1
|
Williams ME, Cloete R. Molecular Modeling of Subtype-Specific Tat Protein Signatures to Predict Tat-TAR Interactions That May Be Involved in HIV-Associated Neurocognitive Disorders. Front Microbiol 2022; 13:866611. [PMID: 35464972 PMCID: PMC9021916 DOI: 10.3389/fmicb.2022.866611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/16/2022] [Indexed: 12/30/2022] Open
Abstract
HIV-1 is responsible for a spectrum of neurocognitive deficits defined as HIV-associated neurocognitive disorders (HAND). The HIV transactivator of transcription (Tat) protein plays a key role in the neuropathophysiology of HAND. The Tat protein functions by transactivation of viral genes through its interaction with the transactivation response (TAR) RNA element. Subtype-specific Tat protein signatures including C31S, R57S and Q63E present in Tat subtype C has previously been linked to a lowered neuropathophysiology compared to Tat subtype B. In this study, we attempted to understand the molecular mechanism by which Tat subtype-specific variation, particularly, C31S, R57S, and Q63E influence the Tat-TAR interaction. We performed molecular modeling to generate accurate three-dimensional protein structures of the HIV-1 Tat subtypes C and B using the Swiss model webserver. Thereafter, we performed a molecular docking of the TAR RNA element to each of the Tat subtypes B and C protein structures using the HDOCK webserver. Our findings indicate that Tat subtype B had a higher affinity for the TAR RNA element compared to Tat subtype C based on a higher docking score of −187.37, a higher binding free energy value of −9834.63 ± 216.17 kJ/mol, and a higher number of protein–nucleotide interactions of 26. Furthermore, Tat subtype B displayed more flexible regions when bound to the TAR element and this flexibility could account for the stronger affinity of Tat subtype B to TAR. From the Tat signatures linked to neuropathogenesis, only R57/R57S are involved in Tat-TAR interaction. Due to the lack of electrostatic interactions observed between Tat subtype C and TAR, weaker affinity is observed, and this may contribute to a lower level of neuropathophysiology observed in subtype C infection.
Collapse
Affiliation(s)
- Monray E. Williams
- Human Metabolomics, North-West University, Potchefstroom, South Africa
- *Correspondence: Monray E. Williams,
| | - Ruben Cloete
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
2
|
Barik SK, Bansal AK, Mohanty PS, Tripathy SP, Hanna LE, Karunaianantham R, Pattabiraman S, Singh TP, Tandon R, Tomar S, Jena S, Patil SA, Mohanty KK. Detection of Drug Resistance Mutations in the Reverse Transcriptase Gene of HIV-1-Infected North Indian Population Failing First-Line Antiretroviral Therapy "A Follow-Up Cohort Study". AIDS Res Hum Retroviruses 2021; 37:796-805. [PMID: 33390085 DOI: 10.1089/aid.2020.0132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
We aim to characterize the drug resistance mutations in reverse transcriptase gene of HIV-1 subtype C-infected North Indian population in those who are failing first-line antiretroviral therapy (ART) and if these mutations are associated with mortality. We also attempted the assessment of switch over to second-line antiretroviral therapy in these patients. Based on the immunological marker CD4 count (<350 cubic/mm), 192 HIV/AIDS patients were selected and viral load was estimated in those who were enrolled from December 2009 to November 2016. Based on viral load, genotyping was carried out in 57 HIV-1 isolates (VL ≥1,000 copies/mL) by sequencing and drug resistance mutations were examined through the Stanford HIV Drug Resistance Database, USA. Among them, 21 (36.84%) first-line ART failure patients were shifted to second-line ART. These patients were followed for a period wide ranging from 10 months to 11 years. Drug resistance mutation M184V (ATG to GTA) (63.15%) associated with lamivudine and abacavir and K103N (AAG or AAA to AAU) (36.84%) associated with efavirenz and nevirapine were predominantly identified in first-line ART failure patients. During follow-up, it was observed that 3 out of 21 who were in second-line ART died, whereas 9 out of 36 died who were in the first-line ART. No mutation could be associated with mortality although TAM-2 mutations were absent in patients who died. This study indorses the need for a facility for viral load estimation and resistance monitoring in each treatment failure patient and availability of appropriate antiretroviral therapies.
