1
|
Karbanová J, Thamm K, Fargeas CA, Deniz IA, Lorico A, Corbeil D. Prominosomes - a particular class of extracellular vesicles containing prominin-1/CD133? J Nanobiotechnology 2025; 23:61. [PMID: 39881297 PMCID: PMC11776279 DOI: 10.1186/s12951-025-03102-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/09/2025] [Indexed: 01/31/2025] Open
Abstract
Extracellular membrane vesicles (EVs) offer promising values in various medical fields, e.g., as biomarkers in liquid biopsies or as native (or bioengineered) biological nanocarriers in tissue engineering, regenerative medicine and cancer therapy. Based on their cellular origin EVs can vary considerably in composition and diameter. Cell biological studies on mammalian prominin-1, a cholesterol-binding membrane glycoprotein, have helped to reveal new donor membranes as sources of EVs. For instance, small EVs can originate from microvilli and primary cilia, while large EVs might be produced by transient structures such as retracting cellular extremities of cancer cells during the mitotic rounding process, and the midbody at the end of cytokinesis. Here, we will highlight the various subcellular origins of prominin-1+ EVs, also called prominosomes, and the potential mechanism(s) regulating their formation. We will further discuss the molecular and cellular characteristics of prominin-1, notably those that have a direct effect on the release of prominin-1+ EVs, a process that might be directly implicated in donor cell reprogramming of stem and cancer stem cells. Prominin-1+ EVs also mediate intercellular communication during embryonic development and adult homeostasis in healthy individuals, while disseminating biological information during diseases.
Collapse
Affiliation(s)
- Jana Karbanová
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Biotechnology Center, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.
| | - Kristina Thamm
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
- denovoMATRIX GmbH, Tatzberg 47, 01307, Dresden, Germany
| | - Christine A Fargeas
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Ilker A Deniz
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Aurelio Lorico
- College of Osteopathic Medicine, Touro University Nevada, 874 American Pacific Drive, Henderson, NV, 89014, USA
| | - Denis Corbeil
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Biotechnology Center, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.
| |
Collapse
|
2
|
Bellala RS, Chittineedi P, Llaguno SNS, Mosquera JAN, Mohiddin GJ, Pandrangi SL. Down-Regulation of Cysteine-Glutamate Antiporter in ALDH1A1 Expressing Oral and Breast Cancer Stem Cells Induced Oxidative Stress-Triggered Ferroptosis. J Cancer 2024; 15:6160-6176. [PMID: 39513121 PMCID: PMC11540493 DOI: 10.7150/jca.89429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/24/2024] [Indexed: 11/15/2024] Open
Abstract
Background: Sulfasalazine, an xCT inhibitor, is being used as a repurposed antineoplastic drug to induce ferroptosis. Ferroptosis is a regulated necrotic cell death pathway that is dependent on iron reserves. Interestingly, cancer stem cells (CSCs) that are regarded as major drivers of resistance to conventional therapies accompanied with tumor relapse and recurrence have bulk amount of iron reserves in the form of ferritin. This suggests that inducing ferroptosis might disrupt stemness and drug-resistant mechanisms in cancer stem cells, thereby reducing the risk of drug-resistance, cancer recurrence, and relapse. Materials & Methods: In the present study, ALDH1A1 expressing oral (OCSCs) and breast (BCSCs) cancer stem cells were sorted and used to investigate the role of sulfasalazine to induce ferroptosis. To check the self-renewability of CSCs spheroid formation, assay was performed and the resultant CSCs were treated with sulfasalazine (SAS) and subjected to gene expression analysis RT-PCR and flow cytometry. FACS was performed to check stem cell marker expression, cell cycle arrest, and apoptosis. Results: Our results suggest that the cells showed a gradual increase in sphere formation till S3 in the case of OCSCs and S2 in the case of BCSCs, with a gradual decrease in sphere-forming efficiency from the respective generations. When treated with 0.6mM SAS, these cells induced ferroptosis by downregulating stem cell markers like ALDH1A1, SLC7A11, ferritin, and GPx-4 with a concomitant increase in transferrin and STEAP-3. Flow cytometry studies revealed that the cells have undergone mitochondrial dysfunction characterized by loss of membrane potential and the cell cycle progression was halted in the G2/M phase. Conclusion: In the present study, we demonstrate that SAS potentially induced ferroptosis accompanied with oxidative stress in both OCSCs as well as BCSCs by lowering GPx-4 activity, a key enzyme that scavenges the products produced as a result of oxidative stress.
Collapse
Affiliation(s)
- Ravi Shankar Bellala
- Onco-Stem Cell Research Laboratory, Dept of Life Sciences, School of Science, GITAM (Deemed to Be) University, Visakhapatnam-530045, India
| | - Prasanthi Chittineedi
- Onco-Stem Cell Research Laboratory, Dept of Life Sciences, School of Science, GITAM (Deemed to Be) University, Visakhapatnam-530045, India
| | - Sungey Naynee Sánchez Llaguno
- Department Of Life Sciences and Agriculture, Armed Forces University-Espe, Santo Domingo 230101, Ecuador, South America
| | - Juan Alejandro Neira Mosquera
- Department Of Life Sciences and Agriculture, Armed Forces University-Espe, Santo Domingo 230101, Ecuador, South America
| | - Gooty Jaffer Mohiddin
- Department Of Life Sciences and Agriculture, Armed Forces University-Espe, Santo Domingo 230101, Ecuador, South America
| | - Santhi Latha Pandrangi
- Onco-Stem Cell Research Laboratory, Dept of Life Sciences, School of Science, GITAM (Deemed to Be) University, Visakhapatnam-530045, India
| |
Collapse
|
3
|
Farrell R, Pascuzzi N, Chen YL, Kim M, Torres M, Gollahon L, Chen KHE. Prolactin Drives Iron Release from Macrophages and Uptake in Mammary Cancer Cells through CD44. Int J Mol Sci 2024; 25:8941. [PMID: 39201626 PMCID: PMC11354873 DOI: 10.3390/ijms25168941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Iron is an essential element for human health. In humans, dysregulated iron homeostasis can result in a variety of disorders and the development of cancers. Enhanced uptake, redistribution, and retention of iron in cancer cells have been suggested as an "iron addiction" pattern in cancer cells. This increased iron in cancer cells positively correlates with rapid tumor growth and the epithelial-to-mesenchymal transition, which forms the basis for tumor metastasis. However, the source of iron and the mechanisms cancer cells adopt to actively acquire iron is not well understood. In the present study, we report, for the first time, that the peptide hormone, prolactin, exhibits a novel function in regulating iron distribution, on top of its well-known pro-lactating role. When stimulated by prolactin, breast cancer cells increase CD44, a surface receptor mediating the endocytosis of hyaluronate-bound iron, resulting in the accumulation of iron in cancer cells. In contrast, macrophages, when treated by prolactin, express more ferroportin, the only iron exporter in cells, giving rise to net iron output. Interestingly, when co-culturing macrophages with pre-stained labile iron pools and cancer cells without any iron staining, in an iron free condition, we demonstrate direct iron flow from macrophages to cancer cells. As macrophages are one of the major iron-storage cells and it is known that macrophages infiltrate tumors and facilitate their progression, our work therefore presents a novel regulatory role of prolactin to drive iron flow, which provides new information on fine-tuning immune responses in tumor microenvironment and could potentially benefit the development of novel therapeutics.
Collapse
Affiliation(s)
- Reagan Farrell
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (R.F.); (N.P.); (M.T.); (L.G.)
| | - Nicholas Pascuzzi
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (R.F.); (N.P.); (M.T.); (L.G.)
| | - Yi-Ling Chen
- Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan
| | - Mary Kim
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (R.F.); (N.P.); (M.T.); (L.G.)
| | - Miguel Torres
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (R.F.); (N.P.); (M.T.); (L.G.)
| | - Lauren Gollahon
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (R.F.); (N.P.); (M.T.); (L.G.)
| | - Kuan-Hui Ethan Chen
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (R.F.); (N.P.); (M.T.); (L.G.)
| |
Collapse
|
4
|
Kazeminia S, Eirin A. Role of mitochondria in endogenous renal repair. Clin Sci (Lond) 2024; 138:963-973. [PMID: 39076039 PMCID: PMC11410300 DOI: 10.1042/cs20231331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024]
Abstract
Renal tubules have potential to regenerate and repair after mild-to-moderate injury. Proliferation of tubular epithelial cells represents the initial step of this reparative process. Although for many years, it was believed that proliferating cells originated from a pre-existing intra-tubular stem cell population, there is now consensus that surviving tubular epithelial cells acquire progenitor properties to regenerate the damaged kidney. Scattered tubular-like cells (STCs) are dedifferentiated adult renal tubular epithelial cells that arise upon injury and contribute to renal self-healing and recovery by replacing lost neighboring tubular epithelial cells. These cells are characterized by the co-expression of the stem cell surface markers CD133 and CD24, as well as mesenchymal and kidney injury markers. Previous studies have shown that exogenous delivery of STCs ameliorates renal injury and dysfunction in murine models of acute kidney injury, underscoring the regenerative potential of this endogenous repair system. Although STCs contain fewer mitochondria than their surrounding terminally differentiated tubular epithelial cells, these organelles modulate several important cellular functions, and their integrity and function are critical to preserve the reparative capacity of STCs. Recent data suggest that the microenviroment induced by cardiovascular risk factors, such as obesity, hypertension, and renal ischemia may compromise STC mitochondrial integrity and function, limiting the capacity of these cells to repair injured renal tubules. This review summarizes current knowledge of the contribution of STCs to kidney repair and discusses recent insight into the key role of mitochondria in modulating STC function and their vulnerability in the setting of cardiovascular disease.
Collapse
Affiliation(s)
- Sara Kazeminia
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, U.S.A
| | - Alfonso Eirin
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, U.S.A
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, U.S.A
| |
Collapse
|
5
|
Yu R, Hang Y, Tsai HI, Wang D, Zhu H. Iron metabolism: backfire of cancer cell stemness and therapeutic modalities. Cancer Cell Int 2024; 24:157. [PMID: 38704599 PMCID: PMC11070091 DOI: 10.1186/s12935-024-03329-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/16/2024] [Indexed: 05/06/2024] Open
Abstract
Cancer stem cells (CSCs), with their ability of self-renewal, unlimited proliferation, and multi-directional differentiation, contribute to tumorigenesis, metastasis, recurrence, and resistance to conventional therapy and immunotherapy. Eliminating CSCs has long been thought to prevent tumorigenesis. Although known to negatively impact tumor prognosis, research revealed the unexpected role of iron metabolism as a key regulator of CSCs. This review explores recent advances in iron metabolism in CSCs, conventional cancer therapies targeting iron biochemistry, therapeutic resistance in these cells, and potential treatment options that could overcome them. These findings provide important insights into therapeutic modalities against intractable cancers.
Collapse
Affiliation(s)
- Rong Yu
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, China
| | - Yinhui Hang
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Hsiang-I Tsai
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, China.
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| | - Dongqing Wang
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, China.
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| | - Haitao Zhu
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, China.
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| |
Collapse
|
6
|
Pleskač P, Fargeas CA, Veselska R, Corbeil D, Skoda J. Emerging roles of prominin-1 (CD133) in the dynamics of plasma membrane architecture and cell signaling pathways in health and disease. Cell Mol Biol Lett 2024; 29:41. [PMID: 38532366 DOI: 10.1186/s11658-024-00554-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/22/2024] [Indexed: 03/28/2024] Open
Abstract
Prominin-1 (CD133) is a cholesterol-binding membrane glycoprotein selectively associated with highly curved and prominent membrane structures. It is widely recognized as an antigenic marker of stem cells and cancer stem cells and is frequently used to isolate them from biological and clinical samples. Recent progress in understanding various aspects of CD133 biology in different cell types has revealed the involvement of CD133 in the architecture and dynamics of plasma membrane protrusions, such as microvilli and cilia, including the release of extracellular vesicles, as well as in various signaling pathways, which may be regulated in part by posttranslational modifications of CD133 and its interactions with a variety of proteins and lipids. Hence, CD133 appears to be a master regulator of cell signaling as its engagement in PI3K/Akt, Src-FAK, Wnt/β-catenin, TGF-β/Smad and MAPK/ERK pathways may explain its broad action in many cellular processes, including cell proliferation, differentiation, and migration or intercellular communication. Here, we summarize early studies on CD133, as they are essential to grasp its novel features, and describe recent evidence demonstrating that this unique molecule is involved in membrane dynamics and molecular signaling that affects various facets of tissue homeostasis and cancer development. We hope this review will provide an informative resource for future efforts to elucidate the details of CD133's molecular function in health and disease.
