1
|
Acar T, Moreau S, Jardinaud MF, Houdinet G, Maviane-Macia F, De Meyer F, Hoste B, Leroux O, Coen O, Le Ru A, Peeters N, Carlier A. The association between Dioscorea sansibarensis and Orrella dioscoreae as a model for hereditary leaf symbiosis. PLoS One 2024; 19:e0302377. [PMID: 38648204 PMCID: PMC11034651 DOI: 10.1371/journal.pone.0302377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/02/2024] [Indexed: 04/25/2024] Open
Abstract
Hereditary, or vertically-transmitted, symbioses affect a large number of animal species and some plants. The precise mechanisms underlying transmission of functions of these associations are often difficult to describe, due to the difficulty in separating the symbiotic partners. This is especially the case for plant-bacteria hereditary symbioses, which lack experimentally tractable model systems. Here, we demonstrate the potential of the leaf symbiosis between the wild yam Dioscorea sansibarensis and the bacterium Orrella dioscoreae (O. dioscoreae) as a model system for hereditary symbiosis. O. dioscoreae is easy to grow and genetically manipulate, which is unusual for hereditary symbionts. These properties allowed us to design an effective antimicrobial treatment to rid plants of bacteria and generate whole aposymbiotic plants, which can later be re-inoculated with bacterial cultures. Aposymbiotic plants did not differ morphologically from symbiotic plants and the leaf forerunner tip containing the symbiotic glands formed normally even in the absence of bacteria, but microscopic differences between symbiotic and aposymbiotic glands highlight the influence of bacteria on the development of trichomes and secretion of mucilage. This is to our knowledge the first leaf symbiosis where both host and symbiont can be grown separately and where the symbiont can be genetically altered and reintroduced to the host.
Collapse
Affiliation(s)
- Tessa Acar
- LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
- Laboratory of Microbiology, Ghent University, Ghent, Belgium
| | - Sandra Moreau
- LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | | | | | | | | | - Bart Hoste
- Laboratory of Microbiology, Ghent University, Ghent, Belgium
| | | | - Olivier Coen
- LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Aurélie Le Ru
- Plateforme Imagerie TRI-FRAIB, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Nemo Peeters
- LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Aurelien Carlier
- LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
- Laboratory of Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
2
|
Sanhueza T, Hernández I, Sagredo-Sáez C, Villanueva-Guerrero A, Alvarado R, Mujica MI, Fuentes-Quiroz A, Menendez E, Jorquera-Fontena E, Valadares RBDS, Herrera H. Juvenile Plant-Microbe Interactions Modulate the Adaptation and Response of Forest Seedlings to Rapid Climate Change. PLANTS (BASEL, SWITZERLAND) 2024; 13:175. [PMID: 38256729 PMCID: PMC10819047 DOI: 10.3390/plants13020175] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/02/2023] [Accepted: 10/13/2023] [Indexed: 01/24/2024]
Abstract
The negative impacts of climate change on native forest ecosystems have created challenging conditions for the sustainability of natural forest regeneration. These challenges arise primarily from abiotic stresses that affect the early stages of forest tree development. While there is extensive evidence on the diversity of juvenile microbial symbioses in agricultural and fruit crops, there is a notable lack of reports on native forest plants. This review aims to summarize the critical studies conducted on the diversity of juvenile plant-microbe interactions in forest plants and to highlight the main benefits of beneficial microorganisms in overcoming environmental stresses such as drought, high and low temperatures, metal(loid) toxicity, nutrient deficiency, and salinity. The reviewed studies have consistently demonstrated the positive effects of juvenile plant-microbiota interactions and have highlighted the potential beneficial attributes to improve plantlet development. In addition, this review discusses the beneficial attributes of managing juvenile plant-microbiota symbiosis in the context of native forest restoration, including its impact on plant responses to phytopathogens, promotion of nutrient uptake, facilitation of seedling adaptation, resource exchange through shared hyphal networks, stimulation of native soil microbial communities, and modulation of gene and protein expression to enhance adaptation to adverse environmental conditions.
Collapse
Affiliation(s)
- Tedy Sanhueza
- Laboratorio de Silvicultura, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile; (T.S.); (C.S.-S.); (A.V.-G.); (R.A.); (A.F.-Q.)
| | - Ionel Hernández
- Plant Physiology and Biochemistry Department, National Institute of Agricultural Science, Carretera a Tapaste Km 3 y ½, San José de las Lajas 32700, Mayabeque, Cuba;
| | - Cristiane Sagredo-Sáez
- Laboratorio de Silvicultura, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile; (T.S.); (C.S.-S.); (A.V.-G.); (R.A.); (A.F.-Q.)
| | - Angela Villanueva-Guerrero
- Laboratorio de Silvicultura, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile; (T.S.); (C.S.-S.); (A.V.-G.); (R.A.); (A.F.-Q.)
| | - Roxana Alvarado
- Laboratorio de Silvicultura, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile; (T.S.); (C.S.-S.); (A.V.-G.); (R.A.); (A.F.-Q.)
| | - Maria Isabel Mujica
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia 5110566, Chile;
| | - Alejandra Fuentes-Quiroz
- Laboratorio de Silvicultura, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile; (T.S.); (C.S.-S.); (A.V.-G.); (R.A.); (A.F.-Q.)
| | - Esther Menendez
- Departamento de Microbiología y Genética, Instituto de Investigación en Agrobiotecnología (CIALE), Universidad de Salamanca, 37008 Salamanca, Spain;
| | - Emilio Jorquera-Fontena
- Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Catolica de Temuco, Temuco P.O. Box 15-D, Chile;
| | | | - Héctor Herrera
- Laboratorio de Silvicultura, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile; (T.S.); (C.S.-S.); (A.V.-G.); (R.A.); (A.F.-Q.)
- Laboratorio de Ecosistemas y Bosques, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
3
|
Verstraete B, Janssens S, De Block P, Asselman P, Méndez G, Ly S, Hamon P, Guyot R. Metagenomics of African Empogona and Tricalysia (Rubiaceae) reveals the presence of leaf endophytes. PeerJ 2023; 11:e15778. [PMID: 37554339 PMCID: PMC10405798 DOI: 10.7717/peerj.15778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 06/29/2023] [Indexed: 08/10/2023] Open
Abstract
Background Leaf symbiosis is a phenomenon in which host plants of Rubiaceae interact with bacterial endophytes within their leaves. To date, it has been found in around 650 species belonging to eight genera in four tribes; however, the true extent in Rubiaceae remains unknown. Our aim is to investigate the possible occurrence of leaf endophytes in the African plant genera Empogona and Tricalysia and, if present, to establish their identity. Methods Total DNA was extracted from the leaves of four species of the Coffeeae tribe (Empogona congesta, Tricalysia hensii, T. lasiodelphys, and T. semidecidua) and sequenced. Bacterial reads were filtered out and assembled. Phylogenetic analysis of the endophytes was used to reveal their identity and their relationship with known symbionts. Results All four species have non-nodulated leaf endophytes, which are identified as Caballeronia. The endophytes are distinct from each other but related to other nodulated and non-nodulated endophytes. An apparent phylogenetic or geographic pattern appears to be absent in endophytes or host plants. Caballeronia endophytes are present in the leaves of Empogona and Tricalysia, two genera not previously implicated in leaf symbiosis. This interaction is likely to be more widespread, and future discoveries are inevitable.
