1
|
Pastena P, Campagnoli G, Rahmani AR, Kalogeropoulos AP. Mineralocorticoid Receptor Antagonists and Cognitive Outcomes in Cardiovascular Disease and Beyond: A Systematic Review. J Pers Med 2025; 15:57. [PMID: 39997334 PMCID: PMC11856062 DOI: 10.3390/jpm15020057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/20/2025] [Accepted: 01/27/2025] [Indexed: 02/26/2025] Open
Abstract
Background/Objectives: Cognitive impairment is a debilitating comorbidity affecting diverse patient populations, yet the cognitive effects of therapies like mineralocorticoid receptor antagonists (MRAs) remain underexplored. Preclinical evidence suggests that MRAs, particularly spironolactone, may reduce cognitive decline by modulating aldosterone-dependent pathways and targeting hippocampal receptors. However, evidence in humans is fragmented, and no systematic review has consolidated these findings. This review evaluates the cognitive effects of MRAs, synthesizes current data, and identifies research gaps. Methods: A literature search using terms related to MRAs and cognitive outcomes was performed in PubMed and Web of Science from 1979 to 2023. A total of 143 articles were identified and 85 were screened after removing duplicates. Ultimately, 44 studies were included and were classified based on study design and population focus (preclinical, healthy controls, patients with psychiatric disorders, and cardiovascular patients). Results: Spironolactone demonstrated mixed effects on cognition. In healthy participants, it improved spatial memory under stress and prevented stress-related suppression of medial temporal activity, but impaired working memory and selective attention. In patients with psychiatric conditions, spironolactone reduced cognitive empathy deficits in major depressive disorder and improved working memory in bipolar I disorder. In cardiovascular patients, spironolactone improved cognitive scores and hippocampal memory but had no effect on non-hippocampal memory. Conclusions: Spironolactone exhibits potential cognitive benefits across diverse populations. However, its effects on cognition are mixed, highlighting the need for further research to understand its mechanisms and therapeutic potential, particularly in patients with heart failure and other related conditions.
Collapse
Affiliation(s)
- Paola Pastena
- Division of Cardiology, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | - Ali Reza Rahmani
- Division of Cardiology, Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Andreas P. Kalogeropoulos
- Division of Cardiology, Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
- Health Sciences Center, Stony Brook University Medical Center, Stony Brook, NY 11794, USA
| |
Collapse
|
2
|
Joëls M, Karst H, Tasker JG. The emerging role of rapid corticosteroid actions on excitatory and inhibitory synaptic signaling in the brain. Front Neuroendocrinol 2024; 74:101146. [PMID: 39004314 DOI: 10.1016/j.yfrne.2024.101146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Abstract
Over the past two decades, there has been increasing evidence for the importance of rapid-onset actions of corticosteroid hormones in the brain. Here, we highlight the distinct rapid corticosteroid actions that regulate excitatory and inhibitory synaptic transmission in the hypothalamus, the hippocampus, basolateral amygdala, and prefrontal cortex. The receptors that mediate rapid corticosteroid actions are located at or close to the plasma membrane, though many of the receptor characteristics remain unresolved. Rapid-onset corticosteroid effects play a role in fast neuroendocrine feedback as well as in higher brain functions, including increased aggression and anxiety, and impaired memory retrieval. The rapid non-genomic corticosteroid actions precede and complement slow-onset, long-lasting transcriptional actions of the steroids. Both rapid and slow corticosteroid actions appear to be indispensable to adapt to a continuously changing environment, and their imbalance can increase an individual's susceptibility to psychopathology.
Collapse
Affiliation(s)
- Marian Joëls
- University Medical Center Groningen, University of Groningen, the Netherlands; University Medical Center Utrecht, Utrecht University, the Netherlands.
| | - Henk Karst
- University Medical Center Utrecht, Utrecht University, the Netherlands; SILS-CNS. University of Amsterdam, the Netherlands.
| | - Jeffrey G Tasker
- Department of Cell and Molecular Biology and Tulane Brain Institute, Tulane University, and Southeast Louisiana Veterans Affairs Healthcare System, New Orleans, USA.
| |
Collapse
|
3
|
Kong CH, Lee JW, Jeon M, Kang WC, Kim MS, Park K, Bae HJ, Park SJ, Jung SY, Kim SN, Kleinfelter B, Kim JW, Ryu JH. D-Pinitol mitigates post-traumatic stress disorder-like behaviors induced by single prolonged stress in mice through mineralocorticoid receptor antagonism. Prog Neuropsychopharmacol Biol Psychiatry 2024; 132:110990. [PMID: 38467326 DOI: 10.1016/j.pnpbp.2024.110990] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/24/2024] [Accepted: 03/06/2024] [Indexed: 03/13/2024]
Abstract
Post-traumatic stress disorder (PTSD) is a mental illness that can occur in individuals who have experienced trauma. Current treatments for PTSD, typically serotonin reuptake inhibitors, have limited effectiveness for patients and often cause serious adverse effects. Therefore, a novel class of treatment with better pharmacological profile is necessary. D-Pinitol has been reported to be effective for depression and anxiety disorders, but there are no reports associated with PTSD. In the present study, we investigated the effects of D-pinitol in a mouse model of PTSD induced by a single prolonged stress (SPS) protocol. We examined the therapeutic effects of D-pinitol on emotional and cognitive impairments in the SPS mouse model. We also investigated the effects of D-pinitol on fear memory formation. Mineralocorticoid receptor transactivation assay, Western blot, and quantitative PCR were employed to investigate how D-pinitol exerts its pharmacological activities. D-Pinitol ameliorated PTSD-like behaviors in a SPS mouse model. D-Pinitol also normalized the increased mRNA expression levels and protein levels of the mineralocorticoid receptor in the amygdala. A mineralocorticoid receptor agonist reversed the effects of D-pinitol on fear extinction and recall, and the antagonistic property of D-pinitol against the mineralocorticoid receptor was confirmed in vitro. Our findings suggest that D-pinitol could serve as a potential therapeutic agent for PTSD due to its antagonistic effect on the mineralocorticoid receptor.
Collapse
Affiliation(s)
- Chang Hyeon Kong
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jin Woo Lee
- Natural Products Research Institute, Korea Institute of Science and Technology, Gangneung-si 25451, Republic of Korea
| | - Mijin Jeon
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Woo Chang Kang
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Min Seo Kim
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Keontae Park
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ho Jung Bae
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Se Jin Park
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Seo Yun Jung
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Su-Nam Kim
- Natural Products Research Institute, Korea Institute of Science and Technology, Gangneung-si 25451, Republic of Korea
| | - Benjamin Kleinfelter
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN 37240, United States of America
| | - Ji-Woon Kim
- Department of Pharmacy, College of Pharmacy, Kyung Hee Univeristy, Seoul 02447, Republic of Korea.
| | - Jong Hoon Ryu
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
4
|
Yang H, Narayan S, Schmidt MV. From Ligands to Behavioral Outcomes: Understanding the Role of Mineralocorticoid Receptors in Brain Function. Stress 2023; 26:2204366. [PMID: 37067948 DOI: 10.1080/10253890.2023.2204366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/18/2023] Open
Abstract
Stress is a normal response to situational pressures or demands. Exposure to stress activates the hypothalamic-pituitary-adrenal (HPA) axis and leads to the release of corticosteroids, which act in the brain via two distinct receptors: mineralocorticoid receptors (MR) and glucocorticoid receptors (GR). Persistent HPA axis overactivation or dysregulation can disrupt an individual's homeostasis, thereby contributing to an increased risk for mental illness. On the other hand, successful coping with stressful events involves adaptive and cognitive processes in the brain that render individuals more resilient to similar stressors in the future. Here we review the role of the MR in these processes, starting with an overview of the physiological structure, ligand binding, and expression of MR, and further summarizing its role in the brain, its relevance to psychiatric disorders, and related rodent studies. Given the central role of MR in cognitive and emotional functioning, and its importance as a target for promoting resilience, future research should investigate how MR modulation can be used to alleviate disturbances in emotion and behavior, as well as cognitive impairment, in patients with stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Huanqing Yang
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Sowmya Narayan
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- Department Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804 Munich, Germany
| | - Mathias V Schmidt
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| |
Collapse
|
5
|
Spironolactone as a potential new pharmacotherapy for alcohol use disorder: convergent evidence from rodent and human studies. Mol Psychiatry 2022; 27:4642-4652. [PMID: 36123420 DOI: 10.1038/s41380-022-01736-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 12/14/2022]
Abstract
Evidence suggests that spironolactone, a nonselective mineralocorticoid receptor (MR) antagonist, modulates alcohol seeking and consumption. Therefore, spironolactone may represent a novel pharmacotherapy for alcohol use disorder (AUD). In this study, we tested the effects of spironolactone in a mouse model of alcohol drinking (drinking-in-the-dark) and in a rat model of alcohol dependence (vapor exposure). We also investigated the association between spironolactone receipt for at least 60 continuous days and change in self-reported alcohol consumption, using the Alcohol Use Disorders Identification Test-Consumption (AUDIT-C), in a pharmacoepidemiologic cohort study in the largest integrated healthcare system in the US. Spironolactone dose-dependently reduced the intake of sweetened or unsweetened alcohol solutions in male and female mice. No effects of spironolactone were observed on drinking of a sweet solution without alcohol, food or water intake, motor coordination, alcohol-induced ataxia, or blood alcohol levels. Spironolactone dose-dependently reduced operant alcohol self-administration in dependent and nondependent male and female rats. In humans, a greater reduction in alcohol consumption was observed among those who received spironolactone, compared to propensity score-matched individuals who did not receive spironolactone. The largest effects were among those who reported hazardous/heavy episodic alcohol consumption at baseline (AUDIT-C ≥ 8) and those exposed to ≥ 50 mg/day of spironolactone. These convergent findings across rodent and human studies demonstrate that spironolactone reduces alcohol use and support the hypothesis that this medication may be further studied as a novel pharmacotherapy for AUD.