Collapse
Affiliation(s)
- Sushanta Kumar Barik
- National JALMA Institute for Leprosy and Other Mycobacterial Diseases (Indian Council of Medical Research), Agra, India
| | - Avi Kumar Bansal
- National JALMA Institute for Leprosy and Other Mycobacterial Diseases (Indian Council of Medical Research), Agra, India
| | - Partha Sarathi Mohanty
- National JALMA Institute for Leprosy and Other Mycobacterial Diseases (Indian Council of Medical Research), Agra, India
| | - Srikanth Prasad Tripathy
- National Institute for Research in Tuberculosis (Indian Council of Medical Research), Chennai, India
| | - Luke Elizabeth Hanna
- National Institute for Research in Tuberculosis (Indian Council of Medical Research), Chennai, India
| | - Ramesh Karunaianantham
- National Institute for Research in Tuberculosis (Indian Council of Medical Research), Chennai, India
| | | | | | | | | | - Srikanta Jena
- Zoology Department, Ravenshaw University, Cuttack, India
| | - Shripad A. Patil
- National JALMA Institute for Leprosy and Other Mycobacterial Diseases (Indian Council of Medical Research), Agra, India
| | - Keshar Kunja Mohanty
- National JALMA Institute for Leprosy and Other Mycobacterial Diseases (Indian Council of Medical Research), Agra, India
| |
Collapse
|
3
|
Intra-Clade C signature polymorphisms in HIV-1 LTR region: The Indian and African lookout. Virus Res 2021; 297:198370. [PMID: 33684417 DOI: 10.1016/j.virusres.2021.198370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 01/28/2023]
Abstract
Polymorphisms occurring in LTR (Long Terminal Repeat) region can profoundly impact pathogenicity, transmission and biology of Human Immunodeficiency Virus Type 1 (HIV-1). We investigated intra-clade polymorphisms, associated with HIV-1 clade-C infections that occur in India and Africa. Plasma samples were obtained from 24 HIV-infected ART-experienced individuals. Next Generation Sequencing was performed on Illumina Hi Seq X system. Sequence analysis was done using MEGA v7. Transcription factor binding sites (TFBS) were investigated to unveil signature sequences. Signature nucleotides in Indian sequences were observed at 19 positions, of which 7 nucleotide signatures occurred in transcription binding sites (TFBS), namely NF-AT-II, NF-AT-III, USF, TCF- 1alpha, Sp1-I and TAR. Intra-clade C variations in HIV-1 LTR that inscribe signature nucleotides in Indian sequences lead to formation monophyletic cluster of Indian sequences. Moreover, occurrence of intra-clade signature nucleotides was observed at the key positions in the transcription factor binding sites in Indian and African clade-C sequences.
Collapse
|
4
|
Key Positions of HIV-1 Env and Signatures of Vaccine Efficacy Show Gradual Reduction of Population Founder Effects at the Clade and Regional Levels. mBio 2020; 11:mBio.00126-20. [PMID: 32518179 PMCID: PMC7373194 DOI: 10.1128/mbio.00126-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
HIV-1 group M was transmitted to humans nearly one century ago. The virus has since evolved to form distinct clades, which spread to different regions of the world. The envelope glycoproteins (Envs) of HIV-1 have rapidly diversified in all infected populations. We examined whether key antigenic sites of Env and signatures of vaccine efficacy are evolving toward similar or distinct structural forms in different populations worldwide. Patterns of amino acid variants that emerged at each position of Env were compared between diverse HIV-1 clades and isolates from different geographic regions. Interestingly, at each Env position, the amino acid in the clade ancestral or regional-founder virus was replaced by a unique frequency distribution (FD) of amino acids. FDs are highly conserved in populations from different regions worldwide and in paraphyletic and monophyletic subclade groups. Remarkably, founder effects of Env mutations at the clade and regional levels have gradually decreased during the pandemic by evolution of each site toward the unique combination of variants. Therefore, HIV-1 Env is evolving at a population level toward well-defined "target" states; these states are not specific amino acids but rather specific distributions of amino acid frequencies. Our findings reveal the powerful nature of the forces that guide evolution of Env and their conservation across different populations. Such forces have caused a gradual decrease in the interpopulation diversity of Env despite an increasing intrapopulation diversity.IMPORTANCE The Env protein of HIV-1 is the primary target in AIDS vaccine design. Frequent mutations in the virus increase the number of Env forms in each population, limiting the efficacy of AIDS vaccines. Comparison of newly emerging forms in different populations showed that each position of Env is evolving toward a specific combination of amino acids. Similar changes are occurring in different HIV-1 subtypes and geographic regions toward the same position-specific combinations of amino acids, often from distinct ancestral sequences. The predictable nature of HIV-1 Env evolution, as shown here, provides a new framework for designing vaccines that are tailored to the unique combination of variants expected to emerge in each virus subtype and geographic region.
