1
|
Torchia A, Ciappina G, Giammaruco M, Monteferrante I, Landi L, Cappuzzo F. Antibody-Based Therapeutics in Small Cell Lung Cancer: A Narrative Review. Biologics 2025; 19:189-199. [PMID: 40260055 PMCID: PMC12009746 DOI: 10.2147/btt.s500460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 04/05/2025] [Indexed: 04/23/2025]
Abstract
Small-cell lung cancer (SCLC) is the most aggressive lung cancer, mostly diagnosed at advanced stage, and with few therapeutic options for patients failing the first-line treatment. Antibody-based therapies, such as antibody-drug conjugates and T-cell engagers, are emerging as a promising option in the treatment of various solid tumors, including SCLC. T-cell engagers are molecules able to trigger the T-cell-mediated tumor cell death binding, at the same time, a T-cell and a tumor cell target. Tarlatamab is a DLL3-directed bi-specific T-cell engager (BiTE) whose efficacy was evaluated in a Phase 2 study. Antibody-drug conjugates (ADC) consist of a tumor-directed monoclonal antibody conjugated to a cytotoxic payload able to selectively kill tumor cells through different mechanisms. Ifinatamab-deruxtecan is an anti-B7-H3 ADC showing efficacy in pretreated SCLC patients in a phase 2 clinical trial. Sacituzumab govitecan is a Trop-2-directed ADC already used in other tumor types and evaluated in SCLC in the phase 2 TROPiCS-03 trial, with positive results. Bispecific antibodies targeting VEGF and PD-(L)1 showed antitumor activity in phase 1 and 2 clinical trials. Other antibody-based agents are currently at an earlier phase of their clinical development and showed a promising activity. Novel antibody-based agents could potentially acquire a prominent role in the treatment of SCLC, a field with few therapeutic options. Direct comparisons with the current standard of care still lack, however Phase 3 trials are currently ongoing.
Collapse
Affiliation(s)
- Andrea Torchia
- Clinical and Molecular Medicine, Sapienza - Università di Roma, Rome, Italy
- Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giuliana Ciappina
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | | | - Ilaria Monteferrante
- Department of Anesthesiology, Intensive Care and Pain Therapy, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Lorenza Landi
- Clinical Trials Unit: Phase 1 and Precision Medicine, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Federico Cappuzzo
- Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
2
|
Deng J, Geng Z, Luan L, Jiang D, Lu J, Zhang H, Chen B, Liu X, Xing D. Novel Anti-Trop2 Nanobodies Disrupt Receptor Dimerization and Inhibit Tumor Cell Growth. Pharmaceutics 2024; 16:1255. [PMID: 39458590 PMCID: PMC11510716 DOI: 10.3390/pharmaceutics16101255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/20/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Trop2 (trophoblast cell-surface antigen 2) is overexpressed in multiple malignancies and is closely associated with poor prognosis, thus positioning it as a promising target for pan-cancer therapies. Despite the approval of Trop2-targeted antibody-drug conjugates (ADCs), challenges such as side effects, drug resistance, and limited efficacy persist. Recent studies have shown that the dimeric forms of Trop2 are crucial for its oncogenic functions, and the binding epitopes of existing Trop2-targeted drugs lie distant from the dimerization interface, potentially limiting their antitumor efficacy. Method: A well-established synthetic nanobody library was screened against Trop2-ECD. The identified nanobodies were extensively characterized, including their binding specificity and affinity, as well as their bioactivities in antigen-antibody endocytosis, cell proliferation, and the inhibition of Trop2 dimer assembly. Finally, ELISA based epitope analysis and AlphaFold 3 were employed to elucidate the binding modes of the nanobodies. Results: We identified two nanobodies, N14 and N152, which demonstrated high affinity and specificity for Trop2. Cell-based assays confirmed that N14 and N152 can facilitate receptor internalization and inhibit growth in Trop2-positive tumor cells. Epitope analysis uncovered that N14 and N152 are capable of binding with all three subdomains of Trop2-ECD and effectively disrupt Trop2 dimerization. Predictive modeling suggests that N14 and N152 likely target the epitopes at the interface of Trop2 cis-dimerization. The binding modality and mechanism of action demonstrated by N14 and N152 are unique among Trop2-targeted antibodies. Conclusions: we identified two novel nanobodies, N14 and N152, that specifically bind to Trop2. Importantly, these nanobodies exhibit significant anti-tumor efficacy and distinctive binding patterns, underscoring their potential as innovative Trop2-targeted therapeutics.
Collapse
Affiliation(s)
- Junwen Deng
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; (J.D.); (Z.G.); (H.Z.)
- Qingdao Cancer Institute, Qingdao 266071, China
| | - Zhongmin Geng
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; (J.D.); (Z.G.); (H.Z.)
