brain, but it is markedly activated at the levels of enzymatic activity, protein abundance, and gene expression following various physiological stimuli and pathological insults. Neuronal MMP-9 participates in synaptic plasticity by controlling the shape of dendritic spines and function of excitatory synapses, thus playing a pivotal role in learning, memory, and cortical plasticity. When improperly unleashed, MMP-9 contributes to a large variety of brain disorders, including epilepsy, schizophrenia, autism spectrum disorder, brain injury, stroke, neurodegeneration, pain, brain tumors, etc. The foremost mechanism of action of MMP-9 in brain disorders appears to be its involvement in immune/inflammation responses that are related to the enzyme's ability to process and activate various cytokines and chemokines, as well as its contribution to blood-brain barrier disruption, facilitating the extravasation of leukocytes into brain parenchyma. However, another emerging possibility (i.e., the control of MMP-9 over synaptic plasticity) should not be neglected. The translational potential of MMP-9 has already been recognized in both the diagnosis and treatment domains. The most striking translational aspect may be the discovery of MMP-9 up-regulation in a mouse model of Fragile X syndrome, quickly followed by human studies and promising clinical trials that have sought to inhibit MMP-9. With regard to diagnosis, suggestions have been made to use MMP-9 alone or combined with tissue inhibitor of matrix metalloproteinase-1 or brain-derived neurotrophic factor as disease biomarkers. MMP-9, through cleavage of specific target proteins, plays a major role in synaptic plasticity and neuroinflammation, and by those virtues contributes to brain physiology and a host of neurological and psychiatric disorders. This article is part of the 60th Anniversary special issue.
Collapse
|
16
|
The MMP-1/PAR-1 Axis Enhances Proliferation and Neuronal Differentiation of Adult Hippocampal Neural Progenitor Cells. Neural Plast 2015; 2015:646595. [PMID: 26783471 PMCID: PMC4691474 DOI: 10.1155/2015/646595] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 08/13/2015] [Accepted: 09/06/2015] [Indexed: 12/26/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that play a role in varied forms of developmental and postnatal neuroplasticity. MMP substrates include protease-activated receptor-1 (PAR-1), a G-protein coupled receptor expressed in hippocampus. We examined proliferation and differentiation of adult neural progenitor cells (aNPCs) from hippocampi of mice that overexpress the potent PAR-1 agonist MMP-1. We found that, as compared to aNPCs from littermate controls, MMP-1 tg aNPCs display enhanced proliferation. Under differentiating conditions, these cells give rise to a higher percentage of MAP-2(+) neurons and a reduced number of oligodendrocyte precursors, and no change in the number of astrocytes. The fact that these results are MMP and PAR-1 dependent is supported by studies with distinct antagonists. Moreover, JSH-23, an inhibitor of NF-κB p65 nuclear translocation, counteracted both the proliferation and differentiation changes seen in MMP-1 tg-derived NPCs. In complementary studies, we found that the percentage of Sox2(+) undifferentiated progenitor cells is increased in hippocampi of MMP-1 tg animals, compared to wt mice. Together, these results add to a growing body of data suggesting that MMPs are effectors of hippocampal neuroplasticity in the adult CNS and that the MMP-1/PAR-1 axis may play a role in neurogenesis following physiological and/or pathological stimuli.