Collapse
|
5
|
Alex D, Raj Williams TI, Sachithanandham J, Prasannakumar S, Demosthenes JP, Ramalingam VV, Victor PJ, Rupali P, Fletcher GJ, Kannangai R. Performance of a Modified In-House HIV-1 Avidity Assay among a Cohort of Newly Diagnosed HIV-1 Infected Individuals and the Effect of ART on the Maturation of HIV-1 Specific Antibodies. Curr HIV Res 2020; 17:134-145. [PMID: 31309891 DOI: 10.2174/1570162x17666190712125606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/03/2019] [Accepted: 07/09/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Viral kinetics impact humoral immune response to HIV; antibody avidity testing helps distinguish recent (<6 months) and long-term HIV infection. This study aims to determine the frequency of recent HIV-1 infection among clients attending ICTC (Integrated Counselling and Testing Centre) using a commercial EIA, to correlate it with a modified in-house avidity assay and to study the impact of ART on anti-HIV-1 antibody maturation. METHODS Commercial LAg Avidity EIA was used to detect antibody avidity among 117 treatment naïve HIV-1 infected individuals. A second-generation HIV ELISA was modified for in-house antibody avidity testing and cutoff was set based on Receiver Operating Characteristic (ROC) analysis. Archived paired samples from 25 HIV-1 infected individuals before ART and after successful ART; samples from 7 individuals responding to ART and during virological failure were also tested by LAg Avidity EIA. RESULTS Six individuals (5.1%) were identified as recently infected by a combination of LAg avidity assay and HIV-1 viral load testing. The modified in-house avidity assay demonstrated sensitivity and specificity of 100% and 98.2%, respectively, at AI=0.69 by ROC analysis. Median ODn values of individuals when responding to ART were significantly lower than pre-ART [4.136 (IQR 3.437- 4.827) vs 4.455 (IQR 3.748-5.120), p=0.006] whereas ODn values were higher during virological failure [4.260 (IQR 3.665 - 4.515) vs 2.868 (IQR 2.247 - 3.921), p=0.16]. CONCLUSION This modified in-house antibody avidity assay is an inexpensive method to detect recent HIV-1 infection. ART demonstrated significant effect on HIV-1 antibody avidity owing to changes in viral kinetics.
Collapse
Affiliation(s)
- Diviya Alex
- Department of Clinical Virology, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | | | | | | | - John Paul Demosthenes
- Department of Clinical Virology, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | | | - Punitha John Victor
- Department of Medicine, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | - Priscilla Rupali
- Department of Infectious Diseases, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | | | - Rajesh Kannangai
- Department of Clinical Virology, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| |
Collapse
|
6
|
Alampalli SV, Thomson MM, Sampathkumar R, Sivaraman K, U. K. J. AJ, Dhar C, D. Souza G, Berry N, Vyakarnam A. Deep sequencing of near full-length HIV-1 genomes from plasma identifies circulating subtype C and infrequent occurrence of AC recombinant form in Southern India. PLoS One 2017; 12:e0188603. [PMID: 29220350 PMCID: PMC5722309 DOI: 10.1371/journal.pone.0188603] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/09/2017] [Indexed: 01/25/2023] Open
Abstract
India has the third largest number of HIV-1-infected individuals accounting for approximately 2.1 million people, with a predominance of circulating subtype C strains and a low prevalence of subtype A and A1C and BC recombinant forms, identified over the past two decades. Recovery of near full-length HIV-1 genomes from a plasma source coupled with advances in next generation sequencing (NGS) technologies and development of universal methods for amplifying whole genomes of HIV-1 circulating in a target geography or population provides the opportunity for a detailed analysis of HIV-1 strain identification, evolution and dynamics. Here we describe the development and implementation of approaches for HIV-1 NGS analysis in a southern Indian cohort. Plasma samples (n = 20) were obtained from HIV-1-confirmed individuals living in and around the city of Bengaluru. Near full-length genome recovery was obtained for 9 Indian HIV-1 patients, with recovery of full-length gag and env genes for 10 and 2 additional subjects, respectively. Phylogenetic analyses indicate the majority of sequences to be represented by subtype C viruses branching within a monophyletic clade, comprising viruses from India, Nepal, Myanmar and China and closely related to a southern African cluster, with a low prevalence of the A1C recombinant form also present. Development of algorithms for bespoke recovery and analysis at a local level will further aid clinical management of HIV-1 infected Indian subjects and delineate the progress of the HIV-1 pandemic in this and other geographical regions.
Collapse
Affiliation(s)
| | - Michael M. Thomson
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo, Majadahonda, Madrid, Spain
| | - Raghavan Sampathkumar
- Centre for Infectious Disease Research (CIDR), Indian Institute of Science, Bengaluru, India
| | - Karthi Sivaraman
- Centre for Infectious Disease Research (CIDR), Indian Institute of Science, Bengaluru, India
| | | | - Chirag Dhar
- Department of Infectious Diseases, St John’s Research Institute, Bengaluru, India
| | - George D. Souza
- Department of Pulmonary Medicine & Department of Infectious Diseases, St John’s Research Institute, Bengaluru, India
| | - Neil Berry
- Division of Virology, NIBSC, South Mimms, United Kingdom
| | - Annapurna Vyakarnam
- Centre for Infectious Disease Research (CIDR), Indian Institute of Science, Bengaluru, India
- Department of Infectious Diseases, King’s College London, London, United Kingdom
- * E-mail: ,
| |
Collapse
|
7
|
Nikolopoulos GK, Kostaki EG, Paraskevis D. Overview of HIV molecular epidemiology among people who inject drugs in Europe and Asia. INFECTION GENETICS AND EVOLUTION 2016; 46:256-268. [PMID: 27287560 DOI: 10.1016/j.meegid.2016.06.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/01/2016] [Accepted: 06/05/2016] [Indexed: 01/14/2023]
Abstract
HIV strains continuously evolve, tend to recombine, and new circulating variants are being discovered. Novel strains complicate efforts to develop a vaccine against HIV and may exhibit higher transmission efficiency and virulence, and elevated resistance to antiretroviral agents. The United Nations Joint Programme on HIV/AIDS (UNAIDS) set an ambitious goal to end HIV as a public health threat by 2030 through comprehensive strategies that include epidemiological input as the first step of the process. In this context, molecular epidemiology becomes invaluable as it captures trends in HIV evolution rates that shape epidemiological pictures across several geographical areas. This review briefly summarizes the molecular epidemiology of HIV among people who inject drugs (PWID) in Europe and Asia. Following high transmission rates of subtype G and CRF14_BG among PWID in Portugal and Spain, two European countries, Greece and Romania, experienced recent HIV outbreaks in PWID that consisted of multiple transmission clusters including subtypes B, A, F1, and recombinants CRF14_BG and CRF35_AD. The latter was first identified in Afghanistan. Russia, Ukraine, and other Former Soviet Union (FSU) states are still facing the devastating effects of epidemics in PWID produced by AFSU (also known as IDU-A), BFSU (known as IDU-B), and CRF03_AB. In Asia, CRF01_AE and subtype B (Western B and Thai B) travelled from PWID in Thailand to neighboring countries. Recombination hotspots in South China, Northern Myanmar, and Malaysia have been generating several intersubtype and inter-CRF recombinants (e.g. CRF07_BC, CRF08_BC, CRF33_01B etc.), increasing the complexity of HIV molecular patterns.
