1
|
Li D, Liang H, Wei Y, Xiao H, Peng X, Pan W. Exploring the potential of histone demethylase inhibition in multi-therapeutic approaches for cancer treatment. Eur J Med Chem 2024; 264:115999. [PMID: 38043489 DOI: 10.1016/j.ejmech.2023.115999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/05/2023]
Abstract
Histone demethylases play a critical role in gene transcription regulation and have been implicated in cancer. Numerous reports have highlighted the overexpression of histone demethylases, such as LSD1 and JmjC, in various malignant tumor tissues, identifying them as effective therapeutic targets for cancer treatment. Despite many histone demethylase inhibitors entering clinical trials, their clinical efficacy has been limited. Therefore, combination therapies based on histone demethylase inhibitors, along with other modulators like dual-acting inhibitors, have gained significant attention and made notable progress in recent years. In this review, we provide an overview of recent advances in drug discovery targeting histone demethylases, focusing specifically on drug combination therapy and histone demethylases-targeting dual inhibitors. We discuss the rational design, pharmacodynamics, pharmacokinetics, and clinical status of these approaches. Additionally, we summarize the co-crystal structures of LSD1 inhibitors and their target proteins as well as describe the corresponding binding interactions. Finally, we also provided the challenges and future directions for utilizing histone demethylases in cancer therapy, such as PROTACs and molecular glue etc.
Collapse
Affiliation(s)
- Deping Li
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Hailiu Liang
- School of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Gannan Medical University, Ganzhou, 341000, China
| | - Yifei Wei
- School of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Gannan Medical University, Ganzhou, 341000, China
| | - Hao Xiao
- School of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Gannan Medical University, Ganzhou, 341000, China.
| | - Xiaopeng Peng
- School of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Gannan Medical University, Ganzhou, 341000, China.
| | - Wanyi Pan
- School of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
2
|
Yang K, Liu H. Uncovering New Conformational States of the Substrate Binding Pocket of LSD1 Potential for Inhibitor Design via Funnel Metadynamics. J Phys Chem B 2024; 128:137-149. [PMID: 38151469 DOI: 10.1021/acs.jpcb.3c06900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Lysine-specific demethylase 1 (LSD1) is a promising therapeutic target for cancer therapy. So far, over 80 crystal structures of LSD1 in different complex states have been deposited in the Protein Data Bank, which are valuable resources for performing structure-based drug design. However, among all of the crystal structures of LSD1, the substrate binding pocket, which is the most efficient druggable site for designing LSD1 inhibitors at present, is very similar no matter whether LSD1 is in the apo or any holo forms, which is inconsistent with its versatile demethylase functions. To investigate whether the substrate binding pocket is rigid or exhibits other representative conformations different from the crystal conformations that are feasible for designing new LSD1 inhibitors, we performed funnel metadynamics simulations to study the conformation dynamics of LSD1 in the binding process of two effective LSD1 inhibitors (CC-90011 and 6X0, CC-90011 undergoing clinical trials). Our results showed that the entrance of the substrate binding pocket is very flexible. Two representative entrance conformations of LSD1 counting against binding with the substrate of histone H3 were detected, which may be used for structure-based LSD1 inhibitor design. Besides, alternative optimal binding modes and prebinding modes for both inhibitors were also detected, which depicted that the key interactions changed along with the binding process. Our results should provide great help for LSD1 inhibitor design.
Collapse
Affiliation(s)
- Kecheng Yang
- National Supercomputing Center in Zhengzhou, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Hongmin Liu
- Key Lab of Advanced Drug Preparation Technologies, Ministry of Education of China, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
3
|
Baby S, Shinde SD, Kulkarni N, Sahu B. Lysine-Specific Demethylase 1 (LSD1) Inhibitors: Peptides as an Emerging Class of Therapeutics. ACS Chem Biol 2023; 18:2144-2155. [PMID: 37812385 DOI: 10.1021/acschembio.3c00386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Aberrant expression of the epigenetic regulator lysine-specific demethylase 1 (LSD1) has been associated with the incidence of many diseases, particularly cancer, and it has evolved as a promising epigenetic target over the years for treatment. The advent of LSD1 inhibitor-based clinical utility began with tranylcypromine, and it is now considered an inevitable scaffold in the search for other irreversible novel LSD1 inhibitors (IMG-7289 or bomedemstat, ORY1001 or iadademstat, ORY-2001 or vafidemstat, GSK2879552, and INCB059872). Moreover, numerous reversible inhibitors for LSD1 have been reported in the literature, including clinical candidates CC-90011 (pulrodemstat) and SP-2577 (seclidemstat). There is parallel mining for peptide-based LSD1 inhibitors, which exploits the opportunities in the LSD1 substrate binding pocket. This Review highlights the research progress on reversible and irreversible peptide/peptide-derived LSD1 inhibitors. For the first time, we comprehensively organized the peptide-based LSD1 inhibitors from the design strategy. Peptide inhibitors of LSD1 are classified as H3 peptide and SNAIL1 peptide derivatives, along with miscellaneous peptides that include naturally occurring LSD1 inhibitors.
Collapse
Affiliation(s)
- Stephin Baby
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 380054, India
| | - Suchita Dattatray Shinde
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 380054, India
| | - Neeraj Kulkarni
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 380054, India
| | - Bichismita Sahu
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 380054, India
| |
Collapse
|
4
|
Kumar A, Emdad L, Fisher PB, Das SK. Targeting epigenetic regulation for cancer therapy using small molecule inhibitors. Adv Cancer Res 2023; 158:73-161. [PMID: 36990539 DOI: 10.1016/bs.acr.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Cancer cells display pervasive changes in DNA methylation, disrupted patterns of histone posttranslational modification, chromatin composition or organization and regulatory element activities that alter normal programs of gene expression. It is becoming increasingly clear that disturbances in the epigenome are hallmarks of cancer, which are targetable and represent attractive starting points for drug creation. Remarkable progress has been made in the past decades in discovering and developing epigenetic-based small molecule inhibitors. Recently, epigenetic-targeted agents in hematologic malignancies and solid tumors have been identified and these agents are either in current clinical trials or approved for treatment. However, epigenetic drug applications face many challenges, including low selectivity, poor bioavailability, instability and acquired drug resistance. New multidisciplinary approaches are being designed to overcome these limitations, e.g., applications of machine learning, drug repurposing, high throughput virtual screening technologies, to identify selective compounds with improved stability and better bioavailability. We provide an overview of the key proteins that mediate epigenetic regulation that encompass histone and DNA modifications and discuss effector proteins that affect the organization of chromatin structure and function as well as presently available inhibitors as potential drugs. Current anticancer small-molecule inhibitors targeting epigenetic modified enzymes that have been approved by therapeutic regulatory authorities across the world are highlighted. Many of these are in different stages of clinical evaluation. We also assess emerging strategies for combinatorial approaches of epigenetic drugs with immunotherapy, standard chemotherapy or other classes of agents and advances in the design of novel epigenetic therapies.
Collapse
|
5
|
Takada Y, Yamashita Y, Itoh Y, Suzuki T. Medicinal Chemistry Research on Targeting Epigenetic Complexes. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Kamerzell TJ, Mikell B, Chen L, Elias H, Dawn B, MacRae C, Middaugh CR. The structural basis of histone modifying enzyme specificity and promiscuity: Implications for metabolic regulation and drug design. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 130:189-243. [PMID: 35534108 DOI: 10.1016/bs.apcsb.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Histone modifying enzymes regulate chromatin architecture through covalent modifications and ultimately control multiple aspects of cellular function. Disruption of histone modification leads to changes in gene expression profiles and may lead to disease. Both small molecule inhibitors and intermediary metabolites have been shown to modulate histone modifying enzyme activity although our ability to identify successful drug candidates or novel metabolic regulators of these enzymes has been limited. Using a combination of large scale in silico screens and in vivo phenotypic analysis, we identified several small molecules and intermediary metabolites with distinctive HME activity. Our approach using unsupervised learning identifies the chemical fingerprints of both small molecules and metabolites that facilitate recognition by the enzymes active sites which can be used as a blueprint to design novel inhibitors. Furthermore, this work supports the idea that histone modifying enzymes sense intermediary metabolites integrating genes, environment and cellular physiology.