Collapse
|
6
|
Overgeneralization of fear, but not avoidance, following acute stress. Biol Psychol 2021; 164:108151. [PMID: 34302889 DOI: 10.1016/j.biopsycho.2021.108151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/02/2021] [Accepted: 07/19/2021] [Indexed: 11/21/2022]
Abstract
Research has demonstrated the spreading of fear from threat-related stimuli to perceptually similar, but innocuous, stimuli. Less is known, however, about the generalization of avoidance behavior. Given that stress is known to affect learning and memory, we were interested in the effect of acute stress on (over)generalization of fear and avoidance responses. On the first day, one geometrical shape was paired with a mild electrical stimulus (CS+), whereas another shape was not (CS-). One day later, after participants had been exposed to the Maastricht Acute Stress Test or a control task, generalization of avoidance responses and fear (shock expectancy and skin conductance responses) was tested to a range of perceptual generalization stimuli. Generalization gradients were observed across different outcome measures. Stress enhanced generalization of shock expectancy to the stimulus most similar to the CS+. Our findings confirm that stress can affect the generalization of fear, but further studies are warranted.
Collapse
|
7
|
Ponce-Lina R, Serafín N, Carranza M, Arámburo C, Prado-Alcalá RA, Luna M, Quirarte GL. Differential Phosphorylation of the Glucocorticoid Receptor in Hippocampal Subregions Induced by Contextual Fear Conditioning Training. Front Behav Neurosci 2020; 14:12. [PMID: 32116592 PMCID: PMC7031480 DOI: 10.3389/fnbeh.2020.00012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/20/2020] [Indexed: 11/24/2022] Open
Abstract
Aversive events induce the release of glucocorticoid stress hormones that facilitate long-term memory consolidation, an effect that depends on the activation of glucocorticoid receptors (GRs). GRs are distributed widely in the hippocampus. The dorsal region of the hippocampus has been related to cognitive functions and the ventral region to stress and emotion. GR acts as a transcription factor which after hormone binding becomes phosphorylated, affecting its cellular distribution and transcriptional activity. Two functionally well-described GR phosphorylation sites are serine 232 (pSer232), which enhances gene expression, and serine 246 (pSer246), having the opposite effect. Since gene expression is one of the plastic mechanisms needed for memory consolidation, we investigated if an aversive learning task would induce GR phosphorylation in the dorsal (DH) and the ventral (VH) hippocampus. We trained rats in contextual fear conditioning (CFC) using different foot-shock intensities (0.0, 0.5, or 1.5 mA). One subgroup of animals trained with each intensity was sacrificed 15 min after training and blood was collected to quantify corticosterone (CORT) levels in serum. Another subgroup was sacrificed 1 h after training and brains were collected to evaluate the immunoreactivity (IR) to GR, pSer232 and pSer246 by SDS-PAGE/Western blot in DH and VH, and by immunohistochemistry in dorsal and ventral CA1, CA2, CA3, and dentate gyrus (DG) hippocampal regions. The conditioned freezing response increased in animals trained with 0.5 and 1.5 mA during training and extinction sessions. The degree of retention and CORT levels were directly related to the intensity of the foot-shock. Although total GR-IR remained unaffected after conditioning, we observed a significant increase of pSer246-IR in the dorsal region of CA1 and in both dorsal and ventral DG. The only region in which pSer232-IR was significantly elevated was ventral CA3. Our results indicate that fear conditioning training is related to GR phosphorylation in specific subregions of the hippocampus, suggesting that its transcriptional activity for gene expression is favored in ventral CA3, whereas its repressor activity for gene-silencing is increased in dorsal CA1 and in both dorsal and ventral DG.
Collapse
Affiliation(s)
- Renata Ponce-Lina
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Norma Serafín
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Martha Carranza
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Carlos Arámburo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Roberto A Prado-Alcalá
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Maricela Luna
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Gina L Quirarte
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| |
Collapse
|
8
|
Activation of mineralocorticoid receptors facilitate the acquisition of fear memory extinction and impair the generalization of fear memory in diabetic animals. Psychopharmacology (Berl) 2020; 237:529-542. [PMID: 31713655 DOI: 10.1007/s00213-019-05388-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/31/2019] [Indexed: 12/18/2022]
Abstract
RATIONALE Studies point out a higher prevalence of posttraumatic stress disorder (PTSD) in individuals with diabetes mellitus. It is known that glucocorticoid (GR) and mineralocorticoid (MR) receptors are implicated in fear memory processes and PTSD. However, there is no preclinical studies addressing the involvement of these receptors on abnormal fear memories related to diabetic condition. OBJECTIVES By inducing a contextual conditioned fear memory, we generate a suitable condition to investigate the extinction and the generalization of the fear memory in streptozotocin-induced diabetic (DBT) rats alongside the expression of the cytosolic and nuclear GR and MR in the hippocampus (HIP) and prefrontal cortex (PFC). Moreover, we investigated the involvement of the MR or GR on the acquisition of fear memory extinction and on the generalization of this fear memory. When appropriate, anxiety-related behavior was evaluated. METHODS Male Wistar rats received one injection of steptozotocin (i.p.) to induce diabetes. After 4 weeks, the animals (DBTs and non-DBTs) were subjected to a conditioned contextual fear protocol. RESULTS The expression of MR and GR in the HIP and PFC was similar among all the groups. The single injection of MR agonist was able to facilitate the acquisition of the impaired fear memory extinction in DBTs animals together with the impairment of its generalization. However, the GR antagonism impaired only the generalization of this fear memory which was blocked by the previous injection of the MR antagonist. All treatments were able to exert anxiolytic-like effects. CONCLUSIONS The results indicate that MR activation in DBT animals disrupts the overconsolidation of aversive memory, without discarding the involvement of emotional behavior in these processes.
Collapse
|
9
|
de Kloet ER, de Kloet SF, de Kloet CS, de Kloet AD. Top-down and bottom-up control of stress-coping. J Neuroendocrinol 2019; 31:e12675. [PMID: 30578574 PMCID: PMC6519262 DOI: 10.1111/jne.12675] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/12/2018] [Accepted: 12/12/2018] [Indexed: 12/17/2022]
Abstract
In this 30th anniversary issue review, we focus on the glucocorticoid modulation of limbic-prefrontocortical circuitry during stress-coping. This action of the stress hormone is mediated by mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) that are co-expressed abundantly in these higher brain regions. Via both receptor types, the glucocorticoids demonstrate, in various contexts, rapid nongenomic and slower genomic actions that coordinate consecutive stages of information processing. MR-mediated action optimises stress-coping, whereas, in a complementary fashion, the memory storage of the selected coping strategy is promoted via GR. We highlight the involvement of adipose tissue in the allocation of energy resources to central regulation of stress reactions, point to still poorly understood neuronal ensembles in the prefrontal cortex that underlie cognitive flexibility critical for effective coping, and evaluate the role of cortisol as a pleiotropic regulator in vulnerability to, and treatment of, trauma-related psychiatric disorders.
Collapse
Affiliation(s)
- Edo R. de Kloet
- Division of EndocrinologyDepartment of MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Sybren F. de Kloet
- Department of Integrative NeurophysiologyCenter for Neurogenomics and Cognitive ResearchVU‐University of AmsterdamAmsterdamThe Netherlands
| | | | - Annette D. de Kloet
- Department of Physiology and Functional GenomicsUniversity of FloridaGainesvilleFlorida
| |
Collapse
|
10
|
Caldwell KK, Solomon ER, Smoake JJW, Djatche de Kamgaing CD, Allan AM. Sex-specific deficits in biochemical but not behavioral responses to delay fear conditioning in prenatal alcohol exposure mice. Neurobiol Learn Mem 2018; 156:1-16. [PMID: 30316893 DOI: 10.1016/j.nlm.2018.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/17/2018] [Accepted: 10/11/2018] [Indexed: 01/29/2023]
Abstract
BACKGROUND Studies in clinical populations and preclinical models have shown that prenatal alcohol exposure (PAE) is associated with impairments in the acquisition, consolidation and recall of information, with deficits in hippocampal formation-dependent learning and memory being a common finding. The glucocorticoid receptor (GR), mineralocorticoid receptor (MR), and extracellular signal-regulated kinase 2 (ERK2) are key regulators of hippocampal formation development, structure and functioning and, thus, are potential mediators of PAE's effects on this brain region. In the present studies, we employed a well-characterized mouse model of PAE to identify biochemical mechanisms that may underlie activity-dependent learning and memory deficits associated with PAE. METHODS Mouse dams consumed either 10% (w/v) ethanol in 0.066% (w/v) saccharin (SAC) or 0.066% (w/v) SAC alone using a limited (4-h) access, drinking-in-the-dark paradigm. Male and female offspring (∼180-days of age) were trained using a delay conditioning procedure and contextual fear responses (freezing behavior) were measured 24 h later. Hippocampal formation tissue and blood were collected from three behavioral groups of animals: 20 min following conditioning (conditioning only group), 20 min following the re-exposure to the context (conditioning plus re-exposure group), and behaviorally naïve (naïve group) mice. Plasma corticosterone levels were measured by enzyme immunoassay. Immunoblotting techniques were used to measure protein levels of the GR, MR, ERK1 and ERK2 in nuclear and membrane fractions prepared from the hippocampal formation. RESULTS Adult SAC control male and female mice displayed similar levels of contextual fear. However, significant sex differences were observed in freezing exhibited during the conditioning session. Compared to same-sex SAC controls, male and female PAE mice demonstrated context fear deficits While plasma corticosterone concentrations were elevated in PAE males and females relative to their respective SAC naïve controls, plasma corticosterone concentrations in the conditioning only and conditioning plus re-exposure groups were similar in SAC and PAE animals. Relative to the respective naïve group, nuclear GR protein levels were increased in SAC, but not PAE, male hippocampal formation in the conditioning only group. In contrast, no difference was observed between nuclear GR levels in the naïve and conditioning plus re-exposure groups. In females, nuclear GR levels were significantly reduced by PAE but there was no effect of behavioral group or interaction between prenatal treatment and behavioral group. In males, nuclear MR levels were significantly elevated in the SAC conditioning plus re-exposure group compared to SAC naïve mice. In PAE females, nuclear MR levels were elevated in both the conditioning only and conditioning plus re-exposure groups relative to the naïve group. Levels of activated ERK2 (phospho-ERK2 expressed relative to total ERK2) protein were elevated in SAC, but not PAE, males following context re-exposure, and a significant interaction between prenatal exposure group and behavioral group was found. No main effects or interactions of behavioral group and prenatal treatment on nuclear ERK2 were found in female mice. These findings suggest a sex difference in which molecular pathways are activated during fear conditioning in mice. CONCLUSIONS In PAE males, the deficits in contextual fear were associated with the loss of responsiveness of hippocampal formation nuclear GR, MR and ERK2 to signals generated by fear conditioning and context re-exposure. In contrast, the contextual fear deficit in PAE female mice does not appear to be associated with activity-dependent changes in GR and MR levels or ERK2 activation during training or memory recall, although an overall reduction in nuclear GR levels may play a role. These studies add to a growing body of literature demonstrating that, at least partially, different mechanisms underlie learning, memory formation and memory recall in males and females and that these pathways are differentially affected by PAE.