- Qingdao Cancer Institute, Qingdao 266071, China
| | - Linli Luan
- Noventi Biopharmaceuticals Co., Ltd., Shanghai 201203, China; (L.L.); (D.J.); (J.L.); (B.C.)
| | - Dingwen Jiang
- Noventi Biopharmaceuticals Co., Ltd., Shanghai 201203, China; (L.L.); (D.J.); (J.L.); (B.C.)
| | - Jian Lu
- Noventi Biopharmaceuticals Co., Ltd., Shanghai 201203, China; (L.L.); (D.J.); (J.L.); (B.C.)
| | - Hanzhong Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; (J.D.); (Z.G.); (H.Z.)
- Qingdao Cancer Institute, Qingdao 266071, China
| | - Bingguan Chen
- Noventi Biopharmaceuticals Co., Ltd., Shanghai 201203, China; (L.L.); (D.J.); (J.L.); (B.C.)
| | - Xinlin Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; (J.D.); (Z.G.); (H.Z.)
- Qingdao Cancer Institute, Qingdao 266071, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; (J.D.); (Z.G.); (H.Z.)
- Qingdao Cancer Institute, Qingdao 266071, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Nelson BE, Meric-Bernstam F. Leveraging TROP2 Antibody-Drug Conjugates in Solid Tumors. Annu Rev Med 2024; 75:31-48. [PMID: 37758237 DOI: 10.1146/annurev-med-071322-065903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Antibody-drug conjugates (ADCs) have become the cornerstone of effective therapeutics in solid and hematological malignancies by harnessing potent cytotoxic payloads with targeted tumoricidal delivery. Since the monumental shift occurred with HER2-targeted ADCs, the discovery of the TROP2 antigen has revolutionized the landscape of ADC development. Moving beyond the traditional ADC design, multiple novel ADCs have successfully shaped and improved survival outcomes in patients with various tumor histologies. Here we review and contrast the clinical impact of the well-known TROP2 ADCs currently in clinical use. We also shed light on upcoming investigational TROP2 ADCs showing promise with novel ADC platforms.
Collapse
Affiliation(s)
- Blessie Elizabeth Nelson
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA;
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA;
| |
Collapse
|
4
|
Koltai T, Fliegel L. The Relationship between Trop-2, Chemotherapeutic Drugs, and Chemoresistance. Int J Mol Sci 2023; 25:87. [PMID: 38203255 PMCID: PMC10779383 DOI: 10.3390/ijms25010087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/08/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
Trop-2 is a highly conserved one-pass transmembrane mammalian glycoprotein that is normally expressed in tissues such as the lung, intestines, and kidney during embryonic development. It is overexpressed in many epithelial cancers but is absent in non-epithelial tumors. Trop-2 is an intracellular calcium signal transducer that participates in the promotion of cell proliferation, migration, invasion, metastasis, and probably stemness. It also has some tumor suppressor effects. The pro-tumoral actions have been thoroughly investigated and reported. However, Trop-2's activity in chemoresistance is less well known. We review a possible relationship between Trop-2, chemotherapy, and chemoresistance. We conclude that there is a clear role for Trop-2 in some specific chemoresistance events. On the other hand, there is no clear evidence for its participation in multidrug resistance through direct drug transport. The development of antibody conjugate drugs (ACD) centered on anti-Trop-2 monoclonal antibodies opened the gates for the treatment of some tumors resistant to classic chemotherapies. Advanced urothelial tumors and breast cancer were among the first malignancies for which these ACDs have been employed. However, there is a wide group of other tumors that may benefit from anti-Trop-2 therapy as soon as clinical trials are completed.
Collapse
Affiliation(s)
- Tomas Koltai
- Hospital del Centro Gallego de Buenos Aires, Buenos Aires 2199, Argentina;
| | - Larry Fliegel
- Department of Biochemistry, Faculty of Medicine, University of Alberta, 347 Medical Science Bldg., Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
5
|
Liu X, Deng J, Yuan Y, Chen W, Sun W, Wang Y, Huang H, Liang B, Ming T, Wen J, Huang B, Xing D. Advances in Trop2-targeted therapy: Novel agents and opportunities beyond breast cancer. Pharmacol Ther 2022; 239:108296. [PMID: 36208791 DOI: 10.1016/j.pharmthera.2022.108296] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022]
Abstract
Trop2 is a transmembrane glycoprotein and calcium signal transducer with limited expression in normal human tissues. It is consistently overexpressed in a variety of malignant tumors and participates in several oncogenic signaling pathways that lead to tumor development, invasion, and metastasis. As a result, Trop2 has become an attractive therapeutic target in cancer treatment. The anti-Trop2 antibody-drug conjugate (Trodelvy™, sacituzumab govitecan) has been approved to treat metastatic triple-negative breast cancer. However, it is still unclear whether the success observed in Trop2-positive breast cancer could be replicated in other tumor types, owing to the differences in the expression levels and functions of Trop2 across cancer types. In this review, we summarize the recent progress on the structures and functions of Trop2 and highlight the potential diagnostic and therapeutic value of Trop2 beyond breast cancer. In addition, the promising novel Trop2-targeted agents in the clinic were discussed, which will likely alter the therapeutic landscape of Trop2-positive tumors in the future.