Collapse
Affiliation(s)
- Georgios K Nikolopoulos
- Hellenic Centre for Diseases Control and Prevention, Amarousio, Greece; Hellenic Scientific Society for the Study of AIDS and Sexually Transmitted Diseases, Transmission Reduction Intervention Project-Athens site, Athens, Greece.
| | - Evangelia-Georgia Kostaki
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Paraskevis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
8
|
Pandey SS, Cherian S, Thakar M, Paranjape RS. Short Communication: Phylogenetic and Molecular Characterization of Six Full-Length HIV-1 Genomes from India Reveals a Monophyletic Lineage of Indian Sub-Subtype A1. AIDS Res Hum Retroviruses 2016; 32:489-502. [PMID: 26756665 DOI: 10.1089/aid.2015.0207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although HIV-1 epidemic in India is mainly driven by subtype C, subtype A has been reported for over two decades. This is the first comprehensive analysis of sequences of HIV-1 subtype A from India, based on the near full-length genome sequences of six different HIV-1 subtype A Indian isolates along with available partial gene sequences from India and global sequences. The phylogenetic analyses revealed the convergence of all Indian whole-genome sequences and majority of the partial gene sequences to a single node with the sequences most closely related to African sub-subtype A1. The presence of the signature motifs consistent with those observed in subtype A and CTL epitopes characterized specifically for subtype A1 were observed among the study sequences. Deletion of LY amino acid of LYPXnL motif of p6gag and one amino acid in V3 loop have been observed among the study isolates, which have also been observed in a few sequences from East Africa. Overall, the results are indicative of a monophyletic lineage or founder effect of the Indian epidemic due to sub-subtype A1 and supportive of a possible migration of subtype A1 into India from East Africa.
Collapse
Affiliation(s)
| | - Sarah Cherian
- Bioinformatics Group, National Institute of Virology (ICMR), Pune, India
| | - Madhuri Thakar
- Department of Immunology, National AIDS Research Institute (ICMR), Pune, India
| | - Ramesh S. Paranjape
- Department of Immunology, National AIDS Research Institute (ICMR), Pune, India
| |
Collapse
|
9
|
Geographic origin and evolutionary history of China's two predominant HIV-1 circulating recombinant forms, CRF07_BC and CRF08_BC. Sci Rep 2016; 6:19279. [PMID: 26763952 PMCID: PMC4725877 DOI: 10.1038/srep19279] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/09/2015] [Indexed: 11/08/2022] Open
Abstract
To determine the origin and evolutionary history of two predominant and closely-related circulating recombinant forms (CRF07_BC and CRF08_BC), recombinant structures and phylogenies of 7 unique recombinant forms comprised of subtypes of B’ (Thai B linage) and C (designated URFs_BC) from archival specimens of injection drug users (IDUs) collected in 1996 to 1998 from western Yunnan and 4 circulating recombinant forms with B’/C recombinants recently identified (designated nCRFs_BC) in China were compared with those of CRF07_BC and CRF08_BC. The results showed that 5 of 7 URFs_BC and all the nCRFs_BC shared recombination breakpoints with CRF07_BC and/or CRF08_BC. Yunnan URFs_BC consistently occupied the basal branch positions compared with CRF07_BC, CRF08_BC, and nCRFs_BC in phylogenetic trees. The estimated most recent common ancestors (tMRCA) for Yunnan URFs_BC were from ~1987, approximately half a decade earlier than those for CRF07_BC (~1994) and CRF08_BC (~1992). Discrete phylogeographic and spatial diffusion analysis revealed that both CRF07_BC and CRF08 BC came from western Yunnan in the early 1990s. Our results provide compelling evidence for western Yunnan as the geographic origin of CRF07_BC and CRF08_BC, which emerged from a swarm of URFs_BC by a series of recombination events in western Yunnan in the early 1990s.