Collapse
Affiliation(s)
- Kevin K Caldwell
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| | - Elizabeth R Solomon
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Jane J W Smoake
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Chrys D Djatche de Kamgaing
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Andrea M Allan
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
11
|
Makhijani VH, Van Voorhies K, Besheer J. The mineralocorticoid receptor antagonist spironolactone reduces alcohol self-administration in female and male rats. Pharmacol Biochem Behav 2018; 175:10-18. [PMID: 30171933 DOI: 10.1016/j.pbb.2018.07.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/06/2018] [Accepted: 07/25/2018] [Indexed: 12/14/2022]
Abstract
Cortisol/corticosterone and the hypothalamic-pituitary-adrenal (HPA) axis serve an important role in modulating alcohol drinking behaviors. To date most alcohol research has focused on the functional involvement of corticosterone and the glucocorticoid receptor (GR), the primary receptor for corticosterone. Recent studies have indicated that the related mineralocorticoid receptor (MR), which binds both corticosterone and aldosterone, may also play a role in alcohol drinking. Therefore, the purpose of the present study was to test the functional role of MR signaling in alcohol self-administration via pharmacological antagonism of the MR with spironolactone. Male and female Long-Evans rats were trained to self-administer a sweetened alcohol solution (15% (v/v) alcohol +2% (w/v) sucrose). The effects of spironolactone (0, 10, 25, 50 mg/kg; IP) were tested on alcohol self-administration and under "probe extinction" conditions to measure the persistence of responding in the absence of the alcohol reinforcer. Parallel experiments in sucrose self-administration trained rats were used to confirm the specificity of spironolactone effects to an alcohol reinforcer. In female rats spironolactone (50 mg/kg) reduced alcohol self-administration and persistence of alcohol responding. In male rats spironolactone (25 and 50 mg/kg) reduced alcohol self-administration, but not persistence of alcohol responding. Spironolactone reduced sucrose intake in female rats only, and locomotion in male and female rats during sucrose self-administration. There was no effect of spironolactone on persistence of sucrose responding. These studies add to growing evidence that the MR is involved in alcohol drinking, while underscoring the importance of studying both male and female animals.
Collapse
Affiliation(s)
- Viren H Makhijani
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Neuroscience Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kalynn Van Voorhies
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joyce Besheer
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Neuroscience Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
12
|
Wehr MC, Hinrichs W, Brzózka MM, Unterbarnscheidt T, Herholt A, Wintgens JP, Papiol S, Soto-Bernardini MC, Kravchenko M, Zhang M, Nave KA, Wichert SP, Falkai P, Zhang W, Schwab MH, Rossner MJ. Spironolactone is an antagonist of NRG1-ERBB4 signaling and schizophrenia-relevant endophenotypes in mice. EMBO Mol Med 2018; 9:1448-1462. [PMID: 28743784 PMCID: PMC5653977 DOI: 10.15252/emmm.201707691] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Enhanced NRG1‐ERBB4 signaling is a risk pathway in schizophrenia, and corresponding mouse models display several endophenotypes of the disease. Nonetheless, pathway‐directed treatment strategies with clinically applicable compounds have not been identified. Here, we applied a cell‐based assay using the split TEV technology to screen a library of clinically applicable compounds to identify modulators of NRG1‐ERBB4 signaling for repurposing. We recovered spironolactone, known as antagonist of corticosteroids, as an inhibitor of the ERBB4 receptor and tested it in pharmacological and biochemical assays to assess secondary compound actions. Transgenic mice overexpressing Nrg1 type III display cortical Erbb4 hyperphosphorylation, a condition observed in postmortem brains from schizophrenia patients. Spironolactone treatment reverted hyperphosphorylation of activated Erbb4 in these mice. In behavioral tests, spironolactone treatment of Nrg1 type III transgenic mice ameliorated schizophrenia‐relevant behavioral endophenotypes, such as reduced sensorimotor gating, hyperactivity, and impaired working memory. Moreover, spironolactone increases spontaneous inhibitory postsynaptic currents in cortical slices supporting an ERBB4‐mediated mode‐of‐action. Our findings suggest that spironolactone, a clinically safe drug, provides an opportunity for new treatment options for schizophrenia.
Collapse
Affiliation(s)
- Michael C Wehr
- Molecular and Behavioral Neurobiology, Department of Psychiatry, Ludwig Maximilian University of Munich, Munich, Germany
| | - Wilko Hinrichs
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Magdalena M Brzózka
- Molecular and Behavioral Neurobiology, Department of Psychiatry, Ludwig Maximilian University of Munich, Munich, Germany
| | - Tilmann Unterbarnscheidt
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Cellular Neurophysiology, Center of Physiology, Hannover Medical School, Hannover, Germany
| | | | | | - Sergi Papiol
- Molecular and Behavioral Neurobiology, Department of Psychiatry, Ludwig Maximilian University of Munich, Munich, Germany.,Institute of Psychiatric Phenomics and Genomics (IPPG), Medical Center of the University of Munich, Munich, Germany
| | | | - Mykola Kravchenko
- Laboratory of Molecular Psychiatry, Department of Psychiatry, University of Münster, Münster, Germany
| | - Mingyue Zhang
- Laboratory of Molecular Psychiatry, Department of Psychiatry, University of Münster, Münster, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Sven P Wichert
- Molecular and Behavioral Neurobiology, Department of Psychiatry, Ludwig Maximilian University of Munich, Munich, Germany
| | - Peter Falkai
- Molecular and Behavioral Neurobiology, Department of Psychiatry, Ludwig Maximilian University of Munich, Munich, Germany
| | - Weiqi Zhang
- Laboratory of Molecular Psychiatry, Department of Psychiatry, University of Münster, Münster, Germany
| | - Markus H Schwab
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Cellular Neurophysiology, Center of Physiology, Hannover Medical School, Hannover, Germany.,Center for Systems Neuroscience (ZSN), Hanover, Germany
| | - Moritz J Rossner
- Molecular and Behavioral Neurobiology, Department of Psychiatry, Ludwig Maximilian University of Munich, Munich, Germany .,Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| |
Collapse
|
13
|
Dunsmoor JE, Otto AR, Phelps EA. Stress promotes generalization of older but not recent threat memories. Proc Natl Acad Sci U S A 2017; 114:9218-9223. [PMID: 28784793 PMCID: PMC5576797 DOI: 10.1073/pnas.1704428114] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Stress broadly affects the ability to regulate emotions and may contribute to generalization of threat-related behaviors to harmless stimuli. Behavioral generalization also tends to increase over time as memory precision for recent events gives way to more gist-like representations. Thus, acute stress coupled with a delay in time from a negative experience may be a strong predictor of the transition from normal to generalized fear expression. Here, we investigated the effect of a single-episode acute stressor on generalization of aversive learning when stress is administered either immediately after an aversive learning event or following a delay. In a between-subjects design, healthy adult volunteers underwent threat (fear) conditioning using a tone-conditioned stimulus paired with an electric shock to the wrist and another tone not paired with shock. Behavioral generalization was tested to a range of novel tones either on the same day (experiment 1) or 24 h later (experiment 2) and was preceded by either an acute stress induction or a control task. Anticipatory sympathetic arousal [i.e., skin conductance responses (SCRs)] and explicit measures of shock expectancy served as dependent measures. Stress administered shortly after threat conditioning did not affect behavioral generalization. In contrast, stress administered following a delay led to heightened arousal and increased generalization of SCRs and explicit measures of shock expectancy. These findings show that acute stress increases generalization of older but not recent threat memories and have clinical relevance to understanding overgeneralization characteristics of anxiety and stress-related disorders.