Collapse
Affiliation(s)
- Tim J Kamerzell
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, United States; Division of Internal Medicine, HCA MidWest Health, Overland Park, KS, United States; Cardiovascular Division, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States; Division of Cardiovascular Diseases, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS, United States; Applied AI Technologies, LLC, Overland Park, KS, United States.
| | - Brittney Mikell
- Cardiovascular Division, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Lei Chen
- Division of Cardiovascular Diseases, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Harold Elias
- Division of Cardiovascular Diseases, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Buddhadeb Dawn
- Division of Cardiovascular Diseases, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Calum MacRae
- Cardiovascular Division, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - C Russell Middaugh
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, United States
| |
Collapse
|
7
|
Dai XJ, Liu Y, Xue LP, Xiong XP, Zhou Y, Zheng YC, Liu HM. Correction to "Reversible Lysine Specific Demethylase 1 (LSD1) Inhibitors: A Promising Wrench to Impair LSD1". J Med Chem 2021; 64:6410-6411. [PMID: 33871995 DOI: 10.1021/acs.jmedchem.0c02176] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Zhang Y, Rong D, Li B, Wang Y. Targeting Epigenetic Regulators with Covalent Small-Molecule Inhibitors. J Med Chem 2021; 64:7900-7925. [PMID: 33599482 DOI: 10.1021/acs.jmedchem.0c02055] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epigenetic regulation of gene expression plays a critical role in various physiological processes, and epigenetic dysregulation is implicated in a number of diseases, prominently including cancer. Epigenetic regulators have been validated as potential therapeutic targets, and significant progress has been made in the discovery and development of epigenetic-based inhibitors. However, successful epigenetic drug discovery is still facing challenges, including moderate selectivity, limited efficacy, and acquired drug resistance. Inspired by the advantages of covalent small-molecule inhibitors, targeted covalent inhibition has attracted increasing interest in epigenetic drug discovery. In this review, we comprehensively summarize the structure-based design and characterization of covalent inhibitors targeting epigenetic writers, readers, and erasers and highlight their potential benefits in enhancing selectivity across the enzyme family and improving in vivo efficacy. We also discuss the challenges and opportunities of covalent small-molecule inhibitors and hope to shed light on future epigenetic drug discovery.
Collapse
Affiliation(s)
- Yi Zhang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Deqin Rong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Bingbing Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yuanxiang Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
9
|
Kanouni T, Severin C, Cho RW, Yuen NYY, Xu J, Shi L, Lai C, Del Rosario JR, Stansfield RK, Lawton LN, Hosfield D, O’Connell S, Kreilein MM, Tavares-Greco P, Nie Z, Kaldor SW, Veal JM, Stafford JA, Chen YK. Discovery of CC-90011: A Potent and Selective Reversible Inhibitor of Lysine Specific Demethylase 1 (LSD1). J Med Chem 2020; 63:14522-14529. [DOI: 10.1021/acs.jmedchem.0c00978] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Toufike Kanouni
- Fount Therapeutics, LLC, San Diego, California 92130, United States
| | - Christophe Severin
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - Robert W. Cho
- Quanticel Pharmaceuticels, San Francisco, California 94158, United States
| | - Natalie Y.-Y. Yuen
- Oric Pharmaceuticals, South San Francisco, California 94080, United States
| | - Jiangchun Xu
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - Lihong Shi
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - Chon Lai
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - Joselyn R. Del Rosario
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | | | - Lee N. Lawton
- Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - David Hosfield
- University of Chicago, Chicago, Illinois 60637, United States
| | | | | | | | - Zhe Nie
- Schrödinger, Inc., San Diego, California 92121, United States
| | | | - James M. Veal
- 858 Therapeutics, Inc., San Diego, California 92121, United States
| | | | - Young K. Chen
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| |
Collapse
|
10
|
Ma L, Wang H, You Y, Ma C, Liu Y, Yang F, Zheng Y, Liu H. Exploration of 5-cyano-6-phenylpyrimidin derivatives containing an 1,2,3-triazole moiety as potent FAD-based LSD1 inhibitors. Acta Pharm Sin B 2020; 10:1658-1668. [PMID: 33088686 PMCID: PMC7563019 DOI: 10.1016/j.apsb.2020.02.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/24/2020] [Accepted: 02/07/2020] [Indexed: 02/06/2023] Open
Abstract
Histone lysine specific demethylase 1 (LSD1) has become a potential therapeutic target for the treatment of cancer. Discovery and develop novel and potent LSD1 inhibitors is a challenge, although several of them have already entered into clinical trials. Herein, for the first time, we reported the discovery of a series of 5-cyano-6-phenylpyrimidine derivatives as LSD1 inhibitors using flavin adenine dinucleotide (FAD) similarity-based designing strategy, of which compound 14q was finally identified to repress LSD1 with IC50 = 183 nmol/L. Docking analysis suggested that compound 14q fitted well into the FAD-binding pocket. Further mechanism studies showed that compound 14q may inhibit LSD1 activity competitively by occupying the FAD binding sites of LSD1 and inhibit cell migration and invasion by reversing epithelial to mesenchymal transition (EMT). Overall, these findings showed that compound 14q is a suitable candidate for further development of novel FAD similarity-based LSD1 inhibitors.
Collapse
Key Words
- AML, acute myeloid leukemia
- ANOVA, analysis of variance
- Anticancer
- EMT, epithelial to mesenchymal transition
- ESI, electrospray ionization
- FAD, flavin adenine dinucleotide
- FBS, fetal bovine serum
- Flavin adenine dinucleotide (FAD)
- Gastric cancer
- HRMS, high resolution mass spectra
- IC50, half maximal inhibitory concentration
- LSD1 inhibitors
- LSD1, histone lysine specific demethylase 1
- MOE, molecular operating environment
- PAINS, pan assay interference compounds
- PDB, the Protein Data Bank
- Pyrimidine
- RLU, relative light units
- SARs, structure–activity relationship studies
- TCP, tranylcypromine
- VDW, van der Waals
Collapse
Affiliation(s)
| | | | - Yinghua You
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Chaoya Ma
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yuejiao Liu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Feifei Yang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yichao Zheng
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Hongmin Liu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
11
|
Sarno F, Nebbioso A, Altucci L. DOT1L: a key target in normal chromatin remodelling and in mixed-lineage leukaemia treatment. Epigenetics 2019; 15:439-453. [PMID: 31790636 PMCID: PMC7188393 DOI: 10.1080/15592294.2019.1699991] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Methylation of histone 3 at lysine 79 (H3K79) is one of the principal mechanisms involved in gene expression. The histone methyltransferase DOT1L, which mono-, di- and trimethylates H3K79 using S-adenosyl-L-methionine as a co-factor, is involved in cell development, cell cycle progression, and DNA damage repair. However, changes in normal expression levels of this enzyme are found in prostate, breast, and ovarian cancer. High levels of H3K79me are also detected in acute myeloid leukaemia patients bearing MLL rearrangements (MLL-r). MLL translocations are found in approximately 80% of paediatric patients, leading to poor prognosis. DOT1L is recruited on DNA and induces hyperexpression of HOXA9 and MEIS1. Based on these findings, selective drugs have been developed to induce apoptosis in MLL-r leukaemia cells by specifically inhibiting DOT1L. The most potent DOT1L inhibitor pinometostat has been investigated in Phase I clinical trials for treatment of paediatric and adult patients with MLL-driven leukaemia, showing promising results.