Collapse
|
10
|
Wilkinson E, Engelbrecht S, de Oliveira T. History and origin of the HIV-1 subtype C epidemic in South Africa and the greater southern African region. Sci Rep 2015; 5:16897. [PMID: 26574165 PMCID: PMC4648088 DOI: 10.1038/srep16897] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 10/21/2015] [Indexed: 11/23/2022] Open
Abstract
HIV has spread at an alarming rate in South Africa, making it the country with the highest number of HIV infections. Several studies have investigated the histories of HIV-1 subtype C epidemics but none have done so in the context of social and political transformation in southern Africa. There is a need to understand how these processes affects epidemics, as socio-political transformation is a common and on-going process in Africa. Here, we genotyped strains from the start of the epidemic and applied phylodynamic techniques to determine the history of the southern Africa and South African epidemic from longitudinal sampled data. The southern African epidemic's estimated dates of origin was placed around 1960 (95% HPD 1956-64), while dynamic reconstruction revealed strong growth during the 1970s and 80s. The South African epidemic has a similar origin, caused by multiple introductions from neighbouring countries, and grew exponentially during the 1980s and 90s, coinciding with socio-political changes in South Africa. These findings provide an indication as to when the epidemic started and how it has grown, while the inclusion of sequence data from the start of the epidemic provided better estimates. The epidemic have stabilized in recent years with the expansion of antiretroviral therapy.
Collapse
Affiliation(s)
- Eduan Wilkinson
- Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town, Western Cape Province, South Africa
- Africa Centre for Health and Population Studies, University of KwaZulu-Natal, Mtubatuba, KwaZulu-Natal, South Africa
| | - Susan Engelbrecht
- Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town, Western Cape Province, South Africa
- National Health Laboratory Services, Tygerberg Academic Hospital, Tygerberg Coastal, Cape Town, South Africa
| | - Tulio de Oliveira
- Africa Centre for Health and Population Studies, University of KwaZulu-Natal, Mtubatuba, KwaZulu-Natal, South Africa
- School of Laboratory Medicine and Medical Sciences, Nelson R Mandela School of Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
11
|
Menon V, Priya RS, Labranche C, Montefiori D, Mahalingam S, Kalyanaraman VS, Pal R. Characterization of protective immune response elicited by a trimeric envelope protein from an Indian clade C HIV-1 isolate in rhesus macaques. J Med Primatol 2015; 44:275-85. [PMID: 26075700 DOI: 10.1111/jmp.12178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND Recent preclinical studies have demonstrated the use of properly folded trimeric HIV-1 envelope proteins as immunogen for eliciting protecting immune response in macaques. METHODS Trimeric gp145 protein of Indian clade C HIV-1 (93IN101) was characterized for antigenicity by evaluating its binding to sCD4, and several monoclonal antibodies to HIV-1 by bio-layer interferometry. Ten macaques were immunized four times with purified gp145 in adjuplex adjuvant, and serum antibodies were characterized for binding to gp145 and neutralization. Immunized macaques were subjected to weekly low-dose vaginal challenge with SHIV1157-ipEL-p for 8 weeks. RESULTS Env protein elicited strong antibody response in macaques. Following challenge, seven of ten immunized macaques resisted challenge, while six of eight control animals were infected. CONCLUSIONS Env proteins from a clade C Indian isolate can elicit protective immune response and therefore may be a candidate for inclusion in a multiclade-based HIV-1 vaccine.
Collapse
Affiliation(s)
- Veena Menon
- Advanced BioScience Laboratories, Rockville, MD, USA
| | | | | | | | | | | | - Ranajit Pal
- Advanced BioScience Laboratories, Rockville, MD, USA
| |
Collapse
|
12
|
Sneha Priya R, Veena M, Kalisz I, Whitney S, Priyanka D, LaBranche CC, Sri Teja M, Montefiori DC, Pal R, Mahalingam S, Kalyanaraman VS. Antigenicity and immunogenicity of a trimeric envelope protein from an Indian clade C HIV-1 isolate. J Biol Chem 2015; 290:9195-208. [PMID: 25691567 PMCID: PMC4423705 DOI: 10.1074/jbc.m114.621185] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 02/09/2015] [Indexed: 11/06/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) isolates from India mainly belong to clade C and are quite distinct from clade C isolates from Africa in terms of their phylogenetic makeup, serotype, and sensitivity to known human broadly neutralizing monoclonal antibodies. Because many of these properties are associated with the envelope proteins of HIV-1, it is of interest to study the envelope proteins of Indian clade C isolates as part of the ongoing efforts to develop a vaccine against HIV-1. To this end, we purified trimeric uncleaved gp145 of a CCR5 tropic Indian clade C HIV-1 (93IN101) from the conditioned medium of 293 cells. The purified protein was shown to be properly folded with stable structure by circular dichroism. Conformational integrity was further demonstrated by its high affinity binding to soluble CD4, CD4 binding site antibodies such as b12 and VRC01, quaternary epitope-specific antibody PG9, and CD4-induced epitope-specific antibody 17b. Sera from rabbits immunized with gp145 elicited high titer antibodies to various domains of gp120 and neutralized a broad spectrum of clade B and clade C HIV-1 isolates. Similar to other clade B and clade C envelope immunogens, most of the Tier 1 neutralizing activity could be absorbed with the V3-specific peptide. Subsequent boosting of these rabbits with a clade B HIV-1 Bal gp145 resulted in an expanded breadth of neutralization of HIV-1 isolates. The present study strongly supports the inclusion of envelopes from Indian isolates in a future mixture of HIV-1 vaccines.