Collapse
Affiliation(s)
- Joseph E Dunsmoor
- Department of Psychiatry, The University of Texas at Austin Dell Medical School, Austin, TX 78712;
| | - A Ross Otto
- Department of Psychology, McGill University, Montreal, QC, H3A 1G1 Canada
| | - Elizabeth A Phelps
- Department of Psychology and Center for Neural Sciences, New York University, New York, NY 10009
- Emotional Brain Institute, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962
| |
Collapse
|
14
|
Urueña-Méndez GP, Lamprea M. Efectos de la inactivación sistémica de los receptores GR y MR sobre el daño rápido en la recuperación de la memoria espacial inducido por corticosterona. UNIVERSITAS PSYCHOLOGICA 2017. [DOI: 10.11144/javeriana.upsy15-5.eisr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Estudios previos de nuestro laboratorio han mostrado que la inyección de corticosterona aplicada diez minutos antes de la prueba de recobre afecta la recuperación de la memoria espacial en el laberinto de Barnes. Se ha propuesto que los efectos de esta hormona están mediados por la activación de los receptores clásicos de glucocorticoides; sin embargo la rápida aparición de los efectos permite suponer un mecanismo alternativo de tipo no genómico. El objetivo del presente estudio fue determinar la participación de los receptores de glucocorticoides GR y MR sobre el efecto rápido de la corticosterona en la recuperación de la memoria espacial en el laberinto de Barnes. Treinta y siete ratas Wistar macho fueron entrenadas en la tarea y 24h después recibieron una inyección subcutánea de antagonista GR, antagonista MR o vehículo. Cincuenta minutos después de la inyección, los animales fueron inyectados con corticosterona o vehículo y diez minutos después se evaluó la recuperación de la memoria espacial. Los resultados mostraron que la corticosterona perjudica rápidamente la recuperación de la memoria espacial a largo plazo, pues los animales inyectados presentaron mayores latencias de escape, mayor número de errores, mayor número de exploraciones y mayor distancia recorrida hasta alcanzar la meta. Este efecto sólo fue revertido con la administración del antagonista MR. Este hallazgo concuerda con estudios in vitro donde se muestra que los efectos rápidos de la corticosterona sobre la trasmisión glutamatérgica en el hipocampo están mediados por los receptores MR, posiblemente localizados en la membrana celular.
Collapse
|
15
|
Chen J, Wang ZZ, Zhang S, Zuo W, Chen NH. Does mineralocorticoid receptor play a vital role in the development of depressive disorder? Life Sci 2016; 152:76-81. [DOI: 10.1016/j.lfs.2016.03.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 03/09/2016] [Accepted: 03/11/2016] [Indexed: 01/01/2023]
|
16
|
Cognitive Adaptation under Stress: A Case for the Mineralocorticoid Receptor. Trends Cogn Sci 2016; 20:192-203. [DOI: 10.1016/j.tics.2015.12.003] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 11/19/2015] [Accepted: 12/08/2015] [Indexed: 12/20/2022]
|
17
|
Uwaya A, Lee H, Park J, Lee H, Muto J, Nakajima S, Ohta S, Mikami T. Acute immobilization stress following contextual fear conditioning reduces fear memory: timing is essential. Behav Brain Funct 2016; 12:8. [PMID: 26912001 PMCID: PMC4765063 DOI: 10.1186/s12993-016-0092-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 02/05/2016] [Indexed: 01/31/2023] Open
Abstract
Background Histone acetylation is regulated in response to stress and plays an important role in learning and memory. Chronic stress is known to deteriorate cognition, whereas acute stress facilitates memory formation. However, whether acute stress facilitates memory formation when it is applied after fear stimulation is not yet known. Therefore, this study aimed to investigate the effect of acute stress applied after fear training on memory formation, mRNA expression of brain-derived neurotrophic factor (BDNF), epigenetic regulation of BDNF expression, and corticosterone level in mice in vivo. Methods Mice were subjected to acute immobilization stress for 30 min at 60 or 90 min after contextual fear conditioning training, and acetylation of histone 3 at lysine 14 (H3K14) and level of corticosterone were measured using western blot analysis and enzyme-linked immunosorbent assay (ELISA), respectively. A freezing behavior test was performed 24 h after training, and mRNA expression of BDNF was measured using real-time polymerase chain reactions. Different groups of mice were used for each test. Results Freezing behavior significantly decreased with the down-regulation of BDNF mRNA expression caused by acute immobilization stress at 60 min after fear conditioning training owing to the reduction of H3K14 acetylation. However, BDNF mRNA expression and H3K14 acetylation were not reduced in animals subjected to immobilization stress at 90 min after the training. Further, the corticosterone level was significantly high in mice subjected to immobilization stress at 60 min after the training. Conclusion Acute immobilization stress for 30 min at 60 min after fear conditioning training impaired memory formation and reduced BDNF mRNA expression and H3K14 acetylation in the hippocampus of mice owing to the high level of corticosterone. Electronic supplementary material The online version of this article (doi:10.1186/s12993-016-0092-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Akemi Uwaya
- Department of Biochemistry and Cell Biology, Institute for Advanced Medical Sciences, Nippon Medical School, 1-396 Kosugi-cho, Nakahara-ku, Kawasaki, Kanagawa, 211-8533, Japan.
| | - Hyunjin Lee
- Department of Biochemistry and Cell Biology, Institute for Advanced Medical Sciences, Nippon Medical School, 1-396 Kosugi-cho, Nakahara-ku, Kawasaki, Kanagawa, 211-8533, Japan.
| | - Jonghyuk Park
- Department of Laboratory Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo, 105-8641, Japan.
| | - Hosung Lee
- Department of Cell Biology and Neuroscience, Juntendo Medical School, 2-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Junko Muto
- Graduate School of Health and Sport Science, Nippon Sport Science University, 7-1-1 Fukasawa, Setagaya-ku, Tokyo, 158-8508, Japan.
| | - Sanae Nakajima
- Kyoritsu Women's Junior College, 2-2-1 Hitotsubashi, Chiyoda-ku, Tokyo, 101-8437, Japan.
| | - Shigeo Ohta
- Department of Biochemistry and Cell Biology, Institute for Advanced Medical Sciences, Nippon Medical School, 1-396 Kosugi-cho, Nakahara-ku, Kawasaki, Kanagawa, 211-8533, Japan.
| | - Toshio Mikami
- Department of Health and Sport Science, Nippon Medical School, 1-7-1, Sakaiminami machi, Mushasino-shi, Tokyo, 180-0023, Japan.
| |
Collapse
|
18
|
Vogel S, Klumpers F, Kroes MCW, Oplaat KT, Krugers HJ, Oitzl MS, Joëls M, Fernández G. A Stress-Induced Shift From Trace to Delay Conditioning Depends on the Mineralocorticoid Receptor. Biol Psychiatry 2015; 78:830-9. [PMID: 25823790 DOI: 10.1016/j.biopsych.2015.02.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/16/2015] [Accepted: 02/06/2015] [Indexed: 01/08/2023]
Abstract
BACKGROUND Fear learning in stressful situations is highly adaptive for survival by steering behavior in subsequent situations, but fear learning can become disproportionate in vulnerable individuals. Despite the potential clinical significance, the mechanism by which stress modulates fear learning is poorly understood. Memory theories state that stress can cause a shift away from more controlled processing depending on the hippocampus toward more reflexive processing supported by the amygdala and striatum. This shift may be mediated by activation of the mineralocorticoid receptor (MR) for cortisol. We investigated how stress shifts processes underlying cognitively demanding learning versus less demanding fear learning using a combined trace and delay fear conditioning paradigm. METHODS In a pharmacological functional magnetic resonance imaging study, we tested 101 healthy men probing the effects of stress (socially evaluated cold pressor vs. control procedure) and MR-availability (400 mg spironolactone vs. placebo) in a randomized, placebo-controlled, full-factorial, between-subjects design. RESULTS Effective stress induction and successful conditioning were confirmed by subjective, physiologic, and somatic data. In line with a stress-induced shift, stress enhanced later recall of delay compared with trace conditioning in the MR-available groups as indexed by skin conductance responses. During learning, this was accompanied by a stress-induced reduction of learning-related hippocampal activity for trace conditioning. The stress-induced shift in fear and neural processing was absent in the MR-blocked groups. CONCLUSIONS Our results are in line with a stress-induced shift in fear learning, mediated by the MR, resulting in a dominance of cognitively less demanding amygdala-based learning, which might be particularly prominent in individuals with high MR sensitivity.
Collapse
Affiliation(s)
- Susanne Vogel
- Donders Institute for Brain, Cognition and Behaviour; Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen.
| | - Floris Klumpers
- Donders Institute for Brain, Cognition and Behaviour; Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen
| | | | | | | | - Melly S Oitzl
- Faculty of Science, University of Amsterdam, Amsterdam
| | - Marian Joëls
- Rudolf Magnus Institute of Neuroscience, Utrecht, The Netherlands
| | - Guillén Fernández
- Donders Institute for Brain, Cognition and Behaviour; Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen
| |
Collapse
|
19
|
Thomas SA. Neuromodulatory signaling in hippocampus-dependent memory retrieval. Hippocampus 2015; 25:415-31. [PMID: 25475876 DOI: 10.1002/hipo.22394] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2014] [Indexed: 12/15/2022]
Abstract
Considerable advances have been made toward understanding the molecular signaling events that underlie memory acquisition and consolidation. In contrast, less is known about memory retrieval, despite its necessity for utilizing learned information. This review focuses on neuromodulatory and intracellular signaling events that underlie memory retrieval mediated by the hippocampus, for which the most information is currently available. Among neuromodulators, adrenergic signaling is required for the retrieval of various types of hippocampus-dependent memory. Although they contribute to acquisition and/or consolidation, cholinergic and dopaminergic signaling are generally not required for retrieval. Interestingly, while not required for retrieval, serotonergic and opioid signaling may actually constrain memory retrieval. Roles for histamine and non-opioid neuropeptides are currently unclear but possible. A critical effector of adrenergic signaling in retrieval is reduction of the slow afterhyperpolarization mediated by β1 receptors, cyclic AMP, protein kinase A, Epac, and possibly ERK. In contrast, stress and glucocorticoids impair retrieval by decreasing cyclic AMP, mediated in part by the activation of β2 -adrenergic receptors. Clinically, alterations in neuromodulatory signaling and in memory retrieval occur in Alzheimer's disease, Down syndrome, depression, and post-traumatic stress disorder, and recent evidence has begun to link changes in neuromodulatory signaling with effects on memory retrieval.
