1
|
Saadh MJ, Ghnim ZS, Mahdi MS, Mandaliya V, Ballal S, Bareja L, Chaudhary K, Sharma R, Gupta S, Taher WM, Alwan M, Jawad MJ, Hamad AK. The emerging role of kinesin superfamily proteins in Wnt/β-catenin signaling: Implications for cancer. Pathol Res Pract 2025; 269:155904. [PMID: 40073645 DOI: 10.1016/j.prp.2025.155904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
Cellular processes such as proliferation, differentiation, and tissue homeostasis are significantly influenced by the Wnt/β-catenin signaling pathway. Dysregulation of this pathway has been implicated in the development of various types of cancer. This study focuses on the emerging role of kinesin superfamily proteins (KIFs) in modulating cancer signaling. KIFs, a group of motor proteins, have attracted attention for their dual roles in intracellular transport: facilitating the cellular entry of Wnt ligands and contributing to the assembly of the β-catenin destruction complex. The study explores the interactions between KIFs and the Wnt/β-catenin pathway, identifying specific KIFs that interact with key components of the signaling cascade and examining their roles in cancer progression. Furthermore, it evaluates therapeutic strategies targeting KIFs to suppress aberrant Wnt activity in cancer and investigates how KIF-mediated transport spatially and temporally regulates Wnt signaling. The insights provided could guide future research into the role of KIFs in cancer biology and their involvement in oncogenic signaling pathways.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan.
| | | | | | - Viralkumar Mandaliya
- Marwadi University Research Center, Department of Microbiology, Faculty of Science Marwadi University, Rajkot, Gujarat 360003, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Lakshay Bareja
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab 140401, India
| | - Kamlesh Chaudhary
- Department of Neurology, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Rsk Sharma
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Sofia Gupta
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab 140307, India
| | - Waam Mohammed Taher
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | | | | | | |
Collapse
|
2
|
Saadh MJ, Ahmed HH, Kareem RA, Chandra M, Monsi M, Walia C, Prasad GVS, Taher WM, Alwan M, Jawad MJ, Hamad AK. From Motor Proteins to Oncogenic Factors: The Evolving Role of Kinesin Superfamily Proteins in Breast Cancer Development. Mol Biotechnol 2025:10.1007/s12033-025-01428-2. [PMID: 40146390 DOI: 10.1007/s12033-025-01428-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/24/2025] [Indexed: 03/28/2025]
Abstract
The kinesin family of proteins (KIFs), known for their role as motor proteins, is integral to transporting cargo within cells along microtubule tracks, which is crucial for processes, such as cell division, differentiation, and intracellular communication. Increasing evidence shows that specific KIFs are overexpressed in breast cancer, a change linked to higher tumor aggression and poorer outcomes in patients. KIFs contribute to the cancerous characteristics of breast tumor cells through several mechanisms, including disruptions in spindle assembly during cell division, altered cell motility, and accelerated proliferation. This review summarizes current insights into KIFs' functions in breast cancer pathology and assesses their viability as therapeutic targets. By unraveling the complex involvement of KIFs, the article aims to open pathways for new therapeutic approaches in breast cancer and to promote further study into the cellular pathways that these proteins regulate.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan.
| | | | | | - Muktesh Chandra
- Department of Microbiology, Faculty of Science, Marwadi University Research Center, Marwadi University, Rajkot, Gujarat, 360003, India
| | - Mekha Monsi
- Department of Pharmacy Practice, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, 302131, India
| | - Chakshu Walia
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, 140307, India
| | - G V Siva Prasad
- Department of Basic Sciences and Humanities, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, 531162, India
| | - Waam Mohammed Taher
- College of Nursing, National University of Science and Technology, Nasiriyah, Dhi Qar, Iraq
| | - Mariem Alwan
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | | | | |
Collapse
|
3
|
Roe T, Talbot T, Terrington I, Johal J, Kemp I, Saeed K, Webb E, Cusack R, Grocott MPW, Dushianthan A. Physiology and pathophysiology of mucus and mucolytic use in critically ill patients. Crit Care 2025; 29:68. [PMID: 39920835 PMCID: PMC11806889 DOI: 10.1186/s13054-025-05286-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 01/18/2025] [Indexed: 02/09/2025] Open
Abstract
Airway mucus is a highly specialised secretory fluid which functions as a physical and immunological barrier to pathogens whilst lubricating the airways and humifying atmospheric air. Dysfunction is common during critical illness and is characterised by changes in production rate, chemical composition, physical properties, and inflammatory phenotype. Mucociliary clearance, which is determined in part by mucus characteristics and in part by ciliary function, is also dysfunctional in critical illness via disease related and iatrogenic mechanisms. The consequences of mucus dysfunction are potentially devastating, contributing to prolonged ventilator dependency, increased risk of secondary pneumonia, and worsened lung injury. Mucolytic therapies are designed to decrease viscosity, improve expectoration/suctioning, and thereby promote mucus removal. Mucolytics, including hypertonic saline, dornase alfa/rhDNase, nebulised heparin, carbocisteine/N-Acetyl cysteine, are commonly used in critically ill patients. This review summarises the physiology and pathophysiology of mucus and the existing evidence for the use of mucolytics in critically ill patients and speculates on journey to individualised mucolytic therapy.
Collapse
Affiliation(s)
- Thomas Roe
- General Intensive Care Unit, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, UK
- Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, University Hospital Southampton/University of Southampton, Southampton, SO16 6YD, UK
| | - Thomas Talbot
- General Intensive Care Unit, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, UK
| | - Isis Terrington
- General Intensive Care Unit, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, UK
- Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, University Hospital Southampton/University of Southampton, Southampton, SO16 6YD, UK
| | - Jayant Johal
- Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Ivan Kemp
- General Intensive Care Unit, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, UK
| | - Kordo Saeed
- General Intensive Care Unit, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, UK
- Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, University Hospital Southampton/University of Southampton, Southampton, SO16 6YD, UK
- Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Elizabeth Webb
- General Intensive Care Unit, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, UK
| | - Rebecca Cusack
- General Intensive Care Unit, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, UK
- Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, University Hospital Southampton/University of Southampton, Southampton, SO16 6YD, UK
- Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Michael P W Grocott
- General Intensive Care Unit, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, UK
- Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, University Hospital Southampton/University of Southampton, Southampton, SO16 6YD, UK
- Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Ahilanandan Dushianthan
- General Intensive Care Unit, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, UK.
- Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, University Hospital Southampton/University of Southampton, Southampton, SO16 6YD, UK.
- Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.
| |
Collapse
|
4
|
Zheng X, Xu Z, Xu L, Wang L, Qin S, Ying L, Dong S, Tang L. Angiotensin II Type 2 Receptor Inhibits M1 Polarization and Apoptosis of Alveolar Macrophage and Protects Against Mechanical Ventilation-Induced Lung Injury. Inflammation 2025; 48:165-180. [PMID: 38767784 DOI: 10.1007/s10753-024-02037-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/03/2024] [Accepted: 04/24/2024] [Indexed: 05/22/2024]
Abstract
Angiotensin II (Ang II) is associated with macrophage polarization and apoptosis, but the role of the angiotensin type 2 receptor (AT2R) in these processes remains controversial. However, the effect of AT2Rs on alveolar macrophages and mechanical ventilation-induced lung injury has not been determined. Mechanical ventilation-induced lung injury in Sprague‒Dawley (SD) rats and LPS-stimulated rat alveolar macrophages (NR8383) were used to determine the effects of AT2Rs, selective AT2R agonists and selective AT1Rs or AT2R antagonists. Macrophage polarization, apoptosis, and related signaling pathways were assessed via western blotting, QPCR and flow cytometry. AT2R expression was decreased in LPS-stimulated rat alveolar macrophages (NR8383). Administration of the AT2R agonist CGP-42112 was associated with an increase in AT2R expression and M2 polarization, but no effect was observed upon administration of the AT2R antagonist PD123319 or the AT1R antagonist valsartan. In mechanical ventilation-induced lung injury in Sprague‒Dawley (SD) rats, the administration of the AT2R agonist C21 was associated with attenuation of the pathological damage score, lung wet/dry weight, cell count and protein content in BALF. C21 can significantly reduce proinflammatory factor TNF-α, IL-1β levels, increase anti-inflammatory factor IL-4, IL-10 levels in BALF, compared with the model group (p < 0.01). Similarly, compared with those at the same time points, the M1/M2 ratios in alveolar macrophages and apoptosis in peritoneal macrophages at 4 h, 6 h and 8 h in the mechanical ventilation models were lower after C21 administration. These findings indicated that the expression of AT2Rs in alveolar macrophages mediates M1 macrophage polarization and apoptosis and that AT2Rs play a protective role in mediating mechanical ventilation-induced lung injury.
Collapse
Affiliation(s)
- Xuyang Zheng
- Department of Pediatrics, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, People's Republic of China.
- Department of Pediatrics, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310000, Zhejiang, People's Republic of China.
| | - Zhiguang Xu
- Department of Pediatrics, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Lihui Xu
- Department of Clinical Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Lingqiao Wang
- Department of Pediatrics, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Siyun Qin
- Department of Pediatrics, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Liu Ying
- Department of Pediatrics, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Shuangyong Dong
- Department of Emergency, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310000, Zhejiang, People's Republic of China.
| | - Lanfang Tang
- Department of pulmonology, Affiliated Children's Hospital, School of medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, People's Republic of China.
| |
Collapse
|
5
|
Joodi SA, Ibrahim WW, Khattab MM. Drugs repurposing in the experimental models of Alzheimer's disease. Inflammopharmacology 2025; 33:195-214. [PMID: 39752040 PMCID: PMC11799062 DOI: 10.1007/s10787-024-01608-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 11/25/2024] [Indexed: 01/04/2025]
Abstract
The currently approved drugs for Alzheimer's disease (AD) are only for symptomatic treatment in the early stages of the disease but they could not halt the neurodegeneration, additionally, the safety profile of the recently developed immunotherapy is a big issue. This review aims to explain the importance of the drugs repurposing technique and strategy to develop therapy for AD. We illustrated the biological alterations in the pathophysiology of AD including the amyloid pathology, the Tau pathology, oxidative stress, mitochondrial dysfunction, neuroinflammation, glutamate-mediated excitotoxicity, insulin signaling impairment, wingless-related integration site/β-catenin signaling, and autophagy. Additionally, we demonstrated the different repurposed drugs in the experimental models of AD including the anti-inflammatory, anti-hypertensive, anti-diabetic, antiepileptic, antidepressant and anticancer drugs. Further, we showed the pipeline and FDA approved drugs for AD. The repurposed drugs have a promising therapeutic activity against AD, confirming the value of the drugs repurposing technique to elucidate curative therapy for AD.
Collapse
Affiliation(s)
- Sheer A Joodi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, ElKasr Elaini Street, Cairo, 11562, Egypt.
| | - Weam W Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, ElKasr Elaini Street, Cairo, 11562, Egypt
| | - Mahmoud M Khattab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, ElKasr Elaini Street, Cairo, 11562, Egypt
| |
Collapse
|
6
|
Christopoulou ME, Aletras AJ, Papakonstantinou E, Stolz D, Skandalis SS. WISP1 and Macrophage Migration Inhibitory Factor in Respiratory Inflammation: Novel Insights and Therapeutic Potentials for Asthma and COPD. Int J Mol Sci 2024; 25:10049. [PMID: 39337534 PMCID: PMC11432718 DOI: 10.3390/ijms251810049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Recent advancements highlight the intricate interplay between the extracellular matrix (ECM) and immune responses, notably in respiratory diseases such as asthma and Chronic Obstructive Pulmonary Disease (COPD). The ECM, a dynamic structural framework within tissues, orches-trates a plethora of cellular processes, including immune cell behavior and tissue repair mecha-nisms. WNT1-inducible-signaling pathway protein 1 (WISP1), a key ECM regulator, controls immune cell behavior, cytokine production, and tissue repair by modulating integrins, PI3K, Akt, β-catenin, and mTOR signaling pathways. WISP1 also induces macrophage migration inhibitory factor (MIF) expression via Src kinases and epidermal growth factor receptor (EGFR) activation. MIF, through its wide range of activities, enhances inflammation and tissue restructuring. Rec-ognized for its versatile roles in regulating the immune system, MIF interacts with multiple immune components, such as the NLRP3 inflammasome, thereby sustaining inflammatory pro-cesses. The WISP1-MIF axis potentially unveils complex molecular mechanisms governing im-mune responses and inflammation. Understanding the intricate roles of WISP1 and MIF in the pathogenesis of chronic respiratory diseases such as asthma and COPD could lead to the identi-fication of novel targets for therapeutic intervention to alleviate disease severity and enhance patient outcomes.
Collapse
Affiliation(s)
- Maria-Elpida Christopoulou
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
- Clinic of Pneumology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Alexios J Aletras
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
| | - Eleni Papakonstantinou
- Clinic of Pneumology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Daiana Stolz
- Clinic of Pneumology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Spyros S Skandalis
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
| |
Collapse
|
7
|
Luo M, Gu R, Wang C, Guo J, Zhang X, Ni K, Liu L, Pan Y, Li J, Deng L. High Stretch Associated with Mechanical Ventilation Promotes Piezo1-Mediated Migration of Airway Smooth Muscle Cells. Int J Mol Sci 2024; 25:1748. [PMID: 38339025 PMCID: PMC10855813 DOI: 10.3390/ijms25031748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/22/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Ventilator-induced lung injury (VILI) during mechanical ventilation (MV) has been attributed to airway remodeling involving increased airway smooth muscle cells (ASMCs), but the underlying mechanism is not fully understood. Thus, we aimed to investigate whether MV-associated high stretch (>10% strain) could modulate mechanosensitive Piezo1 expression and thereby alter cell migration of ASMCs as a potential pathway to increased ASMCs in VILI. C57BL/6 mice and ASMCs were subjected to MV at high tidal volume (VT, 18 mL/kg, 3 h) and high stretch (13% strain, 0.5 Hz, 72 h), respectively. Subsequently, the mice or cells were evaluated for Piezo1 and integrin mRNA expression by immunohistochemical staining and quantitative PCR (qPCR), and cell migration and adhesion by transwell and cell adhesion assays. Cells were either treated or not with Piezo1 siRNA, Piezo1-eGFP, Piezo1 knockin, Y27632, or blebbistatin to regulate Piezo1 mRNA expression or inhibit Rho-associated kinase (ROCK) signaling prior to migration or adhesion assessment. We found that expression of Piezo1 in in situ lung tissue, mRNA expression of Piezo1 and integrin αVβ1 and cell adhesion of ASMCs isolated from mice with MV were all reduced but the cell migration of primary ASMCs (pASMCs) isolated from mice with MV was greatly enhanced. Similarly, cell line mouse ASMCs (mASMCs) cultured in vitro with high stretch showed that mRNA expression of Piezo1 and integrin αVβ1 and cell adhesion were all reduced but cell migration was greatly enhanced. Interestingly, such effects of MV or high stretch on ASMCs could be either induced or abolished/reversed by down/up-regulation of Piezo1 mRNA expression and inhibition of ROCK signaling. High stretch associated with MV appears to be a mechanical modulator of Piezo1 mRNA expression and can, thus, promote cell migration of ASMCs during therapeutic MV. This may be a novel mechanism of detrimental airway remodeling associated with MV, and, therefore, a potential intervention target to treat VILI.