Collapse
|
17
|
Jablonska A, Drela K, Wojcik-Stanaszek L, Janowski M, Zalewska T, Lukomska B. Short-Lived Human Umbilical Cord-Blood-Derived Neural Stem Cells Influence the Endogenous Secretome and Increase the Number of Endogenous Neural Progenitors in a Rat Model of Lacunar Stroke. Mol Neurobiol 2015; 53:6413-6425. [PMID: 26607630 PMCID: PMC5085993 DOI: 10.1007/s12035-015-9530-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 11/08/2015] [Indexed: 12/12/2022]
Abstract
Stroke is the leading cause of severe disability, and lacunar stroke is related to cognitive decline and hemiparesis. There is no effective treatment for the majority of patients with stroke. Thus, stem cell-based regenerative medicine has drawn a growing body of attention due to the capabilities for trophic factor expression and neurogenesis enhancement. Moreover, it was shown in an experimental autoimmune encephalomyelitis (EAE) model that even short-lived stem cells can be therapeutic, and we have previously observed that phenomenon indirectly. Here, in a rat model of lacunar stroke, we investigated the molecular mechanisms underlying the positive therapeutic effects of short-lived human umbilical cord-blood-derived neural stem cells (HUCB-NSCs) through the distinct measurement of exogenous human and endogenous rat trophic factors. We have also evaluated neurogenesis and metalloproteinase activity as cellular components of therapeutic activity. As expected, we observed an increased proliferation and migration of progenitors, as well as metalloproteinase activity up to 14 days post transplantation. These changes were most prominent at the 7-day time point when we observed 30 % increases in the number of bromodeoxyuridine (BrdU)-positive cells in HUCB-NSC transplanted animals. The expression of human trophic factors was present until 7 days post transplantation, which correlated well with the survival of the human graft. For these 7 days, the level of messenger RNA (mRNA) in the analyzed trophic factors was from 300-fold for CNTF to 10,000-fold for IGF, much higher compared to constitutive expression in HUCB-NSCs in vitro. What is interesting is that there was no increase in the expression of rat trophic factors during the human graft survival, compared to that in non-transplanted animals. However, there was a prolongation of a period of increased trophic expression until 14 days post transplantation, while, in non-transplanted animals, there was a significant drop in rat trophic expression at that time point. We conclude that the positive therapeutic effect of short-lived stem cells may be related to the net increase in the amount of trophic factors (rat + human) until graft death and to the prolonged increase in rat trophic factor expression subsequently.
Collapse
Affiliation(s)
- Anna Jablonska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Drela
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Luiza Wojcik-Stanaszek
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Miroslaw Janowski
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.,Department of Radiology and Radiological Science, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.,Cellular Imaging Section, Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Teresa Zalewska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Barbara Lukomska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
18
|
Wiera G, Mozrzymas JW. Extracellular proteolysis in structural and functional plasticity of mossy fiber synapses in hippocampus. Front Cell Neurosci 2015; 9:427. [PMID: 26582976 PMCID: PMC4631828 DOI: 10.3389/fncel.2015.00427] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/09/2015] [Indexed: 02/04/2023] Open
Abstract
Brain is continuously altered in response to experience and environmental changes. One of the underlying mechanisms is synaptic plasticity, which is manifested by modification of synapse structure and function. It is becoming clear that regulated extracellular proteolysis plays a pivotal role in the structural and functional remodeling of synapses during brain development, learning and memory formation. Clearly, plasticity mechanisms may substantially differ between projections. Mossy fiber synapses onto CA3 pyramidal cells display several unique functional features, including pronounced short-term facilitation, a presynaptically expressed long-term potentiation (LTP) that is independent of NMDAR activation, and NMDA-dependent metaplasticity. Moreover, structural plasticity at mossy fiber synapses ranges from the reorganization of projection topology after hippocampus-dependent learning, through intrinsically different dynamic properties of synaptic boutons to pre- and postsynaptic structural changes accompanying LTP induction. Although concomitant functional and structural plasticity in this pathway strongly suggests a role of extracellular proteolysis, its impact only starts to be investigated in this projection. In the present report, we review the role of extracellular proteolysis in various aspects of synaptic plasticity in hippocampal mossy fiber synapses. A growing body of evidence demonstrates that among perisynaptic proteases, tissue plasminogen activator (tPA)/plasmin system, β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) and metalloproteinases play a crucial role in shaping plastic changes in this projection. We discuss recent advances and emerging hypotheses on the roles of proteases in mechanisms underlying mossy fiber target specific synaptic plasticity and memory formation.
Collapse
Affiliation(s)
- Grzegorz Wiera
- Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University Wroclaw, Poland ; Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical University Wroclaw, Poland
| | - Jerzy W Mozrzymas
- Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University Wroclaw, Poland ; Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical University Wroclaw, Poland
| |
Collapse
|
19
|
Sypecka J, Sarnowska A. Mesenchymal cells of umbilical cord and umbilical cord blood as a source of human oligodendrocyte progenitors. Life Sci 2015; 139:24-9. [PMID: 26285174 DOI: 10.1016/j.lfs.2015.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 07/06/2015] [Accepted: 08/11/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Joanna Sypecka
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5, Pawinskiego str., 02-106 Warsaw, Poland.
