1
|
Song H, Chu J, Li W, Li X, Fang L, Han J, Zhao S, Ma Y. A Novel Approach Utilizing Domain Adversarial Neural Networks for the Detection and Classification of Selective Sweeps. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304842. [PMID: 38308186 PMCID: PMC11005742 DOI: 10.1002/advs.202304842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/10/2024] [Indexed: 02/04/2024]
Abstract
The identification and classification of selective sweeps are of great significance for improving the understanding of biological evolution and exploring opportunities for precision medicine and genetic improvement. Here, a domain adaptation sweep detection and classification (DASDC) method is presented to balance the alignment of two domains and the classification performance through a domain-adversarial neural network and its adversarial learning modules. DASDC effectively addresses the issue of mismatch between training data and real genomic data in deep learning models, leading to a significant improvement in its generalization capability, prediction robustness, and accuracy. The DASDC method demonstrates improved identification performance compared to existing methods and excels in classification performance, particularly in scenarios where there is a mismatch between application data and training data. The successful implementation of DASDC in real data of three distinct species highlights its potential as a useful tool for identifying crucial functional genes and investigating adaptive evolutionary mechanisms, particularly with the increasing availability of genomic data.
Collapse
Affiliation(s)
- Hui Song
- Key Laboratory of Agricultural Animal GeneticsBreeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of AgricultureHuazhong Agricultural UniversityWuhan430070China
| | - Jinyu Chu
- Key Laboratory of Agricultural Animal GeneticsBreeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of AgricultureHuazhong Agricultural UniversityWuhan430070China
| | - Wangjiao Li
- Key Laboratory of Agricultural Animal GeneticsBreeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of AgricultureHuazhong Agricultural UniversityWuhan430070China
| | - Xinyun Li
- Key Laboratory of Agricultural Animal GeneticsBreeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of AgricultureHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryWuhan430070China
| | - Lingzhao Fang
- Center for Quantitative Genetics and GenomicsAarhus UniversityAarhus8000Denmark
| | - Jianlin Han
- Key Laboratory of Agricultural Animal GeneticsBreeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of AgricultureHuazhong Agricultural UniversityWuhan430070China
- CAAS‐ILRI Joint Laboratory on Livestock and Forage Genetic ResourcesInstitute of Animal ScienceChinese Academy of Agricultural Sciences (CAAS)Beijing100193China
- Livestock Genetics ProgramInternational Livestock Research Institute (ILRI)Nairobi00100Kenya
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal GeneticsBreeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of AgricultureHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryWuhan430070China
- Lingnan Modern Agricultural Science and Technology Guangdong LaboratoryGuangzhou510642China
| | - Yunlong Ma
- Key Laboratory of Agricultural Animal GeneticsBreeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of AgricultureHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryWuhan430070China
- Lingnan Modern Agricultural Science and Technology Guangdong LaboratoryGuangzhou510642China
| |
Collapse
|
2
|
Liang X, Bai Z, Wang F, Han Y, Sun H, Xiaokereti J, Zhang L, Zhou X, Lu Y, Tang B. Full-Length Transcriptome Sequencing: An Insight Into the Dog Model of Heart Failure. Front Cardiovasc Med 2021; 8:712797. [PMID: 34977163 PMCID: PMC8716442 DOI: 10.3389/fcvm.2021.712797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 11/02/2021] [Indexed: 12/30/2022] Open
Abstract
Heart failure (HF) leads to a progressive increase in morbidity and mortality rates. This study aimed to explore the transcriptional landscape during HF and identify differentially expressed transcripts (DETs) and alternative splicing events associated with HF. We generated a dog model of HF (n = 3) using right ventricular pacemaker implantation. We performed full-length transcriptome sequencing (based on nanopore platform) on the myocardial tissues and analyzed the transcripts using differential expression analysis and functional annotation methods [Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses]. Additionally, we estimated the expression of the selected genes by quantitative real-time PCR (qRT-PCR) and detected the proportion of immune cells using flow cytometry. We found that increased B-type natriuretic peptide reduced ejection fraction, and apparent clinical signs were observed in the dog model of HF. We identified 67,458 transcripts using full-length transcriptome sequencing. A total of 785 DETs were obtained from the HF and control groups. These DETs were mainly enriched in the immune responses, especially Th1, Th2, and Th17 cell differentiation processes. Furthermore, flow cytometry results revealed that the proportion of Th1 and Th17 cells increased in patients with HF compared to controls, while the proportion of Th2 cells decreased. Differentially expressed genes in the HF and control groups associated with Th1, Th2, and Th17 cell differentiation were quantified using qRT-PCR. We also identified variable splicing events of sarcomere genes (e.g., MYBPC3, TNNT2, TTN, FLNC, and TTNI3). In addition, we detected 4,892 transcription factors and 406 lncRNAs associated with HF. Our analysis based on full-length transcript sequencing provided an analysis perspective in a dog model of HF, which is valuable for molecular research in an increasingly relevant large animal model of HF.