Collapse
Affiliation(s)
- Mingzhi Luo
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China
| | - Rong Gu
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China
| | - Chunhong Wang
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China
| | - Jia Guo
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China
| | - Xiangrong Zhang
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China
| | - Kai Ni
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China
| | - Lei Liu
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China
| | - Yan Pan
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China
| | - Jingjing Li
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China
| | - Linhong Deng
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
8
|
Mazarei M, Shahabi Rabori V, Ghasemi N, Salehi M, Rayatpisheh N, Jahangiri N, Saberiyan M. LncRNA MALAT1 signaling pathway and clinical applications in overcome on cancers metastasis. Clin Exp Med 2023; 23:4457-4472. [PMID: 37695391 DOI: 10.1007/s10238-023-01179-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/27/2023] [Indexed: 09/12/2023]
Abstract
In spite of its high mortality rate and difficulty in finding a cure, scientific advancements have contributed to a reduction in cancer-related fatalities. Aberrant gene expression during carcinogenesis emphasizes the importance of targeting the signaling networks that control gene expression in cancer treatment. Long noncoding RNAs (lncRNAs), which are transcribed RNA molecules that play a role in gene expression regulation, are a recent innovative therapeutic approach for diagnosing and treating malignancies. MALAT1, a well-known lncRNA, functions in gene expression, RNA processing, and epigenetic control. High expression levels of MALAT1 are associated with several human disorders, including metastasis, invasion, autophagy, and proliferation of cancer cells. MALAT1 affects various signaling pathways and microRNAs (miRNAs), and this study aims to outline its functional roles in cancer metastasis and its interactions with cellular signaling pathways. Moreover, MALAT1 and its interactions with signaling pathways can be promising target for cancer treatment.
Collapse
Affiliation(s)
- Madineh Mazarei
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Nazila Ghasemi
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | - Mehrnaz Salehi
- School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Najmeh Rayatpisheh
- School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Negin Jahangiri
- Department of Biology, Faculty of Basic Sciences and Engineering, Gonbad Kavous University, Gonbad-e Kavus, Iran
| | - Mohammadreza Saberiyan
- Department of Medical Genetics, Faculty of Medicine, School of Medical Sciences, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| |
Collapse
|
9
|
Muneeb M, Mansou SM, Saleh S, Mohammed RA. Vitamin D and rosuvastatin alleviate type-II diabetes-induced cognitive dysfunction by modulating neuroinflammation and canonical/noncanonical Wnt/β-catenin signaling. PLoS One 2022; 17:e0277457. [PMID: 36374861 PMCID: PMC9662739 DOI: 10.1371/journal.pone.0277457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
Background Type-II diabetes mellitus (T2DM) is a major risk factor for cognitive impairment. Protecting the brain environment against inflammation, and neurodegeneration, as well as preservation of the BBB veracity through modulating the crosstalk between insulin/AKT/GSK-3β and Wnt/β-catenin signaling, might introduce novel therapeutic targets. Purpose This study aimed at exploring the possible neuroprotective potential of vitamin D3 (VitD) and/or rosuvastatin (RSV) in T2DM-induced cognitive deficits. Methods T2DM was induced by a high-fat sucrose diet and a single streptozotocin (STZ) dose. Diabetic rats were allocated into a diabetic control and three groups treated with RSV (15 mg/kg/day, PO), VitD (500 IU/kg/day, PO), or their combination. Results Administration of VitD and/or RSV mitigated T2DM-induced metabolic abnormalities and restored the balance between the anti-inflammatory, IL 27 and the proinflammatory, IL 23 levels in the hippocampus. In addition, they markedly activated both the canonical and noncanonical Wnt/β-catenin cassettes with stimulation of their downstream molecular targets. VitD and/or RSV upregulated insulin and α7 nicotinic acetylcholine (α7nACh) receptors gene expression, as well as blood-brain barrier integrity markers including Annexin A1, claudin 3, and VE-cadherin. Also, they obliterated hippocampal ApoE-4 content, Tau hyperphosphorylation, and Aβ deposition. These biochemical changes were reflected as improved behavioral performance in Morris water maze and novel object recognition tests and restored hippocampal histological profile. Conclusion The current findings have accentuated the neuroprotective potential of VitD and RSV and provide new incentives to expand their use in T2DM-induced cognitive and memory decline. This study also suggests a superior benefit of combining both treatments over either drug alone.
Collapse
Affiliation(s)
- Muhammad Muneeb
- Department of Pharmacology, Toxicology, and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Suzan M. Mansou
- Department of Pharmacology, Toxicology, and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- * E-mail: ,
| | - Samira Saleh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Reham A. Mohammed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
10
|
Martín-Vicente P, López-Martínez C, Lopez-Alonso I, López-Aguilar J, Albaiceta GM, Amado-Rodríguez L. Molecular mechanisms of postintensive care syndrome. Intensive Care Med Exp 2021; 9:58. [PMID: 34859298 PMCID: PMC8639215 DOI: 10.1186/s40635-021-00423-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 11/16/2021] [Indexed: 11/10/2022] Open
Affiliation(s)
- Paula Martín-Vicente
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.,Centro de Investigación Biomédica en Red (CIBER)-Enfermedades Respiratorias, Madrid, Spain
| | - Cecilia López-Martínez
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.,Centro de Investigación Biomédica en Red (CIBER)-Enfermedades Respiratorias, Madrid, Spain
| | - Inés Lopez-Alonso
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.,Centro de Investigación Biomédica en Red (CIBER)-Enfermedades Respiratorias, Madrid, Spain.,Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Josefina López-Aguilar
- Centro de Investigación Biomédica en Red (CIBER)-Enfermedades Respiratorias, Madrid, Spain.,Critical Care Center, Hospital Universitari Parc Taulí, Institut d'Investigació I Innovació Parc Taulí I3PT, Sabadell, Spain
| | - Guillermo M Albaiceta
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain. .,Centro de Investigación Biomédica en Red (CIBER)-Enfermedades Respiratorias, Madrid, Spain. .,Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain. .,Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central de Asturias, Oviedo, Spain.
| | - Laura Amado-Rodríguez
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain. .,Centro de Investigación Biomédica en Red (CIBER)-Enfermedades Respiratorias, Madrid, Spain. .,Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain. .,Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central de Asturias, Oviedo, Spain.
| |
Collapse
|
11
|
Wang C, Zhang R, Wang X, Zheng Y, Jia H, Li H, Wang J, Wang N, Xiang F, Li Y. Silencing of KIF3B Suppresses Breast Cancer Progression by Regulating EMT and Wnt/ β-Catenin Signaling. Front Oncol 2021; 10:597464. [PMID: 33542902 PMCID: PMC7851081 DOI: 10.3389/fonc.2020.597464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/30/2020] [Indexed: 01/06/2023] Open
Abstract
Breast cancer is the most common malignant tumors in women. Kinesin family member 3B (KIF3B) is a critical regulator in mitotic progression. The objective of this study was to explore the expression, regulation, and mechanism of KIF3B in 103 cases of breast cancer tissues, 35 metastatic lymph nodes and breast cancer cell lines, including MDA-MB-231, MDA-MB-453, T47D, and MCF-7. The results showed that KIF3B expression was up-regulated in breast cancer tissues and cell lines, and the expression level was correlated with tumor recurrence and lymph node metastasis, while knockdown of KIF3B suppressed cell proliferation, migration, and invasion both in vivo and in vitro. In addition, UALCAN analysis showed that KIF3B expression in breast cancer is increased, and the high expression of KIF3B in breast cancer is associated with poor prognosis. Furthermore, we found that silencing of KIF3B decreased the expression of Dvl2, phospho-GSK-3β, total and nucleus β-catenin, then subsequent down-regulation of Wnt/β-catenin signaling target genes such as CyclinD1, C-myc, MMP-2, MMP-7 and MMP-9 in breast cancer cells. In addition, KIF3B depletion inhibited epithelial mesenchymal transition (EMT) in breast cancer cells. Taken together, our results revealed that KIF3B is up-regulated in breast cancer which is potentially involved in breast cancer progression and metastasis. Silencing KIF3B might suppress the Wnt/β-catenin signaling pathway and EMT in breast cancer cells.
Collapse
Affiliation(s)
- Chengqin Wang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Runze Zhang
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xiao Wang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan Zheng
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Huiqing Jia
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Haiyan Li
- Department of Pathology, Affiliated Yantai Yuhuangding Hospital, Qingdao University, Qingdao, China
| | - Jin Wang
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Ning Wang
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Fenggang Xiang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yujun Li
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
12
|
Di Gregorio J, Robuffo I, Spalletta S, Giambuzzi G, De Iuliis V, Toniato E, Martinotti S, Conti P, Flati V. The Epithelial-to-Mesenchymal Transition as a Possible Therapeutic Target in Fibrotic Disorders. Front Cell Dev Biol 2020; 8:607483. [PMID: 33409282 PMCID: PMC7779530 DOI: 10.3389/fcell.2020.607483] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
Fibrosis is a chronic and progressive disorder characterized by excessive deposition of extracellular matrix, which leads to scarring and loss of function of the affected organ or tissue. Indeed, the fibrotic process affects a variety of organs and tissues, with specific molecular background. However, two common hallmarks are shared: the crucial role of the transforming growth factor-beta (TGF-β) and the involvement of the inflammation process, that is essential for initiating the fibrotic degeneration. TGF-β in particular but also other cytokines regulate the most common molecular mechanism at the basis of fibrosis, the Epithelial-to-Mesenchymal Transition (EMT). EMT has been extensively studied, but not yet fully explored as a possible therapeutic target for fibrosis. A deeper understanding of the crosstalk between fibrosis and EMT may represent an opportunity for the development of a broadly effective anti-fibrotic therapy. Here we report the evidences of the relationship between EMT and multi-organ fibrosis, and the possible therapeutic approaches that may be developed by exploiting this relationship.
Collapse
Affiliation(s)
- Jacopo Di Gregorio
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Iole Robuffo
- Institute of Molecular Genetics, National Research Council, Section of Chieti, Chieti, Italy
| | - Sonia Spalletta
- Department of Clinical Pathology, E. Profili Hospital, Fabriano, Ancona, Italy
| | - Giulia Giambuzzi
- Department of Medical and Oral Sciences and Biotechnologies, University “G. d’Annunzio”, Chieti, Italy
| | - Vincenzo De Iuliis
- Department of Medical and Oral Sciences and Biotechnologies, University “G. d’Annunzio”, Chieti, Italy
| | - Elena Toniato
- Department of Medical and Oral Sciences and Biotechnologies, University “G. d’Annunzio”, Chieti, Italy
| | - Stefano Martinotti
- Department of Medical and Oral Sciences and Biotechnologies, University “G. d’Annunzio”, Chieti, Italy
| | - Pio Conti
- Postgraduate Medical School, University of Chieti-Pescara, Chieti, Italy
| | - Vincenzo Flati
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
13
|
Chen Z, Hua S. Transcription factor-mediated signaling pathways' contribution to the pathology of acute lung injury and acute respiratory distress syndrome. Am J Transl Res 2020; 12:5608-5618. [PMID: 33042442 PMCID: PMC7540143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
The 2019 novel coronavirus (2019-nCoV) is still spreading rapidly around the world, and one cause of lethality for patients infected with 2019-nCoV is acute respiratory distress syndrome (ARDS). ARDS is a severe syndrome of acute lung injury (ALI) that is predominantly triggered by inflammation and results in a sudden loss of, or damage to, kidney function. Emerging studies reveal that multiple transcription factor-associated signaling pathways are activated in the pathology of ALI/ARDS. Of these pathways, the activation of NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells), AP-1 (activator protein 1), IRFs (interferon regulatory factors), STATs (signal transducer and activator of transcription), Wnt/β-catenin-TCF/LEF (T-cell factor/lymphoid enhancer-binding factor), and CtBP2 (C-Terminal binding protein 2)-associated transcriptional complex contributes to ALI/ARDS pathology through diverse mechanisms, such as inducing proinflammatory cytokine levels and mediating macrophage polarization. In this review, we present an updated summary of the mechanisms underlying these signaling activations and regulations, as well as their contribution to the pathogenesis of ALI/ARDS. We aim to develop a better understanding of how ALI/ARDS occurs and improve ALI/ARDS therapy.