Collapse
Affiliation(s)
- Steven A Thomas
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
20
|
Overexpression of Mineralocorticoid Receptors Partially Prevents Chronic Stress-Induced Reductions in Hippocampal Memory and Structural Plasticity. PLoS One 2015; 10:e0142012. [PMID: 26600250 PMCID: PMC4658081 DOI: 10.1371/journal.pone.0142012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 09/11/2015] [Indexed: 12/02/2022] Open
Abstract
Exposure to chronic stress is a risk factor for cognitive decline and psychopathology in genetically predisposed individuals. Preliminary evidence in humans suggests that mineralocorticoid receptors (MRs) may confer resilience to these stress-related changes. We specifically tested this idea using a well-controlled mouse model for chronic stress in combination with transgenic MR overexpression in the forebrain. Exposure to unpredictable stressors for 21 days in adulthood reduced learning and memory formation in a low arousing hippocampus-dependent contextual learning task, but enhanced stressful contextual fear learning. We found support for a moderating effect of MR background on chronic stress only for contextual memory formation under low arousing conditions. In an attempt to understand potentially contributing factors, we studied structural plasticity. Chronic stress altered dendritic morphology in the hippocampal CA3 area and reduced the total number of doublecortin-positive immature neurons in the infrapyramidal blade of the dentate gyrus. The latter reduction was absent in MR overexpressing mice. We therefore provide partial support for the idea that overexpression of MRs may confer resilience to the effects of chronic stress on hippocampus-dependent function and structural plasticity.
Collapse
|
21
|
Kanatsou S, Kuil LE, Arp M, Oitzl MS, Harris AP, Seckl JR, Krugers HJ, Joels M. Overexpression of mineralocorticoid receptors does not affect memory and anxiety-like behavior in female mice. Front Behav Neurosci 2015; 9:182. [PMID: 26236208 PMCID: PMC4501076 DOI: 10.3389/fnbeh.2015.00182] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 06/29/2015] [Indexed: 11/13/2022] Open
Abstract
Mineralocorticoid receptors (MRs) have been implicated in behavioral adaptation and learning and memory. Since-at least in humans-MR function seems to be sex-dependent, we examined the behavioral relevance of MR in female mice exhibiting transgenic MR overexpression in the forebrain. Transgenic MR overexpression did not affect contextual fear memory or cued fear learning and memory. Moreover, MR overexpressing and control mice discriminated equally well between fear responses in a combined cue and context fear conditioning paradigm. Also context-memory in an object recognition task was unaffected in MR overexpressing mice. We conclude that MR overexpression in female animals does not affect fear conditioned responses and object recognition memory.
Collapse
Affiliation(s)
- Sofia Kanatsou
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| | - Laura E Kuil
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands
| | - Marit Arp
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands
| | - Melly S Oitzl
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands
| | - Anjanette P Harris
- Endocrinology Unit, Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh Edinburgh, UK
| | - Jonathan R Seckl
- Endocrinology Unit, Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh Edinburgh, UK
| | - Harm J Krugers
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands
| | - Marian Joels
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| |
Collapse
|
22
|
Gorissen M, Manuel R, Pelgrim TNM, Mes W, de Wolf MJS, Zethof J, Flik G, van den Bos R. Differences in inhibitory avoidance, cortisol and brain gene expression in TL and AB zebrafish. GENES BRAIN AND BEHAVIOR 2015; 14:428-38. [PMID: 25906812 DOI: 10.1111/gbb.12220] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/13/2015] [Accepted: 04/20/2015] [Indexed: 11/30/2022]
Abstract
Recently, we established an inhibitory avoidance paradigm in Tupfel Long-Fin (TL) zebrafish. Here, we compared task performance of TL fish and fish from the AB strain; another widely used strain and shown to differ genetically and behaviourally from TL fish. Whole-body cortisol and telencephalic gene expression related to stress, anxiety and fear were measured before and 2 h post-task. Inhibitory avoidance was assessed in a 3-day paradigm: fish learn to avoid swimming from a white to a black compartment where a 3V-shock is given: day 1 (first shock), day 2 (second shock) and day 3 (no shock, sampling). Tupfel Long-Fin fish rapidly learned to avoid the black compartment and showed an increase in avoidance-related spatial behaviour in the white compartment across days. In contrast, AB fish showed no inhibitory avoidance learning. AB fish had higher basal cortisol levels and expression levels of stress-axis related genes than TL fish. Tupfel Long-Fin fish showed post-task learning-related changes in cortisol and gene expression levels, but these responses were not seen in AB fish. We conclude that AB fish show higher cortisol levels and no inhibitory avoidance than TL fish. The differential learning responses of these Danio strains may unmask genetically defined risks for stress-related disorders.
Collapse
Affiliation(s)
- M Gorissen
- Department of Animal Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, the Netherlands
| | - R Manuel
- Department of Animal Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, the Netherlands
| | - T N M Pelgrim
- Department of Animal Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, the Netherlands
| | - W Mes
- Department of Animal Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, the Netherlands
| | - M J S de Wolf
- Department of Animal Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, the Netherlands
| | - J Zethof
- Department of Animal Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, the Netherlands
| | - G Flik
- Department of Animal Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, the Netherlands
| | - R van den Bos
- Department of Animal Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, the Netherlands
| |
Collapse
|
23
|
Reis FMCV, Almada RC, Fogaça MV, Brandão ML. Rapid Activation of Glucocorticoid Receptors in the Prefrontal Cortex Mediates the Expression of Contextual Conditioned Fear in Rats. Cereb Cortex 2015; 26:2639-49. [PMID: 25976757 DOI: 10.1093/cercor/bhv103] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The aim of the present study was to investigate the role of glucocorticoids in medial prefrontal cortex (mPFC) activity and the expression of contextual conditioned fear (freezing). Rats were pretreated with vehicle or metyrapone, a corticosterone synthesis blocker, and exposed to a context previously paired with footshocks. Freezing and Fos-protein expression in different mPFC regions were assessed. Exposure to the aversive context led to increased freezing and Fos expression in the prelimbic (PrL), anterior cingulate areas 1 and 2 (Cg1/Cg2). Pretreatment with metyrapone decreased freezing and Fos expression in these areas. Administration of spironolactone, an MR antagonist, in the PrL before the test decreased freezing. Pretreatment with RU38486, a glucocorticoid receptor (GR) antagonist, reduced this effect of spironolactone, suggesting that the effects of this MR antagonist may be attributable to a redirection of endogenous corticosterone actions to GRs. Consistent with this result, the decrease in freezing that was induced by intra-PrL injections of corticosterone was attenuated by pretreatment with RU38486 but not spironolactone. These findings indicate that corticosterone release during aversive conditioning influences mPFC activity and the retrieval of conditioned fear memory indicating the importance of balance between MR:GR-mediated effects in this brain region in this process.
Collapse
Affiliation(s)
- Fernando M C V Reis
- Departamento de Psicologia, FFCLRP Instituto de Neurociências e Comportamento (INeC), Ribeirão Preto, SP, Brazil
| | - Rafael C Almada
- Instituto de Neurociências e Comportamento (INeC), Ribeirão Preto, SP, Brazil Departamento de Farmacologia, FMRP, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Manoela V Fogaça
- Instituto de Neurociências e Comportamento (INeC), Ribeirão Preto, SP, Brazil Departamento de Farmacologia, FMRP, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Marcus L Brandão
- Departamento de Psicologia, FFCLRP Instituto de Neurociências e Comportamento (INeC), Ribeirão Preto, SP, Brazil
| |
Collapse
|
24
|
Rimmele U, Besedovsky L, Lange T, Born J. Emotional memory can be persistently weakened by suppressing cortisol during retrieval. Neurobiol Learn Mem 2015; 119:102-7. [DOI: 10.1016/j.nlm.2015.01.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 01/17/2015] [Accepted: 01/27/2015] [Indexed: 12/29/2022]
|
25
|
ter Heegde F, De Rijk RH, Vinkers CH. The brain mineralocorticoid receptor and stress resilience. Psychoneuroendocrinology 2015; 52:92-110. [PMID: 25459896 DOI: 10.1016/j.psyneuen.2014.10.022] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/23/2014] [Accepted: 10/27/2014] [Indexed: 12/11/2022]
Abstract
Stress exposure activates the HPA-axis and results in the release of corticosteroids which bind to two receptor types in the brain: the mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR). While the role of the GR in stress reactivity has been extensively studied, the MR has received less attention. Nevertheless, pioneering in-depth studies over the past two decades have shown the importance of the brain MR in the processing of stressful information. Moreover, a membrane-bound MR mediating the rapid effects of cortisol was recently discovered. This review summarizes how the MR may play a role in stress resilience. Both preclinical and clinical studies suggest that the MR is an important stress modulator and influences basal as well as stress-induced HPA-axis activity, stress appraisal, and fear-related memories. These MR effects are mediated by both genomic and non-genomic MRs and appear to be at least partially sex-dependent. Moreover, the majority of studies indicate that high MR functionality or expression may confer resilience to traumatic stress. This has direct clinical implications. First, increasing activity or expression of brain MRs may prevent or reverse symptoms of stress-related depression. Second, individuals with a relatively low MR functionality may possess an increased stress susceptibility for depression. Nevertheless, the number of clinical MR studies is currently limited. In conclusion, the recent emergence of the MR as a putative stress resilience factor is important and may open up new avenues for the prevention and treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Freija ter Heegde
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Roel H De Rijk
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands; Department of Clinical Psychology, Leiden, The Netherlands
| | - Christiaan H Vinkers
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
26
|
Glucocorticoid receptor antagonism disrupts the reconsolidation of social reward-related memories in rats. Behav Pharmacol 2014; 25:216-25. [PMID: 24776489 DOI: 10.1097/fbp.0000000000000039] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Reconsolidation is the process whereby consolidated memories are destabilized upon retrieval and restabilized to persist for later use. Although the neurobiology of the reconsolidation of both appetitive and aversive memories has been intensively investigated, reconsolidation of memories of physiologically relevant social rewards has received little attention. Social play, the most characteristic social behaviour displayed by young mammals, is highly rewarding, illustrated by the fact that it can induce conditioned place preference (CPP). Here, we investigated the role of signalling mechanisms implicated in memory processes, including reconsolidation, namely glucocorticoid, mineralocorticoid, NMDA glutamatergic and CB1 cannabinoid receptors, in the reconsolidation of social play-induced CPP in rats. Systemic treatment with the glucocorticoid receptor antagonist mifepristone before, but not immediately after, retrieval disrupted the reconsolidation of social play-induced CPP. Mifepristone did not affect social play-induced CPP in the absence of memory retrieval. Treatment with the NMDA receptor antagonist MK-801 modestly affected the reconsolidation of social play-induced CPP. However, the reconsolidation of social play-induced CPP was not affected by treatment with the mineralocorticoid and CB1 cannabinoid receptor antagonists spironolactone and rimonabant, respectively. We conclude that glucocorticoid neurotransmission mediates the reconsolidation of social reward-related memories in rats. These data indicate that the neural mechanisms of the reconsolidation of social reward-related memories only partially overlap with those underlying the reconsolidation of other reward-related memories.