Collapse
Affiliation(s)
- Federica Sarno
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli" Napoli, Napoli, Italy
| | - Angela Nebbioso
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli" Napoli, Napoli, Italy
| | - Lucia Altucci
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli" Napoli, Napoli, Italy
| |
Collapse
|
12
|
Jarmasz JS, Stirton H, Davie JR, Del Bigio MR. DNA methylation and histone post-translational modification stability in post-mortem brain tissue. Clin Epigenetics 2019; 11:5. [PMID: 30635019 PMCID: PMC6330433 DOI: 10.1186/s13148-018-0596-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 12/10/2018] [Indexed: 12/11/2022] Open
Abstract
Background Epigenetic (including DNA and histone) modifications occur in a variety of neurological disorders. If epigenetic features of brain autopsy material are to be studied, it is critical to understand the post-mortem stability of the modifications. Methods Pig and mouse brain tissue were formalin-fixed and paraffin-embedded, or frozen after post-mortem delays of 0, 24, 48, and 72 h. Epigenetic modifications frequently reported in the literature were studied by DNA agarose gel electrophoresis, DNA methylation enzyme-linked immunosorbent assays, Western blotting, and immunohistochemistry. We constructed a tissue microarray of human neocortex samples with devitalization or death to fixation times ranging from < 60 min to 5 days. Results In pig and mouse brain tissue, we found that DNA cytosine modifications (5mC, 5hmC, 5fC, and 5caC) were stable for ≥ 72 h post-mortem. Histone methylation was generally stable for ≥ 48 h (H3K9me2/K9me3, H3K27me2, H3K36me3) or ≥ 72 h post-mortem (H3K4me3, H3K27me3). Histone acetylation was generally less stable. The levels of H3K9ac, H3K27ac, H4K5ac, H4K12ac, and H4K16ac declined as early as ≤ 24 h post-mortem, while the levels of H3K14ac did not change at ≥ 48 h. Immunohistochemistry showed that histone acetylation loss occurred primarily in the nuclei of large neurons, while immunoreactivity in glial cell nuclei was relatively unchanged. In the human brain tissue array, immunoreactivity for DNA cytosine modifications and histone methylation was stable, while subtle changes were apparent in histone acetylation at 4 to 5 days post-mortem. Conclusion We conclude that global epigenetic studies on human post-mortem brain tissue are feasible, but great caution is needed for selection of post-mortem delay matched controls if histone acetylation is of interest. Electronic supplementary material The online version of this article (10.1186/s13148-018-0596-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jessica S Jarmasz
- Department of Human Anatomy and Cell Science, University of Manitoba, Room 674 JBRC - 727 McDermot Avenue, Winnipeg, MB, R3E 3P4, Canada
| | - Hannah Stirton
- Max Rady College of Medicine, University of Manitoba, Room 260 Brodie Centre - 727 McDermot Avenue, Winnipeg, MB, R3E 3P5, Canada
| | - James R Davie
- Department of Biochemistry and Medical Genetics, University of Manitoba, Room 333A BMSB, 745 McDermot Avenue, Winnipeg, MB, R3E 0J9, Canada
| | - Marc R Del Bigio
- Department of Pathology, University of Manitoba, Room 401 Brodie Centre - 727 McDermot Avenue, Winnipeg, MB, R3E 3P5, Canada.
| |
Collapse
|
13
|
Zalloum WA, Zalloum HM. Exploring the Active Center of the LSD1/CoREST Complex by Molecular Dynamics Simulation Utilizing Its Co-crystallized Co-factor Tetrahydrofolate as a Probe. J Chem Inf Model 2017; 57:3022-3031. [PMID: 29161028 DOI: 10.1021/acs.jcim.7b00256] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Epigenetic targeting of cancer is a recent effort to manipulate the gene without destroying the genetic material. Lysine-specific demethylase 1 (LSD1) is one of the enzymes associated with the chromatin for post-translational modifications, where it demethylates lysine amino acid in the chromatin H3 tail. Many studies showed that inhibiting LSD1 could potentially be used to treat cancer epigenetically. LSD1 is associated with its corepressor protein CoREST, and it uses tetrahydrofolate as a co-factor to accept CH2 from the demethylation process. In this study, the co-crystallized co-factor tetrahydrofolate was utilized to determine possible binding regions in the active center of the LSD1/CoREST complex. Also, the flexibility of the complex has been investigated by molecular dynamics simulation and subsequent analysis by clustering and principal component analysis. This research supported other studies and showed that LSD1/CoREST complex exists in two main conformational structures: open and closed. Furthermore, this study showed that tetrahydrofolate stably binds to the LSD1/CoREST complex, in its open conformation, at its entrance. It then binds to the core of the complex, inducing the closed conformation. Furthermore, the interactions of tetrahydrofolate to these two binding regions and the corresponding binding mode of tetrahydrofolate were investigated to be used in structure-based drug design.
Collapse
Affiliation(s)
- Waleed A Zalloum
- Department of Pharmacy, Faculty of Health Science, American University of Madaba , P.O. Box 2882, Amman 11821, Jordan
| | - Hiba M Zalloum
- Hamdi Mango Research Center for Scientific Research, The University of Jordan , Amman 11942, Jordan
| |
Collapse
|
14
|
Boehm D, Ott M. Host Methyltransferases and Demethylases: Potential New Epigenetic Targets for HIV Cure Strategies and Beyond. AIDS Res Hum Retroviruses 2017; 33:S8-S22. [PMID: 29140109 DOI: 10.1089/aid.2017.0180] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A successful HIV cure strategy may require reversing HIV latency to purge hidden viral reservoirs or enhancing HIV latency to permanently silence HIV transcription. Epigenetic modifying agents show promise as antilatency therapeutics in vitro and ex vivo, but also affect other steps in the viral life cycle. In this review, we summarize what we know about cellular DNA and protein methyltransferases (PMTs) as well as demethylases involved in HIV infection. We describe the biology and function of DNA methyltransferases, and their controversial role in HIV infection. We further explain the biology of PMTs and their effects on lysine and arginine methylation of histone and nonhistone proteins. We end with a focus on protein demethylases, their unique modes of action and their emerging influence on HIV infection. An outlook on the use of methylation-modifying agents in investigational HIV cure strategies is provided.
Collapse
Affiliation(s)
- Daniela Boehm
- Gladstone Institute of Virology and Immunology, San Francisco, California
- Department of Medicine, University of California, San Francisco, California
| | - Melanie Ott
- Gladstone Institute of Virology and Immunology, San Francisco, California
- Department of Medicine, University of California, San Francisco, California
| |
Collapse
|
15
|
Jin Y, Huo B, Fu X, Cheng Z, Zhu J, Zhang Y, Hao T, Hu X. LSD1 knockdown reveals novel histone lysine methylation in human breast cancer MCF-7 cells. Biomed Pharmacother 2017; 92:896-904. [DOI: 10.1016/j.biopha.2017.05.106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/19/2017] [Accepted: 05/22/2017] [Indexed: 02/03/2023] Open
|
16
|
Abstract
![]()
Post-translational
modifications of histones by protein methyltransferases
(PMTs) and histone demethylases (KDMs) play an important role in the
regulation of gene expression and transcription and are implicated
in cancer and many other diseases. Many of these enzymes also target
various nonhistone proteins impacting numerous crucial biological
pathways. Given their key biological functions and implications in
human diseases, there has been a growing interest in assessing these
enzymes as potential therapeutic targets. Consequently, discovering
and developing inhibitors of these enzymes has become a very active
and fast-growing research area over the past decade. In this review,
we cover the discovery, characterization, and biological application
of inhibitors of PMTs and KDMs with emphasis on key advancements in
the field. We also discuss challenges, opportunities, and future directions
in this emerging, exciting research field.