Collapse
Affiliation(s)
- Zhi Chen
- Department of Critical Care Medicine, Jiangxi Provincial People’s Hospital Affiliated to Nanchang UniversityNanchang 330006, Jiangxi, China
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji University School of MedicineShanghai 200065, China
| | - Shan Hua
- Department of Ultrasonography, Jiangxi Provincial People’s Hospital Affiliated to Nanchang UniversityNanchang 330006, Jiangxi, China
| |
Collapse
|
14
|
Network Pharmacology Analysis and Experiments Validation of the Inhibitory Effect of JianPi Fu Recipe on Colorectal Cancer LoVo Cells Metastasis and Growth. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:4517483. [PMID: 32774415 PMCID: PMC7399765 DOI: 10.1155/2020/4517483] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 05/30/2020] [Accepted: 06/10/2020] [Indexed: 12/12/2022]
Abstract
Objective To analyze the active compounds, potential targets, and diseases of JianPi Fu Recipe (JPFR) based on network pharmacology and bioinformatics and verify the potential biological function and mechanism of JPFR in vitro and in vivo. Methods Network pharmacology databases including TCMSP, TCM-PTD, TCMID, and DrugBank were used to screen the active compounds and potential drug targets of JPFR. Cytoscape 3.7 software was applied to construct the interaction network between active compounds and potential targets. The DAVID online database analysis was performed to investigate the potential effective diseases and involved signaling pathways according to the results of the GO function and KEGG pathways enrichment analysis. To ensure standardization and maintain interbatch reliability of JPFR, High Performance Liquid Chromatography (HPLC) was used to establish a "chemical fingerprint." For biological function validation, the effect of JPFR on the proliferation and migration of CRC cells in vitro was investigated by CCK-8 and transwell and wound healing assay, and the effect of JPFR on the growth and metastasis of CRC cells in vivo was detected by building a lung metastasis model in nude mice and in vivo imaging. For the potential mechanism validation, the expressions of MALAT1, PTBP-2, and β-catenin in CRC cells and transplanted CRC tumors were detected by real-time PCR, western blot, and immunohistochemical staining analysis. Results According to the rules of oral bioavailability (OB) > 30% and drug-likeness (DL) > 0.18, 244 effective compounds in JPFR were screened out, as well as the corresponding 132 potential drug targets. By the analysis of DAVID database, all these key targets were associated closely with the cancer diseases such as prostate cancer, colorectal cancer, bladder cancer, small cell lung cancer, pancreatic cancer, and hepatocellular carcinoma. In addition, multiple signaling pathways were closely related to JPFR, including p53, Wnt, PI3K-Akt, IL-17, HIF-1, p38-MAPK, NF-κB, PD-L1 expression and PD-1 checkpoint pathway, VEGF, JAK-STAT, and Hippo. The systematical analysis showed that various active compounds of JPFR were closely connected with Wnt/β-catenin, EGFR, HIF-1, TGFβ/Smads, and IL6-STAT3 signaling pathway, including kaempferol, isorhamnetin, calycosin, quercetin, medicarpin, phaseol, spinasterol, hederagenin, beta-sitosterol, wighteone, luteolin, and isotrifoliol. For in vitro experiments, the migration and growth of human CRC cells were inhibited by the JPFR extract in a dose-dependent way, and the expression of MALAT1, PTBP-2, β-catenin, MMP7, c-Myc, and Cyclin D1 in CRC cells were downregulated by the JPFR extract in a dose-dependent way. For in vivo metastasis experiments, the numbers of lung metastasis were found to be decreased by the JPFR extract in a dose-dependent manner, and the expressions of metastasis-associated genes including MALAT1, PTBP-2, β-catenin, and MMP7 in the lung metastases were downregulated dose dependently by the JPFR extract. For the orthotopic transplanted tumor experiments, the JPFR extract could inhibit the growth of orthotopic transplanted tumors and downregulate the expression of c-Myc and Cyclin D1 in a dose-dependent manner. Moreover, the JPFR extract could prolong the survival time of tumor-bearing mice in a dose-dependent manner. Conclusions Through effective network pharmacology analysis, we found that JPFR contains many effective compounds which may directly target cancer-associated signaling pathways. The in vitro and in vivo experiments further confirmed that JPFR could inhibit the growth and metastasis of CRC cells by regulating β-catenin signaling-associated genes or proteins.
Collapse
|
15
|
Ren R, Ruan Z, Ding H, Du J, Yu W. Phosphoproteome profiling provides insight into the mechanisms of ventilator-induced lung injury. Exp Ther Med 2020; 19:3627-3633. [PMID: 32346427 PMCID: PMC7185165 DOI: 10.3892/etm.2020.8634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 11/05/2019] [Indexed: 12/19/2022] Open
Abstract
The incidence of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) is a common health problem in the clinic and is projected to increase in prevalence in the future. Mechanical ventilation is commonly used to provide respiratory support and has become indispensable in emergency and critical medicine. However, ventilator use can result in lung tissue damage, collectively termed ventilator-induced lung injury (VILI). In the present study, phosphoprotein profiling of blood and tissue samples from ventilated and non-ventilated mice was performed and key changes in protein levels and cell signaling during VILI were identified. Activation of the PI3K/AKT and mitogen activated protein kinase signaling pathways, in addition to changes in expression of cancer, inflammatory and cell-death related proteins were detected in response to mechanical ventilation. Focal adhesion-related protein levels and signaling pathways were also significantly altered in an injury model compared with control. VILI can affect patient mortality in ALI and ARDS cases, and no targeted treatment options currently exist. Identifying biomarkers and understanding the signaling pathways associated with VILI is critical for the development of future therapies.
Collapse
Affiliation(s)
- Rongrong Ren
- Department of Anesthesiology, The Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai 200438, P.R. China.,Department of Anesthesiology and Surgical Intensive Care Unit, Xin Hua Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, P.R. China
| | - Zhengshang Ruan
- Department of Anesthesiology and Surgical Intensive Care Unit, Xin Hua Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, P.R. China
| | - Haoshu Ding
- Department of Anesthesiology and Surgical Intensive Care Unit, Xin Hua Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, P.R. China
| | - Junming Du
- Department of Anesthesiology and Surgical Intensive Care Unit, Xin Hua Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, P.R. China
| | - Weifeng Yu
- Department of Anesthesiology, The Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai 200438, P.R. China
| |
Collapse
|
16
|
Ge Z, Yang Y, Zhou X, Zhang J, Li B, Wang X, Luo X. Overexpression of the hyperplasia suppressor gene inactivates airway fibroblasts obtained from a rat model of chronic obstructive pulmonary disease by inhibiting the Wnt signaling pathway. Mol Med Rep 2019; 20:2754-2762. [PMID: 31322244 PMCID: PMC6691245 DOI: 10.3892/mmr.2019.10504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 05/22/2019] [Indexed: 12/11/2022] Open
Abstract
The present study aimed to investigate the effects of hyperplasia suppressor gene (HSG) overexpression on the activation of airway fibroblasts in a rat model of chronic obstructive pulmonary disease (COPD) and assess the underlying molecular mechanisms. The rat model of COPD was established by injection of papain and confirmed by hematoxylin and eosin staining. Airway fibroblasts were identified using immunofluorescence, and HSG expression was facilitated by an HSG vector. Cell viability, apoptosis and the levels of matrix metallopeptidase-9 (MMP-9), platelet-derived growth factor (PDGF), and transforming growth factor-β1 (TGF-β1) were measured via Cell Counting Kit-8, flow cytometry and ELISA analyses, respectively, and potential mechanisms were detected by reverse transcription-quantitative polymerase chain reaction and western blotting. Airway fibroblasts from COPD rats were isolated and identified based on vimentin expression. Compared with the control group, HSG overexpression reduced cell viability, promoted apoptosis, and reduced the protein levels of TGF-β1, MMP-9 and PDGF. Additionally, HSG overexpression reduced β-catenin and Ras homology family member A (RhoA) expression at both the mRNA and protein levels. Conversely, Wnt signaling pathway agonists lithium chloride (LiCl) and 4-ethyl-5,6-dihydro-5-methyl- (1,3)dioxolo(4,5-j)phenanthridine (HLY78), significantly reduced the effects of HSG overexpression (P<0.05 vs. HSG). Cell viability in the HSG + LiCl and HSG + HLY78 groups was increased, whereas apoptosis was reduced compared with HSG treatment alone. The protein levels of TGF-β1, MMP-9 and PDGF were also decreased in the HSG + LiCl and HSG + HLY78 groups compared with the HSG group (P<0.05). Furthermore, the expression of β-catenin and RhoA was higher in the HSG + LiCl and HSG + HLY78 groups compared with the HSG group (P<0.05). Collectively, the results indicated that HSG overexpression inactivated airway fibroblasts from COPD by inhibiting the Wnt signaling pathway.
Collapse
Affiliation(s)
- Zhenghang Ge
- Department of Respiratory Medicine, The Second Affiliated Hospital of Guizhou College of Traditional Chinese Medicine, Guiyang, Guizhou 550003, P.R. China
| | - Yi Yang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Guizhou College of Traditional Chinese Medicine, Guiyang, Guizhou 550003, P.R. China
| | - Xun Zhou
- Department of Respiratory Medicine, The Second Affiliated Hospital of Guizhou College of Traditional Chinese Medicine, Guiyang, Guizhou 550003, P.R. China
| | - Jun Zhang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Guizhou College of Traditional Chinese Medicine, Guiyang, Guizhou 550003, P.R. China
| | - Bo Li
- Department of Respiratory Medicine, The Second Affiliated Hospital of Guizhou College of Traditional Chinese Medicine, Guiyang, Guizhou 550003, P.R. China
| | - Xinxing Wang
- Department of Research and Teaching, The Second Affiliated Hospital of Guizhou College of Traditional Chinese Medicine, Guiyang, Guizhou 550003, P.R. China
| | - Xian Luo
- Department of Respiratory Medicine, The Second Affiliated Hospital of Guizhou College of Traditional Chinese Medicine, Guiyang, Guizhou 550003, P.R. China
| |
Collapse
|
17
|
Non‑canonical Wnt signaling contributes to ventilator‑induced lung injury through upregulation of WISP1 expression. Int J Mol Med 2019; 43:1217-1228. [PMID: 30664165 PMCID: PMC6365043 DOI: 10.3892/ijmm.2019.4067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 12/17/2018] [Indexed: 12/25/2022] Open
Abstract
Mechanical ventilation may cause ventilator-induced lung injury (VILI). Canonical Wnt signaling has been reported to serve an important role in the pathogenesis of VILI. Bioinformatics analysis revealed that canonical and non-canonical Wnt signaling pathways were activated in VILI. However, the role of non-canonical Wnt signaling in the pathogenesis of VILI remains unclear. The present study aimed to analyze the potential role of non-canonical Wnt signaling in VILI pathogenesis. Lung injury was assessed via Evans blue albumin permeability and histological scoring, as well as by inflammatory cytokine expression and total protein concentration in bronchoalveolar lavage fluid. The relative protein expression of canonical and non-canonical Wnt signaling pathway components were examined via western blotting and immunohistochemistry. The results demonstrated that 6 h of mechanical ventilation at low tidal volume (LTV; 6 ml/kg) or moderate tidal volume (MTV; 12 ml/kg) induced lung injury in sensitive A/J mice. Ventilation with MTV increased the protein levels of Wnt-induced secreted protein 1 (WISP1), Rho-associated protein kinase 1 (ROCK1), phosphorylated (p)-Ras homolog gene family, member A and p-C-Jun N-terminal kinase (JNK). Inhibition of ROCK1 by Y27632 and JNK by SP600125 attenuated MTV-induced lung injury and decreased the expression of proteins involved in non-canonical Wnt signaling, including WISP1. In conclusion, non-canonical Wnt signaling participates in VILI by modulating WISP1 expression, which has been previously noted as critical for VILI development. Therefore, the non-canonical Wnt signaling pathway may provide a preventive and therapeutic target in VILI.
Collapse
|
18
|
Qiu JL, Song BL, Wang YJ, Zhang FT, Wang YL. Role of glutamine in the mediation of E-cadherin, p120-catenin and inflammation in ventilator-induced lung injury. Chin Med J (Engl) 2018; 131:804-812. [PMID: 29578124 PMCID: PMC5887739 DOI: 10.4103/0366-6999.228230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Background: Ventilator-induced lung injury (VILI) is commonly associated with barrier dysfunction and inflammation reaction. Glutamine could ameliorate VILI, but its role has not been fully elucidated. This study examined the relationship between inflammatory cytokines (interleukin [IL]-6, tumor necrosis factor [TNF]-α, and IL-10) and adherens junctions (E-cadherin, p120-catenin), which were ameliorated by glutamine in VILI, both in vitro and in vivo. Methods: For the in vivo study, 30 healthy C57BL/6 mice weighing 25–30 g were randomly divided into five groups with random number table (n = 6 in each group): control (Group C); low tidal volume (Group L); low tidal volume + glutamine (Group L + G); high tidal volume (Group H); and high tidal volume + glutamine (Group H + G). Mice in all groups, except Group C, underwent mechanical ventilation for 4 h. For the in vitro study, mouse lung epithelial 12 (MLE-12) cells pretreated with glutamine underwent cyclic stretching at 20% for 4 h. Cell lysate and lung tissue were obtained to detect the junction proteins, inflammatory cytokines, and lung pathological changes by the Western blotting, cytokine assay, hematoxylin and eosin staining, and immunofluorescence. Results: In vivo, compared with Group C, total cell counts (t = −28.182, P < 0.01), the percentage of neutrophils (t = −28.095, P < 0.01), IL-6 (t = −28.296, P < 0.01), and TNF-α (t = −19.812, P < 0.01) in bronchoalveolar lavage (BAL) fluid, lung injury scores (t = −6.708, P < 0.01), and the wet-to-dry ratio (t = −15.595, P < 0.01) were increased in Group H; IL-10 in BAL fluid (t = 9.093, P < 0.01) and the expression of E-cadherin (t = 10.044, P < 0.01) and p120-catenin (t = 13.218, P < 0.01) were decreased in Group H. Compared with Group H, total cell counts (t = 14.844, P < 0.01), the percentage of neutrophils (t = 18.077, P < 0.01), IL-6 (t = 18.007, P < 0.01), and TNF-α (t = 10.171, P < 0.01) in BAL fluid were decreased in Group H + G; IL-10 in BAL fluid (t = −7.531, P < 0.01) and the expression of E-cadherin (t = −14.814, P < 0.01) and p120-catenin (t = −9.114, P < 0.01) were increased in Group H + G. In vitro, compared with the nonstretching group, the levels of IL-6 (t = −21.111, P < 0.01) and TNF-α (t = −15.270, P < 0.01) were increased in the 20% cyclic stretching group; the levels of IL-10 (t = 5.450, P < 0.01) and the expression of E-cadherin (t = 17.736, P < 0.01) and p120-catenin (t = 16.136, P < 0.01) were decreased in the 20% cyclic stretching group. Compared with the stretching group, the levels of IL-6 (t = 11.818, P < 0.01) and TNF-α (t = 8.631, P < 0.01) decreased in the glutamine group; the levels of IL-10 (t = −3.203, P < 0.05) and the expression of E-cadherin (t = −13.567, P < 0.01) and p120-catenin (t = −10.013, P < 0.01) were increased in the glutamine group. Conclusions: High tidal volume mechanical ventilation and 20% cyclic stretching could cause VILI. Glutamine regulates VILI by improving cytokines and increasing the adherens junctions, protein E-cadherin and p120-catenin, to enhance the epithelial barrier function.