Collapse
Affiliation(s)
- Xinlin Liu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Junwen Deng
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Yang Yuan
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Wujun Chen
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Wenshe Sun
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Yanhong Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Haiming Huang
- Shanghai Asia United Antibody Medical Co., Ltd, Shanghai 201203, China
| | - Bing Liang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Tao Ming
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Jialian Wen
- School of Social Science, The University of Manchester, Manchester, UK
| | - Binghuan Huang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China.
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
6
|
Lenárt S, Lenárt P, Knopfová L, Kotasová H, Pelková V, Sedláková V, Vacek O, Pokludová J, Čan V, Šmarda J, Souček K, Hampl A, Beneš P. TACSTD2 upregulation is an early reaction to lung infection. Sci Rep 2022; 12:9583. [PMID: 35688908 PMCID: PMC9185727 DOI: 10.1038/s41598-022-13637-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Abstract
TACSTD2 encodes a transmembrane glycoprotein Trop2 commonly overexpressed in carcinomas. While the Trop2 protein was discovered already in 1981 and first antibody–drug conjugate targeting Trop2 were recently approved for cancer therapy, the physiological role of Trop2 is still not fully understood. In this article, we show that TACSTD2/Trop2 expression is evolutionarily conserved in lungs of various vertebrates. By analysis of publicly available transcriptomic data we demonstrate that TACSTD2 level consistently increases in lungs infected with miscellaneous, but mainly viral pathogens. Single cell and subpopulation based transcriptomic data revealed that the major source of TACSTD2 transcript are lung epithelial cells and their progenitors and that TACSTD2 is induced directly in lung epithelial cells following infection. Increase in TACSTD2 expression may represent a mechanism to maintain/restore epithelial barrier function and contribute to regeneration process in infected/damaged lungs.
Collapse
Affiliation(s)
- Sára Lenárt
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic
| | - Peter Lenárt
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic.,Faculty of Science, Research Centre for Toxic Compounds in the Environment, Masaryk University, Brno, Czech Republic.,Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Lucia Knopfová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Hana Kotasová
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.,Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Vendula Pelková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Veronika Sedláková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Ondřej Vacek
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.,Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jana Pokludová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic
| | - Vladimír Čan
- Department of Surgery, University Hospital Brno, Brno, Czech Republic
| | - Jan Šmarda
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic
| | - Karel Souček
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.,Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Aleš Hampl
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.,Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Petr Beneš
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic. .,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.
| |
Collapse
|
7
|
Liao S, Wang B, Zeng R, Bao H, Chen X, Dixit R, Xing X. Recent advances in trophoblast cell-surface antigen 2 targeted therapy for solid tumors. Drug Dev Res 2021; 82:1096-1110. [PMID: 34462935 DOI: 10.1002/ddr.21870] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/27/2021] [Accepted: 05/02/2021] [Indexed: 12/27/2022]
Abstract
Trophoblast cell-surface antigen 2 (Trop 2) is a transmembrane glycoprotein that is highly expressed in various cancer types with relatively low or no baseline expression in most normal tissues. Its overexpression is associated with tumor growth and poor prognosis; Trop 2 is, therefore, an ideal therapeutic target for epithelial cancers. Several Trop 2 targeted therapeutics have recently been developed for the treatment of cancers, such as anti-Trop 2 antibodies and antibody-drug conjugates (ADCs), as well as Trop 2-specific cell therapy. In particular, the safety and clinical benefit of Trop 2-based ADCs have been demonstrated in clinical trials across multiple tumor types, including those with limited treatment options, such as triple-negative breast cancer, platinum-resistant urothelial cancer, and heavily pretreated non-small cell lung cancer. In this review, we elaborate on recent advances in Trop 2 targeted modalities and provide an overview of novel insights for future developments in this field.