Collapse
Affiliation(s)
- Petr Pleskač
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Christine A Fargeas
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47/49, 01307, Dresden, Germany
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Dresden, Germany
| | - Renata Veselska
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Denis Corbeil
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47/49, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Dresden, Germany.
| | - Jan Skoda
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.
| |
Collapse
|
7
|
Wang H, Zhang Z, Ruan S, Yan Q, Chen Y, Cui J, Wang X, Huang S, Hou B. Regulation of iron metabolism and ferroptosis in cancer stem cells. Front Oncol 2023; 13:1251561. [PMID: 37736551 PMCID: PMC10509481 DOI: 10.3389/fonc.2023.1251561] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/16/2023] [Indexed: 09/23/2023] Open
Abstract
The ability of cancer stem cells (CSCs) to self-renew, differentiate, and generate new tumors is a significant contributor to drug resistance, relapse, and metastasis. Therefore, the targeting of CSCs for treatment is particularly important. Recent studies have demonstrated that CSCs are more susceptible to ferroptosis than non-CSCs, indicating that this could be an effective strategy for treating tumors. Ferroptosis is a type of programmed cell death that results from the accumulation of lipid peroxides caused by intracellular iron-mediated processes. CSCs exhibit different molecular characteristics related to iron and lipid metabolism. This study reviews the alterations in iron metabolism, lipid peroxidation, and lipid peroxide scavenging in CSCs, their impact on ferroptosis, and the regulatory mechanisms underlying iron metabolism and ferroptosis. Potential treatment strategies and novel compounds targeting CSC by inducing ferroptosis are also discussed.
Collapse
Affiliation(s)
- Hailiang Wang
- Department of Hepatobiliary Surgery, Weihai Central Hospital Affiliated to Qingdao University, Weihai, China
- Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zhongyan Zhang
- Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of General Surgery, Heyuan People’s Hospital, Heyuan, China
| | - Shiye Ruan
- Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of General Surgery, Heyuan People’s Hospital, Heyuan, China
| | - Qian Yan
- Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of General Surgery, Heyuan People’s Hospital, Heyuan, China
| | - Yubin Chen
- Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of General Surgery, Heyuan People’s Hospital, Heyuan, China
| | - Jinwei Cui
- Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of General Surgery, Heyuan People’s Hospital, Heyuan, China
| | - Xinjian Wang
- Department of Hepatobiliary Surgery, Weihai Central Hospital Affiliated to Qingdao University, Weihai, China
| | - Shanzhou Huang
- Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of General Surgery, Heyuan People’s Hospital, Heyuan, China
- Department of General Surgery, South China University of Technology School of Medicine, Guangzhou, China
| | - Baohua Hou
- Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of General Surgery, Heyuan People’s Hospital, Heyuan, China
- Department of General Surgery, South China University of Technology School of Medicine, Guangzhou, China
| |
Collapse
|
8
|
Leischner C, Marongiu L, Piotrowsky A, Niessner H, Venturelli S, Burkard M, Renner O. Relevant Membrane Transport Proteins as Possible Gatekeepers for Effective Pharmacological Ascorbate Treatment in Cancer. Antioxidants (Basel) 2023; 12:antiox12040916. [PMID: 37107291 PMCID: PMC10135768 DOI: 10.3390/antiox12040916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/23/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Despite the increasing number of newly diagnosed malignancies worldwide, therapeutic options for some tumor diseases are unfortunately still limited. Interestingly, preclinical but also some clinical data suggest that the administration of pharmacological ascorbate seems to respond well, especially in some aggressively growing tumor entities. The membrane transport and channel proteins are highly relevant for the use of pharmacological ascorbate in cancer therapy and are involved in the transfer of active substances such as ascorbate, hydrogen peroxide, and iron that predominantly must enter malignant cells to induce antiproliferative effects and especially ferroptosis. In this review, the relevant conveying proteins from cellular surfaces are presented as an integral part of the efficacy of pharmacological ascorbate, considering the already known genetic and functional features in tumor tissues. Accordingly, candidates for diagnostic markers and therapeutic targets are mentioned.
Collapse
Affiliation(s)
- Christian Leischner
- Institute of Nutritional Sciences, Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| | - Luigi Marongiu
- Institute of Nutritional Sciences, Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
- Department of Internal Medicine VIII, University Hospital Tuebingen, Otfried-Mueller-Straße 10, 72076 Tuebingen, Germany
| | - Alban Piotrowsky
- Institute of Nutritional Sciences, Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| | - Heike Niessner
- Department of Dermatology, Division of Dermatooncology, University of Tuebingen, Liebermeisterstraße 25, 72076 Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", 72076 Tuebingen, Germany
| | - Sascha Venturelli
- Institute of Nutritional Sciences, Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
- Institute of Physiology, Department of Vegetative and Clinical Physiology, University of Tuebingen, Wilhelmstraße 56, 72074 Tuebingen, Germany
| | - Markus Burkard
- Institute of Nutritional Sciences, Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| | - Olga Renner
- Institute of Nutritional Sciences, Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| |
Collapse
|
9
|
Wang W, Tabu K, Aimaitijiang A, Taga T. Therapy-resistant nature of cancer stem cells in view of iron metabolism. Inflamm Regen 2022; 42:34. [PMID: 36324180 PMCID: PMC9632139 DOI: 10.1186/s41232-022-00220-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/13/2022] [Indexed: 11/05/2022] Open
Abstract
Due to increased resistance to standard chemo/radiotherapies and relapse, highly tumorigenic cancer stem cells (CSCs) have been proposed as a promising target for the development of effective cancer treatments. In order to develop innovative cancer therapies that target CSCs, much attention has focused on the iron metabolism of CSCs, which has been considered to contribute to self-renewal of CSCs. Here, we review recent advances in iron metabolism and conventional iron metabolism-targeted cancer therapies, as well as therapy resistance of CSCs and potential treatment options to overcome them, which provide important insights into therapeutic strategies against intractable cancers. Potential treatment options targeting iron homeostasis, including small-molecule inhibitors, nanotechnology platforms, ferroptosis, and 5-ALA-PDT, might be a focus of future research for the development of innovative cancer therapies that tackle CSCs.
Collapse
Affiliation(s)
- Wenqian Wang
- Department of Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kouichi Tabu
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| | - Alapati Aimaitijiang
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Tetsuya Taga
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
10
|
Chittineedi P, Pandrangi SL, Bellala RS, Sánchez Llaguno SN, Mohiddin GJ, Neira Mosquera JA, Bellala VM, Kolli VK. Analyzing the drivers of cancer relapse: hypocalcemia and iron absorption in hormone-dependent female cancers. Am J Transl Res 2022; 14:6563-6573. [PMID: 36247282 PMCID: PMC9556499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/20/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Alterations in the levels of nutrients like calcium, ferritin, and electrolytes play a pivotal role in human physiology and might serve as biomarkers. Ferritin, an iron storage protein is important in various metabolic reactions of both cancer and cancer stem cells (CSCs) and is found to regulate 'stemness' leading to cancer relapse. Interestingly, ferritin levels are found to be regulated by calcium uptake. Several studies have shown that high levels of calcium inhibit absorption of iron, thereby reducing ferritin levels. In the present study, we evaluated and correlated the serum ferritin and calcium levels in pre- and post-treated hormone-dependent female cancers and deciphered their role in tumor recurrence and relapse. MATERIALS AND METHODS The present retrospective study was approved by the Institutional Ethical Committees (IEC) of GIMSR (No. GIMSR/Admn./Ethics/approval/IEC-3/2021), and Omega cancer hospitals (Reg No: ECR/1486/Inst/AP/2020). Serum from 197 clinical samples diagnosed with breast, cervical, and ovarian cancers (99 pre-and 98 post-treatment) and 10 blood samples were analyzed for ferritin and calcium using auto bioanalyzer and sandwich enzyme-linked immunosorbent assay (ELISA). RESULTS Ferritin levels were elevated in both pre- and post-treatment hormone-dependent female cancer patients while calcium levels showed gradual decrease. The mean ferritin value for pre-treatment was 0.0409 mg/dL while it was 0.0428 mg/dL for post-treatment hormone-dependent female cancer. CONCLUSION Our results suggest that hypocalcaemia in post-treatment cancer patients leads to ferritin accumulation which might make these patients more prone to tumor recurrence and relapse.
Collapse
Affiliation(s)
- Prasanthi Chittineedi
- Onco-Stem Cell Research Laboratory, Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be) UniversityVisakhapatnam 530045, India
| | - Santhi Latha Pandrangi
- Onco-Stem Cell Research Laboratory, Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be) UniversityVisakhapatnam 530045, India
| | | | - Sungey Naynee Sánchez Llaguno
- Department of Life Sciences and Agriculture, Armed Forces University-ESPESanto Domingo 230101, Ecuador, South America
| | - Gooty Jaffer Mohiddin
- Department of Life Sciences and Agriculture, Armed Forces University-ESPESanto Domingo 230101, Ecuador, South America
| | - Juan Alejandro Neira Mosquera
- Department of Life Sciences and Agriculture, Armed Forces University-ESPESanto Domingo 230101, Ecuador, South America
- Faculty of Industry and Production Sciences, Quevedo State Technical Universitykm 11/2 Via Santo Domingo, Quevedo 120301, Ecuador, South America
| | | | | |
Collapse
|
11
|
Roy C, Avril S, Legendre C, Lelièvre B, Vellenriter H, Boni S, Cayon J, Guillet C, Guilloux Y, Chérel M, Hindré F, Garcion E. A role for ceruloplasmin in the control of human glioblastoma cell responses to radiation. BMC Cancer 2022; 22:843. [PMID: 35918659 PMCID: PMC9347084 DOI: 10.1186/s12885-022-09808-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/16/2022] [Indexed: 11/08/2022] Open
Abstract
Background Glioblastoma (GB) is the most common and most aggressive malignant brain tumor. In understanding its resistance to conventional treatments, iron metabolism and related pathways may represent a novel avenue. As for many cancer cells, GB cell growth is dependent on iron, which is tightly involved in red-ox reactions related to radiotherapy effectiveness. From new observations indicating an impact of RX radiations on the expression of ceruloplasmin (CP), an important regulator of iron metabolism, the aim of the present work was to study the functional effects of constitutive expression of CP within GB lines in response to beam radiation depending on the oxygen status (21% O2 versus 3% O2). Methods and results After analysis of radiation responses (Hoechst staining, LDH release, Caspase 3 activation) in U251-MG and U87-MG human GB cell lines, described as radiosensitive and radioresistant respectively, the expression of 9 iron partners (TFR1, DMT1, FTH1, FTL, MFRN1, MFRN2, FXN, FPN1, CP) were tested by RTqPCR and western blots at 3 and 8 days following 4 Gy irradiation. Among those, only CP was significantly downregulated, both at transcript and protein levels in the two lines, with however, a weaker effect in the U87-MG, observable at 3% O2. To investigate specific role of CP in GB radioresistance, U251-MG and U87-MG cells were modified genetically to obtain CP depleted and overexpressing cells, respectively. Manipulation of CP expression in GB lines demonstrated impact both on cell survival and on activation of DNA repair/damage machinery (γH2AX); specifically high levels of CP led to increased production of reactive oxygen species, as shown by elevated levels of superoxide anion, SOD1 synthesis and cellular Fe2 + . Conclusions Taken together, these in vitro results indicate for the first time that CP plays a positive role in the efficiency of radiotherapy on GB cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09808-6.