Collapse
Affiliation(s)
- Rangasamy Sneha Priya
- From the Laboratory of Molecular Virology and Cell Biology, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Menon Veena
- Advanced Bioscience Laboratories Inc., Rockville, Maryland 20850, and
| | - Irene Kalisz
- Advanced Bioscience Laboratories Inc., Rockville, Maryland 20850, and
| | - Stephen Whitney
- Advanced Bioscience Laboratories Inc., Rockville, Maryland 20850, and
| | | | - Celia C LaBranche
- Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710
| | - Mullapudi Sri Teja
- From the Laboratory of Molecular Virology and Cell Biology, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - David C Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710
| | - Ranajit Pal
- Advanced Bioscience Laboratories Inc., Rockville, Maryland 20850, and
| | - Sundarasamy Mahalingam
- From the Laboratory of Molecular Virology and Cell Biology, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India,
| | | |
Collapse
|
13
|
Acharya A, Vaniawala S, Shah P, Misra RN, Wani M, Mukhopadhyaya PN. Development, validation and clinical evaluation of a low cost in-house HIV-1 drug resistance genotyping assay for Indian patients. PLoS One 2014; 9:e105790. [PMID: 25157501 PMCID: PMC4144911 DOI: 10.1371/journal.pone.0105790] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 07/24/2014] [Indexed: 01/08/2023] Open
Abstract
Human Immunodeficiency Virus-1 (HIV-1) drug resistance genotyping assay is a part of clinical management of HIV-1 positive individuals under treatment with highly active antiretroviral therapy (HAART). Routine monitoring of drug resistance mutations in resource limited settings like India is not possible due to high cost of commercial drug resistance assays. In this study we developed an in-house, cost effective HIV-1 drug resistance genotyping assay for Indian patients and validated it against the US-FDA-approved ViroSeq HIV-1 drug resistance testing system. A reference panel of 20 clinical samples was used to develop and validate the assay against ViroSeq HIV-1 drug resistance testing system which was subsequently used to genotype a clinical panel of 225 samples. The Stanford HIV database was used to identify drug resistant mutations. The analytical sensitivity of the assay was 1000 HIV-1 RNA copies/ml of plasma sample while precision and reproducibility was 99.68±0.16% and 99.76±0.18% respectively. One hundred and one drug resistant mutations were detected by the in-house assay compared to 104 by ViroSeq system in the reference panel. The assay had 91.55% success rate in genotyping the clinical panel samples and was able to detect drug resistant mutations related to nucleoside reverse transcriptase inhibitor (NRTI), non-nucleoside reverse-transcriptase inhibitor (NNRTI) as well as protease inhibitor (PI) classes of antiretroviral drugs. It was found to be around 71.9% more cost effective compared to ViroSeq genotyping system. This evaluation of the assay on the clinical panel demonstrates its potential for monitoring clinical HIV-1 drug resistance mutations and population-based surveillance in resource limited settings like India.
Collapse
Affiliation(s)
- Arpan Acharya
- Department of Molecular Biology, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Salil Vaniawala
- Department of Molecular Diagnostics, SN Genelab, Surat, Gujarat, India
| | - Parth Shah
- Department of Molecular Diagnostics, Supratech Micropath Laboratory & Research Institute, Ahmedabad, Gujarat, India
| | - Rabindra Nath Misra
- Department of Microbiology, Padmashree Dr. D. Y. Patil Medical College & Research Centre, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Minal Wani
- Department of Molecular Biology, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Pratap N. Mukhopadhyaya
- Department of Microbiology, Interdisciplinary Science, Technology and Research Academy, AISC, Pune, Maharashtra, India
- * E-mail:
| |
Collapse
|
14
|
Hanna LE, Neogi U, Ranga U, Swaminathan S, Prasad VR. Phylogenetic characterization of six full-length HIV-1 subtype C molecular clones from three patients: identification of rare subtype C strains containing two NF-κB motifs in the long terminal repeat. AIDS Res Hum Retroviruses 2014; 30:586-91. [PMID: 24387762 DOI: 10.1089/aid.2013.0275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Molecular surveillance is the backbone of HIV-1 vaccinology. Full-length HIV-1 sequences are useful tools that can provide a better understanding of the epidemiology in a given region. A limited number of full-length HIV-1 sequences are available from India, where >95% of the HIV infections are due to HIV-1 subtype C (HIV-1C), which is distinct from the prototype African HIV-1C. In this study, we sequenced six full-length clones isolated from three patients. Extensive phylogenetic analyses of the full-length viral sequences using bioinformatic tools identified a separate cluster of Indian strains, thus confirming the distinct phylogenetic identity of the Indian HIV-1C. Notably, the long terminal repeat (LTR) of two of the six molecular clones contained only two NF-κB binding sites. The sequences also displayed features characteristic of HIV-1C including a Tat dicysteine motif, a shortened Rev open reading frame, and a predicted CCR5 coreceptor tropism for gp120 of three of the proviral sequences.