Collapse
Affiliation(s)
- Shutan Liao
- Department of Consultation, Amador Bioscience Ltd, Hangzhou, China
| | - Bing Wang
- Department of Consultation, Amador Bioscience Ltd, Hangzhou, China
| | - Rong Zeng
- Department of Consultation, Amador Bioscience Ltd, Hangzhou, China
| | - Haifeng Bao
- Department of Consultation, Amador Bioscience Ltd, Hangzhou, China
| | - Xiaomin Chen
- Department of Consultation, Amador Bioscience Ltd, Hangzhou, China
| | - Rakesh Dixit
- Department of Consultation, Bionavigen LLC, Gaithersburg, Maryland, USA
| | - Xiaoyan Xing
- Department of Consultation, Amador Bioscience Ltd, Hangzhou, China
| |
Collapse
|
8
|
Miao X, Niibe K, Zhang M, Liu Z, Nattasit P, Ohori-Morita Y, Nakamura T, Jiang X, Egusa H. Stage-Specific Role of Amelx Activation in Stepwise Ameloblast Induction from Mouse Induced Pluripotent Stem Cells. Int J Mol Sci 2021; 22:ijms22137195. [PMID: 34281250 PMCID: PMC8268366 DOI: 10.3390/ijms22137195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/27/2021] [Accepted: 06/27/2021] [Indexed: 01/29/2023] Open
Abstract
Amelogenin comprises ~90% of enamel proteins; however, the involvement of Amelx transcriptional activation in regulating ameloblast differentiation from induced pluripotent stem cells (iPSCs) remains unknown. In this study, we generated doxycycline-inducible Amelx-expressing mouse iPSCs (Amelx-iPSCs). We then established a three-stage ameloblast induction strategy from Amelx-iPSCs, including induction of surface ectoderm (stage 1), dental epithelial cells (DECs; stage 2), and ameloblast lineage (stage 3) in sequence, by manipulating several signaling molecules. We found that adjunctive use of lithium chloride (LiCl) in addition to bone morphogenetic protein 4 and retinoic acid promoted concentration-dependent differentiation of DECs. The resulting cells had a cobblestone appearance and keratin14 positivity. Attenuation of LiCl at stage 3 together with transforming growth factor β1 and epidermal growth factor resulted in an ameloblast lineage with elongated cell morphology, positivity for ameloblast markers, and calcium deposition. Although stage-specific activation of Amelx did not produce noticeable phenotypic changes in ameloblast differentiation, Amelx activation at stage 3 significantly enhanced cell adhesion as well as decreased proliferation and migration. These results suggest that the combination of inducible Amelx transcription and stage-specific ameloblast induction for iPSCs represents a powerful tool to highlight underlying mechanisms in ameloblast differentiation and function in association with Amelx expression.
Collapse
Affiliation(s)
- Xinchao Miao
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Miyagi, Japan; (X.M.); (M.Z.); (Z.L.); (P.N.); (Y.O.-M.)
| | - Kunimichi Niibe
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Miyagi, Japan; (X.M.); (M.Z.); (Z.L.); (P.N.); (Y.O.-M.)
- Correspondence: (K.N.); (H.E.); Tel.: +81-22-717-8363 (K.N.); +81-22-717-8363 (H.E.)
| | - Maolin Zhang
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Miyagi, Japan; (X.M.); (M.Z.); (Z.L.); (P.N.); (Y.O.-M.)
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China;
| | - Zeni Liu
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Miyagi, Japan; (X.M.); (M.Z.); (Z.L.); (P.N.); (Y.O.-M.)
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Praphawi Nattasit
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Miyagi, Japan; (X.M.); (M.Z.); (Z.L.); (P.N.); (Y.O.-M.)
| | - Yumi Ohori-Morita
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Miyagi, Japan; (X.M.); (M.Z.); (Z.L.); (P.N.); (Y.O.-M.)
| | - Takashi Nakamura
- Division of Molecular Pharmacology and Cell Biophysics, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Miyagi, Japan;
| | - Xinquan Jiang
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China;
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Miyagi, Japan; (X.M.); (M.Z.); (Z.L.); (P.N.); (Y.O.-M.)
- Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Miyagi, Japan
- Correspondence: (K.N.); (H.E.); Tel.: +81-22-717-8363 (K.N.); +81-22-717-8363 (H.E.)