Collapse
Affiliation(s)
- Xiaoyan Liang
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Zechen Bai
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Feifei Wang
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
- Xinjiang First Aid Center, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
| | - Yafan Han
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Huaxin Sun
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Jiasuoer Xiaokereti
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Ling Zhang
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Xianhui Zhou
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Yanmei Lu
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
- *Correspondence: Baopeng Tang
| | - Baopeng Tang
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
- Yanmei Lu
| |
Collapse
|
3
|
Mittal A, Rana S, Sharma R, Kumar A, Prasad R, Raut SK, Sarkar S, Saikia UN, Bahl A, Dhandapany PS, Khullar M. Myocardin ablation in a cardiac-renal rat model. Sci Rep 2019; 9:5872. [PMID: 30971740 PMCID: PMC6458122 DOI: 10.1038/s41598-019-42009-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 03/13/2019] [Indexed: 11/09/2022] Open
Abstract
Cardiorenal syndrome is defined by primary heart failure conditions influencing or leading to renal injury or dysfunction. Dilated cardiomyopathy (DCM) is a major co-existing form of heart failure (HF) with renal diseases. Myocardin (MYOCD), a cardiac-specific co-activator of serum response factor (SRF), is increased in DCM porcine and patient cardiac tissues and plays a crucial role in the pathophysiology of DCM. Inhibiting the increased MYOCD has shown to be partially rescuing the DCM phenotype in porcine model. However, expression levels of MYOCD in the cardiac tissues of the cardiorenal syndromic patients and the effect of inhibiting MYOCD in a cardiorenal syndrome model remains to be explored. Here, we analyzed the expression levels of MYOCD in the DCM patients with and without renal diseases. We also explored, whether cardiac specific silencing of MYOCD expression could ameliorate the cardiac remodeling and improve cardiac function in a renal artery ligated rat model (RAL). We observed an increase in MYOCD levels in the endomyocardial biopsies of DCM patients associated with renal failure compared to DCM alone. Silencing of MYOCD in RAL rats by a cardiac homing peptide conjugated MYOCD siRNA resulted in attenuation of cardiac hypertrophy, fibrosis and restoration of the left ventricular functions. Our data suggest hyper-activation of MYOCD in the pathogenesis of the cardiorenal failure cases. Also, MYOCD silencing showed beneficial effects by rescuing cardiac hypertrophy, fibrosis, size and function in a cardiorenal rat model.
Collapse
Affiliation(s)
- Anupam Mittal
- Centre for Cardiovascular Biology and Disease, Institute for Stem Cell Biology and Regenerative Medicine (inStem), Bangalore, India.,Department of Cardiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Santanu Rana
- Department of Zoology, University of Calcutta, Kolkata, India
| | - Rajni Sharma
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Akhilesh Kumar
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Rishikesh Prasad
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Satish K Raut
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | | | - Uma Nahar Saikia
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ajay Bahl
- Department of Cardiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Perundurai S Dhandapany
- Centre for Cardiovascular Biology and Disease, Institute for Stem Cell Biology and Regenerative Medicine (inStem), Bangalore, India. .,The Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA. .,Department of Medicine, Oregon Health and Science University, Portland, OR, USA. .,Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA.