| | - Anna Sarnowska
- Translative Platform for Regenerative Medicine, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland; Stem Cell Bioengineering Laboratory, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland
| |
Collapse
|
20
|
Sypecka J, Ziemka-Nalecz M, Dragun-Szymczak P, Zalewska T. A simple, xeno-free method for oligodendrocyte generation from human neural stem cells derived from umbilical cord: engagement of gelatinases in cell commitment and differentiation. J Tissue Eng Regen Med 2015; 11:1442-1455. [DOI: 10.1002/term.2042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 02/03/2015] [Accepted: 04/29/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Joanna Sypecka
- Neurorepair Department, Mossakowski Medical Research Centre; Polish Academy of Sciences; Warsaw Poland
| | - Małgorzata Ziemka-Nalecz
- Neurorepair Department, Mossakowski Medical Research Centre; Polish Academy of Sciences; Warsaw Poland
| | - Patrycja Dragun-Szymczak
- Neurorepair Department, Mossakowski Medical Research Centre; Polish Academy of Sciences; Warsaw Poland
| | - Teresa Zalewska
- Neurorepair Department, Mossakowski Medical Research Centre; Polish Academy of Sciences; Warsaw Poland
| |
Collapse
|
21
|
Yoneyama M, Tanaka M, Hasebe S, Yamaguchi T, Shiba T, Ogita K. Beneficial effect of cilostazol-mediated neuronal repair following trimethyltin-induced neuronal loss in the dentate gyrus. J Neurosci Res 2014; 93:56-66. [PMID: 25139675 DOI: 10.1002/jnr.23472] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/05/2014] [Accepted: 07/24/2014] [Indexed: 01/16/2023]
Abstract
Cilostazol acts as an antiplatelet agent and has other pleiotropic effects based on phosphodiesterase-3-dependent mechanisms. We evaluated whether cilostazol would have a beneficial effect on neuronal repair following hippocampal neuronal damage by using a mouse model of trimethyltin (TMT)-induced neuronal loss/self-repair in the hippocampal dentate gyrus [Ogita et al. (2005) J Neurosci Res 82:609-621]; these mice will hereafter be referred to as impaired animals. A single treatment with cilostazol (10 mg/kg, i.p.) produced no significant change in the number of 5-bromo-2'-deoxyuridine (BrdU)-incorporating cells in the dentate granule cell layer (GCL) or subgranular zone on day 3 after TMT treatment. However, chronic treatment with cilostazol on days 3-15 posttreatment resulted in an increase in the number of BrdU-incorporating cells in the dentate GCL of the impaired animals, and these cells were positive for neuronal nuclear antigen or doublecortin. Cilostazol was effective in elevating the level of phosphorylated cyclic adrenosine monophosphate response element-binding protein (pCREB) in the dentate gyrus of impaired animals. The results of a forced swimming test revealed that the chronic treatment with cilostazol improved the depression-like behavior seen in the impaired animals. In the cultures of hippocampal neural stem/progenitor cells, exposure to cilostazol produced not only enhancement of proliferation activity but also elevation of pCREB levels. Taken together, our data suggest that cilostazol has a beneficial effect on neuronal repair following neuronal loss in the dentate gyrus through promotion of proliferation and/or neuronal differentiation of neural progenitor cells in the subgranular zone.
Collapse
Affiliation(s)
- Masanori Yoneyama
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Merson TD, Bourne JA. Endogenous neurogenesis following ischaemic brain injury: insights for therapeutic strategies. Int J Biochem Cell Biol 2014; 56:4-19. [PMID: 25128862 DOI: 10.1016/j.biocel.2014.08.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/18/2014] [Accepted: 08/04/2014] [Indexed: 01/19/2023]
Abstract
Ischaemic stroke is among the most common yet most intractable types of central nervous system (CNS) injury in the adult human population. In the acute stages of disease, neurons in the ischaemic lesion rapidly die and other neuronal populations in the ischaemic penumbra are vulnerable to secondary injury. Multiple parallel approaches are being investigated to develop neuroprotective, reparative and regenerative strategies for the treatment of stroke. Accumulating evidence indicates that cerebral ischaemia initiates an endogenous regenerative response within the adult brain that potentiates adult neurogenesis from populations of neural stem and progenitor cells. A major research focus has been to understand the cellular and molecular mechanisms that underlie the potentiation of adult neurogenesis and to appreciate how interventions designed to modulate these processes could enhance neural regeneration in the post-ischaemic brain. In this review, we highlight recent advances over the last 5 years that help unravel the cellular and molecular mechanisms that potentiate endogenous neurogenesis following cerebral ischaemia and are dissecting the functional importance of this regenerative mechanism following brain injury. This article is part of a Directed Issue entitled: Regenerative Medicine: the challenge of translation.