Collapse
Affiliation(s)
| | - Steven Janssens
- Meise Botanic Garden, Meise, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| | | | | | - Gabriela Méndez
- Grupo de Investigación (BIOARN), Universidad Politécnica Salesiana, Quito, Ecuador
- Facultad de ingenieria, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Serigne Ly
- DIADE, Université de Montpellier, Montpellier, France
| | - Perla Hamon
- DIADE, Université de Montpellier, Montpellier, France
| | - Romain Guyot
- DIADE, Université de Montpellier, Montpellier, France
- Department of Electronics and Automation, Universidad Autónoma de Manizales, Manizales, Colombia
| |
Collapse
|
4
|
Danneels B, Blignaut M, Marti G, Sieber S, Vandamme P, Meyer M, Carlier A. Cyclitol metabolism is a central feature of Burkholderia leaf symbionts. Environ Microbiol 2023; 25:454-472. [PMID: 36451580 DOI: 10.1111/1462-2920.16292] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
The symbioses between plants of the Rubiaceae and Primulaceae families with Burkholderia bacteria represent unique and intimate plant-bacterial relationships. Many of these interactions have been identified through PCR-dependent typing methods, but there is little information available about their functional and ecological roles. We assembled 17 new endophyte genomes representing endophytes from 13 plant species, including those of two previously unknown associations. Genomes of leaf endophytes belonging to Burkholderia s.l. show extensive signs of genome reduction, albeit to varying degrees. Except for one endophyte, none of the bacterial symbionts could be isolated on standard microbiological media. Despite their taxonomic diversity, all endophyte genomes contained gene clusters linked to the production of specialized metabolites, including genes linked to cyclitol sugar analog metabolism and in one instance non-ribosomal peptide synthesis. These genes and gene clusters are unique within Burkholderia s.l. and are likely horizontally acquired. We propose that the acquisition of secondary metabolite gene clusters through horizontal gene transfer is a prerequisite for the evolution of a stable association between these endophytes and their hosts.
Collapse
Affiliation(s)
- Bram Danneels
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
- Computational Biology Unit, Department of Informatics, University of Bergen, Norway
| | - Monique Blignaut
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - Guillaume Marti
- Metatoul-AgromiX Platform, LRSV, Université de Toulouse, CNRS, UT3, INP, Toulouse, France
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Simon Sieber
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Marion Meyer
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - Aurélien Carlier
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| |
Collapse
|
5
|
Abstract
Hereditary symbioses have the potential to drive transgenerational effects, yet the mechanisms responsible for transmission of heritable plant symbionts are still poorly understood. The leaf symbiosis between Dioscorea sansibarensis and the bacterium Orrella dioscoreae offers an appealing model system to study how heritable bacteria are transmitted to the next generation. Here, we demonstrate that inoculation of apical buds with a bacterial suspension is sufficient to colonize newly formed leaves and propagules, and to ensure transmission to the next plant generation. Flagellar motility is not required for movement inside the plant but is important for the colonization of new hosts. Further, tissue-specific regulation of putative symbiotic functions highlights the presence of two distinct subpopulations of bacteria in the leaf gland and at the shoot meristem. We propose that bacteria in the leaf gland dedicate resources to symbiotic functions, while dividing bacteria in the shoot tip ensure successful colonization of meristematic tissue, glands, and propagules. Compartmentalization of intrahost populations together with tissue-specific regulation may serve as a robust mechanism for the maintenance of mutualism in leaf symbiosis.
Collapse
|
6
|
Georgiou A, Sieber S, Hsiao CC, Grayfer T, Gorenflos López JL, Gademann K, Eberl L, Bailly A. Leaf nodule endosymbiotic Burkholderia confer targeted allelopathy to their Psychotria hosts. Sci Rep 2021; 11:22465. [PMID: 34789815 PMCID: PMC8599487 DOI: 10.1038/s41598-021-01867-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 11/03/2021] [Indexed: 11/11/2022] Open
Abstract
After a century of investigations, the function of the obligate betaproteobacterial endosymbionts accommodated in leaf nodules of tropical Rubiaceae remained enigmatic. We report that the α-D-glucose analogue (+)-streptol, systemically supplied by mature Ca. Burkholderia kirkii nodules to their Psychotria hosts, exhibits potent and selective root growth inhibiting activity. We provide compelling evidence that (+)-streptol specifically affects meristematic root cells transitioning to anisotropic elongation by disrupting cell wall organization in a mechanism of action that is distinct from canonical cellulose biosynthesis inhibitors. We observed no inhibitory or cytotoxic effects on organisms other than seed plants, further suggesting (+)-streptol as a bona fide allelochemical. We propose that the suppression of growth of plant competitors is a major driver of the formation and maintenance of the Psychotria-Burkholderia association. In addition to potential agricultural applications as a herbicidal agent, (+)-streptol might also prove useful to dissect plant cell and organ growth processes.
Collapse
Affiliation(s)
- Antri Georgiou
- Institute of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, 8008, Zürich, Switzerland
| | - Simon Sieber
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Chien-Chi Hsiao
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Tatyana Grayfer
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Jacob L Gorenflos López
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Karl Gademann
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Leo Eberl
- Institute of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, 8008, Zürich, Switzerland.
| | - Aurélien Bailly
- Institute of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, 8008, Zürich, Switzerland.
| |
Collapse
|
7
|
Schindler F, Fragner L, Herpell JB, Berger A, Brenner M, Tischler S, Bellaire A, Schönenberger J, Li W, Sun X, Schinnerl J, Brecker L, Weckwerth W. Dissecting Metabolism of Leaf Nodules in Ardisia crenata and Psychotria punctata. Front Mol Biosci 2021; 8:683671. [PMID: 34395523 PMCID: PMC8362603 DOI: 10.3389/fmolb.2021.683671] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/29/2021] [Indexed: 11/13/2022] Open
Abstract
Root-microbe interaction and its specialized root nodule structures and functions are well studied. In contrast, leaf nodules harboring microbial endophytes in special glandular leaf structures have only recently gained increased interest as plant-microbe phyllosphere interactions. Here, we applied a comprehensive metabolomics platform in combination with natural product isolation and characterization to dissect leaf and leaf nodule metabolism and functions in Ardisia crenata (Primulaceae) and Psychotria punctata (Rubiaceae). The results indicate that abiotic stress resilience plays an important part within the leaf nodule symbiosis of both species. Both species showed metabolic signatures of enhanced nitrogen assimilation/dissimilation pattern and increased polyamine levels in nodules compared to leaf lamina tissue potentially involved in senescence processes and photosynthesis. Multiple links to cytokinin and REDOX-active pathways were found. Our results further demonstrate that secondary metabolite production by endophytes is a key feature of this symbiotic system. Multiple anhydromuropeptides (AhMP) and their derivatives were identified as highly characteristic biomarkers for nodulation within both species. A novel epicatechin derivative was structurally elucidated with NMR and shown to be enriched within the leaf nodules of A. crenata. This enrichment within nodulated tissues was also observed for catechin and other flavonoids indicating that flavonoid metabolism may play an important role for leaf nodule symbiosis of A. crenata. In contrast, pavettamine was only detected in P. punctata and showed no nodule specific enrichment but a developmental effect. Further natural products were detected, including three putative unknown depsipeptide structures in A. crenata leaf nodules. The analysis presents a first metabolomics reference data set for the intimate interaction of microbes and plants in leaf nodules, reveals novel metabolic processes of plant-microbe interaction as well as the potential of natural product discovery in these systems.