Collapse
Affiliation(s)
- Jian-Lei Qiu
- Department of Anesthesiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014; 2Department of Anesthesiology, Dezhou People's Hospital, Dezhou, Shandong 253014, China
| | - Bai-Ling Song
- Department of Surgery, Rizhao People's Hospital, Rizhao, Shandong 276826, China
| | - Yu-Juan Wang
- Department of Anesthesiology, Rizhao People's Hospital, Rizhao, Shandong 276826, China
| | - Fu-Tao Zhang
- Department of Emergency, Dezhou People's Hospital, Dezhou, Shandong 253014, China
| | - Yue-Lan Wang
- Department of Anesthesiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, China
| |
Collapse
|
19
|
Xiao CH, Yu HZ, Guo CY, Wu ZM, Cao HY, Li WB, Yuan JF. Long non-coding RNA TUG1 promotes the proliferation of colorectal cancer cells through regulating Wnt/β-catenin pathway. Oncol Lett 2018; 16:5317-5324. [PMID: 30250601 DOI: 10.3892/ol.2018.9259] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/08/2018] [Indexed: 12/15/2022] Open
Abstract
The long non-coding RNA taurine up-regulated gene 1 (TUG1) has been shown to be dysregulated in various types of malignant cancer; however, its underlying mechanism of action has not been fully elucidated. The present study aimed to investigate the biological role and clinical significance of TUG1 in the progression of colorectal cancer (CRC). A reverse transcription-quantitative polymerase chain reaction assay was used to evaluate TUG1 expression in tissues from patients with CRC. The effect of TUG1 on cell viability of CRC cells using MTT assay. The influence of TUG1 on tumorigenesis was monitored using an in vivo xenograft model. The status of the Wnt/β-catenin signaling pathway was evaluated using immunofluorescence, western blotting and luciferase reporter assays. The results demonstrated that the expression of TUG1 was positively associated with the pathological grade and clinical stage of CRC patients. Knockdown of TUG1 inhibited the proliferation of CRC cells and attenuated the activity of Wnt/β-catenin pathway in CRC cells. In addition, TUG1 knockdown inhibited the tumorigenicity in the in vivo CRC xenograft model, as well as the nuclear localization of β-catenin and downstream gene transcription. Taken together, the data of the present study highlighted the pivotal role of the TUG1-Wnt/β-catenin signaling pathway in CRC, which could be targeted to improve the therapeutic efficacy of CRC.
Collapse
Affiliation(s)
- Chun Hong Xiao
- Department of Clinical Laboratory, Nantong Cancer Hospital, Nantong, Jiangsu 226001, P.R. China
| | - Hai Zhong Yu
- Department of Clinical Laboratory, Traditional Chinese Medicine Hospital, Nantong, Jiangsu 226001, P.R. China
| | - Chun Yan Guo
- Department of Clinical Laboratory, Traditional Chinese Medicine Hospital, Nantong, Jiangsu 226001, P.R. China
| | - Zhi Mei Wu
- Department of Clinical Laboratory, Traditional Chinese Medicine Hospital, Nantong, Jiangsu 226001, P.R. China
| | - Hong Yan Cao
- Department of Clinical Laboratory, Traditional Chinese Medicine Hospital, Nantong, Jiangsu 226001, P.R. China
| | - Wei Bing Li
- Department of Clinical Laboratory, Traditional Chinese Medicine Hospital, Nantong, Jiangsu 226001, P.R. China
| | - Jian Fen Yuan
- Department of Clinical Laboratory, Traditional Chinese Medicine Hospital, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
20
|
Wang L, Zhang N, Zhang Y, Xia J, Zhan Q, Wang C. Landscape of transcription and long non-coding RNAs reveals new insights into the inflammatory and fibrotic response following ventilator-induced lung injury. Respir Res 2018; 19:122. [PMID: 29929510 PMCID: PMC6013938 DOI: 10.1186/s12931-018-0822-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 06/08/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Mechanical ventilation can cause ventilator-induced lung injury (VILI) and lung fibrosis; however, the underlying mechanisms are still not fully understood. RNA sequencing is a powerful means for detecting vitally important protein-coding transcripts and long non-coding RNAs (lncRNAs) on a genome-wide scale, which may be helpful for reducing this knowledge gap. METHODS Ninety C57BL/6 mice were subjected to either high tidal volume ventilation or sham operation, and then mice with ventilation were randomly allocated to periods of recovery for 0, 1, 3, 5, 7, 14, 21, or 28 days. Lung histopathology, wet-to-dry weight ratio, hydroxyproline concentration, and transforming growth factor beta 1 (TGF-β1) levels were determined to evaluate the progression of inflammation and fibrosis. To compare sham-operated lungs, and 0- and 7-day post-ventilated lungs, RNA sequencing was used to elucidate the expression patterns, biological processes, and functional pathways involved in inflammation and fibrosis. RESULTS A well-defined fibrotic response was most pronounced on day 7 post-ventilation. Pairwise comparisons among the sham and VILI groups showed a total of 1297 differentially expressed transcripts (DETs). Gene Ontology analysis determined that the stimulus response and immune response were the most important factors involved in inflammation and fibrosis, respectively. Kyoto Encyclopedia of Genes and Genomes analysis revealed that mechanistic target of rapamycin (mTOR), Janus kinase-signal transducer and activator of transcription (JAK/STAT), and cyclic adenosine monophosphate (cAMP) signaling were implicated in early inflammation; whereas TGF-β, hypoxia inducible factor-1 (HIF-1), Toll-like receptor (TLR), and kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathways were significantly involved in subsequent fibrosis. Additionally, 332 DE lncRNAs were identified and enriched in the processes of cellular and biological regulation. These lncRNAs may potentially regulate fibrosis through signaling pathways such as wingless/integrase-1 (Wnt), HIF-1, and TLR. CONCLUSIONS This is the first transcriptome study to reveal all of the transcript expression patterns and critical pathways involved in the VILI fibrotic process based on the early inflammatory state, and to show the important DE lncRNAs regulated in inflammation and fibrosis. Together, the results of this study provide novel perspectives into the potential molecular mechanisms underlying VILI and subsequent fibrosis.
Collapse
Affiliation(s)
- Lu Wang
- Beijing University of Chinese Medicine, No 11, East Bei San Huan Road, Chaoyang District, Beijing, 100029, China.,Center for Respiratory Diseases, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China.,Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China.,National Clinical Research Center for Respiratory Diseases, No 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China
| | - Nannan Zhang
- Center for Respiratory Diseases, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China.,Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China.,National Clinical Research Center for Respiratory Diseases, No 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China.,Chinese Academy of Medical Sciences and Peking Union Medical Collage, No 9, Dong Dan San Tiao, Dongcheng District, Beijing, 100730, China
| | - Yi Zhang
- Center for Respiratory Diseases, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China.,Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China.,National Clinical Research Center for Respiratory Diseases, No 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China
| | - Jingen Xia
- Center for Respiratory Diseases, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China.,Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China.,National Clinical Research Center for Respiratory Diseases, No 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China
| | - Qingyuan Zhan
- Center for Respiratory Diseases, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China. .,Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China. .,National Clinical Research Center for Respiratory Diseases, No 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China.
| | - Chen Wang
- Center for Respiratory Diseases, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China. .,Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China. .,National Clinical Research Center for Respiratory Diseases, No 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China. .,Chinese Academy of Medical Sciences and Peking Union Medical Collage, No 9, Dong Dan San Tiao, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
21
|
Huang Y, Pan L, Helou K, Xia Q, Parris TZ, Li H, Xu B, Li H. Mechanical ventilation promotes lung metastasis in experimental 4T1 breast cancer lung-metastasized models. Cancer Manag Res 2018; 10:545-555. [PMID: 29593433 PMCID: PMC5865578 DOI: 10.2147/cmar.s142650] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND/PURPOSE The aim of this study was to test the hypothesis that mechanical ventilation (MV) during cancer surgery induces lung stroma/tissue milieu changes, creating a favorable microenvironment for postoperative lung metastatic tumor establishment. MATERIALS AND METHODS In Protocol A, female BALB/c mice were divided into an MV group and a control (no MV) group, both of which were anesthetized and subjected to intravenous injection of green fluorescent protein (GFP)-labeled mouse mammary carcinoma cell line (4T1) cells. After 24 h, the lung tissue was removed and the number of GFP-labeled 4T1 cells was calculated. In Protocol B, the clinically relevant mouse model of spontaneous breast cancer lung metastasis was used with surgical resection of the primary tumor to investigate the MV event that dictates postoperative lung metastasis. Female BALB/c mice were inoculated in the mammary fat pad with 4T1 cells. After 14-d growth, mice were anesthetized and divided into an MV group and a control (no MV) group during surgical procedures (mastectomy). Metastatic tumor burden was assessed two weeks after mastectomy by both macroscopic metastatic nodule count, hematoxylin-eosin histology, immunohistochemistry for the macrophage marker (CD68), and epithelial cell adhesion molecule (EpCAM). RESULTS MV was associated with a significant increase in the number of circulating breast tumor cells (GFP-labeled 4T1 cells) remaining in the microvasculature of the lung (P<0.01). Immunohistochemical results showed increased infiltration of CD68-positive macrophages within injured lung parenchyma and metastatic tumor as well as increased expression of EpCAM in metastatic nodules. Postoperative metastases were more prevalent in the mechanically ventilated mice group compared to the non-ventilated group (P<0.05). CONCLUSION MV-induced lung metastasis occurs by attracting circulating tumor cells to the site of the lung injury and by accelerating the proliferation of preexisting micro-metastases in the lung. These observations indicate that the metastasis-enhancing effect of MV should be considered in general anesthesia during cancer surgery.
Collapse
Affiliation(s)
- Yinglai Huang
- Division of Breast and Endocrine Surgery, Department of Surgery, Borås Hospital, Borås
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Lin Pan
- Department of Biochemistry and Molecular Biology, China-Japan Friendship Hospital, Beijing, People’s Republic of China
| | - Khalil Helou
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Qisheng Xia
- Department of Biochemistry and Molecular Biology, China-Japan Friendship Hospital, Beijing, People’s Republic of China
| | - Toshima Z Parris
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Hongyan Li
- Department of Biochemistry and Molecular Biology, China-Japan Friendship Hospital, Beijing, People’s Republic of China
| | - Bo Xu
- Department of Biochemistry and Molecular Biology, China-Japan Friendship Hospital, Beijing, People’s Republic of China
| | - Hon Li
- Department of Biochemistry and Molecular Biology, China-Japan Friendship Hospital, Beijing, People’s Republic of China
| |
Collapse
|
22
|
Liao HD, Mao Y, Ying YG. The involvement of the laminin-integrin α7β1 signaling pathway in mechanical ventilation-induced pulmonary fibrosis. J Thorac Dis 2017; 9:3961-3972. [PMID: 29268407 DOI: 10.21037/jtd.2017.09.60] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Introduction The central objective of the study was to determine the possibility and potential mechanism by which the laminin-integrin α7β1 signaling pathway acts on mechanical ventilation (MV)-induced pulmonary fibrosis in a rat model. Methods Fibrosis rat models were established via the mechanical injury method. Ninety rats were recruited and divided into the normal, low tidal volume (LVT), huge VT (HVT), Arg-Gly-Asp-Ser (RGDS), LVT + RGDS and HVT + RGDS groups. On day 0, 3, and 7 after model establishment, the pulmonary hydroxyproline content was measured using alkaline hydrolysis and the pulmonary index was also calculated. All rats in each group were executed on day 0, 3 and 7. The histopathological changes detected in the left pulmonary tissues were observed using hematoxylin-eosin (HE) and Masson staining methods. Discussion The mRNA and protein expressions of Wnt-5A, β-catenin, E-cadherin and Collagen I in the Wnt/β-catenin signaling pathway were detected using both reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blotting methods. Immunohistochemistry was employed to detect the fibronectin (FN) expression in the pulmonary tissues on the 7th day. All indexes in the RGDS and LVT + RGDS groups indicated no explicit differences compared with the normal group. In the LVT, HVT, HVT + RGDS groups, the respective weights of the rats and the expression of E-cadherin on the 7th day exhibited decreases, however the pulmonary index, hydroxyproline, pulmonary alveolar inflammation, pulmonary fibrosis, FN expression, and protein expressions of Wnt-5A, β-catenin, and Collagen I all displayed increased levels (all P<0.05). The index changes detected in the HVT group were the most blatant results observed in the study. The rat pulmonary index on the 7th day, hydroxyproline (HYP), pulmonary alveolar inflammation, pulmonary fibrosis, FN expression, and protein expressions of Wnt-5A, β-catenin, and type I-collagen were all down-regulated, in contrast the expression of E-cadherin was up-regulated in the LVT + RGDS and HVT + RGDS groups in comparison with the LVT and HVT groups, respectively (all P<0.05). Conclusions The findings of the study suggested that RGDS could act to block the laminin-integrin α7β1-signaling pathway, ultimately contributing to the inhibition of the progression of MV-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Han-Di Liao
- Department of Intensive Care Unit, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, China
| | - Yong Mao
- Department of Intensive Care Unit, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, China
| | - You-Guo Ying
- Department of Intensive Care Unit, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, China
| |
Collapse
|
23
|
Ren R, Mao Y, Ruan Z, Wang Y, Zhang Y, Du J, Yu W. Celastrol attenuates ventilator induced lung injury in mouse through inhibition of MAPK pathway. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:9302-9309. [PMID: 31966802 PMCID: PMC6965913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 07/20/2017] [Indexed: 06/10/2023]
Abstract
PURPOSE Previous studies have shown that celastrol has anti-inflammatory, anti-oxidative and anti-tumor activities, but little is known about its protective effects on ventilator induced lung injury (VILI). This study is aimed to investigate the effects of celastrol on VILI and explore its potential mechanism. METHODS A total of 40 ICR male mice aged 7-9 weeks were randomly divided into 4 groups (n=10 per group): control group (Con), control + celastrol group (Con+Ce), mechanical ventilation group (Ven) and mechanical ventilation + celastrol group (Ven+Ce). The lungs were collected for histological examination, detection of W/D, and MPO, MDA, SOD, inflammatory cytokines (IL-1β, IL-6, IL-10 and TNF-α) by ELISA, p-P38 and p-JNK 1/2 protein by Western blotting, and collagen-1 and TGF-β mRNA expression by RT-PCR. RESULTS The W/D in the Ven group was significantly higher than the W/D in the Con group and the Ven+Ce group (both P<0.01). Mechanical ventilation for 4 h markedly increased lung MPO and MDA activity, TNF-α, IL-1β and IL-6, but dramatically reduced SOD and IL-10 (all P<0.01). However, celastrol pre-treatment compromised the increased MPO, MDA, TNF-α, IL-1β, IL-6 (all P<0.01) and significantly increased SOD (P=0.035<0.05) and IL-10 (P<0.01). In addition, mRNA level of collagen-1 and TGF-β as well as p-P38 and p-JNK 1/2 protein expression increased significantly (P<0.01) after mechanical ventilation, which however were markedly reduced in the presence of celastrol pre-treatment. CONCLUSION Celastrol pre-treatment may exert anti-oxidative and anti-inflammatory effects and related lung fibrosis to attenuate VILI in mice, which may be related to the inhibition of p-P38 and p-JNK 1/2 by MAPK pathway.