Collapse
|
27
|
Gomez-Sanchez EP. Brain mineralocorticoid receptors in cognition and cardiovascular homeostasis. Steroids 2014; 91:20-31. [PMID: 25173821 PMCID: PMC4302001 DOI: 10.1016/j.steroids.2014.08.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 07/10/2014] [Accepted: 08/04/2014] [Indexed: 12/20/2022]
Abstract
Mineralocorticoid receptors (MR) mediate diverse functions supporting osmotic and hemodynamic homeostasis, response to injury and inflammation, and neuronal changes required for learning and memory. Inappropriate MR activation in kidneys, heart, vessels, and brain hemodynamic control centers results in cardiovascular and renal pathology and hypertension. MR binds aldosterone, cortisol and corticosterone with similar affinity, while the glucocorticoid receptor (GR) has less affinity for cortisol and corticosterone. As glucocorticoids are more abundant than aldosterone, aldosterone activates MR in cells co-expressing enzymes with 11β-hydroxydehydrogenase activity to inactivate them. MR and GR co-expressed in the same cell interact at the molecular and functional level and these functions may be complementary or opposing depending on the cell type. Thus the balance between MR and GR expression and activation is crucial for normal function. Where 11β-hydroxydehydrogenase 2 (11β-HSD2) that inactivates cortisol and corticosterone in aldosterone target cells of the kidney and nucleus tractus solitarius (NTS) is not expressed, as in most neurons, MR are activated at basal glucocorticoid concentrations, GR at stress concentrations. An exception may be pre-autonomic neurons of the PVN which express MR and 11β-HSD1 in the absence of hexose-6-phosphate dehydrogenase required to generate the requisite cofactor for reductase activity, thus it acts as a dehydrogenase. MR antagonists, valuable adjuncts to the treatment of cardiovascular disease, also inhibit MR in the brain that are crucial for memory formation and exacerbate detrimental effects of excessive GR activation on cognition and mood. 11β-HSD1 inhibitors combat metabolic and cognitive diseases related to glucocorticoid excess, but may exacerbate MR action where 11β-HSD1 acts as a dehydrogenase, while non-selective 11β-HSD1&2 inhibitors cause injurious disruption of MR hemodynamic control. MR functions in the brain are multifaceted and optimal MR:GR activity is crucial. Therefore selectively targeting down-stream effectors of MR specific actions may be a better therapeutic goal.
Collapse
Affiliation(s)
- Elise P Gomez-Sanchez
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| |
Collapse
|
28
|
Revest JM, Le Roux A, Roullot-Lacarrière V, Kaouane N, Vallée M, Kasanetz F, Rougé-Pont F, Tronche F, Desmedt A, Piazza PV. BDNF-TrkB signaling through Erk1/2 MAPK phosphorylation mediates the enhancement of fear memory induced by glucocorticoids. Mol Psychiatry 2014; 19:1001-9. [PMID: 24126929 PMCID: PMC4195976 DOI: 10.1038/mp.2013.134] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 12/25/2022]
Abstract
Activation of glucocorticoid receptors (GR) by glucocorticoid hormones (GC) enhances contextual fear memories through the activation of the Erk1/2(MAPK) signaling pathway. However, the molecular mechanism mediating this effect of GC remains unknown. Here we used complementary molecular and behavioral approaches in mice and rats and in genetically modified mice in which the GR was conditionally deleted (GR(NesCre)). We identified the tPA-BDNF-TrkB signaling pathway as the upstream molecular effectors of GR-mediated phosphorylation of Erk1/2(MAPK) responsible for the enhancement of contextual fear memory. These findings complete our knowledge of the molecular cascade through which GC enhance contextual fear memory and highlight the role of tPA-BDNF-TrkB-Erk1/2(MAPK) signaling pathways as one of the core effectors of stress-related effects of GC.
Collapse
Affiliation(s)
- J-M Revest
- INSERM U862, Neurocentre Magendie, Pathophysiology of Addiction, Bordeaux, France,Pathophysiology of Neuronal Plasticity, Université de Bordeaux, Bordeaux, France,Pathophysiology of Addiction, Neurocentre Magendie, INSERM-U862, 146 rue Léo Saignat, Bordeaux F-33077, France. E-mail:
| | - A Le Roux
- INSERM U862, Neurocentre Magendie, Pathophysiology of Addiction, Bordeaux, France,Pathophysiology of Neuronal Plasticity, Université de Bordeaux, Bordeaux, France
| | - V Roullot-Lacarrière
- INSERM U862, Neurocentre Magendie, Pathophysiology of Addiction, Bordeaux, France,Pathophysiology of Neuronal Plasticity, Université de Bordeaux, Bordeaux, France
| | - N Kaouane
- Pathophysiology of Neuronal Plasticity, Université de Bordeaux, Bordeaux, France,INSERM U862, Neurocentre Magendie, Pathophysiology of Declarative Memory, Bordeaux, France
| | - M Vallée
- INSERM U862, Neurocentre Magendie, Pathophysiology of Addiction, Bordeaux, France,Pathophysiology of Neuronal Plasticity, Université de Bordeaux, Bordeaux, France
| | - F Kasanetz
- INSERM U862, Neurocentre Magendie, Pathophysiology of Addiction, Bordeaux, France,Pathophysiology of Neuronal Plasticity, Université de Bordeaux, Bordeaux, France
| | - F Rougé-Pont
- INSERM U862, Neurocentre Magendie, Pathophysiology of Addiction, Bordeaux, France,Pathophysiology of Neuronal Plasticity, Université de Bordeaux, Bordeaux, France
| | - F Tronche
- CNRS UMR7224, UPMC Université Pierre et Marie Curie, Molecular Genetics, Neurophysiology and Behavior, Paris, France
| | - A Desmedt
- Pathophysiology of Neuronal Plasticity, Université de Bordeaux, Bordeaux, France,INSERM U862, Neurocentre Magendie, Pathophysiology of Declarative Memory, Bordeaux, France
| | - P V Piazza
- INSERM U862, Neurocentre Magendie, Pathophysiology of Addiction, Bordeaux, France,Pathophysiology of Neuronal Plasticity, Université de Bordeaux, Bordeaux, France
| |
Collapse
|
29
|
Abstract
Corticosteroids secreted as end product of the hypothalamic-pituitary-adrenal axis act like a double-edged sword in the brain. The hormones coordinate appraisal processes and decision making during the initial phase of a stressful experience and promote subsequently cognitive performance underlying the management of stress adaptation. This action exerted by the steroids on the initiation and termination of the stress response is mediated by 2 related receptor systems: mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs). The receptor types are unevenly distributed but colocalized in abundance in neurons of the limbic brain to enable these complementary hormone actions. This contribution starts from a historical perspective with the observation that phasic occupancy of GR during ultradian rhythmicity is needed to maintain responsiveness to corticosteroids. Then, during stress, initially MR activation enhances excitability of limbic networks that are engaged in appraisal and emotion regulation. Next, the rising hormone concentration occupies GR, resulting in reallocation of energy to limbic-cortical circuits with a role in behavioral adaptation and memory storage. Upon MR:GR imbalance, dysregulation of the hypothalamic-pituitary-adrenal axis occurs, which can enhance an individual's vulnerability. Imbalance is characteristic for chronic stress experience and depression but also occurs during exposure to synthetic glucocorticoids. Hence, glucocorticoid psychopathology may develop in susceptible individuals because of suppression of ultradian/circadian rhythmicity and depletion of endogenous corticosterone from brain MR. This knowledge generated from testing the balance hypothesis can be translated to a rational glucocorticoid therapy.