Collapse
Affiliation(s)
- H Ümit Kaniskan
- Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Michael L Martini
- Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Jian Jin
- Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| |
Collapse
|
17
|
Tormos JR, Suarez MB, Fitzpatrick PF. 13C kinetic isotope effects on the reaction of a flavin amine oxidase determined from whole molecule isotope effects. Arch Biochem Biophys 2016; 612:115-119. [PMID: 27815088 PMCID: PMC5257176 DOI: 10.1016/j.abb.2016.10.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 12/14/2022]
Abstract
A large number of flavoproteins catalyze the oxidation of amines. Because of the importance of these enzymes in metabolism, their mechanisms have previously been studied using deuterium, nitrogen, and solvent isotope effects. While these results have been valuable for computational studies to distinguish among proposed mechanisms, a measure of the change at the reacting carbon has been lacking. We describe here the measurement of a 13C kinetic isotope effect for a representative amine oxidase, polyamine oxidase. The isotope effect was determined by analysis of the isotopic composition of the unlabeled substrate, N, N'-dibenzyl-1,4-diaminopropane, to obtain a pH-independent value of 1.025. The availability of a 13C isotope effect for flavoprotein-catalyzed amine oxidation provides the first measure of the change in bond order at the carbon involved in this carbon-hydrogen bond cleavage and will be of value to understanding the transition state structure for this class of enzymes.
Collapse
Affiliation(s)
- José R Tormos
- Department of Chemistry and Biochemistry, St. Mary's University, San Antonio, TX 78228, United States
| | - Marina B Suarez
- Department of Geological Sciences, University of Texas-San Antonio, San Antonio, TX 78249, United States
| | - Paul F Fitzpatrick
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229, United States.
| |
Collapse
|
18
|
Cakir K, Erdem SS, Atalay VE. ONIOM calculations on serotonin degradation by monoamine oxidase B: insight into the oxidation mechanism and covalent reversible inhibition. Org Biomol Chem 2016; 14:9239-9252. [PMID: 27605388 DOI: 10.1039/c6ob01175f] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Monoamine oxidase (MAO) is an enzyme which catalyzes the oxidation of neurotransmitter amines and regulates their level. There are two forms of the enzyme with 70% similarity, known as MAO-A and MAO-B. MAO inhibitors are used in the treatment of neurological disorders such as depression, Parkinson's and Alzheimer's diseases. Therefore, understanding the chemical steps of MAO catalyzed amine oxidation is crucial for rational drug design. However, despite many experimental studies and recent computational efforts in the literature, the amine oxidation mechanism by MAO enzymes is still controversial. The polar nucleophilic mechanism and hydride transfer mechanisms are under debate in recent QM/MM studies. In this study, the serotonin oxidation mechanism by MAO was explored via the ONIOM (QM : QM) methodology at the M06-2X/6-31+G(d,p):PM6 level. A modified MAO mechanism involving a covalent reversible inhibition step via formation of flavin N5 ylide was proposed. This mechanism can be used to modulate the potency and reversibility of novel mechanism-based covalent inhibitors by intelligent modifications of the structure of the inhibitors. NBO donor-acceptor analysis confirms that the rate-determining αC-H cleavage step is a hybrid of hydride and proton transfer where hydride transfer dominates over the proton transfer. The functional role of covalent FAD was also investigated by calculating the activation energy of noncovalent FAD models where a 22 fold decrease in the rate of catalysis was predicted. Geometrical features imply that the function of the covalent bond in FAD might be to maintain the correct geometry and conformation for a more efficient catalysis.
Collapse
Affiliation(s)
- Kubra Cakir
- Marmara University, Department of Chemistry, Faculty of Arts and Sciences, 34722 Göztepe, Istanbul, Turkey.
| | | | | |
Collapse
|
19
|
Mechanisms of histone lysine-modifying enzymes: A computational perspective on the role of the protein environment. J Mol Graph Model 2016; 67:69-84. [DOI: 10.1016/j.jmgm.2016.04.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/28/2016] [Accepted: 04/29/2016] [Indexed: 12/13/2022]
|
20
|
Langley GW, Brinkø A, Münzel M, Walport LJ, Schofield CJ, Hopkinson RJ. Analysis of JmjC Demethylase-Catalyzed Demethylation Using Geometrically-Constrained Lysine Analogues. ACS Chem Biol 2016; 11:755-62. [PMID: 26555343 DOI: 10.1021/acschembio.5b00738] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The dynamic post-translational modifications of histones play important roles in the regulation of transcription in animals. The demethylation of N(ε)-methyl lysine residues in the N-terminal tail of histone H3 is catalyzed by demethylases, of which the largest family is the ferrous iron and 2-oxoglutarate dependent demethylases (JmjC KDMs), which catalyze demethylation via initial hydroxylation of the N-methyl groups. We report studies on the conformational requirements of the JmjC KDM substrates using N-methylated lysine analogues prepared by metathesis reactions of suitably protected N-allylglycine. The results support the proposed requirement for a positively charged N(ε)-amino group in JmjC KDM catalysis. Demethylation of a trans-C-4/C-5 dehydrolysine substrate analogue was observed with representative KDM4 subfamily members KDM4A, KDM4B and KDM4E, and KDM7B, which are predicted, based on crystallographic analyses, to bind the N(ε)-methylated lysine residue in different conformations during catalysis. This information may be useful in the design of JmjC KDM selective inhibitors.
Collapse
Affiliation(s)
- Gareth W Langley
- Chemistry Research Laboratory , 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Anne Brinkø
- Chemistry Research Laboratory , 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
- Department of Chemistry, Aarhus University , Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Martin Münzel
- Chemistry Research Laboratory , 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Louise J Walport
- Chemistry Research Laboratory , 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | | | - Richard J Hopkinson
- Chemistry Research Laboratory , 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| |
Collapse
|
21
|
McAllister TE, England KS, Hopkinson RJ, Brennan PE, Kawamura A, Schofield CJ. Recent Progress in Histone Demethylase Inhibitors. J Med Chem 2016; 59:1308-29. [PMID: 26710088 DOI: 10.1021/acs.jmedchem.5b01758] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
There is increasing interest in targeting histone N-methyl-lysine demethylases (KDMs) with small molecules both for the generation of probes for target exploration and for therapeutic purposes. Here we update on previous reviews on the inhibition of the lysine-specific demethylases (LSDs or KDM1s) and JmjC families of N-methyl-lysine demethylases (JmjC KDMs, KDM2-7), focusing on the academic and patent literature from 2014 to date. We also highlight recent biochemical, biological, and structural studies which are relevant to KDM inhibitor development.