Collapse
Affiliation(s)
- Charlotte Roy
- Université d'Angers, Inserm UMR 1307, CNRS UMR 6075, Nantes Université, CRCI2NA, F-49000, Angers, France
| | - Sylvie Avril
- Université d'Angers, Inserm UMR 1307, CNRS UMR 6075, Nantes Université, CRCI2NA, F-49000, Angers, France
| | - Claire Legendre
- Université d'Angers, Inserm UMR 1307, CNRS UMR 6075, Nantes Université, CRCI2NA, F-49000, Angers, France
| | - Bénédicte Lelièvre
- Centre Régional de Pharmacovigilance, Laboratoire de Pharmacologie-Toxicologie, CHU Angers, 4 rue Larrey, F-49100, Angers, France
| | - Honorine Vellenriter
- Université d'Angers, Inserm UMR 1307, CNRS UMR 6075, Nantes Université, CRCI2NA, F-49000, Angers, France
| | - Sébastien Boni
- Université d'Angers, SFR ICAT, Lentivec, F-49000, Angers, France
| | - Jérôme Cayon
- Université d'Angers, SFR ICAT, PACeM, F-49000, Angers, France
| | | | - Yannick Guilloux
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, F-44000, Nantes, France
| | - Michel Chérel
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, F-44000, Nantes, France
| | - François Hindré
- Université d'Angers, Inserm UMR 1307, CNRS UMR 6075, Nantes Université, CRCI2NA, F-49000, Angers, France.,Université d'Angers, SFR ICAT, PRIMEX, F-49000, Angers, France
| | - Emmanuel Garcion
- Université d'Angers, Inserm UMR 1307, CNRS UMR 6075, Nantes Université, CRCI2NA, F-49000, Angers, France. .,Université d'Angers, SFR ICAT, PACeM, F-49000, Angers, France. .,Université d'Angers, SFR ICAT, PRIMEX, F-49000, Angers, France. .,GLIAD - Design and Application of Innovative Local Treatments in Glioblastoma, CRCI2NA, Team 5, Inserm UMR 1307, CNRS UMR 6075, Institut de Biologie en Santé (IBS) - CHU, 4 rue Larrey, Angers, France.
| |
Collapse
|
12
|
Hsieh PL, Chao SC, Chu PM, Yu CC. Regulation of Ferroptosis by Non-Coding RNAs in Head and Neck Cancers. Int J Mol Sci 2022; 23:3142. [PMID: 35328568 PMCID: PMC8950679 DOI: 10.3390/ijms23063142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/09/2022] [Accepted: 03/12/2022] [Indexed: 02/06/2023] Open
Abstract
Ferroptosis is a newly identified mode of programmed cell death characterized by iron-associated accumulation of lipid peroxides. Emerging research on ferroptosis has suggested its implication in tumorigenesis and stemness of cancer. On the other hand, non-coding RNAs have been shown to play a pivotal role in the modulation of various genes that affect the progression of cancer cells and ferroptosis. In this review, we summarize recent advances in the theoretical modeling of ferroptosis and its relationship between non-coding RNAs and head and neck cancers. Aside from the significance of ferroptosis-related non-coding RNAs in prognostic relevance, we also review how these non-coding RNAs participate in the regulation of iron, lipid metabolism, and reactive oxygen species accumulation. We aim to provide a thorough grounding in the function of ferroptosis-related non-coding RNAs based on current knowledge in an effort to develop effective therapeutic strategies for head and neck cancers.
Collapse
Affiliation(s)
- Pei-Ling Hsieh
- Department of Anatomy, School of Medicine, China Medical University, Taichung 404333, Taiwan; (P.-L.H.); (P.-M.C.)
| | - Shih-Chi Chao
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan;
- Department of Medical Research and Education, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan 265, Taiwan
| | - Pei-Ming Chu
- Department of Anatomy, School of Medicine, China Medical University, Taichung 404333, Taiwan; (P.-L.H.); (P.-M.C.)
| | - Cheng-Chia Yu
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan;
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| |
Collapse
|
13
|
Pandrangi SL, Chittineedi P, Chikati R, Lingareddy JR, Nagoor M, Ponnada SK. Role of dietary iron revisited: in metabolism, ferroptosis and pathophysiology of cancer. Am J Cancer Res 2022; 12:974-985. [PMID: 35411219 PMCID: PMC8984875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023] Open
Abstract
Iron is the most abundant metal in the human body. No independent life forms on earth can survive without iron. However, excess iron is closely associated with carcinogenesis by increasing oxidative stress via its catalytic activity to generate hydroxyl radicals. Therefore, it is speculated that iron might play a dual role in cells, by both stimulating cell growth and causing cell death. Dietary iron is absorbed by the intestinal enterocytes in the form of ferrous ion which forms cLIP. Excess iron stored in the form of Ferritin serves as a reservoir under iron depletion conditions. Ferroptosis, is an iron-dependent non-mutational form of cell death process and is suppressed by iron-binding compounds such as deferoxamine. Blocking transferrin-mediated iron import or recycling of iron-containing storage proteins (i.e., ferritin) also attenuates ferroptosis, consistent with the iron-dependent nature of this process. Unsurprisingly, ferroptosis also plays a role in the development of cancer and maybe a beneficial strategy for anticancer treatment. Different lines of evidence suggest that ferroptosis plays a crucial role in the suppression of tumorigenesis. In this review, we have discussed the pros and cons of iron accumulation, utilization and, its role in cell proliferation, ferroptosis and pathophysiology of cancer.
Collapse
Affiliation(s)
- Santhi Latha Pandrangi
- Onco-Stem Cell Research Laboratory, Department of Biochemistry and Bioinformatics, Institute of Science, GITAM (Deemed to be) UniversityVisakhapatnam 530045, India
| | - Prasanthi Chittineedi
- Onco-Stem Cell Research Laboratory, Department of Biochemistry and Bioinformatics, Institute of Science, GITAM (Deemed to be) UniversityVisakhapatnam 530045, India
| | | | - Joji Reddy Lingareddy
- Department of Biotechnology, Loyola AcademyOld Alwal, Secunderabad, Telangana 500010, India
| | | | - Suresh Kumar Ponnada
- Department of Biotechnology, Loyola AcademyOld Alwal, Secunderabad, Telangana 500010, India
| |
Collapse
|
14
|
Jo JH, Kim SA, Lee JH, Park YR, Kim C, Park SB, Jung DE, Lee HS, Chung MJ, Song SY. GLRX3, a novel cancer stem cell-related secretory biomarker of pancreatic ductal adenocarcinoma. BMC Cancer 2021; 21:1241. [PMID: 34794402 PMCID: PMC8603516 DOI: 10.1186/s12885-021-08898-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/13/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) are implicated in carcinogenesis, cancer progression, and recurrence. Several biomarkers have been described for pancreatic ductal adenocarcinoma (PDAC) CSCs; however, their function and mechanism remain unclear. METHOD In this study, secretome analysis was performed in pancreatic CSC-enriched spheres and control adherent cells for biomarker discovery. Glutaredoxin3 (GLRX3), a novel candidate upregulated in spheres, was evaluated for its function and clinical implication. RESULTS PDAC CSC populations, cell lines, patient tissues, and blood samples demonstrated GLRX3 overexpression. In contrast, GLRX3 silencing decreased the in vitro proliferation, migration, clonogenicity, and sphere formation of cells. GLRX3 knockdown also reduced tumor formation and growth in vivo. GLRX3 was found to regulate Met/PI3K/AKT signaling and stemness-related molecules. ELISA results indicated GLRX3 overexpression in the serum of patients with PDAC compared to that in healthy controls. The sensitivity and specificity of GLRX3 for PDAC diagnosis were 80.0 and 100%, respectively. When GLRX3 and CA19-9 were combined, sensitivity was significantly increased to 98.3% compared to that with GLRX3 or CA19-9 alone. High GLRX3 expression was also associated with poor disease-free survival in patients receiving curative surgery. CONCLUSION Overall, these results indicate GLRX3 as a novel diagnostic marker and therapeutic target for PDAC targeting CSCs.
Collapse
MESH Headings
- Animals
- CA-19-9 Antigen/metabolism
- Carcinoma, Pancreatic Ductal/diagnosis
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/mortality
- Carcinoma, Pancreatic Ductal/pathology
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- Disease-Free Survival
- Gene Silencing
- Humans
- Male
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Neoplasm Proteins/metabolism
- Neoplastic Stem Cells/metabolism
- Pancreatic Neoplasms/diagnosis
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/mortality
- Pancreatic Neoplasms/pathology
- Phosphatidylinositol 3-Kinases/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- Proto-Oncogene Proteins c-met/metabolism
- RNA, Small Interfering
- Secretome
- Sensitivity and Specificity
- Spheroids, Cellular/metabolism
- Spheroids, Cellular/pathology
Collapse
Affiliation(s)
- Jung Hyun Jo
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Sun A Kim
- Cowell Biodigm Co., Ltd, Seoul, South Korea
| | - Jeong Hoon Lee
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Yu Rang Park
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Chanyang Kim
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Soo Been Park
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Dawoon E Jung
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Hee Seung Lee
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Moon Jae Chung
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Si Young Song
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, 03722, South Korea.
| |
Collapse
|
15
|
Cosialls E, El Hage R, Dos Santos L, Gong C, Mehrpour M, Hamaï A. Ferroptosis: Cancer Stem Cells Rely on Iron until "to Die for" It. Cells 2021; 10:cells10112981. [PMID: 34831207 PMCID: PMC8616391 DOI: 10.3390/cells10112981] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer stem cells (CSCs) are a distinct subpopulation of tumor cells with stem cell-like features. Able to initiate and sustain tumor growth and mostly resistant to anti-cancer therapies, they are thought responsible for tumor recurrence and metastasis. Recent accumulated evidence supports that iron metabolism with the recent discovery of ferroptosis constitutes a promising new lead in the field of anti-CSC therapeutic strategies. Indeed, iron uptake, efflux, storage and regulation pathways are all over-engaged in the tumor microenvironment suggesting that the reprogramming of iron metabolism is a crucial occurrence in tumor cell survival. In particular, recent studies have highlighted the importance of iron metabolism in the maintenance of CSCs. Furthermore, the high concentration of iron found in CSCs, as compared to non-CSCs, underlines their iron addiction. In line with this, if iron is an essential macronutrient that is nevertheless highly reactive, it represents their Achilles’ heel by inducing ferroptosis cell death and therefore providing opportunities to target CSCs. In this review, we first summarize our current understanding of iron metabolism and its regulation in CSCs. Then, we provide an overview of the current knowledge of ferroptosis and discuss the role of autophagy in the (regulation of) ferroptotic pathways. Finally, we discuss the potential therapeutic strategies that could be used for inducing ferroptosis in CSCs to treat cancer.
Collapse
Affiliation(s)
- Emma Cosialls
- Institut Necker-Enfants Malades (INEM), Inserm U1151-CNRS UMR 8253, Université Paris Descartes-Sorbonne Paris Cité, F-75993 Paris, France; (E.C.); (R.E.H.); (L.D.S.)
| | - Rima El Hage
- Institut Necker-Enfants Malades (INEM), Inserm U1151-CNRS UMR 8253, Université Paris Descartes-Sorbonne Paris Cité, F-75993 Paris, France; (E.C.); (R.E.H.); (L.D.S.)
| | - Leïla Dos Santos
- Institut Necker-Enfants Malades (INEM), Inserm U1151-CNRS UMR 8253, Université Paris Descartes-Sorbonne Paris Cité, F-75993 Paris, France; (E.C.); (R.E.H.); (L.D.S.)
| | - Chang Gong
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Guangzhou 510120, China;
| | - Maryam Mehrpour
- Institut Necker-Enfants Malades (INEM), Inserm U1151-CNRS UMR 8253, Université Paris Descartes-Sorbonne Paris Cité, F-75993 Paris, France; (E.C.); (R.E.H.); (L.D.S.)
- Correspondence: (M.M.); (A.H.)
| | - Ahmed Hamaï
- Institut Necker-Enfants Malades (INEM), Inserm U1151-CNRS UMR 8253, Université Paris Descartes-Sorbonne Paris Cité, F-75993 Paris, France; (E.C.); (R.E.H.); (L.D.S.)
- Correspondence: (M.M.); (A.H.)
| |
Collapse
|
16
|
Thompson LR, Oliveira TG, Hermann ER, Chowanadisai W, Clarke SL, Montgomery MR. Distinct TP53 Mutation Types Exhibit Increased Sensitivity to Ferroptosis Independently of Changes in Iron Regulatory Protein Activity. Int J Mol Sci 2020; 21:ijms21186751. [PMID: 32942535 PMCID: PMC7555626 DOI: 10.3390/ijms21186751] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/04/2020] [Accepted: 09/12/2020] [Indexed: 12/19/2022] Open
Abstract
The tumor suppressor gene TP53 is the most commonly mutated gene in human cancer. In addition to loss of tumor suppressor functions, mutations in TP53 promote cancer progression by altering cellular iron acquisition and metabolism. A newly identified role for TP53 in the coordination of iron homeostasis and cancer cell survival lies in the ability for TP53 to protect against ferroptosis, a form of iron-mediated cell death. The purpose of this study was to determine the extent to which TP53 mutation status affects the cellular response to ferroptosis induction. Using H1299 cells, which are null for TP53, we generated cell lines expressing either a tetracycline inducible wild-type (WT) TP53 gene, or a representative mutated TP53 gene from six exemplary “hotspot” mutations in the DNA binding domain (R273H, R248Q, R282W, R175H, G245S, and R249S). TP53 mutants (R273H, R248Q, R175H, G245S, and R249S) exhibited increased sensitivity ferroptosis compared to cells expressing WT TP53. As iron-mediated lipid peroxidation is critical for ferroptosis induction, we hypothesized that iron acquisition pathways would be upregulated in mutant TP53-expressing cells. However, only cells expressing the R248Q, R175H, and G245S TP53 mutation types exhibited statistically significant increases in spontaneous iron regulatory protein (IRP) RNA binding activity following ferroptosis activation. Moreover, changes in the expression of downstream IRP targets were inconsistent with the observed differences in sensitivity to ferroptosis. These findings reveal that canonical iron regulatory pathways are bypassed during ferroptotic cell death. These results also indicate that induction of ferroptosis may be an effective therapeutic approach for tumor cells expressing distinct TP53 mutation types.