Collapse
Affiliation(s)
- Florian Schindler
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Lena Fragner
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria.,Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| | - Johannes B Herpell
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Andreas Berger
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Martin Brenner
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria.,Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria.,Department of Pharmaceutical Sciences/Pharmacognosy, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Sonja Tischler
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria.,Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| | - Anke Bellaire
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Jürg Schönenberger
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Weimin Li
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Xiaoliang Sun
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| | - Johann Schinnerl
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Lothar Brecker
- Department of Organic Chemistry, University of Vienna, Vienna, Austria
| | - Wolfram Weckwerth
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria.,Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Danneels B, Viruel J, Mcgrath K, Janssens SB, Wales N, Wilkin P, Carlier A. Patterns of transmission and horizontal gene transfer in the Dioscorea sansibarensis leaf symbiosis revealed by whole-genome sequencing. Curr Biol 2021; 31:2666-2673.e4. [PMID: 33852872 DOI: 10.1016/j.cub.2021.03.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/07/2020] [Accepted: 03/15/2021] [Indexed: 11/26/2022]
Abstract
Leaves of the wild yam species Dioscorea sansibarensis display prominent forerunner or "drip" tips filled with extracellular bacteria of the species Orrella dioscoreae.1 This species of yam is native to Madagascar and tropical Africa and reproduces mainly asexually through aerial bulbils and underground tubers, which also contain a small population of O. dioscoreae.2,3 Despite apparent vertical transmission, the genome of O. dioscoreae does not show any of the hallmarks of genome erosion often found in hereditary symbionts (e.g., small genome size and accumulation of pseudogenes).4-6 We investigated here the range and distribution of leaf symbiosis between D. sansibarensis and O. dioscoreae using preserved leaf samples from herbarium collections that were originally collected from various locations in Africa. We recovered DNA from the extracellular symbiont in all samples, showing that the symbiosis is widespread throughout continental Africa and Madagascar. Despite the degraded nature of this DNA, we constructed 17 symbiont genomes using de novo methods without relying on a reference. Phylogenetic and genomic analyses revealed that horizontal transmission of symbionts and horizontal gene transfer have shaped the evolution of the symbiont. These mechanisms could help explain lack of signs of reductive genome evolution despite an obligate host-associated lifestyle. Furthermore, phylogenetic analysis of D. sansibarensis based on plastid genomes revealed a strong geographical clustering of samples and provided evidence that the symbiosis originated at least 13 mya, earlier than previously estimated.3.
Collapse
Affiliation(s)
- Bram Danneels
- Laboratory of Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Juan Viruel
- Royal Botanical Gardens, Kew, Richmond, Surrey TW9 3AE, UK
| | - Krista Mcgrath
- Department of Prehistory and Institute of Environmental Science and Technology (ICTA), Autonomous University of Barcelona, 08193 Bellaterra, Spain; Department of Archaeology, University of York, Heslington, York YO10 5DD, UK
| | - Steven B Janssens
- Meise Botanic Garden, 1860 Meise, Belgium; Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Nathan Wales
- Department of Archaeology, University of York, Heslington, York YO10 5DD, UK
| | - Paul Wilkin
- Royal Botanical Gardens, Kew, Richmond, Surrey TW9 3AE, UK
| | - Aurélien Carlier
- Laboratory of Microbiology, Ghent University, 9000 Ghent, Belgium; LIPME, Université de Toulouse, INRAE, CNRS, 31320 Castanet-Tolosan, France.
| |
Collapse
|
9
|
Oren A, Garrity GM, Parker CT, Chuvochina M, Trujillo ME. Lists of names of prokaryotic Candidatus taxa. Int J Syst Evol Microbiol 2020; 70:3956-4042. [DOI: 10.1099/ijsem.0.003789] [Citation(s) in RCA: 782] [Impact Index Per Article: 156.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We here present annotated lists of names of Candidatus taxa of prokaryotes with ranks between subspecies and class, proposed between the mid-1990s, when the provisional status of Candidatus taxa was first established, and the end of 2018. Where necessary, corrected names are proposed that comply with the current provisions of the International Code of Nomenclature of Prokaryotes and its Orthography appendix. These lists, as well as updated lists of newly published names of Candidatus taxa with additions and corrections to the current lists to be published periodically in the International Journal of Systematic and Evolutionary Microbiology, may serve as the basis for the valid publication of the Candidatus names if and when the current proposals to expand the type material for naming of prokaryotes to also include gene sequences of yet-uncultivated taxa is accepted by the International Committee on Systematics of Prokaryotes.
Collapse
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - George M. Garrity
- NamesforLife, LLC, PO Box 769, Okemos MI 48805-0769, USA
- Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| | | | - Maria Chuvochina
- Australian Centre for Ecogenomics, University of Queensland, St. Lucia QLD 4072, Brisbane, Australia
| | - Martha E. Trujillo
- Departamento de Microbiología y Genética, Campus Miguel de Unamuno, Universidad de Salamanca, 37007, Salamanca, Spain
| |
Collapse
|
10
|
Herpell JB, Schindler F, Bejtović M, Fragner L, Diallo B, Bellaire A, Kublik S, Foesel BU, Gschwendtner S, Kerou M, Schloter M, Weckwerth W. The Potato Yam Phyllosphere Ectosymbiont Paraburkholderia sp. Msb3 Is a Potent Growth Promotor in Tomato. Front Microbiol 2020; 11:581. [PMID: 32373084 PMCID: PMC7186400 DOI: 10.3389/fmicb.2020.00581] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/17/2020] [Indexed: 01/07/2023] Open
Abstract
The genus Paraburkholderia includes a variety of species with promising features for sustainable biotechnological solutions in agriculture through increasing crop productivity. Here, we present a novel Paraburkholderia isolate, a permanent and predominant member of the Dioscoreae bulbifera (yam family, Dioscoreaceae) phyllosphere, making up to 25% of the microbial community on leaf acumens. The 8.5 Mbp genome of isolate Msb3 encodes an unprecedented combination of features mediating a beneficial plant-associated lifestyle, including biological nitrogen fixation (BNF), plant hormone regulation, detoxification of various xenobiotics, degradation of aromatic compounds and multiple protein secretion systems including both T3SS and T6SS. The isolate exhibits significant growth promotion when applied to agriculturally important plants such as tomato, by increasing the total dry biomass by up to 40%. The open question about the “beneficial” nature of this strain led us to investigate ecological and generic boundaries in Burkholderia sensu lato. In a refined phylogeny including 279 Burkholderia sensu lato isolates strain Msb3 clusters within Clade I Paraburkholderia, which also includes few opportunistic strains that can potentially act as pathogens, as revealed by our ecological meta-data analysis. In fact, we demonstrate that all genera originating from the “plant beneficial and environmental” (PBE) Burkholderia species cluster include opportunists. This indicates that further functional examinations are needed before safe application of these strains in sustainable agricultural settings can be assured.