Collapse
Affiliation(s)
- Luke Elizabeth Hanna
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York
| | - Ujjwal Neogi
- Hematology Research Unit, Department of Molecular Medicine, St. John's Research Institute, Bangalore, India
| | - Udaykumar Ranga
- Molecular Biology Unit, Jawaharalal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | | | - Vinayaka R. Prasad
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
15
|
Mendoza Y, Bello G, Castillo Mewa J, Martínez AA, González C, García-Morales C, Avila-Ríos S, Reyes-Terán G, Pascale JM. Molecular epidemiology of HIV-1 in Panama: origin of non-B subtypes in samples collected from 2007 to 2013. PLoS One 2014; 9:e85153. [PMID: 24454808 PMCID: PMC3890310 DOI: 10.1371/journal.pone.0085153] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 11/23/2013] [Indexed: 11/30/2022] Open
Abstract
Phylogenetic studies have suggested that the HIV-1 epidemic in the Americas is mainly dominated by HIV subtype B. However, countries of South America and the Caribbean have recently reported changes in their circulating HIV-1 genetic profiles. The aim of this study was to characterize the molecular profile of the HIV-1 epidemic in Panama by the analysis of 655 polymerase gene (pol) sequences that were obtained from HIV-infected Panamanians diagnosed between 1987 and 2013. Blood samples were collected from recently infected, antiretroviral drug-naïve and treatment-experienced subjects since mid-2007 to 2013. Viral RNA from plasma was extracted and sequences of HIV protease and reverse transcriptase genes were obtained. Bootscanning and phylogenetic methods were used for HIV subtyping and to trace the putative origin of non-B subtype strains. Our results showed that HIV-1 infections in Panama are dominated by subtype B (98.9%). The remaining 1.1% is represented by a diverse collection of recombinant variants including: three URFs_BC, one CRF20_BG, and one CRF28/29_BF, in addition to one subtype F1 and one subtype C, none of which were previously reported in Panama. The non-B subtype variants detected in Panama were probably introduced from Brazil (subtype F1 and CRF28/29_BF), Cuba (CRF20_BG), Dominican Republic (URFs_BC) and India (subtype C). Panama is the geographical vertex that connects the North with South America and the Caribbean through trade and cultural relations, which may explain the observed introductions of non-B subtype HIV-1 variants from both the Caribbean and South America into this Central American country.
Collapse
Affiliation(s)
- Yaxelis Mendoza
- Department of Genomics and Proteomics, Gorgas Memorial Institute for Health Studies, Panama City, Panama
- Department of Biotechnology, Acharya Nagarjuna University, Guntur City, Andhra Pradesh, India
- Department of Genetics and Molecular Biology, University of Panama, Panama City, Panama
- INDICASAT-AIP, 219, City of Knowledge, Clayton, Panama City, Panama
- * E-mail:
| | - Gonzalo Bello
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Juan Castillo Mewa
- Department of Genomics and Proteomics, Gorgas Memorial Institute for Health Studies, Panama City, Panama
| | - Alexander A. Martínez
- Department of Genomics and Proteomics, Gorgas Memorial Institute for Health Studies, Panama City, Panama
- Department of Biotechnology, Acharya Nagarjuna University, Guntur City, Andhra Pradesh, India
- INDICASAT-AIP, 219, City of Knowledge, Clayton, Panama City, Panama
| | - Claudia González
- Department of Genomics and Proteomics, Gorgas Memorial Institute for Health Studies, Panama City, Panama
| | - Claudia García-Morales
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Santiago Avila-Ríos
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Gustavo Reyes-Terán
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Juan M. Pascale
- Department of Genomics and Proteomics, Gorgas Memorial Institute for Health Studies, Panama City, Panama
| |
Collapse
|
16
|
Inference of global HIV-1 sequence patterns and preliminary feature analysis. Virol Sin 2013; 28:228-38. [PMID: 23913180 DOI: 10.1007/s12250-013-3348-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 07/26/2013] [Indexed: 12/12/2022] Open
Abstract
The epidemiology of HIV-1 varies in different areas of the world, and it is possible that this complexity may leave unique footprints in the viral genome. Thus, we attempted to find significant patterns in global HIV-1 genome sequences. By applying the rule inference algorithm RIPPER (Repeated Incremental Pruning to Produce Error Reduction) to multiple sequence alignments of Env sequences from four classes of compiled datasets, we generated four sets of signature patterns. We found that these patterns were able to distinguish southeastern Asian from nonsoutheastern Asian sequences with 97.5% accuracy, Chinese from non-Chinese sequences with 98.3% accuracy, African from non-African sequences with 88.4% accuracy, and southern African from non-southern African sequences with 91.2% accuracy. These patterns showed different associations with subtypes and with amino acid positions. In addition, some signature patterns were characteristic of the geographic area from which the sample was taken. Amino acid features corresponding to the phylogenetic clustering of HIV-1 sequences were consistent with some of the deduced patterns. Using a combination of patterns inferred from subtypes B, C, and all subtypes chimeric with CRF01_AE worldwide, we found that signature patterns of subtype C were extremely common in some sampled countries (for example, Zambia in southern Africa), which may hint at the origin of this HIV-1 subtype and the need to pay special attention to this area of Africa. Signature patterns of subtype B sequences were associated with different countries. Even more, there are distinct patterns at single position 21 with glycine, leucine and isoleucine corresponding to subtype C, B and all possible recombination forms chimeric with CRF01_AE, which also indicate distinct geographic features. Our method widens the scope of inference of signature from geographic, genetic, and genomic viewpoints. These findings may provide a valuable reference for epidemiological research or vaccine design.