Collapse
Affiliation(s)
- Rongrong Ren
- Department of Anesthesiology, The Eastern Hepatobiliary Surgery Hospital, The Second Military Medical UniversityShanghai 200438, China
- Department of Anesthesiology and Surgical Intensive Care Unit, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai 200092, China
| | - Yanfei Mao
- Department of Anesthesiology and Surgical Intensive Care Unit, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai 200092, China
| | - Zhengshang Ruan
- Department of Anesthesiology and Surgical Intensive Care Unit, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai 200092, China
| | - Yan Wang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai 200092, China
| | - Yan Zhang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai 200092, China
| | - Junming Du
- Department of Anesthesiology and Surgical Intensive Care Unit, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai 200092, China
| | - Weifeng Yu
- Department of Anesthesiology, The Eastern Hepatobiliary Surgery Hospital, The Second Military Medical UniversityShanghai 200438, China
| |
Collapse
|
24
|
High-Fat Feeding Protects Mice From Ventilator-Induced Lung Injury, Via Neutrophil-Independent Mechanisms. Crit Care Med 2017; 45:e831-e839. [PMID: 28426531 DOI: 10.1097/ccm.0000000000002403] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Obesity has a complex impact on acute respiratory distress syndrome patients, being associated with increased likelihood of developing the syndrome but reduced likelihood of dying. We propose that such observations are potentially explained by a model in which obesity influences the iatrogenic injury that occurs subsequent to intensive care admission. This study therefore investigated whether fat feeding protected mice from ventilator-induced lung injury. DESIGN In vivo study. SETTING University research laboratory. SUBJECTS Wild-type C57Bl/6 mice or tumor necrosis factor receptor 2 knockout mice, either fed a high-fat diet for 12-14 weeks, or age-matched lean controls. INTERVENTIONS Anesthetized mice were ventilated with injurious high tidal volume ventilation for periods up to 180 minutes. MEASUREMENTS AND MAIN RESULTS Fat-fed mice showed clear attenuation of ventilator-induced lung injury in terms of respiratory mechanics, blood gases, and pulmonary edema. Leukocyte recruitment and activation within the lungs were not significantly attenuated nor were a host of circulating or intra-alveolar inflammatory cytokines. However, intra-alveolar matrix metalloproteinase activity and levels of the matrix metalloproteinase cleavage product soluble receptor for advanced glycation end products were significantly attenuated in fat-fed mice. This was associated with reduced stretch-induced CD147 expression on lung epithelial cells. CONCLUSIONS Consumption of a high-fat diet protects mice from ventilator-induced lung injury in a manner independent of neutrophil recruitment, which we postulate instead arises through blunted up-regulation of CD147 expression and subsequent activation of intra-alveolar matrix metalloproteinases. These findings may open avenues for therapeutic manipulation in acute respiratory distress syndrome and could have implications for understanding the pathogenesis of lung disease in obese patients.
Collapse
|
25
|
Li LF, Kao KC, Liu YY, Lin CW, Chen NH, Lee CS, Wang CW, Yang CT. Nintedanib reduces ventilation-augmented bleomycin-induced epithelial-mesenchymal transition and lung fibrosis through suppression of the Src pathway. J Cell Mol Med 2017; 21:2937-2949. [PMID: 28598023 PMCID: PMC5661114 DOI: 10.1111/jcmm.13206] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/26/2017] [Indexed: 12/19/2022] Open
Abstract
Mechanical ventilation (MV) used in patients with acute respiratory distress syndrome (ARDS) can increase lung inflammation and pulmonary fibrogenesis. Src is crucial in mediating the transforming growth factor (TGF)‐β1‐induced epithelial–mesenchymal transition (EMT) during the fibroproliferative phase of ARDS. Nintedanib, a multitargeted tyrosine kinase inhibitor that directly blocks Src, has been approved for the treatment of idiopathic pulmonary fibrosis. The mechanisms regulating interactions among MV, EMT and Src remain unclear. In this study, we suggested hypothesized that nintedanib can suppress MV‐augmented bleomycin‐induced EMT and pulmonary fibrosis by inhibiting the Src pathway. Five days after administrating bleomycin to mimic acute lung injury (ALI), C57BL/6 mice, either wild‐type or Src‐deficient were exposed to low tidal volume (VT) (6 ml/kg) or high VT (30 ml/kg) MV with room air for 5 hrs. Oral nintedanib was administered once daily in doses of 30, 60 and 100 mg/kg for 5 days before MV. Non‐ventilated mice were used as control groups. Following bleomycin exposure in wild‐type mice, high VT MV induced substantial increases in microvascular permeability, TGF‐β1, malondialdehyde, Masson's trichrome staining, collagen 1a1 gene expression, EMT (identified by colocalization of increased staining of α‐smooth muscle actin and decreased staining of E‐cadherin) and alveolar epithelial apoptosis (P < 0.05). Oral nintedanib, which simulated genetic downregulation of Src signalling using Src‐deficient mice, dampened the MV‐augmented profibrotic mediators, EMT profile, epithelial apoptotic cell death and pathologic fibrotic scores (P < 0.05). Our data indicate that nintedanib reduces high VT MV‐augmented EMT and pulmonary fibrosis after bleomycin‐induced ALI, partly by inhibiting the Src pathway.
Collapse
Affiliation(s)
- Li-Fu Li
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan.,Department of Respiratory Therapy, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kuo-Chin Kao
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan.,Department of Respiratory Therapy, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yung-Yang Liu
- Chest Department, Taipei Veterans General Hospital, Taipei, Taiwan.,Institutes of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chang-Wei Lin
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Ning-Hung Chen
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan.,Department of Respiratory Therapy, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chung-Shu Lee
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Chih-Wei Wang
- Department of Pathology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Cheng-Ta Yang
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan.,Department of Respiratory Therapy, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
26
|
Potla R, Tulapurkar ME, Luzina IG, Atamas SP, Singh IS, Hasday JD. Exposure to febrile-range hyperthermia potentiates Wnt signalling and epithelial-mesenchymal transition gene expression in lung epithelium. Int J Hyperthermia 2017; 34:1-10. [PMID: 28540808 DOI: 10.1080/02656736.2017.1316875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND As environmental and body temperatures vary, lung epithelial cells experience temperatures significantly different from normal core temperature. Our previous studies in human lung epithelium showed that: (i) heat shock accelerates wound healing and activates profibrotic gene expression through heat shock factor-1 (HSF1); (ii) HSF1 is activated at febrile temperatures (38-41 °C) and (iii) hypothermia (32 °C) activates and hyperthermia (39.5 °C) reduces expression of a subset of miRNAs that target protein kinase-Cα (PKCα) and enhance proliferation. METHODS We analysed the effect of hypo- and hyperthermia exposure on Wnt signalling by exposing human small airway epithelial cells (SAECs) and HEK293T cells to 32, 37 or 39.5 °C for 24 h, then analysing Wnt-3a-induced epithelial-mesenchymal transition (EMT) gene expression by qRT-PCR and TOPFlash reporter plasmid activity. Effects of miRNA mimics and inhibitors and the HSF1 inhibitor, KNK437, were evaluated. RESULTS Exposure to 39.5 °C for 24 h increased subsequent Wnt-3a-induced EMT gene expression in SAECs and Wnt-3a-induced TOPFlash activity in HEK293T cells. Increased Wnt responsiveness was associated with HSF1 activation and blocked by KNK437. Overexpressing temperature-responsive miRNA mimics reduced Wnt responsiveness in 39.5 °C-exposed HEK293T cells, but inhibitors of the same miRNAs failed to restore Wnt responsiveness in 32 °C-exposed HEK293T cells. CONCLUSIONS Wnt responsiveness, including expression of genes associated with EMT, increases after exposure to febrile-range temperature through an HSF1-dependent mechanism that is independent of previously identified temperature-dependent miRNAs. This process may be relevant to febrile fibrosing lung diseases, including the fibroproliferative phase of acute respiratory distress syndrome (ARDS) and exacerbations of idiopathic pulmonary fibrosis (IPF).
Collapse
Affiliation(s)
- Ratnakar Potla
- a Department of Medicine , University of Maryland School of Medicine , Baltimore , MD , USA
| | - Mohan E Tulapurkar
- a Department of Medicine , University of Maryland School of Medicine , Baltimore , MD , USA
| | - Irina G Luzina
- a Department of Medicine , University of Maryland School of Medicine , Baltimore , MD , USA.,b Medicine and Research Services, Baltimore Veterans Affairs Medical Care System , Baltimore , MD , USA
| | - Sergei P Atamas
- a Department of Medicine , University of Maryland School of Medicine , Baltimore , MD , USA.,b Medicine and Research Services, Baltimore Veterans Affairs Medical Care System , Baltimore , MD , USA
| | - Ishwar S Singh
- a Department of Medicine , University of Maryland School of Medicine , Baltimore , MD , USA
| | - Jeffrey D Hasday
- a Department of Medicine , University of Maryland School of Medicine , Baltimore , MD , USA.,b Medicine and Research Services, Baltimore Veterans Affairs Medical Care System , Baltimore , MD , USA
| |
Collapse
|
27
|
Li LF, Lee CS, Lin CW, Chen NH, Chuang LP, Hung CY, Liu YY. Trichostatin A attenuates ventilation-augmented epithelial-mesenchymal transition in mice with bleomycin-induced acute lung injury by suppressing the Akt pathway. PLoS One 2017; 12:e0172571. [PMID: 28234968 PMCID: PMC5325309 DOI: 10.1371/journal.pone.0172571] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/07/2017] [Indexed: 12/22/2022] Open
Abstract
Background Mechanical ventilation (MV) used in patients with acute respiratory distress syndrome (ARDS) can cause diffuse lung inflammation, an effect termed ventilator-induced lung injury, which may produce profound pulmonary fibrogenesis. Histone deacetylases (HDACs) and serine/threonine kinase/protein kinase B (Akt) are crucial in modulating the epithelial–mesenchymal transition (EMT) during the reparative phase of ARDS; however, the mechanisms regulating the interactions among MV, EMT, HDACs, and Akt remain unclear. We hypothesized that trichostatin A (TSA), a HDAC inhibitor, can reduce MV-augmented bleomycin-induced EMT by inhibiting the HDAC4 and Akt pathways. Methods Five days after bleomycin treatment to mimic acute lung injury (ALI), wild-type or Akt-deficient C57BL/6 mice were exposed to low-tidal-volume (low-VT, 6 mL/kg) or high-VT (30 mL/kg) MV with room air for 5 h after receiving 2 mg/kg TSA. Nonventilated mice were examined as controls. Results Following bleomycin exposure in wild-type mice, high-VT MV induced substantial increases in microvascular leaks; matrix metalloproteinase-9 (MMP-9) and plasminogen activator inhibitor-1 proteins; free radical production; Masson’s trichrome staining; fibronectin, MMP-9, and collagen 1a1 gene expression; EMT (identified by increased localized staining of α-smooth muscle actin and decreased staining of E-cadherin); total HDAC activity; and HDAC4 and Akt activation (P < 0.05). In Akt-deficient mice, the MV-augmented lung inflammation, profibrotic mediators, EMT profiles, Akt activation, and pathological fibrotic scores were reduced and pharmacologic inhibition of HDAC4 expression was triggered by TSA (P < 0.05). Conclusions Our data indicate that TSA treatment attenuates high-VT MV-augmented EMT after bleomycin-induced ALI, in part by inhibiting the HDAC4 and Akt pathways.
Collapse
Affiliation(s)
- Li-Fu Li
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
- Department of Respiratory Therapy, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chung-Shu Lee
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Chang-Wei Lin
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Ning-Hung Chen
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
- Department of Respiratory Therapy, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Li-Pang Chuang
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Chen-Yiu Hung
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Yung-Yang Liu
- Chest Department, Taipei Veterans General Hospital, Taipei, Taiwan
- Institutes of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
28
|
Wang T, Gross C, Desai AA, Zemskov E, Wu X, Garcia AN, Jacobson JR, Yuan JXJ, Garcia JGN, Black SM. Endothelial cell signaling and ventilator-induced lung injury: molecular mechanisms, genomic analyses, and therapeutic targets. Am J Physiol Lung Cell Mol Physiol 2016; 312:L452-L476. [PMID: 27979857 DOI: 10.1152/ajplung.00231.2016] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 12/08/2016] [Accepted: 12/11/2016] [Indexed: 12/13/2022] Open
Abstract
Mechanical ventilation is a life-saving intervention in critically ill patients with respiratory failure due to acute respiratory distress syndrome (ARDS). Paradoxically, mechanical ventilation also creates excessive mechanical stress that directly augments lung injury, a syndrome known as ventilator-induced lung injury (VILI). The pathobiology of VILI and ARDS shares many inflammatory features including increases in lung vascular permeability due to loss of endothelial cell barrier integrity resulting in alveolar flooding. While there have been advances in the understanding of certain elements of VILI and ARDS pathobiology, such as defining the importance of lung inflammatory leukocyte infiltration and highly induced cytokine expression, a deep understanding of the initiating and regulatory pathways involved in these inflammatory responses remains poorly understood. Prevailing evidence indicates that loss of endothelial barrier function plays a primary role in the development of VILI and ARDS. Thus this review will focus on the latest knowledge related to 1) the key role of the endothelium in the pathogenesis of VILI; 2) the transcription factors that relay the effects of excessive mechanical stress in the endothelium; 3) the mechanical stress-induced posttranslational modifications that influence key signaling pathways involved in VILI responses in the endothelium; 4) the genetic and epigenetic regulation of key target genes in the endothelium that are involved in VILI responses; and 5) the need for novel therapeutic strategies for VILI that can preserve endothelial barrier function.