| | - Madhu Khullar
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
4
|
Poller W, Dimmeler S, Heymans S, Zeller T, Haas J, Karakas M, Leistner DM, Jakob P, Nakagawa S, Blankenberg S, Engelhardt S, Thum T, Weber C, Meder B, Hajjar R, Landmesser U. Non-coding RNAs in cardiovascular diseases: diagnostic and therapeutic perspectives. Eur Heart J 2018; 39:2704-2716. [PMID: 28430919 PMCID: PMC6454570 DOI: 10.1093/eurheartj/ehx165] [Citation(s) in RCA: 304] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/14/2017] [Accepted: 03/15/2017] [Indexed: 02/06/2023] Open
Abstract
Recent research has demonstrated that the non-coding genome plays a key role in genetic programming and gene regulation during development as well as in health and cardiovascular disease. About 99% of the human genome do not encode proteins, but are transcriptionally active representing a broad spectrum of non-coding RNAs (ncRNAs) with important regulatory and structural functions. Non-coding RNAs have been identified as critical novel regulators of cardiovascular risk factors and cell functions and are thus important candidates to improve diagnostics and prognosis assessment. Beyond this, ncRNAs are rapidly emgerging as fundamentally novel therapeutics. On a first level, ncRNAs provide novel therapeutic targets some of which are entering assessment in clinical trials. On a second level, new therapeutic tools were developed from endogenous ncRNAs serving as blueprints. Particularly advanced is the development of RNA interference (RNAi) drugs which use recently discovered pathways of endogenous short interfering RNAs and are becoming versatile tools for efficient silencing of protein expression. Pioneering clinical studies include RNAi drugs targeting liver synthesis of PCSK9 resulting in highly significant lowering of LDL cholesterol or targeting liver transthyretin (TTR) synthesis for treatment of cardiac TTR amyloidosis. Further novel drugs mimicking actions of endogenous ncRNAs may arise from exploitation of molecular interactions not accessible to conventional pharmacology. We provide an update on recent developments and perspectives for diagnostic and therapeutic use of ncRNAs in cardiovascular diseases, including atherosclerosis/coronary disease, post-myocardial infarction remodelling, and heart failure.
Collapse
Affiliation(s)
- Wolfgang Poller
- Department of Cardiology, CBF, CC11, Charite Universitätsmedizin Berlin, Campus Benjamin Franklin, Charite Centrum 11 (Cardiovascular Medicine), Hindenburgdamm 20, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Site Berlin, Berlin, Germany
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Center of Molecular Medicine, Johann Wolfgang Goethe Universität, Theodor-Stern-Kai 7, Frankfurt am Main, Germany
- DZHK, Site Rhein-Main, Frankfurt, Germany
| | - Stephane Heymans
- Center for Heart Failure Research, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Tanja Zeller
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Martinistrasse 52, Hamburg, Germany
- DZHK, Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Jan Haas
- Institute for Cardiomyopathies Heidelberg (ICH), Universitätsklinikum Heidelberg, Im Neuenheimer Feld 669, Heidelberg, Germany
- DZHK, Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Mahir Karakas
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Martinistrasse 52, Hamburg, Germany
- DZHK, Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - David-Manuel Leistner
- Department of Cardiology, CBF, CC11, Charite Universitätsmedizin Berlin, Campus Benjamin Franklin, Charite Centrum 11 (Cardiovascular Medicine), Hindenburgdamm 20, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Site Berlin, Berlin, Germany
| | - Philipp Jakob
- Department of Cardiology, CBF, CC11, Charite Universitätsmedizin Berlin, Campus Benjamin Franklin, Charite Centrum 11 (Cardiovascular Medicine), Hindenburgdamm 20, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Site Berlin, Berlin, Germany
| | - Shinichi Nakagawa
- RNA Biology Laboratory, RIKEN Advanced Research Institute, Wako, Saitama, Japan
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo Nishi 6-chome, Kita-ku, Sapporo, Japan
| | - Stefan Blankenberg
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Martinistrasse 52, Hamburg, Germany
- DZHK, Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Stefan Engelhardt
- Institute for Pharmacology and Toxikology, Technische Universität München, Biedersteiner Strasse 29, München, Germany
- DZHK, Site Munich, Munich, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Christian Weber
- DZHK, Site Munich, Munich, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität, Pettenkoferstrasse 8a/9, Munich, Germany