Collapse
Affiliation(s)
- Johannes B Herpell
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Florian Schindler
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Mersad Bejtović
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Lena Fragner
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria.,Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| | - Bocar Diallo
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Anke Bellaire
- Division of Structural and Functional Botany, Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Susanne Kublik
- Research Unit for Comparative Microbiome Analysis, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
| | - Bärbel U Foesel
- Research Unit for Comparative Microbiome Analysis, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
| | - Silvia Gschwendtner
- Research Unit for Comparative Microbiome Analysis, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
| | - Melina Kerou
- Archaea Biology and Ecogenomics Division, Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Michael Schloter
- Research Unit for Comparative Microbiome Analysis, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
| | - Wolfram Weckwerth
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria.,Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| |
Collapse
|
11
|
Sinnesael A, Leroux O, Janssens SB, Smets E, Panis B, Verstraete B. Is the bacterial leaf nodule symbiosis obligate for Psychotria umbellata? The development of a Burkholderia-free host plant. PLoS One 2019; 14:e0219863. [PMID: 31310638 PMCID: PMC6634412 DOI: 10.1371/journal.pone.0219863] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/02/2019] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND & AIMS The bacterial leaf nodule symbiosis is an interaction where bacteria are housed in specialised structures in the leaves of their plant host. In the Rubiaceae plant family, host plants interact with Burkholderia bacteria. This interaction might play a role in the host plant defence system. It is unique due to its high specificity; the vertical transmission of the endophyte to the next generation of the host plant; and its supposedly obligatory character. Although previous attempts have been made to investigate this obligatory character by developing Burkholderia-free plants, none have succeeded and nodulating plants were still produced. In order to investigate the obligatory character of this endosymbiosis, our aims were to develop Burkholderia-free Psychotria umbellata plants and to investigate the effect of the absence of the endophytes on the host in a controlled environment. METHODS The Burkholderia-free plants were obtained via embryo culture, a plant cultivation technique. In order to analyse the endophyte-free status, we screened the plants morphologically, microscopically and molecularly over a period of three years. To characterise the phenotype and growth of the in vitro aposymbiotic plants, we compared the growth of the Burkholderia-free plants to the nodulating plants under the same in vitro conditions. KEY RESULTS All the developed plants were Burkholderia-free and survived in a sterile in vitro environment. The growth analysis showed that plants without endophytes had a slower development. CONCLUSIONS Embryo culture is a cultivation technique with a high success rate for the development of Burkholderia-free plants of P. umbellata. The increased growth rate in vitro when the specific endophyte is present cannot be explained by possible benefits put forward in previous studies. This might indicate that the benefits of the endosymbiosis are not yet completely understood.
Collapse
Affiliation(s)
- Arne Sinnesael
- Plant Conservation and Population Biology, Department of Biology, KU Leuven, Leuven, Belgium
- Meise Botanic Garden, Meise, Belgium
| | | | - Steven B. Janssens
- Plant Conservation and Population Biology, Department of Biology, KU Leuven, Leuven, Belgium
- Meise Botanic Garden, Meise, Belgium
| | - Erik Smets
- Plant Conservation and Population Biology, Department of Biology, KU Leuven, Leuven, Belgium
- Naturalis Biodiversity Center, Leiden, the Netherlands
- Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| | - Bart Panis
- Bioversity International, Leuven, Belgium
| | | |
Collapse
|
12
|
Genetic diversity of rhizobia associated with root nodules of white lupin (Lupinus albus L.) in Tunisian calcareous soils. Syst Appl Microbiol 2019; 42:448-456. [DOI: 10.1016/j.syapm.2019.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/26/2019] [Accepted: 04/04/2019] [Indexed: 11/30/2022]
|
13
|
Sinnesael A, Eeckhout S, Janssens SB, Smets E, Panis B, Leroux O, Verstraete B. Detection of Burkholderia in the seeds of Psychotria punctata (Rubiaceae) - Microscopic evidence for vertical transmission in the leaf nodule symbiosis. PLoS One 2018; 13:e0209091. [PMID: 30550604 PMCID: PMC6294375 DOI: 10.1371/journal.pone.0209091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/29/2018] [Indexed: 11/25/2022] Open
Abstract
Background and aims The bacterial leaf nodule symbiosis is a close interaction between endophytes and their plant hosts, mainly within the coffee family. The interaction between Rubiaceae species and Burkholderia bacteria is unique due to its obligate nature, high specificity, and predominantly vertical transmission of the endophytes to the next generation of host plants. This vertical transmission is intriguing since it is the basis for the uniqueness of the symbiosis. However, unequivocal evidence of the location of the endophytes in the seeds is lacking. The aim of this paper is therefore to demonstrate the presence of the host specific endophyte in the seeds of Psychotria punctata and confirm its precise location. In addition, the suggested location of the endophyte in other parts of the host plant is investigated. Methods To identify and locate the endophyte in Psychotria punctata, a two-level approach was adopted using both a molecular screening method and fluorescent in situ hybridisation microscopy. Key results The endophytes, molecularly identified as Candidatus Burkholderia kirkii, were detected in the leaves, vegetative and flower buds, anthers, gynoecium, embryos, and young twigs. In addition, they were in situ localised in leaves, flowers and shoot apical meristems, and, for the first time, in between the cotyledons of the embryos. Conclusions Both independent techniques detected the host specific endophyte in close proximity to the shoot apical meristem of the embryo, which confirms for the first time the exact location of the endophytes in the seeds. This study provides reliable proof that the endophytes are maintained throughout the growth and development of the host plant and are transmitted vertically to the offspring.
Collapse
Affiliation(s)
- Arne Sinnesael
- Plant Conservation and Population Biology, Department of Biology, KU Leuven, Leuven, Belgium
- Botanic Garden Meise, Meise, Belgium
- * E-mail:
| | | | | | - Erik Smets
- Plant Conservation and Population Biology, Department of Biology, KU Leuven, Leuven, Belgium
- Naturalis Biodiversity Center, University of Leiden, Leiden, the Netherlands
| | - Bart Panis
- Bioversity International, Leuven, Belgium
| | | | | |
Collapse
|
14
|
Danneels B, Pinto-Carbó M, Carlier A. Patterns of Nucleotide Deletion and Insertion Inferred from Bacterial Pseudogenes. Genome Biol Evol 2018; 10:1792-1802. [PMID: 29982456 PMCID: PMC6054270 DOI: 10.1093/gbe/evy140] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2018] [Indexed: 02/06/2023] Open
Abstract
Pseudogenes are a paradigm of neutral evolution and their study has the potential to reveal intrinsic mutational biases. However, this potential is mitigated by the fact that pseudogenes are quickly purged from bacterial genomes. Here, we assembled a large set of pseudogenes from genomes experiencing reductive evolution as well as functional references for which we could establish reliable phylogenetic relationships. Using this unique dataset, we identified 857 independent insertion and deletion mutations and discover a pervasive bias towards deletions, but not insertions, with sizes multiples of 3 nt. We further show that selective constraints for the preservation of gene frame are unlikely to account for the observed mutational bias and propose that a mechanistic bias in alternative end-joining repair, a recombination-independent double strand break DNA repair mechanism, is responsible for the accumulation of 3n deletions.
Collapse
Affiliation(s)
- Bram Danneels
- Department of Biochemistry and Microbiology, Ghent University, Belgium
| | - Marta Pinto-Carbó
- Department of Plant and Microbial Biology, University of Zurich, Switzerland
| | - Aurelien Carlier
- Department of Biochemistry and Microbiology, Ghent University, Belgium
| |
Collapse
|
15
|
Pinto-Carbó M, Gademann K, Eberl L, Carlier A. Leaf nodule symbiosis: function and transmission of obligate bacterial endophytes. CURRENT OPINION IN PLANT BIOLOGY 2018; 44:23-31. [PMID: 29452904 DOI: 10.1016/j.pbi.2018.01.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/14/2018] [Accepted: 01/16/2018] [Indexed: 06/08/2023]
Abstract
Various plant species establish intimate symbioses with bacteria within their aerial organs. The bacteria are contained within nodules or glands often present in distinctive patterns on the leaves, and have been used as taxonomic marker since the early 20th century. These structures are present in very diverse taxa, including dicots (Rubiaceae and Primulaceae) and monocots (Dioscorea). The symbionts colonize the plants throughout their life cycles and contribute bioactive secondary metabolites to the association. In this review, we present recent progress in the understanding of these plant-bacteria symbioses, including the modes of transmission, distribution and roles of the symbionts.