Collapse
|
17
|
Torti SV, Torti FM. Iron and Cancer: 2020 Vision. Cancer Res 2020; 80:5435-5448. [PMID: 32928919 DOI: 10.1158/0008-5472.can-20-2017] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/06/2020] [Accepted: 09/08/2020] [Indexed: 12/18/2022]
Abstract
New and provocative insights into the relationships between iron and cancer have been uncovered in recent years. These include delineation of connections that link cellular iron to DNA repair, genomic integrity, and oncogenic signaling as well as the discovery of ferroptosis, a novel iron-dependent form of cell death. In parallel, new molecules and pathways that regulate iron influx, intracellular iron trafficking, and egress in normal cells, and their perturbations in cancer have been discovered. In addition, insights into the unique properties of iron handling in tumor-initiating cells (cancer stem cells), novel contributions of the tumor microenvironment to the uptake and regulation of iron in cancer cells, and new therapeutic modalities that leverage the iron dependence of cancer have emerged.
Collapse
Affiliation(s)
- Suzy V Torti
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut.
| | - Frank M Torti
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut
| |
Collapse
|
18
|
Kaźmierczak Z, Szostak-Paluch K, Przybyło M, Langner M, Witkiewicz W, Jędruchniewicz N, Dąbrowska K. Endocytosis in cellular uptake of drug delivery vectors: Molecular aspects in drug development. Bioorg Med Chem 2020; 28:115556. [PMID: 32828419 DOI: 10.1016/j.bmc.2020.115556] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/16/2022]
Abstract
Drug delivery vectors are widely applied to increase drug efficacy while reducing the side effects and potential toxicity of a drug. They allow for patient-tailored therapy, dose titration, and therapeutic drug monitoring. A major part of drug delivery systems makes use of large nanocarriers: liposomes or virus-like particles (VLPs). These systems allow for a relatively large amount of cargo with good stability of vectors, and they offer multiple options for targeting vectors in vivo. Here we discuss endocytic pathways that are available for drug delivery by large nanocarriers. We focus on molecular aspects of the process, including an overview of potential molecular targets for studies of drug delivery vectors and for future solutions allowing targeted drug delivery.
Collapse
Affiliation(s)
- Zuzanna Kaźmierczak
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Kamila Szostak-Paluch
- Research and Development Center, Regional Specialized Hospital, Wrocław, Poland; Wrocław University of Science and Technology, Faculty of Fundamental Technical Problems, Department of Biomedical Engineering, Wrocław, Poland
| | - Magdalena Przybyło
- Wrocław University of Science and Technology, Faculty of Fundamental Technical Problems, Department of Biomedical Engineering, Wrocław, Poland; Lipid Systems sp z o.o., Wrocław, Poland
| | - Marek Langner
- Wrocław University of Science and Technology, Faculty of Fundamental Technical Problems, Department of Biomedical Engineering, Wrocław, Poland; Lipid Systems sp z o.o., Wrocław, Poland
| | - Wojciech Witkiewicz
- Research and Development Center, Regional Specialized Hospital, Wrocław, Poland
| | | | - Krystyna Dąbrowska
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland; Research and Development Center, Regional Specialized Hospital, Wrocław, Poland.
| |
Collapse
|
19
|
Wang X, Zheng H, Jia Z, Lei Z, Li M, Zhuang Q, Zhou H, Qiu Y, Fu Y, Yang X, Xi Y, Yan Q. Drosophila Prominin-like, a homolog of CD133, interacts with ND20 to maintain mitochondrial function. Cell Biosci 2019; 9:101. [PMID: 31890150 PMCID: PMC6923988 DOI: 10.1186/s13578-019-0365-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/11/2019] [Indexed: 12/31/2022] Open
Abstract
Background Drosophila Prominin-like is a homolog of mammalian CD133, which is recognized as a biomarker for stem cells. The interacting proteins of CD133 and their biological functions remain elusive. Results In this study, we using yeast two-hybrid assays, GST pull-down assay and co-immunoprecipitation (Co-IP) methods found that Drosophila Prominin-like interacts with ND20, a subunit of mitochondrial respiratory complex I. Bioinformatics analysis suggests that Prominin-like is a six-transmembrane glycoprotein which localizes on cellular membranes. Immunostaining and mitochondrial fractionation indicate that Drosophila Prominin-like could localize in the mitochondria. The knockdown of prominin-like in S2 cells resulted in transient mitochondrial dysfunctions as evidenced by reduced ATP production, elevated ROS generation and an accompanied reduction in mitochondrial proteins. Mitochondrial dysfunctions were detected in aged prominin-like mutant flies. Conclusion Our data indicates that Prominin-like acts to maintain mitochondrial function through its interaction with ND20 which, itself, is active in the mitochondrial electron transport chain. Our study provides insights into a novel molecular mechanism of Drosophila prominin-like and suggests a similar function of CD133 in mammals.
Collapse
Affiliation(s)
- Xuexiang Wang
- 1College of Life Science, Zhejiang University, Hangzhou, 310058 Zhejiang China.,2Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, 250000 Shandong China
| | - Huimei Zheng
- 3Division of Human Reproduction and Developmental Genetics, The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang China.,4Institute of Genetics, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Zexiao Jia
- 1College of Life Science, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Zhaoying Lei
- 1College of Life Science, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Mengyao Li
- 1College of Life Science, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Qianqian Zhuang
- 1College of Life Science, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Hui Zhou
- 1College of Life Science, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Yue Qiu
- 1College of Life Science, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Yong Fu
- 5The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052 Zhejiang China
| | - Xiaohang Yang
- 3Division of Human Reproduction and Developmental Genetics, The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang China.,4Institute of Genetics, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Yongmei Xi
- 3Division of Human Reproduction and Developmental Genetics, The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang China.,4Institute of Genetics, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Qingfeng Yan
- 1College of Life Science, Zhejiang University, Hangzhou, 310058 Zhejiang China.,4Institute of Genetics, Zhejiang University, Hangzhou, 310058 Zhejiang China.,6The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 Zhejiang China.,Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou, 310058 Zhejiang China
| |
Collapse
|
20
|
Recalcati S, Gammella E, Cairo G. Dysregulation of iron metabolism in cancer stem cells. Free Radic Biol Med 2019; 133:216-220. [PMID: 30040994 DOI: 10.1016/j.freeradbiomed.2018.07.015] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 12/17/2022]
Abstract
Cancer stem cells (CSCs) are a distinct subpopulation of tumor cells endowed with stem-like properties. Importantly, CSCs can survive current standard therapies, resulting in metastatic disease and tumor recurrence. Here we describe the alterations of iron homeostasis occurring in CSCs, which in general are characterized by high intracellular iron content. Importantly, abnormalities of iron metabolism correlate with faster tumor growth and adverse prognosis in cancer patients. In line with the dependence of cancer on iron, we also discuss iron-dependent mechanisms as druggable pathways, as iron chelators have been considered for tumor therapy and new molecules currently proposed and studied as antineoplastic drugs may impinge on iron and its capacity to promote oxidative stress to have therapeutic value in cancer.
Collapse
Affiliation(s)
- Stefania Recalcati
- Department of Biomedical Sciences for Health, University of Milan, Via Mangiagalli 31, 20133 Milano, Italy
| | - Elena Gammella
- Department of Biomedical Sciences for Health, University of Milan, Via Mangiagalli 31, 20133 Milano, Italy
| | - Gaetano Cairo
- Department of Biomedical Sciences for Health, University of Milan, Via Mangiagalli 31, 20133 Milano, Italy.
| |
Collapse
|
21
|
Maimaitiyiming Y, Yang C, Wang Y, Hussain L, Naranmandura H. Selection and characterization of novel DNA aptamer against colorectal carcinoma Caco-2 cells. Biotechnol Appl Biochem 2019; 66:412-418. [PMID: 30746785 DOI: 10.1002/bab.1737] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 02/05/2019] [Indexed: 12/17/2022]
Abstract
Aptamers are short, single-stranded nucleic acid (DNA or RNA) oligonucleotides that can be obtained by a technique called systematic evolution of ligands by exponential enrichment (SELEX) in vitro. Due to superior properties such as small size, high binding affinity, and stability, they are considered to be feasible tools for diagnosis and treatment of disease. In the current study, we attempted to screen a high-affinity DNA aptamer to selectively target the colorectal carcinoma Caco-2 cells by using cell-based SELEX approach. After 14 consecutive rounds of selection, aptamer ApC1 was identified. Confocal microscopy results revealed that ApC1 could rapidly internalize into Caco-2 cells but not HEK 293 cells. Moreover, it showed high specificity to Caco-2 cells rather than other cell lines such as 293T, HeLa, MCF-7, HL-60, and NB4. Collectively, our results demonstrated that aptamer ApC1 has high specificity to colorectal carcinoma Caco-2 cells, which could be further applied for targeted therapy of colorectal cancer in future studies.
Collapse
Affiliation(s)
- Yasen Maimaitiyiming
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Chang Yang
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Yun Wang
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Liaqat Hussain
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Hua Naranmandura
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Department of Toxicology, School of Medicine and Public Health, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
22
|
Babu KR, Muckenthaler MU. miR-148a regulates expression of the transferrin receptor 1 in hepatocellular carcinoma. Sci Rep 2019; 9:1518. [PMID: 30728365 PMCID: PMC6365501 DOI: 10.1038/s41598-018-35947-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/10/2018] [Indexed: 02/07/2023] Open
Abstract
Transferrin receptor 1 (TFR1) is a transmembrane glycoprotein that allows for transferrin-bound iron uptake in mammalian cells. It is overexpressed in various cancers to satisfy the high iron demand of fast proliferating cells. Here we show that in hepatocellular carcinoma (HCC) TFR1 expression is regulated by miR-148a. Within the TFR1 3′UTR we identified and experimentally validated two evolutionarily conserved miRNA response elements (MREs) for miR-148/152 family members, including miR-148a. Interestingly, analyses of RNA sequencing data from patients with liver hepatocellular carcinoma (LIHC) revealed a significant inverse correlation of TFR1 mRNA levels and miR-148a. In addition, TFR1 mRNA levels were significantly increased in the tumor compared to matched normal healthy tissue, while miR-148a levels are decreased. Functional analysis demonstrated post-transcriptional regulation of TFR1 by miR-148a in HCC cells as well as decreased HCC cell proliferation upon either miR-148a overexpression or TFR1 knockdown. We hypothesize that decreased expression of miR-148a in HCC may elevate transferrin-bound iron uptake, increasing cellular iron levels and cell proliferation.
Collapse
Affiliation(s)
- Kamesh R Babu
- Department of Pediatric Hematology, Oncology, and Immunology, University of Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit, University of Heidelberg, Heidelberg, Germany
| | - Martina U Muckenthaler
- Department of Pediatric Hematology, Oncology, and Immunology, University of Heidelberg, Heidelberg, Germany. .,Molecular Medicine Partnership Unit, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
23
|
Wang Y, Yu L, Ding J, Chen Y. Iron Metabolism in Cancer. Int J Mol Sci 2018; 20:ijms20010095. [PMID: 30591630 PMCID: PMC6337236 DOI: 10.3390/ijms20010095] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/21/2018] [Accepted: 12/22/2018] [Indexed: 12/11/2022] Open
Abstract
Demanded as an essential trace element that supports cell growth and basic functions, iron can be harmful and cancerogenic though. By exchanging between its different oxidized forms, iron overload induces free radical formation, lipid peroxidation, DNA, and protein damages, leading to carcinogenesis or ferroptosis. Iron also plays profound roles in modulating tumor microenvironment and metastasis, maintaining genomic stability and controlling epigenetics. in order to meet the high requirement of iron, neoplastic cells have remodeled iron metabolism pathways, including acquisition, storage, and efflux, which makes manipulating iron homeostasis a considerable approach for cancer therapy. Several iron chelators and iron oxide nanoparticles (IONPs) has recently been developed for cancer intervention and presented considerable effects. This review summarizes some latest findings about iron metabolism function and regulation mechanism in cancer and the application of iron chelators and IONPs in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Yafang Wang
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Lei Yu
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jian Ding
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Yi Chen
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
24
|
Affiliation(s)
- Amir Barzegar Behrooz
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang, Malaysia
| | - Amir Syahir
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang, Malaysia
| | - Syahida Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
25
|
Glumac PM, LeBeau AM. The role of CD133 in cancer: a concise review. Clin Transl Med 2018; 7:18. [PMID: 29984391 PMCID: PMC6035906 DOI: 10.1186/s40169-018-0198-1] [Citation(s) in RCA: 272] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 06/16/2018] [Indexed: 12/12/2022] Open
Abstract
Despite the abundant ongoing research efforts, cancer remains one of the most challenging diseases to treat globally. Due to the heterogenous nature of cancer, one of the major clinical challenges in therapeutic development is the cancer’s ability to develop resistance. It has been hypothesized that cancer stem cells are the cause for this resistance, and targeting them will lead to tumor regression. A pentaspan transmembrane glycoprotein, CD133 has been suggested to mark cancer stem cells in various tumor types, however, the accuracy of CD133 as a cancer stem cell biomarker has been highly controversial. There are numerous speculations for this, including differences in cell culture conditions, poor in vivo assays, and the inability of current antibodies to detect CD133 variants and deglycosylated epitopes. This review summarizes the most recent and relevant research regarding the controversies surrounding CD133 as a normal stem cell and cancer stem cell biomarker. Additionally, it aims to establish the overall clinical significance of CD133 in cancer. Recent clinical studies have shown that high expression of CD133 in tumors has been indicated as a prognostic marker of disease progression. As such, a spectrum of immunotherapeutic strategies have been developed to target these CD133pos cells with the goal of translation into the clinic. This review compiles the current therapeutic strategies targeting CD133 and discusses their prognostic potential in various cancer subtypes.