| |
Collapse
|
9
|
Chen H, Wei F, Yin M, Zhao Q, Liu Z, Yu B, Huang Z. CD27 enhances the killing effect of CAR T cells targeting trophoblast cell surface antigen 2 in the treatment of solid tumors. Cancer Immunol Immunother 2021; 70:2059-2071. [PMID: 33439295 PMCID: PMC10992360 DOI: 10.1007/s00262-020-02838-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 12/20/2020] [Indexed: 12/25/2022]
Abstract
Chimeric antigen receptor (CAR) T cell therapy, a type of adoptive cell therapy, has been successfully used when treating lymphoma malignancies, but not nearly as successful in treating solid tumors. Trophoblast cell surface antigen 2 (Trop2) is expressed in various solid tumors and plays a role in tumor growth, invasion, and metastasis. In this study, a CAR targeting Trop2 (T2-CAR) was developed with different co-stimulatory intercellular domains. T2-CAR T cells demonstrated a powerful killing ability in the presence of Trop2-positive cells following an in vitro assay. Moreover, T2-CAR T cells produced multiple effector cytokines under antigen stimulation. In tumor-bearing mouse models, the CD27-based T2-CAR T cells showed a higher antitumor activity. Additionally, more CD27-based T2-CAR T cells survived in tumor-bearing mice spleens as well as in the tumor tissue. CD27-based T2-CAR T cells were also found to upregulate IL-7Rα expression, while downregulating PD-1 expression. In conclusion, the CD27 intercellular domain can enhance the T2-CAR T cell killing effect via multiple mechanisms, thus indicating that a CD27-based T2-CAR T cell approach is suitable for clinical applications.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/metabolism
- Apoptosis
- Breast Neoplasms/immunology
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Breast Neoplasms/therapy
- Cell Adhesion Molecules/antagonists & inhibitors
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/metabolism
- Cell Proliferation
- Female
- Humans
- Immunotherapy, Adoptive/methods
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, SCID
- Receptors, Chimeric Antigen/immunology
- Tumor Cells, Cultured
- Tumor Necrosis Factor Receptor Superfamily, Member 7/genetics
- Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Huanpeng Chen
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, N1311 Rm, No. 10 Bld, 74 Zhongshan 2nd Rd, Guangzhou, 510080, China
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, China
| | - Fengjiao Wei
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, N1311 Rm, No. 10 Bld, 74 Zhongshan 2nd Rd, Guangzhou, 510080, China
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, China
| | - Meng Yin
- Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Qingyu Zhao
- Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zhonghua Liu
- Laboratory Animal Center, South China Agricultural University, Guangzhou, China
| | - Bolan Yu
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, BioResource Research Center, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhaofeng Huang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, N1311 Rm, No. 10 Bld, 74 Zhongshan 2nd Rd, Guangzhou, 510080, China.
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, China.
| |
Collapse
|
10
|
Lenárt S, Lenárt P, Šmarda J, Remšík J, Souček K, Beneš P. Trop2: Jack of All Trades, Master of None. Cancers (Basel) 2020; 12:E3328. [PMID: 33187148 PMCID: PMC7696911 DOI: 10.3390/cancers12113328] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 12/20/2022] Open
Abstract
Trophoblast cell surface antigen 2 (Trop2) is a widely expressed glycoprotein and an epithelial cell adhesion molecule (EpCAM) family member. Although initially identified as a transmembrane protein, other subcellular localizations and processed forms were described. Its congenital mutations cause a gelatinous drop-like corneal dystrophy, a disease characterized by loss of barrier function in corneal epithelial cells. Trop2 is considered a stem cell marker and its expression associates with regenerative capacity in various tissues. Trop2 overexpression was described in tumors of different origins; however, functional studies revealed both oncogenic and tumor suppressor roles. Nevertheless, therapeutic potential of Trop2 was recognized and clinical studies with drug-antibody conjugates have been initiated in various cancer types. One of these agents, sacituzumab govitecan, has been recently granted an accelerated approval for therapy of metastatic triple-negative breast cancer. In this article, we review the current knowledge about the yet controversial function of Trop2 in homeostasis and pathology.
Collapse
Affiliation(s)
- Sára Lenárt
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; (S.L.); (P.L.); (J.Š.); (K.S.)
| | - Peter Lenárt
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; (S.L.); (P.L.); (J.Š.); (K.S.)
- Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Jan Šmarda
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; (S.L.); (P.L.); (J.Š.); (K.S.)
| | - Ján Remšík
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Karel Souček
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; (S.L.); (P.L.); (J.Š.); (K.S.)
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic
- Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
| | - Petr Beneš
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; (S.L.); (P.L.); (J.Š.); (K.S.)
- Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
| |
Collapse
|
11
|
Matsui S, Harada K, Miyata N, Okochi H, Miyajima A, Tanaka M. Characterization of Peribiliary Gland–Constituting Cells Based on Differential Expression of Trophoblast Cell Surface Protein 2 in Biliary Tract. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2059-2073. [DOI: 10.1016/j.ajpath.2018.05.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/02/2018] [Accepted: 05/15/2018] [Indexed: 12/18/2022]
|
12
|
Tang G, Tang Q, Jia L, Xia S, Li J, Chen Y, Li H, Ding X, Wang F, Hou D, Kuai X, Feng Z, Fan Y. High expression of TROP2 is correlated with poor prognosis of oral squamous cell carcinoma. Pathol Res Pract 2018; 214:1606-1612. [PMID: 30098828 DOI: 10.1016/j.prp.2018.07.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/04/2018] [Accepted: 07/22/2018] [Indexed: 01/30/2023]
Abstract
Human trophoblastic cell-surface antigen 2 (TROP2) is a cell surface glycoprotein that exhibits high expression in various carcinomas but low or no expression in normal tissues. High TROP2 expression plays an important role in promoting tumor development and aggressiveness, which is correlated with reduced patient survival. However, there are few studies regarding TROP2 in relation to both oral squamous cell carcinoma (OSCC) and oral potentially malignant lesions. The expression of TROP2 protein and mRNA was investigated in OSCC tissues, oral potentially malignant lesion tissues, and normal oral tissues using immunohistochemistry and quantitative real-time polymerase chain reaction (qRT-PCR). The association between TROP2 expression and clinicopathological characteristics of OSCC was also analyzed, and the prognostic value of TROP2 was evaluated. The expression of TROP2 protein and mRNA were both higher in OSCC tissues than in oral potentially malignant lesion tissues or normal oral tissues. Positive TROP2 expression was related to differentiation, lymph node metastases, TNM stage, perineural infiltration, and vascular invasion. Poor overall survival was associated with high TROP2 expression and other factors associated with poor overall survival including poor differentiation, lymph node metastasis, TNM stage, vascular invasion, and perineural invasion in univariate analyses. TROP2 expression as well as TNM stage and vascular invasion were independent prognostic factors associated with the overall survival of OSCC patients in multivariate analyses. In summary, High TROP2 expression is associated with poor overall survival and serves as an independent prognostic factor in OSCC. The results suggest that TROP2 expression could be an effective prognostic biomarker for OSCC.
Collapse
Affiliation(s)
- Genxiong Tang
- Department of Stomatology, Affiliated Children's Hospital of Nanjing Medical University, Nanjing 210008, China; Department of Pathology, Nanjing Medical University, Nanjing 211166, China; Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University; Department of Oral Medicine, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Qi Tang
- Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing 211166, China
| | - Lizhou Jia
- Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing 211166, China
| | - Shujing Xia
- Department of Gastroenterology, Affiliated Xinghua People's Hospital of Yangzhou University, Xinghua 225700, China
| | - Jing Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University; Department of Oral Medicine, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Yuan Chen
- Department of Otolaryngology, Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Huaiqi Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Xu Ding
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Feng Wang
- Department of Pathology, Nanjing Medical University, Nanjing 211166, China
| | - Deqiang Hou
- Department of Stomatology, Affiliated Hospital of Jiangnan University, Wuxi 214062, China
| | - Xingwang Kuai
- Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhenqing Feng
- Department of Pathology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing 211166, China; Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Cancer Biomarkers, Prevent and Treatment, Cancer Center, Nanjing Medical University, Nanjing 211166, China.
| | - Yuan Fan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University; Department of Oral Medicine, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
13
|
Xu P, Zhao Y, Liu K, Lin S, Liu X, Wang M, Yang P, Tian T, Zhu YY, Dai Z. Prognostic role and clinical significance of trophoblast cell surface antigen 2 in various carcinomas. Cancer Manag Res 2017; 9:821-837. [PMID: 29276405 PMCID: PMC5731441 DOI: 10.2147/cmar.s147033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION Trophoblast cell surface antigen 2 (TROP2) has been linked to disease prognosis in various human cancers and plays a critical role in tumor development, progression, and metastasis. A number of relevant studies have been published on this topic. A meta-analysis of the latest literature to evaluate the value of TROP2 as a predictive prognosticator of cancer was performed. METHODS Several online databases were searched, and relevant articles were retrieved. Overall and subcategory meta-analyses were performed, and results were collated. RESULTS Twenty-seven articles, including 29 studies, were included, involving 4,852 cancer patients, and results showed that the above-baseline expression of TROP2 was significantly associated with poorer overall survival (OS) (pooled hazard ratio [HR]: 1.84, 95% confidence interval [CI]: 1.45-2.35), disease-free survival (DFS) (pooled HR: 2.77, 95% CI: 1.73-4.42), and progression-free survival (PFS) (pooled HR: 1.71, 95% CI: 1.25-2.35). The following clinical characteristics were also significantly linked with TROP2 overexpression: moderate/poor differentiation (pooled HR: 3.03, 95% CI: 1.99-4.63), distant metastasis (pooled HR: 2.46, 95% CI: 1.05-5.75), lymph node metastasis (pooled HR: 2.47, 95%: CI 1.72-3.56), and advanced TNM stage (pooled HR: 2.02, 95% CI: 1.38-2.95). CONCLUSION TROP2 overexpression was predictive of poor prognosis in human cancers and may be an independent prognostic predictive biomarker. Further studies should be performed to confirm the significance of TROP2 in clinical practice.