Collapse
Affiliation(s)
- Tobias D Merson
- Florey Institute of Neuroscience and Mental Health, Kenneth Myer Building, 30 Royal Parade, Parkville, VIC 3010, Australia.
| | - James A Bourne
- Australian Regenerative Medicine Institute, Monash University, Building 75, Level 1 North STRIP 1, Clayton, VIC 3800, Australia.
| |
Collapse
|
23
|
Lithium promotes neuronal repair and ameliorates depression-like behavior following trimethyltin-induced neuronal loss in the dentate gyrus. PLoS One 2014; 9:e87953. [PMID: 24504050 PMCID: PMC3913660 DOI: 10.1371/journal.pone.0087953] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 01/06/2014] [Indexed: 11/19/2022] Open
Abstract
Lithium, a mood stabilizer, is known to ameliorate the stress-induced decrease in hippocampal neurogenesis seen in animal models of stress-related disorders. However, it is unclear whether lithium has beneficial effect on neuronal repair following neuronal damage in neuronal degenerative diseases. Here, we evaluated the effect of in vivo treatment with lithium on the hippocampal neuronal repair in a mouse model of trimethyltin (TMT)-induced neuronal loss/self-repair in the hippocampal dentate gyrus (such mice referred to as "impaired animals") [Ogita et al. (2005) J Neurosci Res 82: 609-621]. The impaired animals had a dramatically increased number of 5-bromo-2'-deoxyuridine (BrdU)-incorporating cells in their dentate gyrus at the initial time window (days 3 to 5 post-TMT treatment) of the self-repair stage. A single treatment with lithium produced no significant change in the number of BrdU-incorporating cells in the dentate granule cell layer and subgranular zone on day 3 post-TMT treatment. On day 5 post-TMT treatment, however, BrdU-incorporating cells were significantly increased in number by lithium treatment for 3 days. Most interestingly, chronic treatment (15 days) with lithium increased the number of BrdU-incorporating cells positive for NeuN or doublecortin in the dentate granule cell layer of the impaired animals, but not in that of naïve animals. The results of a forced swimming test revealed that the chronic treatment with lithium improved the depression-like behavior seen in the impaired animals. Taken together, our data suggest that lithium had a beneficial effect on neuronal repair following neuronal loss in the dentate gyrus through promoted proliferation and survival/neuronal differentiation of neural stem/progenitor cells in the subgranular zone.
Collapse
|
24
|
Yoneyama M, Hasebe S, Kawamoto N, Shiba T, Yamaguchi T, Kikuta M, Shuto M, Ogita K. Beneficial in vivo effect of aripiprazole on neuronal regeneration following neuronal loss in the dentate gyrus: evaluation using a mouse model of trimethyltin-induced neuronal loss/self-repair in the dentate gyrus. J Pharmacol Sci 2013; 124:99-111. [PMID: 24389877 DOI: 10.1254/jphs.13201fp] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Aripiprazole is used clinically as an atypical antipsychotic. We evaluated the effect of in vivo treatment with aripiprazole on the proliferation and differentiation of neural stem/progenitor cells in a mouse model, trimethyltin-induced neuronal loss/self-repair in the hippocampal dentate gyrus (referred as "impaired animals") [Ogita et al., J Neurosci Res. 82, 609 - 621 (2005)]. In the impaired animals, an increased number of 5-bromo-2'-deoxyuridine (BrdU)-positive cells was seen in the dentate gyrus at the initial time window of the self-repair stage. At the same time window, a single treatment with aripiprazole significantly increased the number of cells positive for both BrdU and nestin in the dentate gyrus of the impaired animals. Chronic treatment with aripiprazole promoted the proliferation/survival and neuronal differentiation of the cells newly-generated following the neuronal loss in the dentate gyrus of the impaired animals. The chronic treatment with aripiprazole improved depression-like behavior seen in the impaired animals. Taken together, our data suggest that aripiprazole had a beneficial effect on neuronal regeneration following neuronal loss in the dentate gyrus through indirectly promoted proliferation/survival and neuronal differentiation of neural stem/progenitor cells in the subgranular zone of the dentate gyrus.