Collapse
Affiliation(s)
- Paige M Glumac
- Department of Pharmacology, University of Minnesota Medical School, Nils Hasselmo Hall 3-104, 312 Church St. SE, Minneapolis, MN, 55455, USA
| | - Aaron M LeBeau
- Department of Pharmacology, University of Minnesota Medical School, Nils Hasselmo Hall 3-104, 312 Church St. SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
26
|
Gammella E, Buratti P, Cairo G, Recalcati S. The transferrin receptor: the cellular iron gate. Metallomics 2018; 9:1367-1375. [PMID: 28671201 DOI: 10.1039/c7mt00143f] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The transferrin receptor (TfR1), which mediates cellular iron uptake through clathrin-dependent endocytosis of iron-loaded transferrin, plays a key role in iron homeostasis. Since the number of TfR1 molecules at the cell surface is the rate-limiting step for iron entry into cells and is essential to prevent iron overload, TfR1 expression is precisely controlled at multiple levels. In this review, we have discussed the latest advances in the molecular regulation of TfR1 expression and we have considered current understanding of TfR1 function beyond its canonical role in providing iron for erythroid precursors and rapidly proliferating cells.
Collapse
Affiliation(s)
- Elena Gammella
- Department of Biomedical Sciences for Health, University of Milan, Via Mangiagalli 31, 20133 Milano, Italy.
| | | | | | | |
Collapse
|
27
|
Resistance of glioma cells to nutrient-deprived microenvironment can be enhanced by CD133-mediated autophagy. Oncotarget 2018; 7:76238-76249. [PMID: 27780926 PMCID: PMC5342810 DOI: 10.18632/oncotarget.12803] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 09/24/2016] [Indexed: 01/04/2023] Open
Abstract
CD133 is a pentaspan transmembrane protein that can serve as a biomarker for cancer stem cells, although its biochemical mechanism remains unclear. Here we report that CD133 expression enhances glioma cell tolerance of a nutrient-deprived microenvironment. Under starvation conditions, CD133-positive cells exhibited higher survival and decreased levels of apoptosis. These changes were dependent on activation of autophagy-associated gene signaling and were impaired by the autophagic inhibitor chloroquine. Furthermore, rapamycin up-regulated the level of autophagy and inversely reduced CD133 expression. Immunofluorescence confirmed that starvation promoted release of CD133 from the plasma membrane to the cytoplasm, with CD133 also partially co-localizing with LC3 upon starvation. Additionally, CD133 partially co-localized with Beclin1, Atg5, and lysosomes, indicating that CD133 directly participates in the autophagosome membrane fusion process and ultimately undergoes lysosomal degradation. Collectively, our results demonstrate that CD133 contributes to cell survival by regulating autophagy, and that targeting CD133-linked signaling and autophagy may be useful in improving anti-cancer treatments.
Collapse
|
28
|
Raggi C, Gammella E, Correnti M, Buratti P, Forti E, Andersen JB, Alpini G, Glaser S, Alvaro D, Invernizzi P, Cairo G, Recalcati S. Dysregulation of Iron Metabolism in Cholangiocarcinoma Stem-like Cells. Sci Rep 2017; 7:17667. [PMID: 29247214 PMCID: PMC5732280 DOI: 10.1038/s41598-017-17804-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/26/2017] [Indexed: 12/13/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a devastating liver tumour arising from malignant transformation of bile duct epithelial cells. Cancer stem cells (CSC) are a subset of tumour cells endowed with stem-like properties, which play a role in tumour initiation, recurrence and metastasis. In appropriate conditions, CSC form 3D spheres (SPH), which retain stem-like tumour-initiating features. Here, we found different expression of iron proteins indicating increased iron content, oxidative stress and higher expression of CSC markers in CCA-SPH compared to tumour cells growing as monolayers. Exposure to the iron chelator desferrioxamine decreased SPH forming efficiency and the expression of CSC markers and stem-like genes, whereas iron had an opposite effect. Microarray profiles in CCA samples (n = 104) showed decreased H ferritin, hepcidin and ferroportin expression in tumours respect to surrounding liver, whereas transferrin receptor was up-regulated. Moreover, we found a trend toward poorer outcome in CCA patients with elevated expression of ferritin and hepcidin, two major proteins of iron metabolism. These findings, which represent the first evidence of a role for iron in the stem cell compartment as a novel metabolic factor involved in CCA growth, may have implications for a better therapeutic approach.
Collapse
Affiliation(s)
- Chiara Raggi
- Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Italy
- Dipartimento Medicina Sperimentale e Clinica, University of Firence, Firenze, Italy
| | - Elena Gammella
- Department of Biomedical Sciences for Health, University of Milan, Milano, Italy
| | - Margherita Correnti
- Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Paolo Buratti
- Department of Biomedical Sciences for Health, University of Milan, Milano, Italy
| | - Elisa Forti
- Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Jesper B Andersen
- Biotech Research and Innovation Centre, Department of Health and Medical Sciences University of Copenhagen, Copenhagen, Denmark
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, Baylor Scott & White Digestive Disease Research Center, Scott & White Health, Department of Medicine, Texas A&M Health Science Center, Temple, TX, USA
| | - Shannon Glaser
- Research, Central Texas Veterans Health Care System, Baylor Scott & White Digestive Disease Research Center, Scott & White Health, Department of Medicine, Texas A&M Health Science Center, Temple, TX, USA
| | - Domenico Alvaro
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Pietro Invernizzi
- Division of Gastroenterology and Program for Autoimmune Liver Diseases, International Center for Digestive Health, Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy.
| | - Gaetano Cairo
- Department of Biomedical Sciences for Health, University of Milan, Milano, Italy.
| | - Stefania Recalcati
- Department of Biomedical Sciences for Health, University of Milan, Milano, Italy
| |
Collapse
|
29
|
Patel D, Rorbach J, Downes K, Szukszto MJ, Pekalski ML, Minczuk M. Macropinocytic entry of isolated mitochondria in epidermal growth factor-activated human osteosarcoma cells. Sci Rep 2017; 7:12886. [PMID: 29018288 PMCID: PMC5634993 DOI: 10.1038/s41598-017-13227-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 09/20/2017] [Indexed: 12/13/2022] Open
Abstract
Mammalian mitochondria can be transferred between cells both in culture and in vivo. There is evidence that isolated mitochondria enter cells by endocytosis, but the mechanism has not been fully characterised. We investigated the entry mechanism of isolated mitochondria into human osteosarcoma (HOS) cells. Initially we confirmed that respiratory-competent cells can be produced following incubation of HOS cells lacking mitochondrial DNA (mtDNA) with functional exogenous mitochondria and selection in a restrictive medium. Treatment of HOS cells with inhibitors of different endocytic pathways suggest that uptake of EGFP-labelled mitochondria occurs via an actin-dependent endocytic pathway which is consistent with macropinocytosis. We later utilised time-lapse microscopy to show that internalised mitochondria were found in large, motile cellular vesicles. Finally, we used confocal imaging to show that EGFP-labelled mitochondria colocalise with a macropinocytic cargo molecule during internalisation, HOS cells produce membrane ruffles interacting with external mitochondria during uptake and EGFP-labelled mitochondria are found within early macropinosomes inside cells. In conclusion our results are consistent with isolated mitochondria being internalised by macropinocytosis in HOS cells.
Collapse
Affiliation(s)
- Dipali Patel
- MRC Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK.
| | - Joanna Rorbach
- MRC Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden
| | - Kate Downes
- CIMR, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK
- Department of Haematology, University of Cambridge, NHS Blood and Transplant, Long Road, Cambridge, CB2 0PT, UK
| | - Maciej J Szukszto
- MRC Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK
| | | | - Michal Minczuk
- MRC Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK.
| |
Collapse
|
30
|
Abstract
The high success of silver nanoparticles (AgNPs), mainly associated with their proved antimicrobial properties, has led to an increasing spread in our close environment. Although many studies have been carried out to detect potential toxicity of AgNPs, most of them have been developed under unrealistic exposure conditions. In terms of human risk, the evaluation of long-term exposures to subtoxic doses of NPs remains a challenge. Here, we have determined different transformation-related end points under a scenario of 6 weeks long-term exposure to low noncytotoxic AgNPs concentrations (0.5 and 1 μg/mL) in Caco-2 cells. A significant uptake of AgNPs was demonstrated by using confocal microscopy showing a high presence of AgNPs in both the cytoplasm and the nucleus. As for the assayed parameters of cell transformation such as ability to growth without requiring adherence to a surface (soft-agar assay), the secretion of extracellular matrix metalloproteinase to the medium (zymography), migration capacity and ability of the secretome of exposed cells to promote tumor growth, significant effects were detected in all cases, with the exception of the extracellular matrix metalloproteinases (MMP2 and MMP9) secretion. Our results point out the potential carcinogenic risk associated with AgNPs exposure under long-term exposure conditions, as well as the importance of using realistic exposure scenarios to test nanomaterials.