| | - Benjamin Meder
- Institute for Cardiomyopathies Heidelberg (ICH), Universitätsklinikum Heidelberg, Im Neuenheimer Feld 669, Heidelberg, Germany
- DZHK, Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Roger Hajjar
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ulf Landmesser
- Department of Cardiology, CBF, CC11, Charite Universitätsmedizin Berlin, Campus Benjamin Franklin, Charite Centrum 11 (Cardiovascular Medicine), Hindenburgdamm 20, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Site Berlin, Berlin, Germany
- Berlin Institute of Health, Kapelle-Ufer 2, Berlin, Germany
| |
Collapse
|
5
|
A Novel Heterozygous Intronic Mutation in the FBN1 Gene Contributes to FBN1 RNA Missplicing Events in the Marfan Syndrome. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3536495. [PMID: 30003093 PMCID: PMC5996431 DOI: 10.1155/2018/3536495] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/29/2018] [Indexed: 12/15/2022]
Abstract
Marfan syndrome (MFS) is an autosomal dominantly inherited connective tissue disorder, mostly caused by mutations in the fibrillin-1 (FBN1) gene. We, by using targeted next-generation sequence analysis, identified a novel intronic FBN1 mutation (the c.2678-15C>A variant) in a MFS patient with aortic dilatation. The computational predictions showed that the heterozygous c.2678-15C>A intronic variant might influence the splicing process by differentially affecting canonical versus cryptic splice site utilization within intron 22 of the FBN1 gene. RT-PCR and Western blot analyses, using FBN1 minigenes transfected into HeLa and COS-7 cells, revealed that the c.2678-15C>A variant disrupts normal splicing of intron 22 leading to aberrant 13-nt intron 22 inclusion, frameshift, and premature termination codon. Collectively, the results strongly suggest that the c.2678-15C>A variant could lead to haploinsufficiency of the FBN1 functional protein and structural connective tissue fragility in MFS complicated by aorta dilation, a finding that further expands on the genetic basis of aortic pathology.
Collapse
|
6
|
Abstract
There are multiple intrinsic mechanisms for diastolic dysfunction ranging from molecular to structural derangements in ventricular myocardium. The molecular mechanisms regulating the progression from normal diastolic function to severe dysfunction still remain poorly understood. Recent studies suggest a potentially important role of core cardio-enriched transcription factors (TFs) in the control of cardiac diastolic function in health and disease through their ability to regulate the expression of target genes involved in the process of adaptive and maladaptive cardiac remodeling. The current relevant findings on the role of a variety of such TFs (TBX5, GATA-4/6, SRF, MYOCD, NRF2, and PITX2) in cardiac diastolic dysfunction and failure are updated, emphasizing their potential as promising targets for novel treatment strategies. In turn, the new animal models described here will be key tools in determining the underlying molecular mechanisms of disease. Since diastolic dysfunction is regulated by various TFs, which are also involved in cross talk with each other, there is a need for more in-depth research from a biomedical perspective in order to establish efficient therapeutic strategies.
Collapse
|
7
|
Xiang Y, Liao XH, Li JP, Li H, Qin H, Yao A, Yu CX, Hu P, Guo W, Gu CJ, Zhang TC. Myocardin and Stat3 act synergistically to inhibit cardiomyocyte apoptosis. Oncotarget 2017; 8:99612-99623. [PMID: 29245928 PMCID: PMC5725119 DOI: 10.18632/oncotarget.20450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/26/2017] [Indexed: 02/07/2023] Open
Abstract
Signal transducer and activator of transcription 3 (Stat3) and Myocardin regulate cardiomyocyte differentiation, proliferation, and apoptosis. We report a novel aspect of the cellular function of Myocardin and Stat3 in the regulation of cardiomyocyte apoptosis. Myocardin and Stat3 showed anti-apoptotic function by increasing the expression of Bcl-2 while reducing expression of the pro-apoptotic genes Bax, Apaf-1, caspase-9, and caspase-3. Moreover, myocardin/Stat3-mediated activation of Bcl-2 and Mcl-1 transcription is contingent on the CArG box. Myocardin and Stat3 synergistically inhibited staurosporine-induced cardiomyocyte apoptosis by up-regulating expression of anti-apoptotic Bcl-2 and Mcl-1 in neonatal rat cardiomyocytes. These results describe a novel anti-apoptotic Myocardin/Stat3 signaling pathway operating during cardiomyocyte apoptosis. This provides a molecular explanation for cardiomyocyte apoptosis inhibition as a critical component of myocardial protection.