Collapse
Affiliation(s)
- Tom E McAllister
- Chemistry Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford, OX1 3TA, U.K
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford , Old Road Campus, Roosevelt Drive, Headington, OX3 7BN, U.K
| | - Katherine S England
- Structural Genomics Consortium, University of Oxford , Old Road Campus, Roosevelt Drive, Headington, OX3 7DQ, U.K
- Target Discovery Institute, University of Oxford , NDM Research Building, Roosevelt Drive, Headington, OX3 7FZ, U.K
| | - Richard J Hopkinson
- Chemistry Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford, OX1 3TA, U.K
| | - Paul E Brennan
- Structural Genomics Consortium, University of Oxford , Old Road Campus, Roosevelt Drive, Headington, OX3 7DQ, U.K
- Target Discovery Institute, University of Oxford , NDM Research Building, Roosevelt Drive, Headington, OX3 7FZ, U.K
| | - Akane Kawamura
- Chemistry Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford, OX1 3TA, U.K
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford , Old Road Campus, Roosevelt Drive, Headington, OX3 7BN, U.K
| | - Christopher J Schofield
- Chemistry Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford, OX1 3TA, U.K
| |
Collapse
|
22
|
[Antiproliferative effect of silencing LSD1 gene on Jurkat cell line and its mechanism]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2016; 37:56-60. [PMID: 26876255 PMCID: PMC7342296 DOI: 10.3760/cma.j.issn.0253-2727.2016.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE To investigate the effect of silencing LSD1 gene by RNA interference on the proliferation, apoptosis on human lymphocytic leukemia Jurkat cell line and its mechanism. METHODS The hairpin- like oligonucleotide sequences targeting LSD1 gene was transfected into Jurkat cells by lipofectamine(TM) 2000. The LSD1 mRNA and protein were detected by RQ- PCR and Western blot. Cell growth was determined by MTT. Cell apoptosis was analyzed by flow cytometry. The expression of Bcl-2, Bax, procaspase- 3, and histone H3K4me, H3K4me2, H3K4me3, Act- H3, H3K9me were detected by Western blot. RESULTS LSD1 mRNA was markedly suppressed by the shRNA targeting LSD1. LSD1 shRNA suppressed the proliferation and induced cells apoptosis of Jurkat cells. The cell apoptotic rate was (41.34±3.58)%, (3.45±1.54)%, (1.76±0.52)% in LSD1 shRNA, Neg-shRNA and Blank respectively, the difference among them was statistically significant (P<0.05). LSD1 shRNA down- regulated the expressions of Bcl- 2 and procaspase- 3, and up- regulated the expression of Bax. The methylation of H3K4me1, me2 and acetylation of Act- H3 improved without change of the methylation of H3K4me3. CONCLUSIONS Deplete of LSD1 gene maybe through modifying the methylation of histone H3K4 to promote the cell apoptosis and inhibit cell growth in Jurkat cell line.
Collapse
|
23
|
García-Guevara F, Avelar M, Ayala M, Segovia L. Computational Tools Applied to Enzyme Design − a review. ACTA ACUST UNITED AC 2016. [DOI: 10.1515/boca-2015-0009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
AbstractThe protein design toolbox has been greatly improved by the addition of enzyme computational simulations. Not only do they warrant a more ambitious and thorough exploration of sequence space, but a much higher number of variants and protein-ligand systems can be analyzed in silico compared to experimental engineering methods. Modern computational tools are being used to redesign and also for de novo generation of enzymes. These approaches are contingent on a deep understanding of the reaction mechanism and the enzyme’s three-dimensional structure coordinates, but the wealth of information produced by these analyses leads to greatly improved or even totally new types of catalysis.
Collapse
|
24
|
Hopkinson RJ, Leung IKH, Smart TJ, Rose NR, Henry L, Claridge TDW, Schofield CJ. Studies on the Glutathione-Dependent Formaldehyde-Activating Enzyme from Paracoccus denitrificans. PLoS One 2015; 10:e0145085. [PMID: 26675168 PMCID: PMC4682968 DOI: 10.1371/journal.pone.0145085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 11/26/2015] [Indexed: 12/15/2022] Open
Abstract
Formaldehyde is a toxin and carcinogen that is both an environmental pollutant and an endogenous metabolite. Formaldehyde metabolism, which is probably essential for all aerobic cells, likely proceeds via multiple mechanisms, including via a glutathione-dependent pathway that is widely conserved in bacteria, plants and animals. However, it is unclear whether the first step in the glutathione-dependent pathway (i.e. formation of S-hydroxymethylglutathione (HMG)) is enzyme-catalysed. We report studies on glutathione-dependent formaldehyde-activating enzyme (GFA) from Paracoccus denitrificans, which has been proposed to catalyse HMG formation from glutathione and formaldehyde on the basis of studies using NMR exchange spectroscopy (EXSY). Although we were able to replicate the EXSY results, time course experiments unexpectedly imply that GFA does not catalyse HMG formation under standard conditions. However, GFA was observed to bind glutathione using NMR and mass spectrometry. Overall, the results reveal that GFA binds glutathione but does not directly catalyse HMG formation under standard conditions. Thus, it is possible that GFA acts as a glutathione carrier that acts to co-localise glutathione and formaldehyde in a cellular context.
Collapse
Affiliation(s)
- Richard J. Hopkinson
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Ivanhoe K. H. Leung
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Tristan J. Smart
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Nathan R. Rose
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Luc Henry
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Timothy D. W. Claridge
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Christopher J. Schofield
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
25
|
How mutations affecting the ligand-receptor interactions: a combined MD and QM/MM calculation on CYP2E1 and its two mutants. Chem Res Chin Univ 2015. [DOI: 10.1007/s40242-015-5071-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
26
|
Burg JM, Link JE, Morgan BS, Heller FJ, Hargrove AE, McCafferty DG. KDM1 class flavin-dependent protein lysine demethylases. Biopolymers 2015; 104:213-46. [PMID: 25787087 PMCID: PMC4747437 DOI: 10.1002/bip.22643] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/02/2015] [Accepted: 03/07/2015] [Indexed: 12/11/2022]
Abstract
Flavin-dependent, lysine-specific protein demethylases (KDM1s) are a subfamily of amine oxidases that catalyze the selective posttranslational oxidative demethylation of methyllysine side chains within protein and peptide substrates. KDM1s participate in the widespread epigenetic regulation of both normal and disease state transcriptional programs. Their activities are central to various cellular functions, such as hematopoietic and neuronal differentiation, cancer proliferation and metastasis, and viral lytic replication and establishment of latency. Interestingly, KDM1s function as catalytic subunits within complexes with coregulatory molecules that modulate enzymatic activity of the demethylases and coordinate their access to specific substrates at distinct sites within the cell and chromatin. Although several classes of KDM1-selective small molecule inhibitors have been recently developed, these pan-active site inhibition strategies lack the ability to selectively discriminate between KDM1 activity in specific, and occasionally opposing, functional contexts within these complexes. Here we review the discovery of this class of demethylases, their structures, chemical mechanisms, and specificity. Additionally, we review inhibition of this class of enzymes as well as emerging interactions with coregulatory molecules that regulate demethylase activity in highly specific functional contexts of biological and potential therapeutic importance.
Collapse
|
27
|
Zapata-Torres G, Fierro A, Barriga-González G, Salgado JC, Celis-Barros C. Revealing Monoamine Oxidase B Catalytic Mechanisms by Means of the Quantum Chemical Cluster Approach. J Chem Inf Model 2015; 55:1349-60. [PMID: 26091526 DOI: 10.1021/acs.jcim.5b00140] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Two of the possible catalytic mechanisms for neurotransmitter oxidative deamination by monoamine oxidase B (MAO B), namely, polar nucleophilic and hydride transfer, were addressed in order to comprehend the nature of their rate-determining step. The Quantum Chemical Cluster Approach was used to obtain transition states of MAO B complexed with phenylethylamine (PEA), benzylamine (BA), and p-nitrobenzylamine (NBA). The choice of these amines relies on their importance to address MAO B catalytic mechanisms so as to help us to answer questions such as why BA is a better substrate than NBA or how para-substitution affects substrate's reactivity. Transition states were later validated by comparison with the experimental free energy barriers. From a theoretical point of view, and according to the our reported transition states, their calculated barriers and structural and orbital differences obtained by us among these compounds, we propose that good substrates such as BA and PEA might follow the hydride transfer pathway while poor substrates such as NBA prefer the polar nucleophilic mechanism, which might suggest that MAO B can act by both mechanisms. The low free energy barriers for BA and PEA reflect the preference that MAO B has for hydride transfer over the polar nucleophilic mechanism when catalyzing the oxidative deamination of neurotransmitters.