Collapse
Affiliation(s)
- Ting Wang
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Christine Gross
- Vascular Biology Center, Augusta University, Augusta, Georgia
| | - Ankit A Desai
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Evgeny Zemskov
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Xiaomin Wu
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Alexander N Garcia
- Department of Pharmacology University of Illinois at Chicago, Chicago, Illinois; and
| | - Jeffrey R Jacobson
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Jason X-J Yuan
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Joe G N Garcia
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Stephen M Black
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona;
| |
Collapse
|
29
|
Venkatadri R, Iyer AKV, Ramesh V, Wright C, Castro CA, Yakisich JS, Azad N. MnTBAP Inhibits Bleomycin-Induced Pulmonary Fibrosis by Regulating VEGF and Wnt Signaling. J Cell Physiol 2016; 232:506-516. [PMID: 27649046 DOI: 10.1002/jcp.25608] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/19/2016] [Indexed: 01/02/2023]
Abstract
Cellular oxidative stress is implicated not only in lung injury but also in contributing to the development of pulmonary fibrosis. We demonstrate that a cell-permeable superoxide dismutase (SOD) mimetic and peroxynitrite scavenger, manganese (III) tetrakis (4-benzoic acid) porphyrin chloride (MnTBAP) significantly inhibited bleomycin-induced fibrogenic effects both in vitro and in vivo. Further investigation into the underlying mechanisms revealed that MnTBAP targets canonical Wnt and non-canonical Wnt/Ca2+ signaling pathways, both of which were upregulated by bleomycin treatment. The effect of MnTBAP on canonical Wnt signaling was significant in vivo but inconclusive in vitro and the non-canonical Wnt/Ca2+ signaling pathway was observed to be the predominant pathway regulated by MnTBAP in bleomycin-induced pulmonary fibrosis. Furthermore, we show that the inhibitory effects of MnTBAP involve regulation of VEGF which is upstream of the Wnt signaling pathway. Overall, the data show that the superoxide scavenger MnTBAP attenuates bleomycin-induced pulmonary fibrosis by targeting VEGF and Wnt signaling pathways. J. Cell. Physiol. 232: 506-516, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rajkumar Venkatadri
- Department of Pharmaceutical Sciences, Hampton University, Hampton, Virginia
| | | | - Vani Ramesh
- Department of Obstetrics and Gynecology, The Jones Institute for Reproductive Medicine, Eastern Virginia Medical School, Norfolk, Virginia
| | - Clayton Wright
- Department of Pharmaceutical Sciences, Hampton University, Hampton, Virginia
| | - Carlos A Castro
- Magee Women's Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Juan S Yakisich
- Department of Pharmaceutical Sciences, Hampton University, Hampton, Virginia
| | - Neelam Azad
- Department of Pharmaceutical Sciences, Hampton University, Hampton, Virginia
| |
Collapse
|
30
|
Zhao T, Zhao H, Li G, Zheng S, Liu M, Gu C, Wang Y. Role of the PKCα-c-Src tyrosine kinase pathway in the mediation of p120-catenin degradation in ventilator-induced lung injury. Respirology 2016; 21:1404-1410. [PMID: 27459952 DOI: 10.1111/resp.12858] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 04/08/2016] [Accepted: 04/23/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVE Ventilator-induced lung injury (VILI) is commonly associated with respiratory barrier dysfunction; however, the mechanisms have not been fully elucidated. This study aimed to determine the order and components of the signalling pathway that mediates the degradation of adherin junction of p120-catenin in VILI. METHODS For the in vivo study, C57BL/6 mice were pre-treated with inhibitors for 60 min prior to 4 h of mechanical ventilation. For the in vitro study, mouse lung epithelial 12 (MLE-12) cells were pre-treated with inhibitors for 60 min or small interfering RNA (siRNA) for 48 h prior to cyclic stretch at 20% for 4 h. The protein levels of protein kinase Cα (PKCα), activated c-Src and p120-catenin were determined via western blot analysis. Lung injury was determined via HE staining, immunofluorescence, wet/dry ratio and lung injury scores. RESULTS High tidal volume mechanical ventilation and 20% cyclic stretch resulted in the degradation of p120-catenin. Inhibitors of PKCα blocked c-Src kinase activation and p120-catenin degradation in VILI. Inhibitors of c-Src kinase or PP2 or siRNA blocked p120-catenin degradation but not PKCα activation. CONCLUSION The current findings demonstrates that PKCα and c-Src kinase participate in VILI. PKCα activation phosphorylates c-Src kinase and further decreases p120-catenin in VILI.
Collapse
Affiliation(s)
- Tao Zhao
- Department of Anesthesiology, Rizhao People's Hospital, Rizhao, China.,Department of Anesthesiology, Qianfoshan Hospital, Shandong University, Jinan, China
| | - Hongwei Zhao
- Department of Anesthesiology, Rizhao People's Hospital, Rizhao, China
| | - Gang Li
- Department of Anesthesiology, Rizhao People's Hospital, Rizhao, China
| | - Shengfa Zheng
- Department of Anesthesiology, Rizhao People's Hospital, Rizhao, China
| | - Mengjie Liu
- Department of Anesthesiology, Qianfoshan Hospital, Shandong University, Jinan, China
| | - Changping Gu
- Department of Anesthesiology, Qianfoshan Hospital, Shandong University, Jinan, China
| | - Yuelan Wang
- Department of Anesthesiology, Qianfoshan Hospital, Shandong University, Jinan, China.
| |
Collapse
|
31
|
Froese AR, Shimbori C, Bellaye PS, Inman M, Obex S, Fatima S, Jenkins G, Gauldie J, Ask K, Kolb M. Stretch-induced Activation of Transforming Growth Factor-β1in Pulmonary Fibrosis. Am J Respir Crit Care Med 2016; 194:84-96. [DOI: 10.1164/rccm.201508-1638oc] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
32
|
Inhibition of β-catenin signaling protects against CTGF-induced alveolar and vascular pathology in neonatal mouse lung. Pediatr Res 2016; 80:136-44. [PMID: 26991260 DOI: 10.1038/pr.2016.52] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/23/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) is the most common and serious chronic lung disease of premature infants. Connective tissue growth factor (CTGF) plays an important role in tissue development and remodeling. We have previously shown that targeted overexpression of CTGF in alveolar type II epithelial cells results in BPD-like pathology and activates β-catenin in neonatal mice. METHODS Utilizing this transgenic mouse model and ICG001, a specific pharmacological inhibitor of β-catenin, we tested the hypothesis that β-catenin signaling mediates the effects of CTGF in the neonatal lung. Newborn CTGF mice and control littermates received ICG001 (10 mg/kg/dose) or placebo (dimethyl sulfoxide, equal volume) by daily i.p. injection from postnatal day 5 to 15. Alveolarization, vascular development, and pulmonary hypertension (PH) were analyzed. RESULTS Administration of ICG001 significantly downregulated expression of cyclin D1, collagen 1a1, and fibronectin, which are the known target genes of β-catenin signaling in CTGF lungs. Inhibition of β-catenin signaling improved alveolar and vascular development and decreased pulmonary vascular remodeling. More importantly, the improved vascular development and vascular remodeling led to a decrease in PH. CONCLUSION β-Catenin signaling mediates the autocrine and paracrine effects of CTGF in the neonatal lung. Inhibition of CTGF-β-catenin signaling may provide a novel therapy for BPD.
Collapse
|
33
|
Xu J, Zheng J, Song P, Zhou Y, Guan S. IL-33/ST2 pathway in a bleomycin-induced pulmonary fibrosis model. Mol Med Rep 2016; 14:1704-8. [DOI: 10.3892/mmr.2016.5446] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 02/15/2016] [Indexed: 11/05/2022] Open
|
34
|
Chen X, Song X, Yue W, Chen D, Yu J, Yao Z, Zhang L. Fibulin-5 inhibits Wnt/β-catenin signaling in lung cancer. Oncotarget 2016; 6:15022-34. [PMID: 25909283 PMCID: PMC4558133 DOI: 10.18632/oncotarget.3609] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/14/2015] [Indexed: 01/03/2023] Open
Abstract
Metastatic lung cancer is incurable and a leading cause of cancer death in the United States. However, the molecular mechanism by which lung cancer cells invade other tissues has remained unclear. We previously identified fibulin-5, an extracellular matrix protein, as a frequently silenced gene in lung cancer and a suppressor of cell invasion. In this study, we found fibulin-5 functions by inhibiting the Wnt/β-catenin pathway. The Cancer Genome Atlas (TCGA) datasets show a strong association between loss of fibulin-5 expression and poor outcomes of lung cancer patients, and also activation of the Wnt target genes MMP-7 and c-Myc. Fibulin-5 impedes Wnt/β-catenin signaling by inhibiting extracellular signal-regulated kinase (ERK) to activate glycogen synthase kinase-3 β (GSK3β), which downregulates β-catenin and prevents its nuclear accumulation, leading to suppression of MMP-7 and c-Myc expression. These effects of fibulin-5 are mediated by its amino-terminal integrin-binding RGD motif. Fibulin-5 also blocks Wnt/β-catenin signaling in vivo in H460 metastasis and H1299 tumor models. Furthermore, knockdown of β-catenin suppresses metastasis of H460 tumors, while knockdown of GSK3β promotes metastasis of fibulin-5-expressing H1752 tumors. Together, our results suggest that fibulin-5 functions as a metastasis suppressor in lung cancer by modulating tumor microenvironment to suppress Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Xiaojun Chen
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry, Tianjin Medical University, Tianjin, P.R. China.,Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Xiaomeng Song
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry, Tianjin Medical University, Tianjin, P.R. China
| | - Wen Yue
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dongshi Chen
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jian Yu
- Department of Pathology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zhi Yao
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry, Tianjin Medical University, Tianjin, P.R. China
| | - Lin Zhang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
35
|
Chen C, Guan X, Quinn DA, Ouyang B. N-Acetylcysteine Inhibits Ventilation-Induced Collagen Accumulation in the Rat Lung. TOHOKU J EXP MED 2016; 236:255-61. [PMID: 26156407 DOI: 10.1620/tjem.236.255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mechanical ventilation is the most important life supportive therapy for patients with acute respiratory distress syndrome (ARDS). However, increasing evidence from clinical studies suggests that mechanical ventilation can cause lung fibrosis, which may significantly contribute to morbidity and mortality. Recent studies also found fibroproliferation occurred in early stage of ARDS with poor outcome. We have hypothesized that mechanical ventilation-induced lung injury may be a major contributor to lung fibrosis, and antioxidant could be a potential therapeutic agent for the treatment to mechanic ventilation induced fibroproliferation. We therefore used Sprague-Dawley rats that were ventilated with large tidal volume (20 ml/kg) or low tidal volume (7 ml/kg). We analyzed the time course of collagen level in the lung and the effect of N-acetylcysteine (NAC), a thiol antioxidant, on mechanical ventilation-induced collagen accumulation. In addition, normal human lung fibroblasts (NHLF) were exposed to mechanical stretch, which mimics ventilator-induced lung inflation, to evaluate the collagen secretion in culture medium. We found that ventilation-induced collagen accumulation occurred even after 2-hour ventilation. Pretreatment with NAC (140 mg/kg) inhibited collagen accumulation in lungs of rats ventilated with large tidal volume. Moreover, mechanical stretch caused the accumulation of collagen in the culture medium of NHLF, the magnitude of which was decreased with the pretreatment with NAC (1 mM). These results indicate that mechanical ventilation can induce collagen accumulation within 2 hours. NAC alleviated the collagen accumulation induced by mechanical ventilation with high tidal volume. Therefore, NAC can be considered as a good candidate in preventing ventilation-induced lung fibrosis.
Collapse
Affiliation(s)
- Chuanxi Chen
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University
| | | | | | | |
Collapse
|
36
|
Altered Profile of Circulating Endothelial-Derived Microparticles in Ventilator-Induced Lung Injury. Crit Care Med 2016; 43:e551-9. [PMID: 26308427 DOI: 10.1097/ccm.0000000000001280] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Pulmonary endothelial cell injury is central to the pathophysiology of acute lung injury. Mechanical ventilation can cause endothelial disruption and injury, even in the absence of preexisting inflammation. Platelet-endothelial cell adhesion molecule-1 is a transmembrane protein connecting adjacent endothelial cells. We hypothesized that injurious mechanical ventilation will increase circulating lung endothelial-derived microparticles, defined as microparticles positive for platelet-endothelial cell adhesion molecule-1, which could serve as potential biomarkers and mediators of ventilator-induced lung injury. DESIGN Prospective randomized, controlled, animal investigation. SETTING A hospital preclinical animal laboratory. SUBJECTS Forty-eight Sprague-Dawley rats. INTERVENTIONS Animals were randomly allocated to one of the three following ventilatory protocols for 4 hours: spontaneous breathing (control group), mechanical ventilation with low tidal volume (6 mL/kg), and mechanical ventilation with high tidal volume (20 mL/kg). In both mechanical ventilation groups, positive end-expiratory pressure of 2 cm H2O was applied. MEASUREMENTS AND MAIN RESULTS We analyzed histologic lung damage, gas exchange, wet-to-dry lung weight ratio, serum cytokines levels, circulating endothelial-derived microparticles, platelet-endothelial cell adhesion molecule-1 lung protein content, and immunohistochemistry. When compared with low-tidal volume mechanical ventilation, high-tidal volume ventilation increased lung edema score and caused gas-exchange deterioration. These changes were associated with a marked increased of circulating endothelial-derived microparticles and a reduction of platelet-endothelial cell adhesion molecule-1 protein levels in the high-tidal volume lungs (p < 0.0001). CONCLUSIONS There is an endothelial-derived microparticle profile associated with disease-specific features of ventilator-induced lung injury. This profile could serve both as a biomarker of acute lung injury and, potentially, as a mediator of systemic propagation of pulmonary inflammatory response.
Collapse
|
37
|
Kumawat K, Gosens R. WNT-5A: signaling and functions in health and disease. Cell Mol Life Sci 2016; 73:567-87. [PMID: 26514730 PMCID: PMC4713724 DOI: 10.1007/s00018-015-2076-y] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/13/2015] [Accepted: 10/15/2015] [Indexed: 12/14/2022]
Abstract
WNT-5A plays critical roles in a myriad of processes from embryonic morphogenesis to the maintenance of post-natal homeostasis. WNT-5A knock-out mice fail to survive and present extensive structural malformations. WNT-5A predominantly activates β-catenin-independent WNT signaling cascade but can also activate β-catenin signaling to relay its diverse cellular effects such as cell polarity, migration, proliferation, cell survival, and immunomodulation. Moreover, aberrant WNT-5A signaling is associated with several human pathologies such as cancer, fibrosis, and inflammation. Thus, owing to its diverse functions, WNT-5A is a crucial signaling molecule currently under intense investigation with efforts to not only delineate its signaling mechanisms and functions in physiological and pathological conditions, but also to develop strategies for its therapeutic targeting.