Collapse
Affiliation(s)
- Yuan Xiang
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Hubei, 430081, P.R. China
| | - Xing-Hua Liao
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Hubei, 430081, P.R. China
| | - Jia-Peng Li
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Hubei, 430081, P.R. China
| | - Hui Li
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Hubei, 430081, P.R. China
| | - Huan Qin
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Hubei, 430081, P.R. China
| | - Ao Yao
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Hubei, 430081, P.R. China
| | - Cheng-Xi Yu
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Hubei, 430081, P.R. China
| | - Peng Hu
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Hubei, 430081, P.R. China
| | - Wei Guo
- Shenzhen Ritzcon Biological Technology Co., LTD, Shenzhen, Guangdong, 518000, P.R. China
| | - Chao-Jiang Gu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P.R. China
| | - Tong-Cun Zhang
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Hubei, 430081, P.R. China.,Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P.R. China
| |
Collapse
|
8
|
Koeck I, Burkhard FC, Monastyrskaya K. Activation of common signaling pathways during remodeling of the heart and the bladder. Biochem Pharmacol 2015; 102:7-19. [PMID: 26390804 DOI: 10.1016/j.bcp.2015.09.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/14/2015] [Indexed: 12/12/2022]
Abstract
The heart and the urinary bladder are hollow muscular organs, which can be afflicted by pressure overload injury due to pathological conditions such as hypertension and bladder outlet obstruction. This increased outflow resistance induces hypertrophy, marked by dramatic changes in the organs' phenotype and function. The end result in both the heart and the bladder can be acute organ failure due to advanced fibrosis and the subsequent loss of contractility. There is emerging evidence that microRNAs (miRNAs) play an important role in the pathogenesis of heart failure and bladder dysfunction. MiRNAs are endogenous non-coding single-stranded RNAs, which regulate gene expression and control adaptive and maladaptive organ remodeling processes. This Review summarizes the current knowledge of molecular alterations in the heart and the bladder and highlights common signaling pathways and regulatory events. The miRNA expression analysis and experimental target validation done in the heart provide a valuable source of information for investigators working on the bladder and other organs undergoing the process of fibrotic remodeling. Aberrantly expressed miRNA are amendable to pharmacological manipulation, offering an opportunity for development of new therapies for cardiac and bladder hypertrophy and failure.
Collapse
Affiliation(s)
- Ivonne Koeck
- Urology Research Laboratory, Department Clinical Research, University of Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | | | - Katia Monastyrskaya
- Urology Research Laboratory, Department Clinical Research, University of Bern, Switzerland; Department of Urology, University Hospital, Bern, Switzerland.
| |
Collapse
|
9
|
Torrado M, Franco D, Lozano-Velasco E, Hernández-Torres F, Calviño R, Aldama G, Centeno A, Castro-Beiras A, Mikhailov A. A MicroRNA-Transcription Factor Blueprint for Early Atrial Arrhythmogenic Remodeling. BIOMED RESEARCH INTERNATIONAL 2015; 2015:263151. [PMID: 26221584 PMCID: PMC4499376 DOI: 10.1155/2015/263151] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/22/2015] [Accepted: 04/23/2015] [Indexed: 12/27/2022]
Abstract
Spontaneous self-terminating atrial fibrillation (AF) is one of the most common heart rhythm disorders, yet the regulatory molecular mechanisms underlying this syndrome are rather unclear. MicroRNA (miRNA) transcriptome and expression of candidate transcription factors (TFs) with potential roles in arrhythmogenesis, such as Pitx2, Tbx5, and myocardin (Myocd), were analyzed by microarray, qRT-PCR, and Western blotting in left atrial (LA) samples from pigs with transitory AF established by right atrial tachypacing. Induced ectopic tachyarrhythmia caused rapid and substantial miRNA remodeling associated with a marked downregulation of Pitx2, Tbx5, and Myocd expression in atrial myocardium. The downregulation of Pitx2, Tbx5, and Myocd was inversely correlated with upregulation of the corresponding targeting miRNAs (miR-21, miR-10a/10b, and miR-1, resp.) in the LA of paced animals. Through in vitro transient transfections of HL-1 atrial myocytes, we further showed that upregulation of miR-21 did result in downregulation of Pitx2 in cardiomyocyte background. The results suggest that immediate-early miRNA remodeling coupled with deregulation of TF expression underlies the onset of AF.