Collapse
Affiliation(s)
- Gerald Zapata-Torres
- †Molecular Graphics Suite, Department of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Angélica Fierro
- ‡Facultad de Química, Departamento de Química Orgánica, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - German Barriga-González
- §Universidad Andres Bello, Facultad de Ciencias Exactas, Departamento de Ciencias Quimicas, Avenida República 275, 8370146 Santiago, Chile
| | - J Cristian Salgado
- ∥Laboratory of Process Modeling and Distributed Computing, Department of Chemical Engineering and Biotechnology, University of Chile, Beauchef 850, Santiago, Chile
| | - Cristian Celis-Barros
- §Universidad Andres Bello, Facultad de Ciencias Exactas, Departamento de Ciencias Quimicas, Avenida República 275, 8370146 Santiago, Chile
| |
Collapse
|
28
|
Mould DP, McGonagle AE, Wiseman DH, Williams EL, Jordan AM. Reversible inhibitors of LSD1 as therapeutic agents in acute myeloid leukemia: clinical significance and progress to date. Med Res Rev 2015; 35:586-618. [PMID: 25418875 DOI: 10.1002/med.21334] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the 10 years since the discovery of lysine-specific demethylase 1 (LSD1), this epigenetic eraser has emerged as an important target of interest in oncology. More specifically, research has demonstrated that it plays an essential role in the self-renewal of leukemic stem cells in acute myeloid leukemia (AML). This review will cover clinical aspects of AML, the role of epigenetics in the disease, and discuss the research that led to the first irreversible inhibitors of LSD1 entering clinical trials for the treatment of AML in 2014. We also review recent achievements and progress in the development of potent and selective reversible inhibitors of LSD1. These compounds differ in their mode of action from tranylcypromine derivatives and could facilitate novel biochemical studies to probe the pathways mediated by LSD1. In this review, we will critically evaluate the strengths and weaknesses of published series of reversible LSD1 inhibitors. Overall, while the development of reversible inhibitors to date has been less fruitful than that of irreversible inhibitors, there is still the possibility for their use to facilitate further research into the roles and functions of LSD1 and to expand the therapeutic applications of LSD1 inhibitors in the clinic.
Collapse
Affiliation(s)
- Daniel P Mould
- Department of Drug Discovery, Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
| | | | | | | | | |
Collapse
|
29
|
Vellore NA, Baron R. Epigenetic molecular recognition: a biomolecular modeling perspective. ChemMedChem 2014; 9:484-94. [PMID: 24616246 DOI: 10.1002/cmdc.201300510] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Indexed: 01/23/2023]
Abstract
The abnormal regulation of epigenetic protein families is associated with the onset and progression of various human diseases. However, epigenetic processes remain relatively obscure at the molecular level, thus preventing the rational design of chemical therapeutics. An array of robust computational and modeling approaches can complement experiments to shed light on the complex mechanisms of epigenetic molecular recognition and can guide medicinal chemists in designing selective and potent drug molecules. Herein we present a review of studies focused on epigenetic molecular recognition from a biomolecular modeling viewpoint. Although the known epigenetic targets are numerous, this review focuses on the more limited protein families on which computational modeling has been successfully applied. Therefore, we review three main topics: 1) histone deacetylases, 2) histone demethylases, and 3) histone tail dynamics. A brief review of the biological background and biomedical relevance is presented for each topic, followed by a detailed discussion of the computational studies and their relevance.
Collapse
Affiliation(s)
- Nadeem A Vellore
- Department of Medicinal Chemistry, College of Pharmacy and The Henry Eyring Center for Theoretical Chemistry, The University of Utah, 30 South 2000 East, Salt Lake City, UT 84112 (USA)
| | | |
Collapse
|
30
|
Itoh Y, Miyata N, Suzuki T. Target-guided Synthesis: Medicinal Chemistry Strategy to Allow Target Enzymes Themselves to Synthesize their Own Inhibitors. J SYN ORG CHEM JPN 2014. [DOI: 10.5059/yukigoseikyokaishi.72.702] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
31
|
Molecular dynamics simulations indicate an induced-fit mechanism for LSD1/CoREST-H3-histone molecular recognition. BMC BIOPHYSICS 2013; 6:15. [PMID: 24274367 PMCID: PMC4175114 DOI: 10.1186/2046-1682-6-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/30/2013] [Indexed: 11/10/2022]
Abstract
BACKGROUND Lysine Specific Demethylase (LSD1 or KDM1A) in complex with its co-repressor protein CoREST catalyzes the demethylation of the H3 histone N-terminal tail and is currently one of the most promising epigenetic targets for drug discovery against cancer and neurodegenerative diseases. Models of non-covalent binding, such as lock and key, induced-fit, and conformational selection could help explaining the molecular mechanism of LSD1/CoREST-H3-histone association, thus guiding drug discovery and design efforts. Here, we quantify the extent to which LSD1/CoREST substrate binding is consistent with these hypothetical models using LSD1/CoREST conformational ensembles obtained through extensive explicit solvent molecular dynamics (MD) simulations. RESULTS We find that an induced-fit model is the most representative of LSD1/CoREST-H3-histone non-covalent binding and accounts for the local conformational changes occurring in the H3-histone binding site. We also show that conformational selection - despite in principle not ruled out by this finding - is minimal, and only relevant when global properties are considered, e.g. the nanoscale motion of the LSD1/CoREST clamp. CONCLUSION The induced-fit mechanism revealed by our MD simulation study will aid the inclusion of protein dynamics for the discovery and design of LSD1 inhibitors targeting the H3-histone binding region. On a general basis, our study indicates the importance of using multiple metrics or selection schemes when testing alternative hypothetical mechanistic models of non-covalent binding.
Collapse
|
32
|
Abstract
It has recently been demonstrated that the genes controlling the epigenetic programmes that are required for maintaining chromatin structure and cell identity include genes that drive human cancer. This observation has led to an increased awareness of chromatin-associated proteins as potentially interesting drug targets. The successful introduction of DNA methylation and histone deacetylase (HDAC) inhibitors for the treatment of specific subtypes of cancer has paved the way for the use of epigenetic therapy. Here, we highlight key biological findings demonstrating the roles of members of the histone lysine demethylase class of enzymes in the development of cancers, discuss the potential and challenges of therapeutically targeting them, and highlight emerging small-molecule inhibitors of these enzymes.
Collapse
|
33
|
A comparative computational investigation on the proton and hydride transfer mechanisms of monoamine oxidase using model molecules. Comput Biol Chem 2013; 47:181-91. [PMID: 24121676 DOI: 10.1016/j.compbiolchem.2013.08.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 08/16/2013] [Accepted: 08/19/2013] [Indexed: 12/18/2022]
Abstract
Monoamine oxidase (MAO) enzymes regulate the level of neurotransmitters by catalyzing the oxidation of various amine neurotransmitters, such as serotonin, dopamine and norepinephrine. Therefore, they are the important targets for drugs used in the treatment of depression, Parkinson, Alzeimer and other neurodegenerative disorders. Elucidation of MAO-catalyzed amine oxidation will provide new insights into the design of more effective drugs. Various amine oxidation mechanisms have been proposed for MAO so far, such as single electron transfer mechanism, polar nucleophilic mechanism and hydride mechanism. Since amine oxidation reaction of MAO takes place between cofactor flavin and the amine substrate, we focus on the small model structures mimicking flavin and amine substrates so that three model structures were employed. Reactants, transition states and products of the polar nucleophilic (proton transfer), the water-assisted proton transfer and the hydride transfer mechanisms were fully optimized employing various semi-empirical, ab initio and new generation density functional theory (DFT) methods. Activation energy barriers related to these mechanisms revealed that hydride transfer mechanism is more feasible.