Collapse
Affiliation(s)
- Masanori Yoneyama
- Department of Pharmacology, Setsunan University Faculty of Pharmaceutical Sciences, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Ould-Yahoui A, Sbai O, Baranger K, Bernard A, Gueye Y, Charrat E, Clément B, Gigmes D, Dive V, Girard SD, Féron F, Khrestchatisky M, Rivera S. Role of Matrix Metalloproteinases in Migration and Neurotrophic Properties of Nasal Olfactory Stem and Ensheathing Cells. Cell Transplant 2013; 22:993-1010. [DOI: 10.3727/096368912x657468] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Adult olfactory ectomesenchymal stem cells (OE-MSCs) and olfactory ensheathing cells (OECs), both from the nasal olfactory lamina propria, display robust regenerative properties when transplanted into the nervous system, but the mechanisms supporting such therapeutic effects remain unknown. Matrix metalloproteinases (MMPs) are an important family of proteinases contributing to cell motility and axonal outgrowth across the extracellular matrix (ECM) in physiological and pathological conditions. In this study, we have characterized for the first time in nasal human OE-MSCs the expression profile of some MMPs currently associated with cell migration and invasiveness. We demonstrate different patterns of expression for MMP-1, MMP-2, MMP-9, and MT1-MMP upon cell migration when compared with nonmigrating cells. Our results establish a correspondence between the localization of these proteinases in the migration front with the ability of cells to migrate. Using various modulators of MMP activity, we also show that at least MMP-2, MMP-9, and MT1-MMP contribute to OE-MSC migration in an in vitro 3D test. Furthermore, we demonstrate under the same conditions of culture used for in vivo transplantation that OE-MSCs and OECs secrete neurotrophic factors that promote neurite outgrowth of cortical and dorsal root ganglia (DRG) neurons, as well as axo-dendritic differentiation of cortical neurons. These effects were abolished by the depletion of MMP-2 and MMP-9 from the culture conditioned media. Altogether, our results provide the first evidence that MMPs may contribute to the therapeutic features of OE-MSCs and OECs through the control of their motility and/or their neurotrophic properties. Our data provide new insight into the mechanisms of neuroregeneration and will contribute to optimization of cell therapy strategies.
Collapse
Affiliation(s)
- Adlane Ould-Yahoui
- Aix-Marseille Univ, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie (NICN), UMR 7259, 13344, Marseille, France
- CNRS, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie (NICN), UMR 7259, 13344, Marseille, France
| | - Oualid Sbai
- Aix-Marseille Univ, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie (NICN), UMR 7259, 13344, Marseille, France
- CNRS, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie (NICN), UMR 7259, 13344, Marseille, France
| | - Kévin Baranger
- Aix-Marseille Univ, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie (NICN), UMR 7259, 13344, Marseille, France
- CNRS, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie (NICN), UMR 7259, 13344, Marseille, France
| | - Anne Bernard
- Aix-Marseille Univ, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie (NICN), UMR 7259, 13344, Marseille, France
- CNRS, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie (NICN), UMR 7259, 13344, Marseille, France
| | - Yatma Gueye
- Aix-Marseille Univ, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie (NICN), UMR 7259, 13344, Marseille, France
- CNRS, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie (NICN), UMR 7259, 13344, Marseille, France
| | - Eliane Charrat
- Aix-Marseille Univ, Institut de Chimie Radicalaire, Equipe Chimie Radicalaire, Organique et Polymères de Spécialité, UMR 7273, Marseille, France
- CNRS, Institut de Chimie Radicalaire, Equipe Chimie Radicalaire, Organique et Polymères de Spécialité, UMR 7273, Marseille, France
| | - Benoît Clément
- Aix-Marseille Univ, Institut de Chimie Radicalaire, Equipe Chimie Radicalaire, Organique et Polymères de Spécialité, UMR 7273, Marseille, France
- CNRS, Institut de Chimie Radicalaire, Equipe Chimie Radicalaire, Organique et Polymères de Spécialité, UMR 7273, Marseille, France
| | - Didier Gigmes
- Aix-Marseille Univ, Institut de Chimie Radicalaire, Equipe Chimie Radicalaire, Organique et Polymères de Spécialité, UMR 7273, Marseille, France
- CNRS, Institut de Chimie Radicalaire, Equipe Chimie Radicalaire, Organique et Polymères de Spécialité, UMR 7273, Marseille, France
| | - Vincent Dive