Collapse
Affiliation(s)
- Mario Torrado
- Institute of Health Sciences, University of La Coruña, 15006 La Coruña, Spain
| | - Diego Franco
- Department of Experimental Biology, University of Jaén, Jaén, Spain
| | | | | | - Ramón Calviño
- University Hospital Center of La Coruña, La Coruña, Spain
| | | | | | | | - Alexander Mikhailov
- Institute of Health Sciences, University of La Coruña, 15006 La Coruña, Spain
| |
Collapse
|
10
|
Abstract
Myocardin (MYOCD) is a potent transcriptional coactivator that functions primarily in cardiac muscle and smooth muscle through direct contacts with serum response factor (SRF) over cis elements known as CArG boxes found near a number of genes encoding for contractile, ion channel, cytoskeletal, and calcium handling proteins. Since its discovery more than 10 years ago, new insights have been obtained regarding the diverse isoforms of MYOCD expressed in cells as well as the regulation of MYOCD expression and activity through transcriptional, post-transcriptional, and post-translational processes. Curiously, there are a number of functions associated with MYOCD that appear to be independent of contractile gene expression and the CArG-SRF nucleoprotein complex. Further, perturbations in MYOCD gene expression are associated with an increasing number of diseases including heart failure, cancer, acute vessel disease, and diabetes. This review summarizes the various biological and pathological processes associated with MYOCD and offers perspectives to several challenges and future directions for further study of this formidable transcriptional coactivator.
Collapse
Affiliation(s)
- Joseph M Miano
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
11
|
Torrado M, Franco D, Hernández-Torres F, Crespo-Leiro MG, Iglesias-Gil C, Castro-Beiras A, Mikhailov AT. Pitx2c is reactivated in the failing myocardium and stimulates myf5 expression in cultured cardiomyocytes. PLoS One 2014; 9:e90561. [PMID: 24595098 PMCID: PMC3942452 DOI: 10.1371/journal.pone.0090561] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 02/01/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Pitx2 (paired-like homeodomain 2 transcription factor) is crucial for heart development, but its role in heart failure (HF) remains uncertain. The present study lays the groundwork implicating Pitx2 signalling in different modalities of HF. METHODOLOGY/PRINCIPAL FINDINGS A variety of molecular, cell-based, biochemical, and immunochemical assays were used to evaluate: (1) Pitx2c expression in the porcine model of diastolic HF (DHF) and in patients with systolic HF (SHF) due to dilated and ischemic cardiomyopathy, and (2) molecular consequences of Pitx2c expression manipulation in cardiomyocytes in vitro. In pigs, the expression of Pitx2c, physiologically downregulated in the postnatal heart, is significantly re-activated in left ventricular (LV) failing myocardium which, in turn, is associated with increased expression of a restrictive set of Pitx2 target genes. Among these, Myf5 was identified as the top upregulated gene. In vitro, forced expression of Pitx2c in cardiomyocytes, but not in skeletal myoblasts, activates Myf5 in dose-dependent manner. In addition, we demonstrate that the level of Pitx2c is upregulated in the LV-myocardium of SHF patients. CONCLUSIONS/SIGNIFICANCE The results provide previously unrecognized evidence that Pitx2c is similarly reactivated in postnatal/adult heart at distinct HF phenotypes and suggest that Pitx2c is involved, directly or indirectly, in the regulation of Myf5 expression in cardiomyocytes.
Collapse
Affiliation(s)
- Mario Torrado
- Institute of Health Sciences, University of La Coruña, La Coruña, Spain
| | - Diego Franco
- Department of Experimental Biology, University of Jaen, Jaen, Spain
| | | | | | | | - Alfonso Castro-Beiras
- Institute of Health Sciences, University of La Coruña, La Coruña, Spain
- University Hospital Center of La Coruña, La Coruña, Spain
| | | |
Collapse
|
12
|
Zhu X, Wang H, Liu F, Chen L, Luo W, Su P, Li W, Yu L, Yang X, Cai J. Identification of micro-RNA networks in end-stage heart failure because of dilated cardiomyopathy. J Cell Mol Med 2013; 17:1173-87. [PMID: 23998897 PMCID: PMC4118176 DOI: 10.1111/jcmm.12096] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 05/20/2013] [Indexed: 01/12/2023] Open
Abstract
Micro-RNAs regulate gene expression by directly binding to the target mRNAs. The goal of the study was to examine the expression profiling of miRNAs in human failing hearts and identify the key miRNAs that regulate molecular signalling networks and thus contribute to this pathological process. The levels of miRNAs and expressed genes were analysed in myocardial biopsy samples from patients with end-stage heart failure (n = 14) and those from normal heart samples (n = 8). Four networks were built including the Gene regulatory network, Signal-Network, miRNA-GO-Network and miRNA-Gene-Network. According to the fold change in the network and probability values in the microarray cohort, RT-PCR was performed to measure the expression of five of the 72 differentially regulated miRNAs. miR-340 achieved statistically significant. miR-340 was identified for the first time in cardiac pathophysiological condition. We overexpressed miR-340 in cultured neonatal rat cardiomyocytes to identify whether miR-340 plays a determining role in the progression of heart failure. ANP, BNP and caspase-3 were significantly elevated in the miR-340 transfected cells compared with controls (P < 0.05). The cross-sectional area of overexpressing miR-340 cardiomyocytes (1952.22 ± 106.59) was greater (P < 0.0001) than controls (1059.99 ± 45.59) documented by Laser Confocal Microscopy. The changes of cellular structure and the volume were statistical significance. Our study provided a comprehensive miRNA expression profiling in the end-stage heart failure and identified miR-340 as a key miRNA contributing to the occurrence and progression of heart failure. Our discoveries provide novel therapeutic targets for patients with heart failure.