Collapse
Affiliation(s)
- Marta Pinto-Carbó
- Department of Microbiology, University of Zurich, CH-8008 Zurich, Switzerland
| | - Karl Gademann
- Department of Chemistry, University of Zurich, CH-8057 Zurich, Switzerland
| | - Leo Eberl
- Department of Microbiology, University of Zurich, CH-8008 Zurich, Switzerland
| | | |
Collapse
|
16
|
Reher R, Kuschak M, Heycke N, Annala S, Kehraus S, Dai HF, Müller CE, Kostenis E, König GM, Crüsemann M. Applying Molecular Networking for the Detection of Natural Sources and Analogues of the Selective Gq Protein Inhibitor FR900359. JOURNAL OF NATURAL PRODUCTS 2018; 81:1628-1635. [PMID: 29943987 DOI: 10.1021/acs.jnatprod.8b00222] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The cyclic depsipeptide FR900359 (FR), isolated from the traditional Chinese medicine plant Ardisia crenata, is a potent Gq protein inhibitor and thus a valuable tool to study Gq-mediated signaling of G protein-coupled receptors. Two new FR analogues (3 and 4) were isolated from A. crenata together with the known analogues 1 and 2. The structures of compounds 3 and 4 were established by NMR spectroscopic data and MS-based molecular networking followed by in-depth LCMS2 analysis. The latter approach led to the annotation of further FR analogues 5-9. Comparative bioactivity tests of compounds 1-4 along with the parent molecule FR showed high-affinity binding to Gq proteins in the low nanomolar range (IC50 = 2.3-16.8 nM) for all analogues as well as equipotent inhibition of Gq signaling, which gives important SAR insights into this valuable natural product. Additionally, FR was detected from leaves of five other Ardisia species, among them the non-nodulated leaves of Ardisia lucida, implying a much broader distribution of FR than originally anticipated.
Collapse
Affiliation(s)
| | | | | | | | | | - Hao-Fu Dai
- Institute of Tropical Bioscience and Biotechnology , Chinese Academy of Tropical Agricultural Sciences , Haikou 571101 , Hainan , China
| | | | | | | | | |
Collapse
|
17
|
Yang CJ, Hu JM. Bacterial Leaf Nodule Symbiosis in Flowering Plants. Symbiosis 2018. [DOI: 10.5772/intechopen.73078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Verstraete B, Janssens S, Rønsted N. Non-nodulated bacterial leaf symbiosis promotes the evolutionary success of its host plants in the coffee family (Rubiaceae). Mol Phylogenet Evol 2017; 113:161-168. [PMID: 28552505 DOI: 10.1016/j.ympev.2017.05.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/23/2017] [Accepted: 05/23/2017] [Indexed: 11/15/2022]
Affiliation(s)
- Brecht Verstraete
- Natural History Museum of Denmark, University of Copenhagen, Sølvgade 83S, 1307 Copenhagen, Denmark.
| | | | - Nina Rønsted
- Natural History Museum of Denmark, University of Copenhagen, Sølvgade 83S, 1307 Copenhagen, Denmark.
| |
Collapse
|
19
|
Pinto-Carbó M, Sieber S, Dessein S, Wicker T, Verstraete B, Gademann K, Eberl L, Carlier A. Evidence of horizontal gene transfer between obligate leaf nodule symbionts. THE ISME JOURNAL 2016; 10:2092-105. [PMID: 26978165 PMCID: PMC4989318 DOI: 10.1038/ismej.2016.27] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 12/29/2015] [Accepted: 01/12/2016] [Indexed: 01/06/2023]
Abstract
Bacteria of the genus Burkholderia establish an obligate symbiosis with plant species of the Rubiaceae and Primulaceae families. The bacteria, housed within the leaves, are transmitted hereditarily and have not yet been cultured. We have sequenced and compared the genomes of eight bacterial leaf nodule symbionts of the Rubiaceae plant family. All of the genomes exhibit features consistent with genome erosion. Genes potentially involved in the biosynthesis of kirkamide, an insecticidal C7N aminocyclitol, are conserved in most Rubiaceae symbionts. However, some have partially lost the kirkamide pathway due to genome erosion and are unable to synthesize the compound. Kirkamide synthesis is therefore not responsible for the obligate nature of the symbiosis. More importantly, we find evidence of intra-clade horizontal gene transfer (HGT) events affecting genes of the secondary metabolism. This indicates that substantial gene flow can occur at the early stages following host restriction in leaf nodule symbioses. We propose that host-switching events and plasmid conjugative transfers could have promoted these HGTs. This genomic analysis of leaf nodule symbionts gives, for the first time, new insights in the genome evolution of obligate symbionts in their early stages of the association with plants.
Collapse
Affiliation(s)
- Marta Pinto-Carbó
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Simon Sieber
- Department of Chemistry, University of Basel, Basel, Switzerland
| | - Steven Dessein
- Plant Conservation and Population Biology, KU Leuven, Leuven, Belgium
- Botanic Garden, Meise, Belgium
| | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Brecht Verstraete
- Plant Conservation and Population Biology, KU Leuven, Leuven, Belgium
- Botanic Garden, Meise, Belgium
| | - Karl Gademann
- Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Aurelien Carlier
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
- Laboratory of Microbiology, Ghent University, 9000 Belgium, Switzerland
| |
Collapse
|
20
|
Peeters C, Meier-Kolthoff JP, Verheyde B, De Brandt E, Cooper VS, Vandamme P. Phylogenomic Study of Burkholderia glathei-like Organisms, Proposal of 13 Novel Burkholderia Species and Emended Descriptions of Burkholderia sordidicola, Burkholderia zhejiangensis, and Burkholderia grimmiae. Front Microbiol 2016; 7:877. [PMID: 27375597 PMCID: PMC4896955 DOI: 10.3389/fmicb.2016.00877] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/24/2016] [Indexed: 11/14/2022] Open
Abstract
Partial gyrB gene sequence analysis of 17 isolates from human and environmental sources revealed 13 clusters of strains and identified them as Burkholderia glathei clade (BGC) bacteria. The taxonomic status of these clusters was examined by whole-genome sequence analysis, determination of the G+C content, whole-cell fatty acid analysis and biochemical characterization. The whole-genome sequence-based phylogeny was assessed using the Genome Blast Distance Phylogeny (GBDP) method and an extended multilocus sequence analysis (MLSA) approach. The results demonstrated that these 17 BGC isolates represented 13 novel Burkholderia species that could be distinguished by both genotypic and phenotypic characteristics. BGC strains exhibited a broad metabolic versatility and developed beneficial, symbiotic, and pathogenic interactions with different hosts. Our data also confirmed that there is no phylogenetic subdivision in the genus Burkholderia that distinguishes beneficial from pathogenic strains. We therefore propose to formally classify the 13 novel BGC Burkholderia species as Burkholderia arvi sp. nov. (type strain LMG 29317T = CCUG 68412T), Burkholderia hypogeia sp. nov. (type strain LMG 29322T = CCUG 68407T), Burkholderia ptereochthonis sp. nov. (type strain LMG 29326T = CCUG 68403T), Burkholderia glebae sp. nov. (type strain LMG 29325T = CCUG 68404T), Burkholderia pedi sp. nov. (type strain LMG 29323T = CCUG 68406T), Burkholderia arationis sp. nov. (type strain LMG 29324T = CCUG 68405T), Burkholderia fortuita sp. nov. (type strain LMG 29320T = CCUG 68409T), Burkholderia temeraria sp. nov. (type strain LMG 29319T = CCUG 68410T), Burkholderia calidae sp. nov. (type strain LMG 29321T = CCUG 68408T), Burkholderia concitans sp. nov. (type strain LMG 29315T = CCUG 68414T), Burkholderia turbans sp. nov. (type strain LMG 29316T = CCUG 68413T), Burkholderia catudaia sp. nov. (type strain LMG 29318T = CCUG 68411T) and Burkholderia peredens sp. nov. (type strain LMG 29314T = CCUG 68415T). Furthermore, we present emended descriptions of the species Burkholderia sordidicola, Burkholderia zhejiangensis and Burkholderia grimmiae. The GenBank/EMBL/DDBJ accession numbers for the 16S rRNA and gyrB gene sequences determined in this study are LT158612-LT158624 and LT158625-LT158641, respectively.