Collapse
|
34
|
Karasulu B, Patil M, Thiel W. Amine oxidation mediated by lysine-specific demethylase 1: quantum mechanics/molecular mechanics insights into mechanism and role of lysine 661. J Am Chem Soc 2013; 135:13400-13. [PMID: 23988016 DOI: 10.1021/ja403582u] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report classical molecular dynamics (MD) simulations and combined quantum mechanics/molecular mechanics (QM/MM) calculations to elucidate the catalytic mechanism of the rate-determining amine oxidation step in the lysine-specific demethylase 1 (LSD1)-catalyzed demethylation of the histone tail lysine (H3K4), with flavin adenine dinucleotide (FAD) acting as cofactor. The oxidation of substrate lysine (sLys) involves the cleavage of an α-CH bond accompanied by the transfer of a hydride ion equivalent to FAD, leading to an imine intermediate. This hydride transfer pathway is shown to be clearly favored for sLys oxidation over other proposed mechanisms, including the radical (or single-electron transfer) route as well as carbanion and polar-nucleophilic mechanisms. MD simulations on six NVT ensembles (covering different protonation states of sLys and K661 as well as the K661M mutant) identify two possible orientations of the reacting sLys and FAD subunits (called "downward" and "upward"). Calculations at the QM(B3LYP-D/6-31G*)/CHARMM22 level provide molecular-level insights into the mechanism, helping to understand how LSD1 achieves the activation of the rather inert methyl-CH bond in a metal-free environment. Factors such as proper alignment of sLys (downward orientation), transition-state stabilization (due to the protein environment and favorable orbital interactions), and product stabilization via adduct formation are found to be crucial for facilitating the oxidative α-CH bond cleavage. The current study also sheds light on the role of important active-site residues (Y761, K661, and W695) and of the conserved water-bridge motif. The steric influence of Y761 helps to position the reaction partners properly, K661 is predicted to get deprotonated prior to substrate binding and to act as an active-site base that accepts a proton from sLys to enable the subsequent amine oxidation, and the water bridge that is stabilized by K661 and W695 mediates this proton transfer.
Collapse
Affiliation(s)
- Bora Karasulu
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1, 45470 Mülheim, Germany
| | | | | |
Collapse
|
35
|
Zhang R, Li X, Liang Z, Zhu K, Lu J, Kong X, Ouyang S, Li L, Zheng YG, Luo C. Theoretical insights into catalytic mechanism of protein arginine methyltransferase 1. PLoS One 2013; 8:e72424. [PMID: 23977297 PMCID: PMC3748068 DOI: 10.1371/journal.pone.0072424] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/08/2013] [Indexed: 12/18/2022] Open
Abstract
Protein arginine methyltransferase 1 (PRMT1), the major arginine asymmetric dimethylation enzyme in mammals, is emerging as a potential drug target for cancer and cardiovascular disease. Understanding the catalytic mechanism of PRMT1 will facilitate inhibitor design. However, detailed mechanisms of the methyl transfer process and substrate deprotonation of PRMT1 remain unclear. In this study, we present a theoretical study on PRMT1 catalyzed arginine dimethylation by employing molecular dynamics (MD) simulation and quantum mechanics/molecular mechanics (QM/MM) calculation. Ternary complex models, composed of PRMT1, peptide substrate, and S-adenosyl-methionine (AdoMet) as cofactor, were constructed and verified by 30-ns MD simulation. The snapshots selected from the MD trajectory were applied for the QM/MM calculation. The typical SN2-favored transition states of the first and second methyl transfers were identified from the potential energy profile. Deprotonation of substrate arginine occurs immediately after methyl transfer, and the carboxylate group of E144 acts as proton acceptor. Furthermore, natural bond orbital analysis and electrostatic potential calculation showed that E144 facilitates the charge redistribution during the reaction and reduces the energy barrier. In this study, we propose the detailed mechanism of PRMT1-catalyzed asymmetric dimethylation, which increases insight on the small-molecule effectors design, and enables further investigations into the physiological function of this family.
Collapse
Affiliation(s)
- Ruihan Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xin Li
- Division of Nephrology, Shanghai Changzheng Hospital, Shanghai, China
| | - Zhongjie Liang
- Center for Systems Biology, Soochow University, Jiangsu, China
| | - Kongkai Zhu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Junyan Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiangqian Kong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Sisheng Ouyang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Lin Li
- Division of Nephrology, Shanghai Changzheng Hospital, Shanghai, China
| | - Yujun George Zheng
- Department of Chemistry, Program of Molecular Basis of Diseases, Georgia State University, Atlanta, Georgia, United States of America
| | - Cheng Luo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Center for Systems Biology, Soochow University, Jiangsu, China
| |
Collapse
|
36
|
Akyüz MA, Erdem SS. Computational modeling of the direct hydride transfer mechanism for the MAO catalyzed oxidation of phenethylamine and benzylamine: ONIOM (QM/QM) calculations. J Neural Transm (Vienna) 2013; 120:937-45. [PMID: 23619993 DOI: 10.1007/s00702-013-1027-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 04/15/2013] [Indexed: 11/28/2022]
Abstract
Monoamine oxidases are two isozymic flavoenzymes which are the important targets for drugs used in the treatment of depression, Parkinson and Alzheimer's diseases. The catalytic reaction taking place between the cofactor FAD and amine substrate is still not completely understood. Herein we employed quantum chemical methods on the recently proposed direct hydride transfer mechanism including full active site residues of MAO isoforms in the calculations. Activation free energy barriers of direct hydride transfer mechanism for MAO-A and MAO-B were calculated by ONIOM (our own n-layered integrated molecular orbital + molecular mechanics) method with QM/QM (quantum mechanics:quantum mechanics) approach employing several density functional theory functionals, B3LYP, WB97XD, CAM-B3LYP and M06-2X, for the high layer. The formation of very recently proposed αC-flavin N5 adduct inside the enzyme has been investigated. ONIOM (M06-2X/6-31+G(d,p):PM6) results revealed that such an adduct may form only in MAO-B suggesting slightly different hydride transfer mechanisms for MAO-A and MAO-B.
Collapse
Affiliation(s)
- Mehmet Ali Akyüz
- Department of Chemistry, Faculty of Arts and Sciences, Marmara University, Göztepe, 34722, Istanbul, Turkey
| | | |
Collapse
|
37
|
Flavin-dependent enzymes in cancer prevention. Int J Mol Sci 2012; 13:16751-68. [PMID: 23222680 PMCID: PMC3546718 DOI: 10.3390/ijms131216751] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 11/26/2012] [Accepted: 12/04/2012] [Indexed: 12/13/2022] Open
Abstract
Statistical studies have demonstrated that various agents may reduce the risk of cancer's development. One of them is activity of flavin-dependent enzymes such as flavin-containing monooxygenase (FMO)(GS-OX1), FAD-dependent 5,10-methylenetetrahydrofolate reductase and flavin-dependent monoamine oxidase. In the last decade, many papers concerning their structure, reaction mechanism and role in the cancer prevention were published. In our work, we provide a more in-depth analysis of flavin-dependent enzymes and their contribution to the cancer prevention. We present the actual knowledge about the glucosinolate synthesized by flavin-containing monooxygenase (FMO)(GS-OX1) and its role in cancer prevention, discuss the influence of mutations in FAD-dependent 5,10-methylenetetrahydrofolate reductase on the cancer risk, and describe FAD as an important cofactor for the demethylation of histons. We also present our views on the role of riboflavin supplements in the prevention against cancer.