Collapse
Affiliation(s)
- Laura Vila
- a Grup de Mutagènesi, Departament de Genètica i de Microbiologia , Facultat de Biociències, Universitat Autònoma de Barcelona , Bellaterra , Spain
| | - Ricard Marcos
- a Grup de Mutagènesi, Departament de Genètica i de Microbiologia , Facultat de Biociències, Universitat Autònoma de Barcelona , Bellaterra , Spain.,b CIBER Epidemiología y Salud Pública , ISCIII , Madrid , Spain
| | - Alba Hernández
- a Grup de Mutagènesi, Departament de Genètica i de Microbiologia , Facultat de Biociències, Universitat Autònoma de Barcelona , Bellaterra , Spain.,b CIBER Epidemiología y Salud Pública , ISCIII , Madrid , Spain
| |
Collapse
|
31
|
Iglesia RP, Prado MB, Cruz L, Martins VR, Santos TG, Lopes MH. Engagement of cellular prion protein with the co-chaperone Hsp70/90 organizing protein regulates the proliferation of glioblastoma stem-like cells. Stem Cell Res Ther 2017; 8:76. [PMID: 28412969 PMCID: PMC5392955 DOI: 10.1186/s13287-017-0518-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 02/10/2017] [Accepted: 02/21/2017] [Indexed: 12/26/2022] Open
Abstract
Background Glioblastoma (GBM), a highly aggressive brain tumor, contains a subpopulation of glioblastoma stem-like cells (GSCs) that play roles in tumor maintenance, invasion, and therapeutic resistance. GSCs are therefore a promising target for GBM treatment. Our group identified the cellular prion protein (PrPC) and its partner, the co-chaperone Hsp70/90 organizing protein (HOP), as potential target candidates due to their role in GBM tumorigenesis and in neural stem cell maintenance. Methods GSCs expressing different levels of PrPC were cultured as neurospheres with growth factors, and characterized with stem cells markers and adhesion molecules markers through immunofluorescence and flow cytometry. We than evaluated GSC self-renewal and proliferation by clonal density assays and BrdU incorporation, respectively, in front of recombinant HOP treatment, combined or not with a HOP peptide which mimics the PrPC binding site. Stable silencing of HOP was also performed in parental and/or PrPC-depleted cell populations, and proliferation in vitro and tumor growth in vivo were evaluated. Migration assays were performed on laminin-1 pre-coated glass. Results We observed that, when GBM cells are cultured as neurospheres, they express specific stemness markers such as CD133, CD15, Oct4, and SOX2; PrPC is upregulated compared to monolayer culture and co-localizes with CD133. PrPC silencing downregulates the expression of molecules associated with cancer stem cells, upregulates markers of cell differentiation and affects GSC self-renewal, pointing to a pivotal role for PrPC in the maintenance of GSCs. Exogenous HOP treatment increases proliferation and self-renewal of GSCs in a PrPC-dependent manner while HOP knockdown disturbs the proliferation process. In vivo, PrPC and/or HOP knockdown potently inhibits the growth of subcutaneously implanted glioblastoma cells. In addition, disruption of the PrPC-HOP complex by a HOP peptide, which mimics the PrPC binding site, affects GSC self-renewal and proliferation indicating that the HOP-PrPC complex is required for GSC stemness. Furthermore, PrPC-depleted GSCs downregulate cell adhesion-related proteins and impair cell migration indicating a putative role for PrPC in the cell surface stability of cell adhesion molecules and GBM cell invasiveness, respectively. Conclusions In conclusion, our results show that the modulation of HOP-PrPC engagement or the decrease of PrPC and HOP expression may represent a potential therapeutic intervention in GBM, regulating glioblastoma stem-like cell self-renewal, proliferation, and migration. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0518-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rebeca Piatniczka Iglesia
- Laboratory of Neurobiology and Stem cells, Department of Cell and Developmental Biology; Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1524 - Cidade Universitária "Armando Salles Oliveira", Butanta - Sao Paulo, SP, 05508-000, Brazil
| | - Mariana Brandão Prado
- Laboratory of Neurobiology and Stem cells, Department of Cell and Developmental Biology; Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1524 - Cidade Universitária "Armando Salles Oliveira", Butanta - Sao Paulo, SP, 05508-000, Brazil
| | - Lilian Cruz
- Laboratory of Neurobiology and Stem cells, Department of Cell and Developmental Biology; Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1524 - Cidade Universitária "Armando Salles Oliveira", Butanta - Sao Paulo, SP, 05508-000, Brazil
| | - Vilma Regina Martins
- Laboratory of Cell and Molecular Biology, International Research Center, A.C. Camargo Cancer Center, Sao Paulo, SP, 02056-070, Brazil
| | - Tiago Góss Santos
- Laboratory of Cell and Molecular Biology, International Research Center, A.C. Camargo Cancer Center, Sao Paulo, SP, 02056-070, Brazil
| | - Marilene Hohmuth Lopes
- Laboratory of Neurobiology and Stem cells, Department of Cell and Developmental Biology; Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1524 - Cidade Universitária "Armando Salles Oliveira", Butanta - Sao Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
32
|
Perfecto A, Elgy C, Valsami-Jones E, Sharp P, Hilty F, Fairweather-Tait S. Mechanisms of Iron Uptake from Ferric Phosphate Nanoparticles in Human Intestinal Caco-2 Cells. Nutrients 2017; 9:nu9040359. [PMID: 28375175 PMCID: PMC5409698 DOI: 10.3390/nu9040359] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/27/2017] [Accepted: 03/30/2017] [Indexed: 12/28/2022] Open
Abstract
Food fortification programs to reduce iron deficiency anemia require bioavailable forms of iron that do not cause adverse organoleptic effects. Rodent studies show that nano-sized ferric phosphate (NP-FePO4) is as bioavailable as ferrous sulfate, but there is controversy over the mechanism of absorption. We undertook in vitro studies to examine this using a Caco-2 cell model and simulated gastrointestinal (GI) digestion. Supernatant iron concentrations increased inversely with pH, and iron uptake into Caco-2 cells was 2–3 fold higher when NP-FePO4 was digested at pH 1 compared to pH 2. The size and distribution of NP-FePO4 particles during GI digestion was examined using transmission electron microscopy. The d50 of the particle distribution was 413 nm. Using disc centrifugal sedimentation, a high degree of agglomeration in NP-FePO4 following simulated GI digestion was observed, with only 20% of the particles ≤1000 nm. In Caco-2 cells, divalent metal transporter-1 (DMT1) and endocytosis inhibitors demonstrated that NP-FePO4 was mainly absorbed via DMT1. Small particles may be absorbed by clathrin-mediated endocytosis and micropinocytosis. These findings should be considered when assessing the potential of iron nanoparticles for food fortification.
Collapse
Affiliation(s)
- Antonio Perfecto
- 1Norwich Medical School, University of East Anglia, Norwich, Norfolk NR4 7UQ, UK; of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (C.E.); (E.V.-J.)3Diabetes and Nutritional Sciences Division, King's College London, London SE1 9NH, UK; of Food, Nutrition, and Health, ETH, Schmelzbergstrasse 9, 8092 Zürich, Switzerland; .
| | - Christine Elgy
- 1Norwich Medical School, University of East Anglia, Norwich, Norfolk NR4 7UQ, UK; of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (C.E.); (E.V.-J.)3Diabetes and Nutritional Sciences Division, King's College London, London SE1 9NH, UK; of Food, Nutrition, and Health, ETH, Schmelzbergstrasse 9, 8092 Zürich, Switzerland; .
| | - Eugenia Valsami-Jones
- 1Norwich Medical School, University of East Anglia, Norwich, Norfolk NR4 7UQ, UK; of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (C.E.); (E.V.-J.)3Diabetes and Nutritional Sciences Division, King's College London, London SE1 9NH, UK; of Food, Nutrition, and Health, ETH, Schmelzbergstrasse 9, 8092 Zürich, Switzerland; .
| | - Paul Sharp
- 1Norwich Medical School, University of East Anglia, Norwich, Norfolk NR4 7UQ, UK; of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (C.E.); (E.V.-J.)3Diabetes and Nutritional Sciences Division, King's College London, London SE1 9NH, UK; of Food, Nutrition, and Health, ETH, Schmelzbergstrasse 9, 8092 Zürich, Switzerland; .
| | - Florentine Hilty
- 1Norwich Medical School, University of East Anglia, Norwich, Norfolk NR4 7UQ, UK; of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (C.E.); (E.V.-J.)3Diabetes and Nutritional Sciences Division, King's College London, London SE1 9NH, UK; of Food, Nutrition, and Health, ETH, Schmelzbergstrasse 9, 8092 Zürich, Switzerland; .
| | - Susan Fairweather-Tait
- 1Norwich Medical School, University of East Anglia, Norwich, Norfolk NR4 7UQ, UK; of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (C.E.); (E.V.-J.)3Diabetes and Nutritional Sciences Division, King's College London, London SE1 9NH, UK; of Food, Nutrition, and Health, ETH, Schmelzbergstrasse 9, 8092 Zürich, Switzerland; .
| |
Collapse
|
33
|
Li B, Li Q, Mo J, Dai H. Drug-Loaded Polymeric Nanoparticles for Cancer Stem Cell Targeting. Front Pharmacol 2017; 8:51. [PMID: 28261093 PMCID: PMC5306366 DOI: 10.3389/fphar.2017.00051] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 01/24/2017] [Indexed: 12/15/2022] Open
Abstract
Cancer stem cells (CSCs) have been reported to play critical roles in tumor initiation, propagation, and regeneration of cancer. Nano-size vehicles are employed to deliver drugs to target the CSCs for cancer therapy. Polymeric nanoparticles have been considered as the most efficient vehicles for drug delivery due to their excellent pharmacokinetic properties. The CSCs specific antibodies or ligands can be conjugated onto the surface or interior of nanoparticles to successfully target and finally eliminate CSCs. In this review, we focus on the approaches of polymeric nanoparticles design for loading drug, and their potential application for CSCs targeting in cancer therapy.
Collapse
Affiliation(s)
- Binbin Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of TechnologyWuhan, China
- Biomedical Materials and Engineering Research Center of Hubei ProvinceWuhan, China
| | - Qinghua Li
- Department of Neurology, Affiliated Hospital of Guilin Medical UniversityGuilin, China
| | - Jingxin Mo
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of EducationGuangzhou, China
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of TechnologyWuhan, China
- Biomedical Materials and Engineering Research Center of Hubei ProvinceWuhan, China
| |
Collapse
|
34
|
Development of a novel imaging agent using peptide-coated gold nanoparticles toward brain glioma stem cell marker CD133. Acta Biomater 2017; 47:182-192. [PMID: 27721007 DOI: 10.1016/j.actbio.2016.10.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 09/28/2016] [Accepted: 10/05/2016] [Indexed: 12/13/2022]
Abstract
CD133 is known as biomarker for glioblastoma (GBM) and also serves as a marker for cancer stem cells (CSCs), which carry out tumorigenesis and resist conventional therapeutics. The presence of CD133-presenting CSC is a one of the factors in maintenance of the tumorigenic potential of GBM. Thus, CD133 is a potential target for accurate diagnosis of GBM, which could improve its poor prognosis for patients when CSCs are present. Herein we designed a small peptide-based imaging agent with stimulus-responsive properties. A novel small peptide, CBP4, was screened by a phage display technique, and demonstrated binding to the target CD133 (ECD) comparable to that of an antibody. As a quencher, we used gold nanoparticles (GNPs); the targeting peptide was conjugated to GNPs with high efficiency. By means of a quenching effect, the peptide-coated GNP showed 'signal on-off' properties depending upon the presence of the target. In addition, the particles exhibited biocompatibility when localized in the cytosol. Thus, this study demonstrated that the peptide-coated GNPs can be utilized as an imaging agent for accurate diagnosis of GBM, and further as a drug carrier for therapeutic approaches. STATEMENT OF SIGNIFICANCE The diagnosis and determination of prognosis made by cancer stem cell markers could be a key strategy to eradicate cancer stem cells and cure the cancer. The significance of this study is the characterization of quenching-based signal on-off mechanism and showed that the active targeting via peptide can contribute to the design of a stimulus-responsive cellular imaging agent. Moreover, small peptide based nano complexation showed specific recognition of the target stem cell and internalized on cellular cyotosol with stimulus responsive fluorescence. With its novel biocompatibility, the strategy might be a promising tool for drug carrier systems able to measure and visualize the delivered efficiency at intracellular sites.
Collapse
|
35
|
Cai RP, Xue YX, Huang J, Wang JH, Wang JH, Zhao SY, Guan TT, Zhang Z, Gu YT. NS1619 regulates the expression of caveolin-1 protein in a time-dependent manner via ROS/PI3K/PKB/FoxO1 signaling pathway in brain tumor microvascular endothelial cells. J Neurol Sci 2016; 369:109-118. [PMID: 27653874 DOI: 10.1016/j.jns.2016.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/01/2016] [Accepted: 08/02/2016] [Indexed: 12/28/2022]
Abstract
NS1619, a calcium-activated potassium channel (Kca channel) activator, can selectively and time-dependently accelerate the formation of transport vesicles in both the brain tumor capillary endothelium and tumor cells within 15min of treatment and then increase the permeability of the blood-brain tumor barrier (BTB). However, the mechanism involved is still under investigation. Using a rat brain glioma (C6) model, the expression of caveolin-1, FoxO1 and p-FoxO1 protein were examined at different time points after intracarotid infusion of NS1619 at a dose of 30μg/kg/min. Internalization of Cholera toxin subunit (CTB) labeled fluorescently was monitored by flow cytometry. The expression of caveolin-1 and FoxO1 protein at tumor microvessels was enhanced and caveolae-mediated CTB endocytosis was increased by NS1619 infusion for 15min. Compared with the 15min group, the expression of caveolin-1 protein was significantly decreased and the level of phosphorylation of FoxO1 was significantly increased in the NS1619 2h group. In addition, inhibitors of reactive oxygen species (ROS) or PI3K or PKB significantly attenuated the level of FoxO1 phosphorylation and also increased the expression of caveolin-1 protein in Human Brain Microvascular Endothelial Cells (HBMECs) cocultured with human glioma cells (U87) 2h after NS1619 treatment. This led to the conclusion that NS1619-mediated transport vesicle increase is, at least partly, related to the ROS/PI3K/PKB/FoxO1 signaling pathway.