Collapse
Affiliation(s)
- Charlotte Peeters
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University Ghent, Belgium
| | - Jan P Meier-Kolthoff
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH Braunschweig, Germany
| | - Bart Verheyde
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University Ghent, Belgium
| | - Evie De Brandt
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University Ghent, Belgium
| | - Vaughn S Cooper
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine Pittsburgh, PA, USA
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent UniversityGhent, Belgium; BCCM/LMG Bacteria Collection, Department of Biochemistry and Microbiology, Ghent UniversityGhent, Belgium
| |
Collapse
|
21
|
Abstract
In the 1990s several biocontrol agents on that contained Burkholderia strains were registered by the United States Environmental Protection Agency (EPA). After risk assessment these products were withdrawn from the market and a moratorium was placed on the registration of Burkholderia-containing products, as these strains may pose a risk to human health. However, over the past few years the number of novel Burkholderia species that exhibit plant-beneficial properties and are normally not isolated from infected patients has increased tremendously. In this commentary we wish to summarize recent efforts that aim at discerning pathogenic from beneficial Burkholderia strains.
Collapse
Affiliation(s)
- Leo Eberl
- Department of Plant and Microbial Biology, University Zürich, Zurich, CH-8008, Switzerland
| | - Peter Vandamme
- Laboratory of Microbiology, Ghent University, Ledeganckstraat 35, B-9000 Gent, Belgium
| |
Collapse
|
22
|
Carlier A, Fehr L, Pinto-Carbó M, Schäberle T, Reher R, Dessein S, König G, Eberl L. The genome analysis of Candidatus Burkholderia crenata reveals that secondary metabolism may be a key function of the Ardisia crenata leaf nodule symbiosis. Environ Microbiol 2016; 18:2507-22. [PMID: 26663534 DOI: 10.1111/1462-2920.13184] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 12/08/2015] [Indexed: 11/30/2022]
Abstract
A majority of Ardisia species harbour Burkholderia sp. bacteria within specialized leaf nodules. The bacteria are transmitted hereditarily and have not yet been cultured outside of their host. Because the plants cannot develop beyond the seedling stage without their symbionts, the symbiosis is considered obligatory. We sequenced for the first time the genome of Candidatus Burkholderia crenata (Ca. B. crenata), the leaf nodule symbiont of Ardisia crenata. The genome of Ca. B. crenata is the smallest Burkholderia genome to date. It contains a large amount of insertion sequences and pseudogenes and displays features consistent with reductive genome evolution. The genome does not encode functions commonly associated with plant symbioses such as nitrogen fixation and plant hormone metabolism. However, we identified unique genes with a predicted role in secondary metabolism in the genome of Ca. B. crenata. Specifically, we provide evidence that the bacterial symbionts are responsible for the synthesis of compound FR900359, a cyclic depsipeptide with biomedical properties previously isolated from leaves of A. crenata.
Collapse
Affiliation(s)
- Aurelien Carlier
- Department of Microbiology, University of Zurich, CH-8008, Zurich, Switzerland.,Department of Microbiology, University of Ghent, 9000, Gent, Belgium
| | - Linda Fehr
- Department of Microbiology, University of Zurich, CH-8008, Zurich, Switzerland
| | - Marta Pinto-Carbó
- Department of Microbiology, University of Zurich, CH-8008, Zurich, Switzerland
| | - Till Schäberle
- Institute for Pharmaceutical Biology, University of Bonn, 53115, Bonn, Germany
| | - Raphael Reher
- Institute for Pharmaceutical Biology, University of Bonn, 53115, Bonn, Germany
| | - Steven Dessein
- Plant Conservation and Population Biology, KU Leuven, 3001, Leuven, Belgium.,National Botanic Garden of Belgium, 1860, Meise, Belgium
| | - Gabriele König
- Institute for Pharmaceutical Biology, University of Bonn, 53115, Bonn, Germany
| | - Leo Eberl
- Department of Microbiology, University of Zurich, CH-8008, Zurich, Switzerland
| |
Collapse
|
23
|
Tago K, Okubo T, Itoh H, Kikuchi Y, Hori T, Sato Y, Nagayama A, Hayashi K, Ikeda S, Hayatsu M. Insecticide-degrading Burkholderia symbionts of the stinkbug naturally occupy various environments of sugarcane fields in a Southeast island of Japan. Microbes Environ 2014; 30:29-36. [PMID: 25736865 PMCID: PMC4356461 DOI: 10.1264/jsme2.me14124] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 10/11/2014] [Indexed: 11/16/2022] Open
Abstract
The stinkbug Cavelerius saccharivorus, which harbors Burkholderia species capable of degrading the organophosphorus insecticide, fenitrothion, has been identified on a Japanese island in farmers' sugarcane fields that have been exposed to fenitrothion. A clearer understanding of the ecology of the symbiotic fenitrothion degraders of Burkholderia species in a free-living environment is vital for advancing our knowledge on the establishment of degrader-stinkbug symbiosis. In the present study, we analyzed the composition and abundance of degraders in sugarcane fields on the island. Degraders were recovered from field samples without an enrichment culture procedure. Degrader densities in the furrow soil in fields varied due to differences in insecticide treatment histories. Over 99% of the 659 isolated degraders belonged to the genus Burkholderia. The strains related to the stinkbug symbiotic group predominated among the degraders, indicating a selection for this group in response to fenitrothion. Degraders were also isolated from sugarcane stems, leaves, and rhizosphere in fields that were continuously exposed to fenitrothion. Their density was lower in the plant sections than in the rhizosphere. A phylogenetic analysis of 16S rRNA gene sequences demonstrated that most of the degraders from the plants and rhizosphere clustered with the stinkbug symbiotic group, and some were identical to the midgut symbionts of C. saccharivorus collected from the same field. Our results confirmed that plants and the rhizosphere constituted environmental reservoirs for stinkbug symbiotic degraders. To the best of our knowledge, this is the first study to investigate the composition and abundance of the symbiotic fenitrothion degraders of Burkholderia species in farmers' fields.