Collapse
Affiliation(s)
- E Ron de Kloet
- Department of Medical Pharmacology, Leiden Academic Centre for Drug Research, Leiden University and Department of Endocrinology and Metabolism, Leiden University Medical Center, 2300 RA Leiden, The Netherlands
| |
Collapse
|
30
|
Xing X, Wang H, Liang J, Bai Y, Liu Z, Zheng X. Mineralocorticoid receptors in the ventral hippocampus are involved in extinction memory in rats. Psych J 2014; 3:201-13. [DOI: 10.1002/pchj.58] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 04/30/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Xiaoli Xing
- Key Laboratory of Mental Health; Institute of Psychology, Chinese Academy of Sciences; Beijing China
- University of Chinese Academy of Sciences; Beijing China
| | - Hongbo Wang
- Key Laboratory of Mental Health; Institute of Psychology, Chinese Academy of Sciences; Beijing China
- University of Chinese Academy of Sciences; Beijing China
| | - Jing Liang
- Key Laboratory of Mental Health; Institute of Psychology, Chinese Academy of Sciences; Beijing China
| | - Yunjing Bai
- Key Laboratory of Mental Health; Institute of Psychology, Chinese Academy of Sciences; Beijing China
| | - Zhengkui Liu
- Key Laboratory of Mental Health; Institute of Psychology, Chinese Academy of Sciences; Beijing China
| | - Xigeng Zheng
- Key Laboratory of Mental Health; Institute of Psychology, Chinese Academy of Sciences; Beijing China
| |
Collapse
|
31
|
Chester JA, Kirchhoff AM, Barrenha GD. Relation between corticosterone and fear-related behavior in mice selectively bred for high or low alcohol preference. Addict Biol 2014; 19:663-75. [PMID: 23331637 DOI: 10.1111/adb.12034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Blunted cortisol responses to stress or trauma have been linked with genetic (familial) risk for both alcoholism and post-traumatic stress disorder (PTSD). Mouse lines selectively bred for high (HAP) or low (LAP) alcohol preference may be a relevant model of genetic risk for co-morbid alcoholism and PTSD in humans. HAP mice show greater fear-potentiated startle (FPS), a model used to study PTSD, than LAP mice. The relation between corticosterone (CORT) and FPS behavior was explored in four experiments. Naïve male and female HAP2 and LAP2 mice received fear-conditioning or control treatments, and CORT levels were measured before and immediately after fear-conditioning or FPS testing. In two other experiments, HAP2 mice received CORT (1.0, 5.0 or 10.0 mg/kg) or a glucocorticoid receptor antagonist (mifepristone; 25.0 and 50.0 mg/kg) 30 minutes before fear conditioning. HAP2 mice exposed to fear conditioning and to control foot shock exposures showed lower CORT after the fear-conditioning and FPS testing sessions than LAP2 mice. A trend toward higher FPS was seen in HAP2 mice pretreated with 10.0 mg/kg CORT, and CORT levels were the lowest in this group, suggesting negative feedback inhibition of CORT release. Mifepristone did not alter FPS. Overall, these results are consistent with data in humans and rodents indicating that lower cortisol/CORT levels after stress are associated with PTSD/PTSD-like behavior. These findings in HAP2 and LAP2 mice suggest that a blunted CORT response to stress may be a biological marker for greater susceptibility to develop PTSD in individuals with increased genetic risk for alcoholism.
Collapse
Affiliation(s)
- Julia A. Chester
- Department of Psychological Sciences; Purdue University; West Lafayette IN USA
| | - Aaron M. Kirchhoff
- Department of Psychological Sciences; Purdue University; West Lafayette IN USA
| | - Gustavo D. Barrenha
- Department of Psychological Sciences; Purdue University; West Lafayette IN USA
| |
Collapse
|
32
|
Enhanced emotional empathy after mineralocorticoid receptor stimulation in women with borderline personality disorder and healthy women. Neuropsychopharmacology 2014; 39:1799-804. [PMID: 24535100 PMCID: PMC4059897 DOI: 10.1038/npp.2014.36] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/10/2014] [Accepted: 02/12/2014] [Indexed: 01/10/2023]
Abstract
The mineralocorticoid receptor (MR) is highly expressed in the hippocampus and prefrontal cortex. MR have an important role in appraisal processes and in modulating stress-associated emotional reactions but it is not known whether the MR affects empathy. Borderline personality disorder (BPD) is characterized by disturbed emotion regulation and alterations in empathy. In the current study, we examined whether stimulation of the MR enhances empathy in patients with BPD and healthy individuals. In a placebo-controlled study, we randomized 38 women with BPD and without psychotropic medication, and 35 healthy women to either placebo or 0.4 mg fludrocortisone, an MR agonist. Subsequently, all participants underwent two tests of social cognition, the Multifaceted Empathy Test (MET) and the Movie for the Assessment of Social Cognition (MASC), measuring cognitive and emotional facets of empathy. Eighteen BPD patients and 18 healthy women received placebo, whereas 20 BPD patients and 17 healthy women received fludrocortisone. In the MET, fludrocortisone enhanced emotional empathy across groups, whereas cognitive empathy was not affected. In the MASC, no effect of fludrocortisone could be revealed. In both tests, BPD patients and healthy women did not differ significantly in cognitive and emotional empathy and in their response to fludrocortisone. Stimulation of MR enhanced emotional empathy in healthy women and in BPD patients. Whether fludrocortisone might have a therapeutic role in psychotherapeutic processes, remains to be elucidated.
Collapse
|
33
|
Abstract
The primary adrenal cortical steroid hormones, aldosterone, and the glucocorticoids cortisol and corticosterone, act through the structurally similar mineralocorticoid (MR) and glucocorticoid receptors (GRs). Aldosterone is crucial for fluid, electrolyte, and hemodynamic homeostasis and tissue repair; the significantly more abundant glucocorticoids are indispensable for energy homeostasis, appropriate responses to stress, and limiting inflammation. Steroid receptors initiate gene transcription for proteins that effect their actions as well as rapid non-genomic effects through classical cell signaling pathways. GR and MR are expressed in many tissues types, often in the same cells, where they interact at molecular and functional levels, at times in synergy, others in opposition. Thus the appropriate balance of MR and GR activation is crucial for homeostasis. MR has the same binding affinity for aldosterone, cortisol, and corticosterone. Glucocorticoids activate MR in most tissues at basal levels and GR at stress levels. Inactivation of cortisol and corticosterone by 11β-HSD2 allows aldosterone to activate MR within aldosterone target cells and limits activation of the GR. Under most conditions, 11β-HSD1 acts as a reductase and activates cortisol/corticosterone, amplifying circulating levels. 11β-HSD1 and MR antagonists mitigate inappropriate activation of MR under conditions of oxidative stress that contributes to the pathophysiology of the cardiometabolic syndrome; however, MR antagonists decrease normal MR/GR functional interactions, a particular concern for neurons mediating cognition, memory, and affect.
Collapse
Affiliation(s)
- Elise Gomez-Sanchez
- G.V.(Sonny) Montgomery V.A. Medical Center and Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Celso E. Gomez-Sanchez
- G.V.(Sonny) Montgomery V.A. Medical Center and Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
34
|
Corticosteroid-endocannabinoid loop supports decrease of fear-conditioned response in rats. Eur Neuropsychopharmacol 2014; 24:1091-102. [PMID: 24491954 DOI: 10.1016/j.euroneuro.2014.01.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 12/14/2013] [Accepted: 01/11/2014] [Indexed: 11/21/2022]
Abstract
The endocannabinoid (eCB) and glucocorticoid systems contribute to the modulation of emotional states. Noteworthy, glucocorticoid hormones are released by adrenal glands during stressful events and endocannabinoids are released in the brain during fear-conditioned responses. Since it was already suggested that glucocorticoids may trigger the release of endocannabinoids in the brain, our objective was to investigate whether the interaction between these neuromodulatory systems contributes to the decrease of conditioned freezing behavior over successive 9-min exposures to the conditioning context. Present results suggest a bidirectional interdependence between glucocorticoid and endocannabinoid systems. CB1 receptors blockade prevents glucocorticoid-induced facilitation of conditioned freezing decrease and inhibition of glucocorticoid synthesis renders boosting of endocannabinoid signaling innocuous, while preserving the efficacy of direct CB1 receptors activation by an exogenous cannabinoid agonist. This suggests that CB1 receptors are somehow "downstream" to glucocorticoid release, which in its turn, is reduced by CB1 activation, contributing to the persistent reduction of conditioned freezing responses.
Collapse
|
35
|
Paradoxical mineralocorticoid receptor-mediated effect in fear memory encoding and expression of rats submitted to an olfactory fear conditioning task. Neuropharmacology 2014; 79:201-11. [DOI: 10.1016/j.neuropharm.2013.11.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 10/30/2013] [Accepted: 11/21/2013] [Indexed: 12/21/2022]
|
36
|
Otis JM, Fitzgerald MK, Mueller D. Inhibition of hippocampal β-adrenergic receptors impairs retrieval but not reconsolidation of cocaine-associated memory and prevents subsequent reinstatement. Neuropsychopharmacology 2014; 39:303-10. [PMID: 23907403 PMCID: PMC3870790 DOI: 10.1038/npp.2013.187] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/26/2013] [Accepted: 07/31/2013] [Indexed: 01/16/2023]
Abstract
Retrieval of drug-associated memories is critical for maintaining addictive behaviors, as presentation of drug-associated cues can elicit drug seeking and relapse. Recently, we and others have demonstrated that β-adrenergic receptor (β-AR) activation is necessary for retrieval using both rat and human memory models. Importantly, blocking retrieval with β-AR antagonists persistently impairs retrieval and provides protection against subsequent reinstatement. However, the neural locus at which β-ARs are required for maintaining retrieval and subsequent reinstatement is unclear. Here, we investigated the necessity of dorsal hippocampus (dHipp) β-ARs for drug-associated memory retrieval. Using a cocaine conditioned place preference (CPP) model, we demonstrate that local dHipp β-AR blockade before a CPP test prevents CPP expression shortly and long after treatment, indicating that dHipp β-AR blockade induces a memory retrieval disruption. Furthermore, this retrieval disruption provides long-lasting protection against cocaine-induced reinstatement. The effects of β-AR blockade were dependent on memory reactivation and were not attributable to reconsolidation disruption as blockade of β-ARs immediately after a CPP test had little effect on subsequent CPP expression. Thus, cocaine-associated memory retrieval is mediated by β-AR activity within the dHipp, and disruption of this activity could prevent cue-induced drug seeking and relapse long after treatment.