Collapse
Affiliation(s)
- Rui-Ping Cai
- Department of Physiology, Life Science and Biopharmaceutical Institution, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, PR China
| | - Yi-Xue Xue
- Department of Neurobiology, College Basic of Medicine, China Medical University, Shenyang, 110001, Liaoning Province, PR China
| | - Jian Huang
- Department of Phytochemistry, Chinese Materia Medica Institution, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, PR China
| | - Jin-Hui Wang
- Department of Phytochemistry, Chinese Materia Medica Institution, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, PR China
| | - Jia-Hong Wang
- Department of Physiology, Life Science and Biopharmaceutical Institution, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, PR China
| | - Song-Yan Zhao
- Department of Pharmacology Experiment Center, Life Science and Biopharmaceutical Institution, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, PR China
| | - Ting-Ting Guan
- Department of Physiology, Life Science and Biopharmaceutical Institution, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, PR China
| | - Zhou Zhang
- Department of Physiology, Life Science and Biopharmaceutical Institution, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, PR China.
| | - Yan-Ting Gu
- Department of Physiology, Life Science and Biopharmaceutical Institution, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, PR China.
| |
Collapse
|
36
|
CXCL3 contributes to CD133(+) CSCs maintenance and forms a positive feedback regulation loop with CD133 in HCC via Erk1/2 phosphorylation. Sci Rep 2016; 6:27426. [PMID: 27255419 PMCID: PMC4891684 DOI: 10.1038/srep27426] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 05/09/2016] [Indexed: 12/25/2022] Open
Abstract
Although the chemotactic cytokine CXCL3 is thought to play an important role in tumor initiation and invasion, little is known about its function in hepatocellular carcinoma (HCC). In our previous study, we found that Ikaros inhibited CD133 expression via the MAPK pathway in HCC. Here, we showed that Ikaros may indirectly down-regulate CXCL3 expression in HCC cells, which leads to better outcomes in patients with CD133+ cancer stem cell (CSC) populations. CD133 overexpression induced CXCL3 expression, and silencing of CD133 down-regulated CXCL3 in HCC cells. Knockdown of CXCL3 inhibited CD133+ HCC CSCs’ self-renewal and tumorigenesis. The serum CXCL3 level was higher in HCC patients’ samples than that in healthy individual. HCC patients with higher CXCL3 expression displayed a poor prognosis, and a high level of CXCL3 was significantly associated with vascular invasion and tumor capsule formation. Exogenous CXCL3 induced Erk1/2 and ETS1 phosphorylation and promoted CD133 expression, indicating a positive feedback loop between CXCL3 and CD133 gene expression in HCC cells via Erk1/2 activation. Together, our findings indicated that CXCL3 might be a potent therapeutic target for HCC.
Collapse
|
37
|
Bussolati B, Camussi G. Therapeutic use of human renal progenitor cells for kidney regeneration. Nat Rev Nephrol 2015; 11:695-706. [PMID: 26241019 DOI: 10.1038/nrneph.2015.126] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The ability of the human kidney to repair itself is limited. Consequently, repeated injury can trigger a maladaptive response that is characterized by fibrosis and loss of renal function. The transcription patterns that characterize nephrogenesis in fetal renal progenitor cells (RPCs) are only partially activated during renal repair in adults. Nevertheless, evidence suggests that segment-restricted progenitor resident cells support renal healing in adults. In this Review, we discuss the evidence for the existence of functional human RPCs in adults and their role in renal repair, and consider the controversial issue of whether RPCs are a fixed population or arise through phenotypical plasticity of tubular cells that is mediated by the microenvironment. We also discuss the strategies for generating renal progenitor cells from pluripotent stem cells or differentiated cells and their use in therapy. Finally, we examine preclinical data on the therapeutic use of human fetal cells, adult progenitor cells and adult renal cells.
Collapse
Affiliation(s)
- Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Torino 10126, Italy
| | - Giovanni Camussi
- Department of Medical Sciences, University of Torino, Via Nizza 52, Torino 10126, Italy
| |
Collapse
|
38
|
Legendre C, Garcion E. Iron metabolism: a double-edged sword in the resistance of glioblastoma to therapies. Trends Endocrinol Metab 2015; 26:322-31. [PMID: 25936466 DOI: 10.1016/j.tem.2015.03.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/27/2015] [Accepted: 03/30/2015] [Indexed: 12/12/2022]
Abstract
Glioblastoma (GBM), the deadliest primary tumor of the central nervous system (CNS), is a clear illustration of the resistance of cancer cells to conventional therapies. Application of combinatorial strategies able to overcome pivotal factors of GBM resistance, particularly within the resection margins, represents an essential issue. This review focuses on the role of iron metabolism in GBM progression and resistance to therapy, and the impact of its pharmaceutical modulation on the disease. Iron, through its involvement in many biological processes, is a key factor in the control of cell behavior and cancer biology. Therefore, targeting cellular iron signaling or taking advantage of its dysregulation in cancer cells may lead to new opportunities for improving treatments and drug delivery in GBM.
Collapse
Affiliation(s)
- Claire Legendre
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1066, Bio-Inspired Micro and Nanomedicines (MINT), Angers, France; L'Université Nantes Angers Le Mans (LUNAM), Université d'Angers, Angers, France
| | - Emmanuel Garcion
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1066, Bio-Inspired Micro and Nanomedicines (MINT), Angers, France; L'Université Nantes Angers Le Mans (LUNAM), Université d'Angers, Angers, France.
| |
Collapse
|
39
|
Padmanabhan H, Brookes MJ, Iqbal T. Iron and colorectal cancer: evidence from in vitro and animal studies. Nutr Rev 2015; 73:308-17. [DOI: 10.1093/nutrit/nuu015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
40
|
Rappa G, Fargeas CA, Le TT, Corbeil D, Lorico A. Letter to the Editor:
An Intriguing Relationship Between Lipid Droplets, Cholesterol-Binding Protein CD133 and Wnt/β-Catenin Signaling Pathway in Carcinogenesis. Stem Cells 2015; 33:1366-70. [DOI: 10.1002/stem.1953] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/04/2014] [Accepted: 12/23/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Germana Rappa
- Cancer Research Center; Roseman University College of Medicine; Las Vegas Nevada USA
| | - Christine A. Fargeas
- Tissue Engineering Laboratories (BIOTEC); Technische Universität Dresden; Dresden Germany
| | - Thuc T. Le
- Cancer Research Center; Roseman University College of Medicine; Las Vegas Nevada USA
| | - Denis Corbeil
- Tissue Engineering Laboratories (BIOTEC); Technische Universität Dresden; Dresden Germany
| | - Aurelio Lorico
- Cancer Research Center; Roseman University College of Medicine; Las Vegas Nevada USA
| |
Collapse
|
41
|
Nanomedicine to overcome radioresistance in glioblastoma stem-like cells and surviving clones. Trends Pharmacol Sci 2015; 36:236-52. [PMID: 25799457 DOI: 10.1016/j.tips.2015.02.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 01/28/2015] [Accepted: 02/03/2015] [Indexed: 12/14/2022]
Abstract
Radiotherapy is one of the standard treatments for glioblastoma, but its effectiveness often encounters the phenomenon of radioresistance. This resistance was recently attributed to distinct cell contingents known as glioblastoma stem-like cells (GSCs) and dominant clones. It is characterized in particular by the activation of signaling pathways and DNA repair mechanisms. Recent advances in the field of nanomedicine offer new possibilities for radiosensitizing these cell populations. Several strategies have been developed in this direction, the first consisting of encapsulating a contrast agent or synthesizing metal-based nanocarriers to concentrate the dose gradient at the level of the target tissue. In the second strategy the physicochemical properties of the vectors are used to encapsulate a wide range of pharmacological agents which act in synergy with the ionizing radiation to destroy the cancerous cells. This review reports on the various molecular anomalies present in GSCs and the predominant role of nanomedicines in the development of radiosensitization strategies.
Collapse
|
42
|
Abstract
The present article highlights the diverse role of stem cells in normal kidney and renal cancer, with special emphasis on surface markers. Proteins such as CD105 and CD133 have been reported as being significant in clear cell renal cell carcinoma (ccRCC) cancer stem cells. The role of normal kidney progenitor cells and their surface markers is compared with the role of those surface markers in ccRCC. Subsequently, we state the current hypothesis about origin of tumour-initiating cells along with their clinical and prognostic potential in RCC. Finally, we present future perspectives with respect to recent studies.
Collapse
|
43
|
LIETO EVA, GALIZIA GENNARO, ORDITURA MICHELE, ROMANO CIRO, ZAMBOLI ANNA, CASTELLANO PAOLO, MABILIA ANDREA, AURICCHIO ANNAMARIA, DE VITA FERDINANDO, GEMEI MARICA. CD26-positive/CD326-negative circulating cancer cells as prognostic markers for colorectal cancer recurrence. Oncol Lett 2015; 9:542-550. [PMID: 25624884 PMCID: PMC4301532 DOI: 10.3892/ol.2014.2749] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 07/18/2014] [Indexed: 02/05/2023] Open
Abstract
The present study evaluated the presence and clinical relevance of a cluster of differentiation (CD)26+/CD326- subset of circulating tumor cells (CTCs) in pre- and post-operative blood samples of colorectal cancer patients, who had undergone curative or palliative intervention, in order to find a novel prognostic factor for patient management and follow-up. In total, 80 colorectal cancer patients, along with 25 healthy volunteers were included. The easily transferable methodology of flow cytometry, along with multiparametric antibody staining were used to selectively evaluate CD26+/CD326- CTCs in the peripheral blood samples of colorectal cancer patients. The multiparametric selection allowed any enrichment methods to be avoided thus rendering the whole procedure suitable for clinical routine. The presence of CD26+/CD326- cells was higher in advanced Dukes' stages and was significantly associated with poor survival and high recurrence rates. Relapsing and non-surviving patients showed the highest number of CD26+/CD326- CTCs. High pre-operative levels of CD26+/CD326- CTCs correctly predicted tumor relapse in 44.4% of the cases, while 69% of post-operative CD26+/CD326- CTC-positive patients experienced cancer recurrence, with a test accuracy of 88.8%. By contrast, post-operative CD26+/CD326- CTC-negative patients showed an increase in the three-year progression-free survival rate of 86%, along with a reduced risk of tumor relapse of >90%. In conclusion, CD26+/CD326- CTCs are an independent prognostic factor for tumor recurrence rate in multivariate analysis, suggesting that their evaluation could be an additional factor for colorectal cancer recurrence risk evaluation in patient management.
Collapse
Affiliation(s)
- EVA LIETO
- Division of Surgical Oncology, Department of Anesthesiological, Surgical and Emergency Sciences, Second University of Naples School of Medicine, Naples I-80131, Italy
| | - GENNARO GALIZIA
- Division of Surgical Oncology, Department of Anesthesiological, Surgical and Emergency Sciences, Second University of Naples School of Medicine, Naples I-80131, Italy
| | - MICHELE ORDITURA
- Division of Medical Oncology, ‘F. Magrassi-A. Lanzara’ Department of Clinical and Experimental Medicine and Surgery, Second University of Naples School of Medicine, Naples I-80131, Italy
| | - CIRO ROMANO
- Division of Internal Medicine, Allergy and Clinical Immunology, Department of Medical and Surgical Sciences, Second University of Naples School of Medicine, Naples I-80131, Italy
| | - ANNA ZAMBOLI
- Division of Surgical Oncology, Department of Anesthesiological, Surgical and Emergency Sciences, Second University of Naples School of Medicine, Naples I-80131, Italy
| | - PAOLO CASTELLANO
- Division of Surgical Oncology, Department of Anesthesiological, Surgical and Emergency Sciences, Second University of Naples School of Medicine, Naples I-80131, Italy
| | - ANDREA MABILIA
- Division of Surgical Oncology, Department of Anesthesiological, Surgical and Emergency Sciences, Second University of Naples School of Medicine, Naples I-80131, Italy
| | - ANNAMARIA AURICCHIO
- Division of Surgical Oncology, Department of Anesthesiological, Surgical and Emergency Sciences, Second University of Naples School of Medicine, Naples I-80131, Italy
| | - FERDINANDO DE VITA
- Division of Medical Oncology, ‘F. Magrassi-A. Lanzara’ Department of Clinical and Experimental Medicine and Surgery, Second University of Naples School of Medicine, Naples I-80131, Italy
| | - MARICA GEMEI
- Center for Genetic Engineering, Advanced Biotechnologies, Naples I-80145, Italy
| |
Collapse
|
44
|
Liu Y, Lv DL, Duan JJ, Xu SL, Zhang JF, Yang XJ, Zhang X, Cui YH, Bian XW, Yu SC. ALDH1A1 expression correlates with clinicopathologic features and poor prognosis of breast cancer patients: a systematic review and meta-analysis. BMC Cancer 2014; 14:444. [PMID: 24938375 PMCID: PMC4070403 DOI: 10.1186/1471-2407-14-444] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 06/06/2014] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Aldehyde dehydrogenase 1 family member A1 (ALDH1A1) has been identified as a putative cancer stem cell (CSC) marker in breast cancer. However, the clinicopathological and prognostic significance of this protein in breast cancer patients remains controversial. METHODS This meta-analysis was conducted to address the above issues using 15 publications covering 921 ALDH1A1(+) cases and 2353 controls. The overall and subcategory analyses were performed to detect the association between ALDH1A1 expression and clinicopathological/prognostic parameters in breast cancer patients. RESULTS The overall analysis showed that higher expression of ALDH1A1 is associated with larger tumor size, higher histological grade, greater possibility of lymph node metastasis (LNM), higher level expression of epidermal growth factor receptor 2 (HER2), and lower level expression of estrogen receptor (ER)/progesterone receptor (PR). The prognosis of breast cancer patients with ALDH1A1(+) tumors was poorer than that of the ALDH1A1(-) patients. Although the relationships between ALDH1A1 expression and some clinicopathological parameters (tumor size, LNM, and the expression of HER2) was not definitive to some degree when we performed a subcategory analysis, the predictive values of ALDH1A1 expression for histological grade and survival of breast cancer patients were significant regardless of the different cutoff values of ALDH1A1 expression, the different districts where the patients were located, the different clinical stages of the patients, the difference in antibodies used in the studies, and the surgery status. CONCLUSIONS Our results indicate that ALDH1A1 is a biomarker to predict tumor progression and poor survival of breast cancer patients. This marker should be taken into consideration in the development of new diagnostic and therapeutic program for breast cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xiu-wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400037, China.