Collapse
Affiliation(s)
- Kuldeep Kumawat
- Department of Molecular Pharmacology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
- Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands.
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
38
|
Alvarado TF, Puliga E, Preziosi M, Poddar M, Singh S, Columbano A, Nejak-Bowen K, Monga SPS. Thyroid Hormone Receptor β Agonist Induces β-Catenin-Dependent Hepatocyte Proliferation in Mice: Implications in Hepatic Regeneration. Gene Expr 2016; 17:19-34. [PMID: 27226410 PMCID: PMC5215473 DOI: 10.3727/105221616x691631] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Triiodothyronine (T3) induces hepatocyte proliferation in rodents. Recent work has shown molecular mechanism for T3's mitogenic effect to be through activation of β-catenin signaling. Since systemic side effects of T3 may preclude its clinical use, and hepatocytes mostly express T3 hormone receptor β (TRβ), we investigated if selective TRβ agonists like GC-1 may also have β-catenin-dependent hepatocyte mitogenic effects. Here we studied the effect of GC-1 and T3 in conditional knockouts of various Wnt pathway components. We also assessed any regenerative advantage of T3 or GC-1 when given prior to partial hepatectomy in mice. Mice administered GC-1 showed increased pSer675-β-catenin, cyclin D1, BrdU incorporation, and PCNA. No abnormalities in liver function tests were noted. GC-1-injected liver-specific β-catenin knockouts (β-catenin LKO) showed decreased proliferation when compared to wild-type littermates. To address if Wnt signaling was required for T3- or GC-1-mediated hepatocyte proliferation, we used LRP5-6-LKO, which lacks the two redundant Wnt coreceptors. Surprisingly, decreased hepatocyte proliferation was also evident in LRP5-6-LKO in response to T3 and GC-1, despite increased pSer675-β-catenin. Further, increased levels of active β-catenin (hypophosphorylated at Ser33, Ser37, and Thr41) were evident after T3 and GC-1 treatment. Finally, mice pretreated with T3 or GC-1 for 7 days followed by partial hepatectomy showed a significant increase in hepatocyte proliferation both at the time (T0) and 24 h after surgery. In conclusion, like T3, TRβ-selective agonists induce hepatocyte proliferation through β-catenin activation via both PKA- and Wnt-dependent mechanisms and confer a regenerative advantage following surgical resection. Hence, these agents may be useful regenerative therapies in liver transplantation or other surgical settings.
Collapse
Affiliation(s)
- Tamara Feliciano Alvarado
- *Division of Gastroenterology, Department of Pediatrics, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
| | - Elisabetta Puliga
- †Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- ‡Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Morgan Preziosi
- †Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Minakshi Poddar
- †Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sucha Singh
- †Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amedeo Columbano
- ‡Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Kari Nejak-Bowen
- †Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Satdarshan P. S. Monga
- †Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- §Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
39
|
Platelet-derived Wnt antagonist Dickkopf-1 is implicated in ICAM-1/VCAM-1-mediated neutrophilic acute lung inflammation. Blood 2015; 126:2220-9. [PMID: 26351298 DOI: 10.1182/blood-2015-02-622233] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 08/20/2015] [Indexed: 12/14/2022] Open
Abstract
Neutrophil infiltration represents the early acute inflammatory response in acute lung injury. The recruitment of neutrophils from the peripheral blood across the endothelial-epithelial barrier into the alveolar airspace is highly regulated by the adhesion molecules on alveolar epithelial cells (AECs). Wnt/β-catenin signaling is involved in the progression of inflammatory lung diseases including asthma, emphysema, and pulmonary fibrosis. However, the function of Wnt/β-catenin signaling in acute lung inflammation is unknown. Here, we identified platelet-derived Dickkopf-1 (Dkk1) as the major Wnt antagonist contributing to the suppression of Wnt/β-catenin signaling in AECs during acute lung inflammation. Intratracheal administration of Wnt3a or an antibody capable of neutralizing Dkk1 inhibited neutrophil influx into the alveolar airspace of injured lungs. Activation of Wnt/β-catenin signaling in AECs attenuated intercellular adhesion molecule 1 (ICAM-1)/vascular cell adhesion molecule 1 (VCAM-1)-mediated adhesion of both macrophages and neutrophils to AECs. Our results suggest a role for Wnt/β-catenin signaling in modulating the inflammatory response, and a functional communication between platelets and AECs during acute lung inflammation. Targeting Wnt/β-catenin signaling and the communication between platelets and AECs therefore represents potential therapeutic strategies to limit the damage of acute pulmonary inflammation.
Collapse
|
40
|
Chen J, Shen Z, Zheng Y, Wang S, Mao W. Radiotherapy induced Lewis lung cancer cell apoptosis via inactivating β-catenin mediated by upregulated HOTAIR. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:7878-7886. [PMID: 26339352 PMCID: PMC4555680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 06/22/2015] [Indexed: 06/05/2023]
Abstract
OBJECTIVE HOTAIR, a long intervening non-coding Hox transcript antisense intergenic RNA, negatively regulates transcription on another chromosome and is reported to reprogram chromatin organization and promote tumor progression. Nevertheless, little is known about its roles in the development of radiation therapy of lung cancer. In this study, we established a xenografed model of Lewis lung carcinoma in C57BL/6 mice and investigated the possible involvement of HOTAIR in this radiotherapy. METHODS C57BL/6 mice were subcutaneously transplanted with Lewis lung carcinoma cells and locally irradiated followed by measurement in tumor volume. Levels of HOTAIR and WIF-1 mRNA expression were determined by using Quantitative Real-Time PCR. Levels of WIF-1 and β-catenin were determined by using western blot assay. Cell viability was evaluated by MTT assay. Cell apoptosis was examined by using TUNEL assay. RESULTS In mice bearing Lewis lung carcinoma tumor, local radiotherapy suppressed tumor growth and it also reduced level of HOTAIR but increased WIF-1 expression. When HOTAIR was overexpressed, radio-sensitivity was reduced. In vitro experiments, irradiation inhibited HOTAIR transportation to the nucleus. However, it was reversed by over-expressed HOTAIR. Cells transfected with pcDNA-HOTAIR or siRNA-HOTAIR resulted in decline or increase in radiosensitivity, which was abrogated by co-tansfected with siRNA-β-catenin. CONCLUSION Radiotherapy induced Lewis lung cancer cell apoptosis via inactivating β-catenin mediated by upregulated HOTAIR.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Apoptosis/radiation effects
- Carcinoma, Lewis Lung/genetics
- Carcinoma, Lewis Lung/metabolism
- Carcinoma, Lewis Lung/pathology
- Carcinoma, Lewis Lung/radiotherapy
- Cell Line, Tumor
- Extracellular Matrix Proteins/genetics
- Extracellular Matrix Proteins/metabolism
- Gene Expression Regulation, Neoplastic
- Intercellular Signaling Peptides and Proteins/genetics
- Intercellular Signaling Peptides and Proteins/metabolism
- Male
- Mice, Inbred C57BL
- RNA Interference
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Messenger/metabolism
- Signal Transduction/radiation effects
- Time Factors
- Transfection
- Tumor Burden/radiation effects
- Up-Regulation
- beta Catenin/genetics
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Jianxiang Chen
- Department of Radiation Oncology, Zhejiang, Cancer HospitalHangzhou, China
| | - Zhuping Shen
- Department of Thoracic Oncology, Zhejiang, Cancer HospitalHangzhou, China
| | - Yuanda Zheng
- Department of Radiation Oncology, Zhejiang, Cancer HospitalHangzhou, China
| | - Shengye Wang
- Department of Radiation Oncology, Zhejiang, Cancer HospitalHangzhou, China
| | - Weimin Mao
- Department of Thoracic Oncology, Zhejiang, Cancer HospitalHangzhou, China
| |
Collapse
|
41
|
Villar J, Cabrera-Benítez NE, Valladares F, García-Hernández S, Ramos-Nuez Á, Martín-Barrasa JL, Muros M, Kacmarek RM, Slutsky AS. Tryptase is involved in the development of early ventilator-induced pulmonary fibrosis in sepsis-induced lung injury. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:138. [PMID: 25871971 PMCID: PMC4391146 DOI: 10.1186/s13054-015-0878-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 03/12/2015] [Indexed: 12/30/2022]
Abstract
Introduction Most patients with sepsis and acute lung injury require mechanical ventilation to improve oxygenation and facilitate organ repair. Mast cells are important in response to infection and resolution of tissue injury. Since tryptase secreted from mast cells has been associated with tissue fibrosis, we hypothesized that tryptase would be involved in the early development of ventilator-induced pulmonary fibrosis in a clinically relevant model of sepsis-induced lung injury. Methods Prospective, randomized, controlled animal study using Sprague-Dawley rats. Sepsis was induced by cecal ligation and perforation. Animals were randomized to spontaneous breathing or two ventilatory strategies for 4 h: protective ventilation with tidal volume (VT) = 6 ml/kg plus 10 cmH2O positive end-expiratory pressure (PEEP) or injurious ventilation with VT = 20 ml/kg plus 2 cmH2O PEEP. Healthy, non-ventilated animals served as non-septic controls. We studied the following end points: histology, serum cytokine levels, hydroxyproline content, tryptase and proteinase-activated receptor-2 (PAR-2) protein level in lung homogenates, and tryptase and PAR-2 immunohistochemical localization in the lungs. Results All septic animals developed acute lung injury. Animals ventilated with high VT had a significant increase of pulmonary fibrosis, hydroxyproline content, tryptase and PAR-2 protein levels compared to septic controls (P <0.0001). However, protective ventilation attenuated sepsis-induced lung injury and decreased lung tryptase and PAR-2 protein levels. Immunohistochemical staining confirmed the presence of tryptase and PAR-2 in the lungs. Conclusions Mechanical ventilation modified tryptase and PAR-2 in injured lungs. Increased levels of these proteins were associated with development of sepsis and ventilator-induced pulmonary fibrosis early in the course of sepsis-induced lung injury.
Collapse
|
42
|
Joss-Moore LA, Lane RH, Albertine KH. Epigenetic contributions to the developmental origins of adult lung disease. Biochem Cell Biol 2015; 93:119-27. [PMID: 25493710 PMCID: PMC5683896 DOI: 10.1139/bcb-2014-0093] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Perinatal insults, including intrauterine growth restriction, preterm birth, maternal exposure to toxins, or dietary deficiencies produce deviations in the epigenome of lung cells. Occurrence of perinatal insults often coincides with the final stages of lung development. The result of epigenome disruptions in response to perinatal insults during lung development may be long-term structural and functional impairment of the lung and development of lung disease. Understanding the contribution of epigenetic mechanisms to life-long lung disease following perinatal insults is the focus of the developmental origins of adult lung disease field. DNA methylation, histone modifications, and microRNA changes are all observed in various forms of lung disease. However, the perinatal contribution to such epigenetic mechanisms is poorly understood. Here we discuss the developmental origins of adult lung disease, the interplay between perinatal events, lung development and disease, and the role that epigenetic mechanisms play in connecting these events.
Collapse
Affiliation(s)
- Lisa A Joss-Moore
- Division of Neonatology, Department of Pediatrics, University of Utah, P.O. Box 581289, Salt Lake City, UT 84158, USA
| | | | | |
Collapse
|
43
|
Faisy C, Grassin-Delyle S, Blouquit-Laye S, Brollo M, Naline E, Chapelier A, Devillier P. Wnt/β-catenin signaling modulates human airway sensitization induced by β2-adrenoceptor stimulation. PLoS One 2014; 9:e111350. [PMID: 25360795 PMCID: PMC4216012 DOI: 10.1371/journal.pone.0111350] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/23/2014] [Indexed: 11/23/2022] Open
Abstract
Background Regular use of β2-agonists may enhance non-specific airway responsiveness. The wingless/integrated (Wnt) signaling pathways are responsible for several cellular processes, including airway inflammation and remodeling while cAMP–PKA cascade can activate the Wnt signaling. We aimed to investigate whether the Wnt signaling pathways are involved in the bronchial hyperresponsiveness induced by prolonged exposure to β2-adrenoceptor agonists in human isolated airways. Methods Bronchi were surgically removed from 44 thoracic surgery patients. After preparation, bronchial rings and primary cultures of bronchial epithelial cells were incubated with fenoterol (0.1 µM, 15 hours, 37°C), a β2-agonist with high intrinsic efficacy. The effects of inhibitors/blockers of Wnt signaling on the fenoterol-induced airway sensitization were examined and the impact of fenoterol exposure on the mRNA expression of genes interacting with Wnt signaling or cAMP–PKA cascade was assessed in complete bronchi and in cultured epithelial cells. Results Compared to paired controls, fenoterol-sensitization was abolished by inhibition/blockage of the Wnt/β-catenin signaling, especially the cell-surface LRP5/6 co-receptors or Fzd receptors (1 µM SFRP1 or 1 µM DKK1) and the nuclear recruitment of TCF/LEF transcriptions factors (0.3 µM FH535). Wnt proteins secretion did not seem to be involved in the fenoterol-induced sensitization since the mRNA expression of Wnt remained low after fenoterol exposure and the inactivator of Wnt secretion (1 µM IWP2) had no effect on the fenoterol-sensitization. Fenoterol exposure did not change the mRNA expression of genes regulating Wnt signaling or cAMP–PKA cascade. Conclusions Collectively, our pharmacological investigations indicate that fenoterol-sensitization is modulated by the inhibition/blockage of canonical Wnt/β-catenin pathway, suggesting a phenomenon of biased agonism in connection with the β2-adrenoceptor stimulation. Future experiments based on the results of the present study will be needed to determine the impact of prolonged fenoterol exposure on the extra- and intracellular Wnt signaling pathways at the protein expression level.