- Département d'Ingénierie et d'Etudes des Protéines (DIEP), CEA/Saclay, Gif-sur-Yvette, France
| | - Stéphane D. Girard
- Aix-Marseille Univ, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie (NICN), UMR 7259, 13344, Marseille, France
- CNRS, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie (NICN), UMR 7259, 13344, Marseille, France
| | - François Féron
- Aix-Marseille Univ, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie (NICN), UMR 7259, 13344, Marseille, France
- CNRS, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie (NICN), UMR 7259, 13344, Marseille, France
| | - Michel Khrestchatisky
- Aix-Marseille Univ, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie (NICN), UMR 7259, 13344, Marseille, France
- CNRS, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie (NICN), UMR 7259, 13344, Marseille, France
| | - Santiago Rivera
- Aix-Marseille Univ, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie (NICN), UMR 7259, 13344, Marseille, France
- CNRS, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie (NICN), UMR 7259, 13344, Marseille, France
| |
Collapse
|
26
|
Lamash NE, Dolmatov IY. Proteases from the regenerating gut of the holothurian Eupentacta fraudatrix. PLoS One 2013; 8:e58433. [PMID: 23505505 PMCID: PMC3591370 DOI: 10.1371/journal.pone.0058433] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 02/06/2013] [Indexed: 01/26/2023] Open
Abstract
Four proteases with molecular masses of 132, 58, 53, and 47 kDa were detected in the digestive system of the holothurian Eupentacta fraudatrix. These proteases displayed the gelatinase activity and characteristics of zinc metalloproteinases. The 58 kDa protease had similar protease inhibitor sensitivity to that of mammalian matrix metalloproteinases. Zymographic assay revealed different lytic activities of all four proteases during intestine regeneration in the holothurian. The 132 kDa protease showed the highest activity at the first stage. During morphogenesis (stages 2-4 of regeneration), the highest activity was measured for the 53 and 58 kDa proteases. Inhibition of protease activity exerts a marked effect on regeneration, which was dependent on the time when 1,10-phenanthroline injections commenced. When metalloproteinases were inhibited at the second stage of regeneration, the restoration rates were decreased. However, such an effect proved to be reversible, and when inhibition ceased, the previous rate of regeneration was recovered. When protease activity is inhibited at the first stage, regeneration is completely abolished, and the animals die, suggesting that early activation of the proteases is crucial for triggering the regenerative process in holothurians. The role of the detected proteases in the regeneration processes of holothurians is discussed.
Collapse
Affiliation(s)
- Nina E. Lamash
- A.V. Zhirmunsky Institute of Marine Biology of the Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
- School of Natural Sciences, Far Eastern Federal University, Vladivostok, Russia
| | - Igor Yu Dolmatov
- A.V. Zhirmunsky Institute of Marine Biology of the Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
- School of Natural Sciences, Far Eastern Federal University, Vladivostok, Russia
| |
Collapse
|
27
|
Lee TH, Jung CH, Lee DH. Neuroprotective effects of Schisandrin B against transient focal cerebral ischemia in Sprague–Dawley rats. Food Chem Toxicol 2012; 50:4239-45. [DOI: 10.1016/j.fct.2012.08.047] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 08/20/2012] [Accepted: 08/21/2012] [Indexed: 01/06/2023]
|
28
|
Neural functions of matrix metalloproteinases: plasticity, neurogenesis, and disease. Biochem Res Int 2012; 2012:789083. [PMID: 22567285 PMCID: PMC3332068 DOI: 10.1155/2012/789083] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 12/08/2011] [Accepted: 01/29/2012] [Indexed: 11/24/2022] Open
Abstract
The brain changes in response to experience and altered environment. To do that, the nervous system often remodels the structures of neuronal circuits. This structural plasticity of the neuronal circuits appears to be controlled not only by intrinsic factors, but also by extrinsic mechanisms including modification of the extracellular matrix. Recent studies employing a range of animal models implicate that matrix metalloproteinases regulate multiple aspects of the neuronal development and remodeling in the brain. This paper aims to summarize recent advances of our knowledge on the neuronal functions of matrix metalloproteinases and discuss how they might relate in neuronal disease.
Collapse
|