| | | |
Collapse
|
45
|
Huang Y, Ju B, Tian J, Liu F, Yu H, Xiao H, Liu X, Liu W, Yao Z, Hao Q. Ovarian cancer stem cell-specific gene expression profiling and targeted drug prescreening. Oncol Rep 2014; 31:1235-48. [PMID: 24424387 DOI: 10.3892/or.2014.2976] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 12/23/2013] [Indexed: 01/06/2023] Open
Abstract
Cancer stem cells, with unlimited self-renewal potential and other stem cell characteristics, occur in several types of cancer, including ovarian cancer (OvC). Although CSCs can cause tumor initiation, malignant proliferation, relapse and multi-drug resistance, ways to eliminate them remain unknown. In the present study, we compared ovarian cancer stem cell (OVCSC) expression profiles in normal ovarian surface epithelium and ovarian cells from patients with advanced disease to identify key pathways and specific molecular signatures involved in OVC progression and to prescreen candidate small-molecule compounds with anti-OVCSC activity. Comparison of genome-wide expression profiles of OvC stemness groups with non-stemness controls revealed 6495, 1347 and 509 differentially expressed genes in SDC, SP1 and SP2 groups, respectively, with a cut-off of fold-change set at >1.5 and P<0.05. NAB1 and NPIPL1 were commonly upregulated whereas PROS1, GREB1, KLF9 and MTUS1 were commonly downregulated in all 3 groups. Most differentially expressed genes consistently clustered with molecular functions such as protein receptor binding, kinase activity and chemo-repellent activity. These genes regulate cellular components such as centrosome, plasma membrane receptors, and basal lamina, and may participate in biological processes such as cell cycle regulation, chemoresistance and stemness induction. Key Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways such as ECM receptor, ErbB signaling, endocytosis and adherens junction pathways were enriched. Gene co-expression extrapolation screening by the Connectivity Map revealed several small-molecule compounds (such as SC-560, disulfiram, thapsigargin, esculetin and cinchonine) with potential anti-OVCSC properties targeting OVCSC signature genes. We identified several key CSC features and specific regulation networks in OVCSCs and predicted several small molecules with potential anti-OVCSC pharmacological properties, which may aid the development of OVCSC-specific drugs.
Collapse
Affiliation(s)
- Yuting Huang
- Department of Gynecological Oncology, Tianjin Medical Univerisity Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Baohui Ju
- Department of Gynecological Oncology, Tianjin Medical Univerisity Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Jing Tian
- Department of Gynecological Oncology, Tianjin Medical Univerisity Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Fenghua Liu
- Department of Gynecological Oncology, Tianjin Medical Univerisity Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Hu Yu
- Department of Gynecological Oncology, Tianjin Medical Univerisity Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Huiting Xiao
- Department of Gynecological Oncology, Tianjin Medical Univerisity Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Xiangyu Liu
- Department of Gynecological Oncology, Tianjin Medical Univerisity Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Wenxin Liu
- Department of Gynecological Oncology, Tianjin Medical Univerisity Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Zhi Yao
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Quan Hao
- Department of Gynecological Oncology, Tianjin Medical Univerisity Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| |
Collapse
|
46
|
Byrne SL, Buckett PD, Kim J, Luo F, Sanford J, Chen J, Enns C, Wessling-Resnick M. Ferristatin II promotes degradation of transferrin receptor-1 in vitro and in vivo. PLoS One 2013; 8:e70199. [PMID: 23894616 PMCID: PMC3720890 DOI: 10.1371/journal.pone.0070199] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 06/14/2013] [Indexed: 12/13/2022] Open
Abstract
Previous studies have shown that the small molecule iron transport inhibitor ferristatin (NSC30611) acts by down-regulating transferrin receptor-1 (TfR1) via receptor degradation. In this investigation, we show that another small molecule, ferristatin II (NSC8679), acts in a similar manner to degrade the receptor through a nystatin-sensitive lipid raft pathway. Structural domains of the receptor necessary for interactions with the clathrin pathway do not appear to be necessary for ferristatin II induced degradation of TfR1. While TfR1 constitutively traffics through clathrin-mediated endocytosis, with or without ligand, the presence of Tf blocked ferristatin II induced degradation of TfR1. This effect of Tf was lost in a ligand binding receptor mutant G647A TfR1, suggesting that Tf binding to its receptor interferes with the drug’s activity. Rats treated with ferristatin II have lower TfR1 in liver. These effects are associated with reduced intestinal 59Fe uptake, lower serum iron and transferrin saturation, but no change in liver non-heme iron stores. The observed hypoferremia promoted by degradation of TfR1 by ferristatin II appears to be due to induced hepcidin gene expression.
Collapse
Affiliation(s)
- Shaina L. Byrne
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Peter D. Buckett
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Jonghan Kim
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Flora Luo
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Jack Sanford
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Juxing Chen
- Department of Cell Biology, Oregon Health Sciences Center, Portland, Oregon, United States of America
| | - Caroline Enns
- Department of Cell Biology, Oregon Health Sciences Center, Portland, Oregon, United States of America
| | - Marianne Wessling-Resnick
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
47
|
Peitzsch C, Kurth I, Kunz-Schughart L, Baumann M, Dubrovska A. Discovery of the cancer stem cell related determinants of radioresistance. Radiother Oncol 2013; 108:378-87. [PMID: 23830195 DOI: 10.1016/j.radonc.2013.06.003] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 05/31/2013] [Accepted: 06/05/2013] [Indexed: 12/23/2022]
Abstract
Tumors are known to be heterogeneous containing a dynamic mixture of phenotypically and functionally different tumor cells. The two concepts attempting to explain the origin of intratumor heterogeneity are the cancer stem cell hypothesis and the clonal evolution model. The stochastic model argues that tumors are biologically homogenous and all cancer cells within the tumor have equal ability to propagate the tumor growth depending on continuing mutations and selective pressure. By contrast, the stem cells model suggests that cancer heterogeneity is due to the hierarchy that originates from a small population of cancer stem cells (CSCs) which are biologically distinct from the bulk tumor and possesses self-renewal, tumorigenic and multilineage potential. Although these two hypotheses have been discussed for a long time as mutually exclusive explanations of tumor heterogeneity, they are easily reconciled serving as a driving force of cancer evolution and diversity. Recent discovery of the cancer cell plasticity and heterogeneity makes the CSC population a moving target that could be hard to track and eradicate. Understanding the signaling mechanisms regulating CSCs during the course of cancer treatment can be indispensable for the optimization of current treatment strategies.
Collapse
Affiliation(s)
- Claudia Peitzsch
- OncoRay National Center for Radiation Research in Oncology, University Hospital/Medical Faculty Carl Gustav Carus, TU Dresden, Germany
| | | | | | | | | |
Collapse
|
48
|
Low glucose promotes CD133mAb-elicited cell death via inhibition of autophagy in hepatocarcinoma cells. Cancer Lett 2013; 336:204-12. [PMID: 23652197 DOI: 10.1016/j.canlet.2013.04.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Revised: 04/14/2013] [Accepted: 04/29/2013] [Indexed: 02/07/2023]
Abstract
CD133 on cancer stem cells is a potential therapeutic target. In this study, CD133 antibody (CD133mAb) treatment resulted in cell death in hepatoma LM3, HepG2, Hep3B and Huh-7 cells, especially under low glucose condition. The treatment also inhibited formation of spheroids, colonies, and xenograft tumors. Ectopic CD133 enabled hepatocyte L02 to be suppressed by CD133mAb and increased spheroid formation. CD133mAb caused cell death in primary HCC cells and sensitized them to Doxorubicin and Cisplatin. The antibody effect was attributed to suppressing autophagy and promoting necrotic cell death. Therefore, targeting CD133 under low glucose condition is a potential therapeutic approach for hepatocarcinomas.
Collapse
|
49
|
Photochemical internalization of CD133-targeting immunotoxins efficiently depletes sarcoma cells with stem-like properties and reduces tumorigenicity. Biochim Biophys Acta Gen Subj 2013; 1830:4235-43. [PMID: 23643966 DOI: 10.1016/j.bbagen.2013.04.033] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 04/22/2013] [Accepted: 04/26/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND The normal stem cell marker CD133 is also a putative marker of cancer stem cells (CSCs) in different types of cancers. Hence, a major challenge when targeting CD133-expressing CSCs is to prevent depletion of the normal stem cell pool. We hypothesized that the site-specific and light-controlled drug delivery method photochemical internalization (PCI) may have the potential to enhance selectivity and endosomal escape of CD133-targeting immunotoxins in stem-like sarcoma cells. METHODS We have used a sarcoma model, SW872 cells isolated from xenografts harboring CSCs within a ~2% CD133(high) subpopulation to investigate the potential of PCI of CD133-targeting toxin as a novel strategy to kill CSCs. Model immunotoxins were generated by binding the ribosome-inactivating protein toxin saporin to each of the monoclonal antibodies CD133/1 (AC133) or CD133/2 (293C), specific for individual CD133-epitopes. Cellular targeting, intracellular co-localization with the PCI photosensitizer, disulfonated meso-tetraphenylchlorin (TPCS2a), and cytotoxic efficacy of PCI of the CD133-targeting toxins were evaluated. RESULTS PCI of CD133-saporin efficiently targets CD133-expressing SW872 and HT1080 sarcoma cells and results in loss of cell viability. Following sub-toxic treatment, surviving SW872 cells, depleted of the CD133-expressing population, display reduced proliferative capacity and attenuated CSC properties, such as reduced colony-forming ability and tumorigenicity. CONCLUSION Here we present a proof-of-concept study, where PCI enables light-triggered delivery of CD133-targeting antibody-drug conjugates, resulting in decreased sarcoma tumor-initiating capacity. GENERAL SIGNIFICANCE PCI of CD133-targeting toxins may be used as a minimal invasive strategy in the treatment of sarcomas, and potentially as a therapeutic for other solid tumors expressing CD133.
Collapse
|
50
|
Photochemical internalization (PCI) of immunotoxins targeting CD133 is specific and highly potent at femtomolar levels in cells with cancer stem cell properties. J Control Release 2013; 168:317-26. [PMID: 23567040 DOI: 10.1016/j.jconrel.2013.03.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 03/22/2013] [Accepted: 03/24/2013] [Indexed: 12/17/2022]
Abstract
CD133 is a putative cancer stem cell (CSC) marker for a number of different cancers and is suggested to be a therapeutic target. Since also normal stem cells express CD133 it is of paramount importance that targeting strategies provide a specific and efficient delivery of cytotoxic drugs in only CD133-positive CSCs. In this study, we have employed photochemical internalization (PCI), a minimally invasive method for light-controlled, specific delivery of membrane-impermeable macromolecules from endocytic vesicles to the cytosol, to specifically target CD133-positive cancer cells. We demonstrate that PCI increases the cytotoxic effect of an immunotoxin (IT) targeting CD133-expressing cancer cells of colon (WiDr and HCT116) and pancreas (BxPC-3) origin. The IT consisted of the mAb CD133/1 (AC133) bound to the ribosome inactivating plant toxin saporin (anti-CD133/1-sap). We show that TPCS2a-PCI of anti-CD133/1-sap is specific, and highly cytotoxic at femto-molar concentrations. Specific binding and uptake of CD133/1, was shown by fluorescence microscopy and co-localization with TPCS2a in endosomes/lysosomes was determined by confocal microscopy. CD133(high) WiDr cells, isolated by fluorescence activated cell sorting, had a 7-fold higher capacity to initiate spheroids than CD133(low) cells (P<0.001) and were resistant to photodynamic therapy (PDT). However, PDT-resistance was bypassed by the PCI strategy. Tumor initiation and aggressive growth in athymic nude mice was obtained with only 10 CD133(high) cells in contrast to CD133(low) cells where substantially higher cell numbers were needed. The excellent high efficacy and selectivity of eliminating CD133-expressing cells by PCI warrant further pre-clinical evaluations of this novel therapeutic approach.
Collapse
|