Collapse
Affiliation(s)
- Christophe Faisy
- Unité Propre de Recherche de l'Enseignement Supérieur, Equipe d'Accueil 220, Université Versailles Saint–Quentin, Hôpital Foch, Suresnes, France
- Medical Intensive Care Unit, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
- * E-mail:
| | - Stanislas Grassin-Delyle
- Unité Propre de Recherche de l'Enseignement Supérieur, Equipe d'Accueil 220, Université Versailles Saint–Quentin, Hôpital Foch, Suresnes, France
| | - Sabine Blouquit-Laye
- Unité Propre de Recherche de l'Enseignement Supérieur, Equipe d'Accueil 220, Université Versailles Saint–Quentin, Hôpital Foch, Suresnes, France
| | - Marion Brollo
- Unité Propre de Recherche de l'Enseignement Supérieur, Equipe d'Accueil 220, Université Versailles Saint–Quentin, Hôpital Foch, Suresnes, France
| | - Emmanuel Naline
- Unité Propre de Recherche de l'Enseignement Supérieur, Equipe d'Accueil 220, Université Versailles Saint–Quentin, Hôpital Foch, Suresnes, France
| | - Alain Chapelier
- Department of Thoracic Surgery, Hôpital Foch, Suresnes, France
| | - Philippe Devillier
- Unité Propre de Recherche de l'Enseignement Supérieur, Equipe d'Accueil 220, Université Versailles Saint–Quentin, Hôpital Foch, Suresnes, France
| |
Collapse
|
44
|
Ventilation with lower tidal volumes for critically ill patients without the acute respiratory distress syndrome: a systematic translational review and meta-analysis. Curr Opin Crit Care 2014; 20:25-32. [PMID: 24275571 DOI: 10.1097/mcc.0000000000000044] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW There is convincing evidence for benefit from lung-protective mechanical ventilation with lower tidal volumes in patients with the acute respiratory distress syndrome (ARDS). It is uncertain whether this strategy benefits critically ill patients without ARDS as well. This manuscript systematically reviews recent preclinical studies of ventilation in animals with uninjured lungs, and clinical trials of ventilation in ICU patients without ARDS on the association between tidal volume size and pulmonary complications and outcome. RECENT FINDINGS Successive preclinical studies almost without exception show that ventilation with lower tidal volumes reduces the injurious effects of ventilation in animals with uninjured lungs. This finding is in line with results from recent trials in ICU patients without ARDS, demonstrating that ventilation with lower tidal volumes has a strong potential to prevent development of pulmonary complications and maybe even to improve survival. However, evidence mostly comes from nonrandomized clinical trials, and concerns are expressed regarding unselected use of lower tidal volumes in the ICU, that is, in all ventilated critically ill patients, since this strategy could also increase needs for sedation and/or neuromuscular blockade, and maybe even cause respiratory muscle fatigue. These all then could in fact worsen outcome, possibly counteracting the beneficial effects of ventilation with lower tidal volumes. SUMMARY Ventilation with lower tidal volumes protects against pulmonary complications, but well-powered randomized controlled trials are urgently needed to determine whether this ventilation strategy truly benefits all ventilated ICU patients without ARDS.
Collapse
|
45
|
Boorsma CE, Dekkers BGJ, van Dijk EM, Kumawat K, Richardson J, Burgess JK, John AE. Beyond TGFβ--novel ways to target airway and parenchymal fibrosis. Pulm Pharmacol Ther 2014; 29:166-80. [PMID: 25197006 DOI: 10.1016/j.pupt.2014.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/18/2014] [Accepted: 08/26/2014] [Indexed: 01/18/2023]
Abstract
Within the lungs, fibrosis can affect both the parenchyma and the airways. Fibrosis is a hallmark pathological change in the parenchyma in patients with idiopathic pulmonary fibrosis (IPF), whilst in asthma or chronic obstructive pulmonary disease (COPD) fibrosis is a component of the remodelling of the airways. In the past decade, significant advances have been made in understanding the disease behaviour and pathogenesis of parenchymal and airway fibrosis and as a result a variety of novel therapeutic targets for slowing or preventing progression of these fibrotic changes have been identified. This review highlights a number of these targets and discusses the potential for treating parenchymal or airway fibrosis through these mediators/pathways in the future.
Collapse
Affiliation(s)
- C E Boorsma
- Department of Pharmacokinetics, Toxicology, and Targeting, Groningen Research Institute for Pharmacy, University of Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - B G J Dekkers
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - E M van Dijk
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - K Kumawat
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - J Richardson
- Division of Respiratory Medicine, Nottingham University Hospitals, QMC Campus, Nottingham NG7 2UH, United Kingdom
| | - J K Burgess
- Woolcock Institute of Medical Research, Glebe 2037, Australia; Discipline of Pharmacology, The University of Sydney, Sydney 2006, Australia
| | - A E John
- Division of Respiratory Medicine, Nottingham University Hospitals, City Campus, Nottingham NG5 1PB, United Kingdom.
| |
Collapse
|
46
|
Li LF, Liu YY, Kao KC, Wu CT, Chang CH, Hung CY, Yang CT. Mechanical ventilation augments bleomycin-induced epithelial-mesenchymal transition through the Src pathway. J Transl Med 2014; 94:1017-29. [PMID: 24955896 DOI: 10.1038/labinvest.2014.75] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/20/2014] [Accepted: 05/20/2014] [Indexed: 12/24/2022] Open
Abstract
Mechanical ventilation used in patients with acute respiratory distress syndrome (ARDS) can damage pulmonary epithelial cells by producing inflammatory cytokines and depositing excess collagen. Src participates in plasminogen activator inhibitor-1 (PAI-1) and transforming growth factor-β1(TGF-β1) production during the fibroproliferative phase of ARDS, which involves a process of epithelial-mesenchymal transition (EMT). The mechanisms regulating interactions between mechanical ventilation and EMT are unclear. We hypothesized that EMT induced by high-tidal volume (VT) mechanical stretch-augmented lung inflammation occurs through upregulation of the Src pathway. Five days after administering bleomycin to simulate acute lung injury (ALI), male C57BL/6 mice, either wild-type or Src-deficient, aged 3 months, weighing between 25 and 30 g, were exposed to low-VT (6 ml/kg) or high-VT (30 ml/kg) mechanical ventilation with room air for 1-5 h. Nonventilated mice were used as control subjects. We observed that high-VT mechanical ventilation increased microvascular permeability, PAI-1 and TGF-β1 protein levels, Masson's trichrome staining, extracellular collagen levels, collagen gene expression, fibroblast accumulation, positive staining of α-smooth muscle actin and type I collagen, activation of Src signaling and epithelial apoptotic cell death in wild-type mice (P<0.05). Decreased staining of the epithelial marker, Zonula occludents-1, was also observed. Mechanical stretch-augmented EMT and epithelial apoptosis were attenuated in Src-deficient mice and pharmacological inhibition of Src activity by PP2 (P<0.05). Our data suggest that high-VT mechanical ventilation-augmented EMT after bleomycin-induced ALI partially depends on the Src pathway.
Collapse
Affiliation(s)
- Li-Fu Li
- 1] Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan [2] Department of Respiratory Therapy, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yung-Yang Liu
- 1] Chest Department, Taipei Veterans General Hospital, Taipei, Taiwan [2] Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Kuo-Chin Kao
- 1] Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan [2] Department of Respiratory Therapy, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chen-Te Wu
- 1] Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Taoyuan, Taiwan [2] Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Hao Chang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Chen-Yiu Hung
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Ta Yang
- 1] Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan [2] Department of Respiratory Therapy, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
47
|
Transforming growth factor β regulates β-catenin expression in lung fibroblast through NF-κB dependent pathway. Int J Mol Med 2014; 34:1219-24. [PMID: 25175023 PMCID: PMC4199410 DOI: 10.3892/ijmm.2014.1916] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 08/08/2014] [Indexed: 11/05/2022] Open
Abstract
β-catenin contributes to the pathogenesis of lung fibrosis. However, the expression of β-catenin in fibroblasts under fibrotic conditions has not been studied. We investigated the expression of β-catenin in lung fibroblasts from bleomycin (BLM)-challenged mice and human lung fibroblasts treated with transforming growth factor β (TGF-β) or lysophosphatidic acid (LPA) by western blot analysis. The result showed that the expression of β-catenin was significantly increased in lung fibrotic foci and lung fibroblasts from bleomycin-challenged mice. TGF-β stimulated β-catenin expression and induced differentiation in human lung fibroblasts in vitro. Pretreatment of the NF-κB activation inhibitor attenuated the TGF-β-induced expression of β-catenin and differentiation in human lung fibroblasts. Similarly, LPA induced β-catenin expression in human lung fibroblasts, and pre-treatment of the neutralized anti-TGF-β antibody attenuated the LPA-induced expression of β-catenin and differentiation in human lung fibroblasts. The results suggested that β-catenin expression is upregulated in lung fibroblast during differentiation, and that TGF-β induced β-catenin expression in human lung fibroblasts through the activation of NF-κB.
Collapse
|
48
|
Januszyk M, Wong VW, Bhatt KA, Vial IN, Paterno J, Longaker MT, Gurtner GC. Mechanical offloading of incisional wounds is associated with transcriptional downregulation of inflammatory pathways in a large animal model. Organogenesis 2014; 10:186-93. [PMID: 24739276 DOI: 10.4161/org.28818] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cutaneous scarring is a major source of morbidity and current therapies to mitigate scar formation remain ineffective. Although wound fibrosis and inflammation are highly linked, only recently have mechanical forces been implicated in these pathways. Our group has developed a topical polymer device that significantly reduces post-injury scar formation via the manipulation of mechanical forces. Here we extend these studies to examine the genomewide transcriptional effects of mechanomodulation during scar formation using a validated large animal model, the red Duroc pig. We demonstrate that mechanical loading of incisional wounds upregulates expression of genes associated with inflammatory and fibrotic pathways, and that device-mediated offloading of these wounds reverses these effects. Validation studies are needed to clarify the clinical significance of these findings.
Collapse
Affiliation(s)
- Michael Januszyk
- Department of Surgery; Division of Plastic and Reconstructive Surgery; Stanford University School of Medicine; Stanford, CA USA
| | - Victor W Wong
- Department of Surgery; Division of Plastic and Reconstructive Surgery; Stanford University School of Medicine; Stanford, CA USA
| | - Kirit A Bhatt
- Department of Surgery; Division of Plastic and Reconstructive Surgery; Stanford University School of Medicine; Stanford, CA USA
| | - Ivan N Vial
- Department of Surgery; Division of Plastic and Reconstructive Surgery; Stanford University School of Medicine; Stanford, CA USA
| | - Josemaria Paterno
- Department of Surgery; Division of Plastic and Reconstructive Surgery; Stanford University School of Medicine; Stanford, CA USA
| | - Michael T Longaker
- Department of Surgery; Division of Plastic and Reconstructive Surgery; Stanford University School of Medicine; Stanford, CA USA
| | - Geoffrey C Gurtner
- Department of Surgery; Division of Plastic and Reconstructive Surgery; Stanford University School of Medicine; Stanford, CA USA
| |
Collapse
|
49
|
Altered canonical Wingless-Int signaling in the ovine fetal lung after exposure to intra-amniotic lipopolysaccharide and antenatal betamethasone. Pediatr Res 2014; 75:281-7. [PMID: 24232635 DOI: 10.1038/pr.2013.226] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 07/16/2013] [Indexed: 01/18/2023]
Abstract
BACKGROUND Antenatal inflammation and maternal corticosteroids induce fetal lung maturation but interfere with late lung development. Canonical Wingless-Int (Wnt) signaling directs lung development and repair. We showed that intra-amniotic (IA) lipopolysaccharide (LPS) exposure disrupted developmental signaling pathways in the preterm lamb lungs. Therefore, we hypothesized that pulmonary Wnt signaling was altered by exposure to IA LPS and/or antenatal corticosteroids. METHODS Ovine fetuses were exposed to IA LPS, maternal intramuscular betamethasone, a control saline injection, or a combination thereof at 107 and/or 114 d gestational age (term = 150 d gestational age) before delivery at 121 d gestational age. RESULTS IA LPS exposure decreased the lung expression of lymphoid enhancer-binding factor 1 (LEF1), a major Wnt pathway effector. WNT1, WNT4, and downstream messenger β-catenin decreased after LPS exposure. WNT7b mRNA increased fourfold 14 d post-LPS exposure. Betamethasone treatment 7 d before LPS exposure prevented the reduction in LEF1 expression, whereas betamethasone administration after LPS normalized the LPS-induced increase in Wnt7b mRNA. CONCLUSION IA LPS exposure decreased canonical Wnt signaling in the developing lung. Antenatal corticosteroids before or after IA inflammation had different effects on pulmonary Wnt signaling. This study provides new insights into possible mechanisms by which prenatal inflammation affects lung development and how corticosteroid can be beneficial in this setting.
Collapse
|
50
|
Chen X, Meng J, Yue W, Yu J, Yang J, Yao Z, Zhang L. Fibulin-3 suppresses Wnt/β-catenin signaling and lung cancer invasion. Carcinogenesis 2014; 35:1707-16. [PMID: 24480807 DOI: 10.1093/carcin/bgu023] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The 5 year survival rate of lung cancer is <20%, with most patients dying from distant metastasis. However, the molecular mechanisms underlying lung cancer invasion and metastasis have not been fully characterized. In this study, we found that fibulin-3, a fibulin family extracellular matrix protein, functions as a suppressor of lung cancer invasion and metastasis. Fibulin-3 was downregulated in large fractions of lung tumors and cell lines, and inhibited lung cancer cell invasion and the expression of matrix metalloproteinase-7 (MMP-7), a promoter of lung cancer invasion. The expression levels of fibulin-3 and MMP-7 were inversely correlated in lung tumors. Fibulin-3 inhibited extracellular signal-regulated kinase (ERK) to activate glycogen synthase kinase 3β and suppress Wnt/β-catenin signaling, which induces MMP-7 expression in lung cancer cells. Furthermore, fibulin-3 expression impeded the growth and metastasis of lung tumors in mice. Collectively, these results suggest that downregulation of fibulin-3 contributes to lung cancer invasion and metastasis by activating Wnt/β-catenin signaling and MMP-7 expression.
Collapse
Affiliation(s)
- Xiaojun Chen
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry, Tianjin Medical University, Tianjin 300070, China and Departments of Pharmacology and Chemical Biology and Pathology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jie Meng
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry, Tianjin Medical University, Tianjin 300070, China and
| | - Wen Yue
- Departments of Pharmacology and Chemical Biology and Pathology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jian Yu
- Departments of Pharmacology and Chemical Biology and Pathology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jie Yang
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry, Tianjin Medical University, Tianjin 300070, China and
| | - Zhi Yao
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry, Tianjin Medical University, Tianjin 300070, China and
| | - Lin Zhang
- Departments of Pharmacology and Chemical Biology and Pathology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|