Collapse
Affiliation(s)
- James M Otis
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | | | - Devin Mueller
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| |
Collapse
|
37
|
Wu TC, Chen HT, Chang HY, Yang CY, Hsiao MC, Cheng ML, Chen JC. Mineralocorticoid receptor antagonist spironolactone prevents chronic corticosterone induced depression-like behavior. Psychoneuroendocrinology 2013; 38:871-83. [PMID: 23044404 DOI: 10.1016/j.psyneuen.2012.09.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 09/17/2012] [Accepted: 09/17/2012] [Indexed: 12/22/2022]
Abstract
High level of serum corticosteroid is frequently associated with depression, in which a notable HPA (hypothalamus-pituitary-adrenal) axis hyperactivity is often observed. There are two types of corticosteroid receptors expressed in the hippocampus that provide potent negative feedback regulation on the HPA axis but dysfunction during depression, i.e. the glucocorticoid receptor (GR) and the mineralocorticoid receptor (MR). The balance between hippocampal MR and GR during chronic stress plays an important role in the occurrence of depression. The aim of this study is to explore if chronic corticosterone administration would induce depression-like behavior and affect the expression and function of hippocampal MR and GR, in addition to assess whether manipulation of corticosteroid receptors would modulate depressive behaviors. Hence, mice were treated with corticosterone (40 mg/kg) for 21 days followed by assessment in a battery of depression-like behaviors. The results show that chronic corticosterone-treated animals displayed an increased immobility time in a forced-swimming test, decreased preference to sucrose solution and novel object recognition performance, and enhanced hippocampal serotonin but decreased MR expression in both hippocampus and hypothalamus. On the other hand, co-administration of MR antagonist, spironolactone (25mg/kg, i.p. × 7 days) in corticosteroid-treated animals reduced immobility time in a forced-swimming test and improved performance in a novel object recognition test. In conclusion, we demonstrate that chronic corticosterone treatment triggers several depression-like behaviors, and in parallel, down-regulates MR expression in the hippocampus and hypothalamus. Administration of an MR antagonist confers an anti-depressant effect in chronic corticosterone-treated animals.
Collapse
Affiliation(s)
- Ting-Ching Wu
- Department of Physiology and Pharmacology, Graduate Institute of Biomedical Sciences, Chang-Gung University, 259 Wen-Hwa 1st Road, Tao-Yuan 333, Taiwan
| | | | | | | | | | | | | |
Collapse
|
38
|
Stress and excitatory synapses: from health to disease. Neuroscience 2013; 248:626-36. [PMID: 23727506 DOI: 10.1016/j.neuroscience.2013.05.043] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 05/01/2013] [Accepted: 05/21/2013] [Indexed: 01/20/2023]
Abstract
Individuals are exposed to stressful events in their daily life. The effects of stress on brain function ranges from highly adaptive to increasing the risk to develop psychopathology. For example, stressful experiences are remembered well which can be seen as a highly appropriate behavioral adaptation. On the other hand, stress is an important risk factor, in susceptible individuals, for depression and anxiety. An important question that remains to be addressed is how stress regulates brain function and what determines the threshold between adaptive and maladaptive responses. Excitatory synapses play a crucial role in synaptic transmission, synaptic plasticity and behavioral adaptation. In this review we discuss how brief and prolonged exposure to stress, in adulthood and early life, regulate the function of these synapses, and how these effects may contribute to behavioral adaptation and psychopathology.
Collapse
|
39
|
Mineralocorticoid and glucocorticoid receptor balance in control of HPA axis and behaviour. Psychoneuroendocrinology 2013; 38:648-58. [PMID: 22980941 DOI: 10.1016/j.psyneuen.2012.08.007] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 08/06/2012] [Accepted: 08/15/2012] [Indexed: 11/22/2022]
Abstract
An imbalance between central glucocorticoid (GR) and mineralocorticoid (MR) receptors is proposed to underlie the HPA axis dysregulation that associates with susceptibility to psychopathology (anxiety, PTSD). To test this 'balance hypothesis' we examined whether the impact of MR levels upon HPA-axis control and behaviour depended on the relative levels of GR and vice versa. Avoiding antenatal maternal 'programming' effects by using littermates, we generated mice with forebrain MR over-expression (MR(hi)) and/or simultaneous global GR under-expression (GR(lo)). We found a significant interaction between MR and GR in control of the HPA-axis under stressed but not basal conditions. With reduced GR levels, HPA-axis activity in response to restraint stress was enhanced, likely due to impaired negative feedback. However, high MR in concert with reduced GR minimised this HPA-axis overshoot in response to stress. MR:GR balance also played a role in determining strategies of spatial memory during a watermaze probe trial: when coupled with GR under-expression, MR(hi) show enhanced perseveration, suggesting enhanced spatial recall or reduced exploratory flexibility. Other alterations in cognitive functions were specific to a single receptor without interaction, with both MR(hi) and GR(lo) manipulations independently impairing reversal learning in spatial and fear memory tasks. Thus, MR and GR interact in specific domains of neuroendocrine and cognitive control, but for other limbic-associated behaviours each receptor mediates its own repertoire of responses. Since modulation of HPA-axis and behavioural dysfunction associated with high levels of MR, selective ligands or transcriptional regulators may afford novel therapeutic approaches to affective psychopathologies.
Collapse
|
40
|
Rimmele U, Besedovsky L, Lange T, Born J. Blocking mineralocorticoid receptors impairs, blocking glucocorticoid receptors enhances memory retrieval in humans. Neuropsychopharmacology 2013; 38:884-94. [PMID: 23303058 PMCID: PMC3671995 DOI: 10.1038/npp.2012.254] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/23/2012] [Accepted: 11/26/2012] [Indexed: 01/03/2023]
Abstract
Memory retrieval is impaired at very low as well as very high cortisol levels, but not at intermediate levels. This inverted-U-shaped relationship between cortisol levels and memory retrieval may originate from different roles of the mineralocorticoid (MR) and glucocorticoid receptor (GR) that bind cortisol with distinctly different affinity. Here, we examined the role of MRs and GRs in human memory retrieval using specific receptor antagonists. In two double-blind within-subject, cross-over designed studies, young healthy men were asked to retrieve emotional and neutral texts and pictures (learnt 3 days earlier) between 0745 and 0915 hours in the morning, either after administration of 400 mg of the MR blocker spironolactone vs placebo (200 mg at 2300 hours and 200 mg at 0400 hours, Study I) or after administration of the GR blocker mifepristone vs placebo (200 mg at 2300 hours, Study II). Blockade of MRs impaired free recall of both texts and pictures particularly for emotional material. In contrast, blockade of GRs resulted in better memory retrieval for pictures, with the effect being more pronounced for neutral than emotional materials. These findings indicate indeed opposing roles of MRs and GRs in memory retrieval, with optimal retrieval at intermediate cortisol levels likely mediated by high MR but concurrently low GR activation.
Collapse
Affiliation(s)
- Ulrike Rimmele
- Department of Neurosciences, University of Geneva, Geneva, Switzerland.
| | | | | | | |
Collapse
|
41
|
Joëls M, Sarabdjitsingh RA, Karst H. Unraveling the time domains of corticosteroid hormone influences on brain activity: rapid, slow, and chronic modes. Pharmacol Rev 2012; 64:901-38. [PMID: 23023031 DOI: 10.1124/pr.112.005892] [Citation(s) in RCA: 310] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Brain cells are continuously exposed to corticosteroid hormones, although the levels vary (e.g., after stress). Corticosteroids alter neural activity via two receptor types, mineralocorticoid (MR) and glucocorticoid receptors (GR). These receptors regulate gene transcription but also, as we now know, act nongenomically. Via nongenomic pathways, MRs enhance and GRs suppress neural activity. In the hypothalamus, inhibitory GR effects contribute to negative feedback regulation of the stress axis. Nongenomic MR actions are also important extrahypothalamically and help organisms to immediately select an appropriate response strategy. Via genomic mechanisms, corticosteroid actions in the basolateral amygdala and ventral-most part of the cornu ammonis 1 hippocampal area are generally excitatory, providing an extended window for encoding of emotional aspects of a stressful event. GRs in hippocampal and prefrontal pyramidal cells increase surface expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors and strengthen glutamatergic signaling through pathways partly overlapping with those involved in long-term potentiation. This raises the threshold for subsequent induction of synaptic potentiation and promotes long-term depression. Synapses activated during stress are thus presumably strengthened but protected against excitatory inputs reaching the cells later. This restores higher cognitive control and promotes, for example, consolidation of stress-related contextual information. When an organism experiences stress early in life or repeatedly in adulthood, the ability to induce synaptic potentiation is strongly reduced and the likelihood to induce depression enhanced, even under rest. Treatment with antiglucocorticoids can ameliorate cellular effects after chronic stress and thus provide an interesting lead for treatment of stress-related disorders.
Collapse
Affiliation(s)
- Marian Joëls
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | |
Collapse
|
42
|
Ter Horst JP, Carobrez AP, van der Mark MH, de Kloet ER, Oitzl MS. Sex differences in fear memory and extinction of mice with forebrain-specific disruption of the mineralocorticoid receptor. Eur J Neurosci 2012; 36:3096-102. [PMID: 22831399 DOI: 10.1111/j.1460-9568.2012.08237.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Previous studies showed that the mineralocorticoid receptor (MR) is needed for behavioral flexibility in a fear conditioning paradigm. Female mice with forebrain-specific deletion of the MR gene (MR(CaMKCre) ) were unable to show extinction of contextual fear, and could not discriminate between cue and context fear unlike control mice. In the present study, male and female (MR(CaMKCre) ) mice and control littermates were used to study sex-specific fear conditioning, memory performance and extinction. The fear conditioning paradigm assessed both context- and cue-related fear within one experimental procedure. We observed that at the end of the conditioning all mice acquired the fear-motivated response. During the first minutes of the memory test, both male and female MR(CaMKCre) mice remembered and feared the context more than the control mice. Furthermore, female MR(CaMKCre) mice were not able to extinguish this memory even on the second day of memory testing. The female mutants also could not discriminate between cue (more freezing) and context periods (less freezing). In contrast, male MR(CaMKCre) mice and the controls showed extinction and were capable to discriminate, although the MR(CaMKCre) mice needed more time before they started extinction. These findings further support the relevance of MR for behavioral flexibility and extinction of fear-motivated behavior. In conclusion, the loss of MR in the forebrain results in large differences in emotional and cognitive behaviors between female and male mice, which suggests a role of this receptor in the female prevalence of stress- and anxiety-regulated disorders.
Collapse
Affiliation(s)
- J P Ter Horst
- Division of Medical Pharmacology, Leiden Amsterdam Center for Drug Research and Leiden University Medical Center, Leiden University, Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|