Collapse
|
38
|
Reisinger B, Bocola M, List F, Claren J, Rajendran C, Sterner R. A sugar isomerization reaction established on various (βα)₈-barrel scaffolds is based on substrate-assisted catalysis. Protein Eng Des Sel 2012; 25:751-60. [PMID: 23109729 DOI: 10.1093/protein/gzs080] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In the course of tryptophan biosynthesis, the isomerization of phosphoribosylanthranilate (PRA) is catalyzed by the (βα)₈-barrel enzyme TrpF. The reaction occurs via a general acid-base mechanism with an aspartate and a cysteine residue acting as acid and base, respectively. PRA isomerase activity could be established on two (βα)₈-barrel enzymes involved in histidine biosynthesis, namely HisA and HisF, and on a HisAF chimera, by introducing two aspartate-to-valine substitutions. We have analyzed the reaction mechanism underlying this engineered activity by measuring its pH dependence, solving the crystal structure of a HisF variant with bound product analogue, and applying molecular dynamics simulations and mixed quantum and molecular mechanics calculations. The results suggest that PRA is anchored by the C-terminal phosphate-binding sites of HisA, HisF and HisAF. As a consequence, a conserved aspartate residue, which is equivalent to Cys7 from TrpF, is properly positioned to act as catalytic base. However, no obvious catalytic acid corresponding to Asp126 from TrpF could be identified in the three proteins. Instead, this role appears to be carried out by the carboxylate group of the anthranilate moiety of PRA. Thus, the engineered PRA isomerization activity is based on a reaction mechanism including substrate-assisted catalysis and thus differs substantially from the naturally evolved reaction mechanism used by TrpF.
Collapse
Affiliation(s)
- Bernd Reisinger
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Germany
| | | | | | | | | | | |
Collapse
|
39
|
Walport LJ, Hopkinson RJ, Schofield CJ. Mechanisms of human histone and nucleic acid demethylases. Curr Opin Chem Biol 2012; 16:525-34. [PMID: 23063108 DOI: 10.1016/j.cbpa.2012.09.015] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 09/17/2012] [Accepted: 09/19/2012] [Indexed: 01/31/2023]
Abstract
The discovery that protein and nucleic acid demethylation is common opens up the possibility of 'methylation cycles' of functional importance, including in the regulation of gene expression. The mechanisms of known demethylases can be broadly divided into those involving nucleophilic catalysis and those involving oxidative catalysis. The latter group appear more common; they produce formaldehyde as a co-product. Nucleophilic demethylases include those proceeding via irreversible S-methylation and methyl esterases. In addition to the direct reversal of methylation, demethylation can occur concurrent with loss of other groups, such as in methylarginine hydrolysis, oxidation of N(ɛ)-methyllysine to allysine, and indirectly, for example via base-excision repair. We discuss chemically viable mechanisms for biological demethylation and summarise mechanistic knowledge of the major known families of demethylases.
Collapse
Affiliation(s)
- Louise J Walport
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | | | | |
Collapse
|
40
|
Epigenetic control and cancer: the potential of histone demethylases as therapeutic targets. Pharmaceuticals (Basel) 2012; 5:963-90. [PMID: 24280700 PMCID: PMC3816642 DOI: 10.3390/ph5090963] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 07/21/2012] [Accepted: 08/17/2012] [Indexed: 01/01/2023] Open
Abstract
The development of cancer involves an immense number of factors at the molecular level. These factors are associated principally with alterations in the epigenetic mechanisms that regulate gene expression profiles. Studying the effects of chromatin structure alterations, which are caused by the addition/removal of functional groups to specific histone residues, are of great interest as a promising way to identify markers for cancer diagnosis, classify the disease and determine its prognosis, and these markers could be potential targets for the treatment of this disease in its different forms. This manuscript presents the current point of view regarding members of the recently described family of proteins that exhibit histone demethylase activity; histone demethylases are genetic regulators that play a fundamental role in both the activation and repression of genes and whose expression has been observed to increase in many types of cancer. Some fundamental aspects of their association with the development of cancer and their relevance as potential targets for the development of new therapeutic strategies at the epigenetic level are discussed in the following manuscript.
Collapse
|
41
|
Jiang J, Lu J, Lu D, Liang Z, Li L, Ouyang S, Kong X, Jiang H, Shen B, Luo C. Investigation of the acetylation mechanism by GCN5 histone acetyltransferase. PLoS One 2012; 7:e36660. [PMID: 22574209 PMCID: PMC3344931 DOI: 10.1371/journal.pone.0036660] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Accepted: 04/04/2012] [Indexed: 11/29/2022] Open
Abstract
The histone acetylation of post-translational modification can be highly dynamic and play a crucial role in regulating cellular proliferation, survival, differentiation and motility. Of the enzymes that mediate post-translation modifications, the GCN5 of the histone acetyltransferase (HAT) proteins family that add acetyl groups to target lysine residues within histones, has been most extensively studied. According to the mechanism studies of GCN5 related proteins, two key processes, deprotonation and acetylation, must be involved. However, as a fundamental issue, the structure of hGCN5/AcCoA/pH3 remains elusive. Although biological experiments have proved that GCN5 mediates the acetylation process through the sequential mechanism pathway, a dynamic view of the catalytic process and the molecular basis for hGCN5/AcCoA/pH3 are still not available and none of theoretical studies has been reported to other related enzymes in HAT family. To explore the molecular basis for the catalytic mechanism, computational approaches including molecular modeling, molecular dynamic (MD) simulation and quantum mechanics/molecular mechanics (QM/MM) simulation were carried out. The initial hGCN5/AcCoA/pH3 complex structure was modeled and a reasonable snapshot was extracted from the trajectory of a 20 ns MD simulation, with considering post-MD analysis and reported experimental results. Those residues playing crucial roles in binding affinity and acetylation reaction were comprehensively investigated. It demonstrated Glu80 acted as the general base for deprotonation of Lys171 from H3. Furthermore, the two-dimensional QM/MM potential energy surface was employed to study the sequential pathway acetylation mechanism. Energy barriers of addition-elimination reaction in acetylation obtained from QM/MM calculation indicated the point of the intermediate ternary complex. Our study may provide insights into the detailed mechanism for acetylation reaction of GCN5, and has important implications for the discovery of regulators against GCN5 enzymes and related HAT family enzymes.
Collapse
Affiliation(s)
- Junfeng Jiang
- Center for Systems Biology, Soochow University, Jiangsu, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Junyan Lu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Dan Lu
- Center for Systems Biology, Soochow University, Jiangsu, China
| | - Zhongjie Liang
- Center for Systems Biology, Soochow University, Jiangsu, China
| | - Lianchun Li
- Center for Systems Biology, Soochow University, Jiangsu, China
| | - Sisheng Ouyang
- Center for Systems Biology, Soochow University, Jiangsu, China
| | - Xiangqian Kong
- Center for Systems Biology, Soochow University, Jiangsu, China
| | - Hualiang Jiang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Bairong Shen
- Center for Systems Biology, Soochow University, Jiangsu, China
- * E-mail: (CL); (BS)
| | - Cheng Luo
- Center for Systems Biology, Soochow University, Jiangsu, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- * E-mail: (CL); (BS)
| |
Collapse
|