Collapse
|
17
|
Abstract
Motivation: Large phylogenies are being built today to study virus evolution, trace the origin of epidemics, establish the mode of transmission and survey the appearance of drug resistance. However, no tool is available to quickly inspect these phylogenies and combine them with extrinsic traits (e.g. geographic location, risk group, presence of a given resistance mutation), seeking to extract strain groups of specific interest or requiring surveillance. Results: We propose a new method for obtaining such groups, which we call phylotypes, from a phylogeny having taxa (strains) annotated with extrinsic traits. Phylotypes are subsets of taxa with close phylogenetic relationships and common trait values. The method combines ancestral trait reconstruction using parsimony, with combinatorial and numerical criteria measuring tree shape characteristics and the diversity and separation of the potential phylotypes. A shuffling procedure is used to assess the statistical significance of phylotypes. All algorithms have linear time complexity. This results in low computing times, typically a few minutes for the larger data sets with a number of shuffling steps. Two HIV-1 data sets are analyzed, one of which is large, containing >3000 strains of HIV-1 subtype C collected worldwide, where the method shows its ability to recover known clusters and transmission routes, and to detect new ones. Availability: This method and companion tools are implemented in an interactive Web interface (www.phylotype.org), which provides a wide choice of graphical views and output formats, and allows for exploratory analyses of large data sets. Contact:francois.chevenet@ird.fr, gascuel@lirmm.fr Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- François Chevenet
- Institut de Biologie Computationnelle, LIRMM, UMR 5506 CNRS - Université Montpellier 2, Montpellier, France.
| | | | | | | | | |
Collapse
|
18
|
Molecular epidemiology of HIV-1 subtypes in India: origin and evolutionary history of the predominant subtype C. PLoS One 2012; 7:e39819. [PMID: 22768132 PMCID: PMC3387228 DOI: 10.1371/journal.pone.0039819] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 05/27/2012] [Indexed: 11/20/2022] Open
Abstract
Background India has the third largest HIV-1 epidemic with 2.4 million infected individuals. Molecular epidemiological analysis has identified the predominance of HIV-1 subtype C (HIV-1C). However, the previous reports have been limited by sample size, and uneven geographical distribution. The introduction of HIV-1C in India remains uncertain due to this lack of structured studies. To fill the gap, we characterised the distribution pattern of HIV-1 subtypes in India based on data collection from nationwide clinical cohorts between 2007 and 2011. We also reconstructed the time to the most recent common ancestor (tMRCA) of the predominant HIV-1C strains. Methodology/Principal Findings Blood samples were collected from 168 HIV-1 seropositive subjects from 7 different states. HIV-1 subtypes were determined using two or three genes, gag, pol, and env using several methods. Bayesian coalescent-based approach was used to reconstruct the time of introduction and population growth patterns of the Indian HIV-1C. For the first time, a high prevalence (10%) of unique recombinant forms (BC and A1C) was observed when two or three genes were used instead of one gene (p<0.01; p = 0.02, respectively). The tMRCA of Indian HIV-1C was estimated using the three viral genes, ranged from 1967 (gag) to 1974 (env). Pol-gene analysis was considered to provide the most reliable estimate [1971, (95% CI: 1965–1976)]. The population growth pattern revealed an initial slow growth phase in the mid-1970s, an exponential phase through the 1980s, and a stationary phase since the early 1990s. Conclusions/Significance The Indian HIV-1C epidemic originated around 40 years ago from a single or few genetically related African lineages, and since then largely evolved independently. The effective population size in the country has been broadly stable since the 1990s. The evolving viral epidemic, as indicated by the increase of recombinant strains, warrants a need for continued molecular surveillance to guide efficient disease intervention strategies.
Collapse
|