Collapse
Affiliation(s)
- Peng Xu
- Department of Oncology, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Yang Zhao
- Department of Oncology, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Kang Liu
- Department of Oncology, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Shuai Lin
- Department of Oncology, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Xinghan Liu
- Department of Oncology, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Meng Wang
- Department of Oncology, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Pengtao Yang
- Department of Oncology, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Tian Tian
- Department of Oncology, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Yu-yao Zhu
- Department of Oncology, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Zhijun Dai
- Department of Oncology, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
14
|
McDougall ARA, Tolcos M, Hooper SB, Cole TJ, Wallace MJ. Trop2: from development to disease. Dev Dyn 2015; 244:99-109. [PMID: 25523132 DOI: 10.1002/dvdy.24242] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 12/08/2014] [Accepted: 12/11/2014] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Trop2 was first discovered as a biomarker of invasive trophoblast cells. Since then most research has focused on its role in tumourigenesis because it is highly expressed in the vast majority of human tumours and animal models of cancer. It is also highly expressed in stem cells and in many organs during development. RESULTS We review the multifaceted role of Trop2 during development and tumourigenesis, including its role in regulating cell proliferation and migration, self-renewal, and maintenance of basement membrane integrity. We discuss the evolution of Trop2 and its related protein Epcam (Trop1), including their distinct roles. Mutation of Trop2 leads to gelatinous drop-like corneal dystrophy, whereas over-expression of Trop2 in human tumours promotes tumour aggressiveness and increases mortality. Although Trop2 expression is sufficient to promote tumour growth, the surprising discovery that Trop2-null mice have an increased risk of tumour development has highlighted the complexity of Trop2 signaling. Recently, studies have begun to identify the mechanisms underlying TROP2’s functions, including regulated intramembrane proteolysis or specific interactions with integrin b1 and claudin proteins. CONCLUSIONS Understanding the mechanisms underlying TROP2 signaling will clarify its role during development, aid in the development of better cancer treatments and unlock a promising new direction in regenerative medicine.
Collapse
|
15
|
Maghzal N, Kayali HA, Rohani N, Kajava AV, Fagotto F. EpCAM controls actomyosin contractility and cell adhesion by direct inhibition of PKC. Dev Cell 2013; 27:263-77. [PMID: 24183651 DOI: 10.1016/j.devcel.2013.10.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 07/03/2013] [Accepted: 10/07/2013] [Indexed: 01/06/2023]
Abstract
Epithelial cell adhesion molecule (EpCAM) is a cell-surface protein highly expressed in embryonic tissues and in malignant carcinomas. We report that EpCAM acts as a potent inhibitor of novel protein kinase C (nPKC) in both embryos and cancer cells. We observed dramatic effects of loss of EpCAM on amphibian embryonic tissues, which include sequentially strong overstimulation of PKC activity and of the Erk pathway, leading to exacerbated myosin contractility, loss of cadherin-mediated adhesion, tissue dissociation, and, ultimately, cell death. We show that PKC inhibition is caused by a short segment of the EpCAM cytoplasmic tail. This motif resembles the pseudosubstrate inhibitory domains of PKCs and binds nPKCs with high affinity. A bioinformatics search reveals the existence of similar motifs in other plasma membrane proteins, most of which are cell-cell adhesion molecules. Thus, direct inhibition of PKC by EpCAM represents a general mode of regulation of signal transduction by cell-surface proteins.
Collapse
Affiliation(s)
- Nadim Maghzal
- Department of Biology, McGill University, Montreal, H3A1B1 Quebec, Canada
| | | | | | | | | |
Collapse
|
16
|
Identification of Lgr5-independent spheroid-generating progenitors of the mouse fetal intestinal epithelium. Cell Rep 2013; 5:421-32. [PMID: 24139799 DOI: 10.1016/j.celrep.2013.09.005] [Citation(s) in RCA: 191] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/16/2013] [Accepted: 09/04/2013] [Indexed: 01/27/2023] Open
Abstract
Immortal spheroids were generated from fetal mouse intestine using the culture system initially developed to culture organoids from adult intestinal epithelium. Spheroid proportion progressively decreases from fetal to postnatal period, with a corresponding increase in production of organoids. Like organoids, spheroids show Wnt-dependent indefinite self-renewing properties but display a poorly differentiated phenotype reminiscent of incompletely caudalized progenitors. The spheroid transcriptome is strikingly different from that of adult intestinal stem cells, with minimal overlap of Wnt target gene expression. The receptor LGR4, but not LGR5, is essential for their growth. Trop2/Tacstd2 and Cnx43/Gja1, two markers highly enriched in spheroids, are expressed throughout the embryonic-day-14 intestinal epithelium. Comparison of in utero and neonatal lineage tracing using Cnx43-CreER and Lgr5-CreERT2 mice identified spheroid-generating cells as developmental progenitors involved in generation of the prenatal intestinal epithelium. Ex vivo, spheroid cells have the potential to differentiate into organoids, qualifying as a fetal type of intestinal stem cell.