Collapse
Affiliation(s)
- Xiaoming Zhu
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Understanding of the roles of noncoding RNAs (ncRNAs) within complex organisms has fundamentally changed. It is increasingly possible to use ncRNAs as diagnostic and therapeutic tools in medicine. Regarding disease pathogenesis, it has become evident that confinement to the analysis of protein-coding regions of the human genome is insufficient because ncRNA variants have been associated with important human diseases. Thus, inclusion of noncoding genomic elements in pathogenetic studies and their consideration as therapeutic targets is warranted. We consider aspects of the evolutionary and discovery history of ncRNAs, as far as they are relevant for the identification and selection of ncRNAs with likely therapeutic potential. Novel therapeutic strategies are based on ncRNAs, and we discuss here RNA interference as a highly versatile tool for gene silencing. RNA interference-mediating RNAs are small, but only parts of a far larger spectrum encompassing ncRNAs up to many kilobasepairs in size. We discuss therapeutic options in cardiovascular medicine offered by ncRNAs and key issues to be solved before clinical translation. Convergence of multiple technical advances is highlighted as a prerequisite for the translational progress achieved in recent years. Regarding safety, we review properties of RNA therapeutics, which may immunologically distinguish them from their endogenous counterparts, all of which underwent sophisticated evolutionary adaptation to specific biological contexts. Although our understanding of the noncoding human genome is only fragmentary to date, it is already feasible to develop RNA interference against a rapidly broadening spectrum of therapeutic targets and to translate this to the clinical setting under certain restrictions.
Collapse
Affiliation(s)
- Wolfgang Poller
- From the Department of Cardiology and Pneumology, Campus Benjamin Franklin, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Juliane Tank
- From the Department of Cardiology and Pneumology, Campus Benjamin Franklin, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Carsten Skurk
- From the Department of Cardiology and Pneumology, Campus Benjamin Franklin, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Martina Gast
- From the Department of Cardiology and Pneumology, Campus Benjamin Franklin, Charité–Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
14
|
In search of novel targets for heart disease: myocardin and myocardin-related transcriptional cofactors. Biochem Res Int 2012; 2012:973723. [PMID: 22666593 PMCID: PMC3362810 DOI: 10.1155/2012/973723] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 03/05/2012] [Indexed: 11/18/2022] Open
Abstract
Growing evidence suggests that gene-regulatory networks, which are responsible for directing cardiovascular development, are altered under stress conditions in the adult heart. The cardiac gene regulatory network is controlled by cardioenriched transcription factors and multiple-cell-signaling inputs. Transcriptional coactivators also participate in gene-regulatory circuits as the primary targets of both physiological and pathological signals. Here, we focus on the recently discovered myocardin-(MYOCD) related family of transcriptional cofactors (MRTF-A and MRTF-B) which associate with the serum response transcription factor and activate the expression of a variety of target genes involved in cardiac growth and adaptation to stress via overlapping but distinct mechanisms. We discuss the involvement of MYOCD, MRTF-A, and MRTF-B in the development of cardiac dysfunction and to what extent modulation of the expression of these factors in vivo can correlate with cardiac disease outcomes. A close examination of the findings identifies the MYOCD-related transcriptional cofactors as putative therapeutic targets to improve cardiac function in heart failure conditions through distinct context-dependent mechanisms. Nevertheless, we are in support of further research to better understand the precise role of individual MYOCD-related factors in cardiac function and disease, before any therapeutic intervention is to be entertained in preclinical trials.
Collapse
|