Collapse
Affiliation(s)
- Kanako Tago
- Environmental Biofunction Division, National Institute for Agro-Environmental Sciences3–1–3 Kannondai, Tsukuba, Ibaraki 305–8604Japan
| | - Takashi Okubo
- Environmental Biofunction Division, National Institute for Agro-Environmental Sciences3–1–3 Kannondai, Tsukuba, Ibaraki 305–8604Japan
| | - Hideomi Itoh
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) Hokkaido2–17–2–1 Tsukisamu-higashi, Toyohira-ku, Sapporo, Hokkaido 062–8517Japan
| | - Yoshitomo Kikuchi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) Hokkaido2–17–2–1 Tsukisamu-higashi, Toyohira-ku, Sapporo, Hokkaido 062–8517Japan
| | - Tomoyuki Hori
- Research Institute for Environmental Management Technology, AISTTsukuba, Ibaraki 305–8569Japan
| | - Yuya Sato
- Research Institute for Environmental Management Technology, AISTTsukuba, Ibaraki 305–8569Japan
| | - Atsushi Nagayama
- Okinawa Prefectural Agricultural Research CenterItoman, Okinawa 901–0336Japan
| | - Kentaro Hayashi
- Environmental Biofunction Division, National Institute for Agro-Environmental Sciences3–1–3 Kannondai, Tsukuba, Ibaraki 305–8604Japan
| | - Seishi Ikeda
- Memuro Research Station, Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization9–4 Shinsei Minami, Memuro-cho, Kasai-gun, Hokkaido 082–0081Japan
| | - Masahito Hayatsu
- Environmental Biofunction Division, National Institute for Agro-Environmental Sciences3–1–3 Kannondai, Tsukuba, Ibaraki 305–8604Japan
| |
Collapse
|
24
|
Horizontal gene transfer of a bacterial insect toxin gene into the Epichloë fungal symbionts of grasses. Sci Rep 2014; 4:5562. [PMID: 24990771 PMCID: PMC4080199 DOI: 10.1038/srep05562] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/17/2014] [Indexed: 12/11/2022] Open
Abstract
Horizontal gene transfer is recognized as an important factor in genome evolution, particularly when the newly acquired gene confers a new capability to the recipient species. We identified a gene similar to the makes caterpillars floppy (mcf1 and mcf2) insect toxin genes in Photorhabdus, bacterial symbionts of nematodes, in the genomes of the Epichloë fungi, which are intercellular symbionts of grasses. Infection by Epichloë spp. often confers insect resistance to the grass hosts, largely due to the production of fungal alkaloids. A mcf-like gene is present in all of the Epichloë genome sequences currently available but in no other fungal genomes. This suggests the Epichloë genes were derived from a single lineage-specific HGT event. Molecular dating was used to estimate the time of the HGT event at between 7.2 and 58.8 million years ago. The mcf-like coding sequence from Epichloë typhina subsp. poae was cloned and expressed in Escherichia coli. E. coli cells expressing the Mcf protein were toxic to black cutworms (Agrotis ipsilon), whereas E. coli cells containing the vector only were non-toxic. These results suggest that the Epichloëmcf-like genes may be a component, in addition to the fungal alkaloids, of the insect resistance observed in Epichloë-infected grasses.
Collapse
|
25
|
Verstraete B, Peeters C, van Wyk B, Smets E, Dessein S, Vandamme P. Intraspecific variation in Burkholderia caledonica: Europe vs. Africa and soil vs. endophytic isolates. Syst Appl Microbiol 2014; 37:194-9. [DOI: 10.1016/j.syapm.2013.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 11/29/2013] [Accepted: 12/16/2013] [Indexed: 10/25/2022]
|
26
|
Kondorosi E, Mergaert P, Kereszt A. A paradigm for endosymbiotic life: cell differentiation of Rhizobium bacteria provoked by host plant factors. Annu Rev Microbiol 2014; 67:611-28. [PMID: 24024639 DOI: 10.1146/annurev-micro-092412-155630] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Symbiosis between Rhizobium bacteria and legumes leads to the formation of the root nodule. The endosymbiotic bacteria reside in polyploid host cells as membrane-surrounded vesicles where they reduce atmospheric nitrogen to support plant growth by supplying ammonia in exchange for carbon sources and energy. The morphology and physiology of endosymbionts, despite their common function, are highly divergent in different hosts. In galegoid plants, the endosymbionts are terminally differentiated, uncultivable polyploid cells, with remarkably elongated and even branched Y-shaped cells. Bacteroid differentiation is controlled by host peptides, many of which have antibacterial activity and require the bacterial function of BacA. Although the precise and combined action of several hundred host peptides and BacA has yet to be discovered, similarities, especially to certain insect-bacterium symbioses involving likewise host peptides for manipulation of endosymbionts, suggest convergent evolution. Rhizobium-legume symbiosis provides a rich source of information for understanding host-controlled endosymbiotic life in eukaryotic cells.
Collapse
Affiliation(s)
- Eva Kondorosi
- Institut des Sciences du Végétal, CNRS UPR 2355, Gif sur Yvette 91198, France; ,
| | | | | |
Collapse
|
27
|
Bragina A, Cardinale M, Berg C, Berg G. Vertical transmission explains the specific Burkholderia pattern in Sphagnum mosses at multi-geographic scale. Front Microbiol 2013; 4:394. [PMID: 24391630 PMCID: PMC3866706 DOI: 10.3389/fmicb.2013.00394] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 12/03/2013] [Indexed: 11/13/2022] Open
Abstract
The betaproteobacterial genus Burkholderia is known for its versatile interactions with its hosts that can range from beneficial to pathogenic. A plant-beneficial-environmental (PBE) Burkholderia cluster was recently separated from the pathogen cluster, yet still little is known about burkholderial diversity, distribution, colonization, and transmission patterns on plants. In our study, we applied a combination of high-throughput molecular and microscopic methods to examine the aforementioned factors for Burkholderia communities associated with Sphagnum mosses - model plants for long-term associations - in Austrian and Russian bogs. Analysis of 16S rRNA gene amplicons libraries revealed that most of the Burkholderia are part of the PBE group, but a minor fraction was closely related to B. glathei and B. andropogonis from the pathogen cluster. Notably, Burkholderia showed highly similar composition patterns for each moss species independent of the geographic region, and Burkholderia-specific fluorescent in situ hybridization of Sphagnum gametophytes exhibited similar colonization patterns in different Sphagnum species at multi-geographic scales. To explain these patterns, we compared the compositions of the surrounding water, gametophyte-, and sporophyte-associated microbiome at genus level and discovered that Burkholderia were present in the Sphagnum sporophyte and gametophyte, but were absent in the flark water. Therefore, Burkholderia is a part of the core microbiome transmitted from the moss sporophyte to the gametophyte. This suggests a vertical transmission of Burkholderia strains, and thus underlines their importance for the plants themselves.
Collapse
Affiliation(s)
- Anastasia Bragina
- Institute of Environmental Biotechnology, Graz University of TechnologyGraz, Austria
| | - Massimiliano Cardinale
- Institute of Environmental Biotechnology, Graz University of TechnologyGraz, Austria
- Institute of Plant Sciences, Karl-Franzens University of GrazGraz, Austria
| | - Christian Berg
- Institute of Plant Sciences, Karl-Franzens University of GrazGraz, Austria
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of TechnologyGraz, Austria
| |
Collapse
|
28
|
Verstraete B, Janssens S, Lemaire B, Smets E, Dessein S. Phylogenetic lineages in Vanguerieae (Rubiaceae) associated with Burkholderia bacteria in sub-Saharan Africa. AMERICAN JOURNAL OF BOTANY 2013; 100:2380-2387. [PMID: 24275705 DOI: 10.3732/ajb.1300303] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
PREMISE OF THE STUDY It is well known that mutualistic bacteria can provide substantial benefits to their host plants. However, 'how,' 'why,' and the possible applications of such an interaction are only second to the questions 'who is involved?', and 'where does it occur?'. In the coffee family (Rubiaceae), certain species closely interact with endophytic leaf bacteria that are freely distributed among the mesophyll cells. This type of interaction was recently discovered in South Africa. Our aim is to document the bacterial diversity associated with Rubiaceae ('who') and to establish the geographic range of the interaction ('where'). METHODS Representatives of the Vanguerieae tribe in Rubiaceae were investigated for the presence of endophytes with special emphasis on the distributional range of the plant-bacteria association by collecting specimens from different African regions. KEY RESULTS The interaction is found in five genera and is restricted to three major host lineages. The endophytic bacteria belong to the genus Burkholderia and are part of the plant-associated beneficial and environmental group. Some endophytes are similar to B. caledonica, B. graminis, B. phenoliruptrix or B. phytofirmans, while others are classified in OTUs that show no similarity with any previously described Burkholderia species of bacteria. CONCLUSIONS The association is not obligate from the bacterial point of view and is considered a loose and recent interaction, which is demonstrated by the fact that there is no evidence for coevolution. The geographical distribution of the association is restricted by the distributional range of the host plants covering the whole of sub-Saharan Africa.