Collapse
|
17
|
McDougall ARA, Hooper SB, Zahra VA, Cole TJ, Lo CY, Doran T, Wallace MJ. Trop2 regulates motility and lamellipodia formation in cultured fetal lung fibroblasts. Am J Physiol Lung Cell Mol Physiol 2013; 305:L508-21. [DOI: 10.1152/ajplung.00160.2012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Proliferation and migration of fibroblasts are vital for fetal lung development. However, the regulatory mechanisms are poorly understood. We have previously shown that TROP2 gene expression is closely associated with fetal lung cell proliferation in vivo and that TROP2 knockdown decreases proliferation of fetal lung fibroblasts in culture. We hypothesized that the Trop2 protein also regulates the morphology and motility of fetal lung fibroblasts. Fibroblasts isolated from fetal rat lungs (gestational age embryonic day 19) adopted a myofibroblast-like morphology in culture. Trop2 protein was localized to lamellipodia. TROP2 siRNA significantly decreased: TROP2 mRNA levels by 77%, the proportion of cells containing Trop2 protein by 70%, and cell proliferation by 50%. TROP2 siRNA also decreased the degree of motility as determined by the number of gridlines that cells moved across (2.2 ± 0.2 vs. 3.2 ± 0.2; P < 0.001). TROP2 knockdown altered cell morphology, causing a notable absence of lamellipodia and abnormal localization of components of the cell migration apparatus, and it reduced phosphorylated ERK1 and ERK2 levels. In contrast, TROP2 overexpression significantly increased: TROP2 mRNA levels by 40-fold, cell proliferation by 40%, the proportion of cells that were motile by 20%, and the number of gridlines that cells moved across (2.1 ± 0.2 vs. 1.6 ± 0.1; P < 0.001). Our data suggest that Trop2 regulates cell proliferation and motility and that it does so by regulating the ERK pathway and several critical components of the cell migration apparatus.
Collapse
Affiliation(s)
- Annie R. A. McDougall
- The Ritchie Centre, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
- The Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Stuart B. Hooper
- The Ritchie Centre, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
- Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Valerie A. Zahra
- The Ritchie Centre, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - Timothy J. Cole
- The Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Camden Y. Lo
- Monash Micro Imaging, Monash University, Clayton, Victoria, Australia; and
| | - Timothy Doran
- Lifestock Industries, Australia's Commonwealth Scientific and Industrial Research Organisation, Geelong, Victoria, Australia
| | - Megan J. Wallace
- The Ritchie Centre, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
- Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
18
|
Stoyanova T, Goldstein AS, Cai H, Drake JM, Huang J, Witte ON. Regulated proteolysis of Trop2 drives epithelial hyperplasia and stem cell self-renewal via β-catenin signaling. Genes Dev 2012; 26:2271-85. [PMID: 23070813 DOI: 10.1101/gad.196451.112] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The cell surface protein Trop2 is expressed on immature stem/progenitor-like cells and is overexpressed in many epithelial cancers. However the biological function of Trop2 in tissue maintenance and tumorigenesis remains unclear. In this study, we demonstrate that Trop2 is a regulator of self-renewal, proliferation, and transformation. Trop2 controls these processes through a mechanism of regulated intramembrane proteolysis that leads to cleavage of Trop2, creating two products: the extracellular domain and the intracellular domain. The intracellular domain of Trop2 is released from the membrane and accumulates in the nucleus. Heightened expression of the Trop2 intracellular domain promotes stem/progenitor self-renewal through signaling via β-catenin and is sufficient to initiate precursor lesions to prostate cancer in vivo. Importantly, we demonstrate that loss of β-catenin or Trop2 loss-of-function cleavage mutants abrogates Trop2-driven self-renewal and hyperplasia in the prostate. These findings suggest that heightened expression of Trop2 is selected for in epithelial cancers to enhance the stem-like properties of self-renewal and proliferation. Defining the mechanism of Trop2 function in self-renewal and transformation is essential to identify new therapeutic strategies to block Trop2 activation in cancer.
Collapse
Affiliation(s)
- Tanya Stoyanova
- Department of Microbiology, Immunology, and Molecular Genetics, University of California at Los Angeles, Los Angeles, California 90095, USA
| | | | | | | | | | | |
Collapse
|