Collapse
Affiliation(s)
- Brecht Verstraete
- Plant Conservation and Population Biology, KU Leuven, Leuven, Belgium
| | | | | | | | | |
Collapse
|
29
|
Carlier AL, Omasits U, Ahrens CH, Eberl L. Proteomics analysis of Psychotria leaf nodule symbiosis: improved genome annotation and metabolic predictions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:1325-1333. [PMID: 23902262 DOI: 10.1094/mpmi-05-13-0152-r] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Several plant species of the genus Psychotria (Rubiaceae) harbor Burkholderia sp. bacteria within specialized leaf nodules. The bacteria are transmitted vertically between plant generations and have not yet been cultured outside of their host. This symbiosis is considered to be obligatory because plants devoid of symbionts fail to develop into mature individuals. The genome of 'Candidatus Burkholderia kirkii' has been sequenced recently and has revealed evidence of reductive genome evolution, as shown by the proliferation of insertion sequences and the presence of numerous pseudogenes. We employed shotgun proteomics to investigate the expression of 'Ca. B. kirkii' proteins in the leaf nodule. Drawing from this dataset and refined comparative genomics analyses, we designed a new pseudogene prediction algorithm and improved the genome annotation. We also found conclusive evidence that nodule bacteria allocate vast resources to synthesis of secondary metabolites, possibly of the C7N aminocyclitol family. Expression of a putative 2-epi-5-valiolone synthase, a key enzyme of the C7N aminocyclitol synthesis, is high in the nodule population but downregulated in bacteria residing in the shoot apex, suggesting that production of secondary metabolites is particularly important in the leaf nodule.
Collapse
|
30
|
Verstraete B, Janssens S, Smets E, Dessein S. Symbiotic ß-proteobacteria beyond legumes: Burkholderia in Rubiaceae. PLoS One 2013; 8:e55260. [PMID: 23372845 PMCID: PMC3555867 DOI: 10.1371/journal.pone.0055260] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 12/20/2012] [Indexed: 01/06/2023] Open
Abstract
Symbiotic ß-proteobacteria not only occur in root nodules of legumes but are also found in leaves of certain Rubiaceae. The discovery of bacteria in plants formerly not implicated in endosymbiosis suggests a wider occurrence of plant-microbe interactions. Several ß-proteobacteria of the genus Burkholderia are detected in close association with tropical plants. This interaction has occurred three times independently, which suggest a recent and open plant-bacteria association. The presence or absence of Burkholderia endophytes is consistent on genus level and therefore implies a predictive value for the discovery of bacteria. Only a single Burkholderia species is found in association with a given plant species. However, the endophyte species are promiscuous and can be found in association with several plant species. Most of the endophytes are part of the plant-associated beneficial and environmental group, but others are closely related to B. glathei. This soil bacteria, together with related nodulating and non-nodulating endophytes, is therefore transferred to a newly defined and larger PBE group within the genus Burkholderia.
Collapse
Affiliation(s)
- Brecht Verstraete
- Plant Conservation and Population Biology, KU Leuven, Leuven, Belgium.
| | | | | | | |
Collapse
|
31
|
Carlier AL, Eberl L. The eroded genome of a Psychotria leaf symbiont: hypotheses about lifestyle and interactions with its plant host. Environ Microbiol 2012; 14:2757-69. [PMID: 22548823 DOI: 10.1111/j.1462-2920.2012.02763.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Several plant species of the genus Psychotria (Rubiaceae) harbour Burkholderia sp. bacteria within specialized leaf nodules. The bacteria are transmitted vertically between plant generations and have not yet been cultured outside of their host. This symbiosis is also generally described as obligatory because plants devoid of symbionts fail to develop into mature individuals. We sequenced for the first time the genome of the symbiont of Psychotria kirkii in order to shed some light on the nature of their symbiotic relationship. We found that the 4 Mb genome of Candidatus Burkholderia kirkii (B. kirkii) is small for a Burkholderia species and displays features consistent with ongoing genome erosion such as large proportions of pseudogenes and transposable elements. Reductive genome evolution affected a wide array of functional categories that may hinder the ability of the symbiont to be free-living. The genome does not encode functions commonly found in plant symbionts such as nitrogen fixation or plant hormone metabolism. Instead, a collection of genes for secondary metabolites' synthesis is located on the 140 kb plasmid of B. kirkii and suggests that leaf nodule symbiosis benefits the host by providing protection against herbivores or pathogens.
Collapse
Affiliation(s)
- Aurelien L Carlier
- Institute of Plant Biology, University of Zurich, CH-8008 Zurich, Switzerland.
| | | |
Collapse
|
32
|
Lemaire B, Lachenaud O, Persson C, Smets E, Dessein S. Screening for leaf-associated endophytes in the genus Psychotria (Rubiaceae). FEMS Microbiol Ecol 2012; 81:364-72. [PMID: 22404179 DOI: 10.1111/j.1574-6941.2012.01356.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 02/09/2012] [Accepted: 03/04/2012] [Indexed: 12/01/2022] Open
Abstract
Burkholderia endophytes were identified within the leaves of non-nodulated members of the genus Psychotria. In contrast to leaf-nodulated Psychotria species, which are known to accommodate their endosymbionts into specialized endosymbiont-housing structures, non-nodulated species lack bacterial leaf nodules and harbor endosymbionts intercellularly between mesophyll cells. Based on molecular data (rps16, trnG, and trnLF), the phylogenetic reconstruction of the host plants revealed a separate origin of leaf-nodulated and non-nodulated Psychotria species. Despite a distinct phylogenetic position of the two host clades, the endophytes of the non-nodulated plants were not placed into a single monophyletic group but were found to be closely related to the leaf-nodulated endosymbionts. The observation of genetically similar endophytes in both nodulated and non-nodulated Psychotria lineages suggests that the host plant is playing a crucial role in the induction of leaf nodule formation. Moreover, the concentration of endosymbionts into specialized leaf nodules may be considered as a more derived evolutionary adaptation of the host plant, serving as an interface structure to facilitate metabolic exchange between plant and endosymbiont.
Collapse
Affiliation(s)
- Benny Lemaire
- Laboratory of Plant Systematics, KULeuven, Leuven, Belgium.
| | | | | | | | | |
Collapse
|
33
|
Endosymbiont transmission mode in bacterial leaf nodulation as revealed by a population genetic study of Psychotria leptophylla. Appl Environ Microbiol 2011; 78:284-7. [PMID: 22038605 DOI: 10.1128/aem.06130-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Leaf-nodulated plants are colonized by vertically inherited bacterial endosymbionts, which maintain symbioses throughout host generations. The permanent character of the interaction implies phylogenetic congruence between the host and the endosymbiont. However, the present population genetic study of Psychotria leptophylla provides evidence for a mixed symbiont transmission involving both vertical inheritance and horizontal transfers from the environment.
Collapse
|