1
|
Wolfe E, Hammill E, Memmott J, Clements CF. Landscape configuration affects probability of apex predator presence and community structure in experimental metacommunities. Oecologia 2022; 199:193-204. [PMID: 35523981 PMCID: PMC9120115 DOI: 10.1007/s00442-022-05178-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 04/02/2022] [Indexed: 11/28/2022]
Abstract
Biodiversity is declining at an unprecedented rate, highlighting the urgent requirement for well-designed protected areas. Design tactics previously proposed to promote biodiversity include enhancing the number, connectivity, and heterogeneity of reserve patches. However, how the importance of these features changes depending on what the conservation objective is remains poorly understood. Here we use experimental landscapes containing ciliate protozoa to investigate how the number and heterogeneity in size of habitat patches, rates of dispersal between neighbouring patches, and mortality risk of dispersal across the non-habitat ‘matrix’ interact to affect a number of diversity measures. We show that increasing the number of patches significantly increases γ diversity and reduces the overall number of extinctions, whilst landscapes with heterogeneous patch sizes have significantly higher γ diversity than those with homogeneous patch sizes. Furthermore, the responses of predators depended on their feeding specialism, with generalist predator presence being highest in a single large patch, whilst specialist predator presence was highest in several-small patches with matrix dispersal. Our evidence emphasises the importance of considering multiple diversity measures to disentangle community responses to patch configuration.
Collapse
Affiliation(s)
- Ellie Wolfe
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK.
| | - Edd Hammill
- Department of Watershed Sciences and the Ecology Center, Utah State University, Old Main Hill, Logan, UT, USA
| | - Jane Memmott
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| | | |
Collapse
|
2
|
Di Carvalho JA, Wickham SA. Does spatiotemporal nutrient variation allow more species to coexist? Oecologia 2020; 194:695-707. [PMID: 33099656 PMCID: PMC7683490 DOI: 10.1007/s00442-020-04768-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 09/21/2020] [Indexed: 12/05/2022]
Abstract
Temporal heterogeneity in nutrient availability is known to increase phytoplankton diversity by allowing more species to coexist under different resource niches. Spatial heterogeneity has also been positively correlated with species diversity. Here we investigated how temporal and spatial differences in nutrient addition together impact biodiversity in metacommunities varying in the degree of connectivity among the patches. We used a microcosm experimental design to test two spatiotemporal ways of supplying nutrients: synchronously (nutrients were added regionally-to all four patches at the same time) and asynchronously (nutrients were added locally-to a different patch each time), combined with two different degrees of connectivity among the patches (low or high connectivity). We used three species of algae and one species of cyanobacteria as the primary producers; and five ciliate and two rotifer species as the grazers. We expected higher diversity in metacommunities receiving an asynchronous nutrient supply, assuming stronger development of heterogeneous patches with this condition rather than with synchronous nutrient supply. This result was expected, however, to be dependent on the degree of connectivity among patches. We found significant effects of nutrient addition in both groups of organisms. Phytoplankton diversity increased until the fourth week (transiently) and zooplankton richness was persistently higher under asynchronous nutrient addition. Our results were consistent with our hypothesis that asynchronicity in nutrient supply would create a more favorable condition for species to co-occur. However, this effect was, in part, transient and was not influenced by the degree of connectivity.
Collapse
Affiliation(s)
- Josie Antonucci Di Carvalho
- Department of Ecology and Evolution, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria.
| | - Stephen A Wickham
- Department of Ecology and Evolution, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria
| |
Collapse
|
3
|
Karakoç C, Clark AT, Chatzinotas A. Diversity and coexistence are influenced by time-dependent species interactions in a predator-prey system. Ecol Lett 2020; 23:983-993. [PMID: 32243074 DOI: 10.1111/ele.13500] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/08/2019] [Accepted: 02/23/2020] [Indexed: 12/17/2022]
Abstract
Although numerous studies show that communities are jointly influenced by predation and competitive interactions, few have resolved how temporal variability in these interactions influences community assembly and stability. Here, we addressed this challenge in experimental microbial microcosms by employing empirical dynamic modelling tools to: (1) detect causal interactions between prey species in the absence and presence of a predator; (2) quantify the time-varying strength of these interactions and (3) explore stability in the resulting communities. Our findings show that predators boost the number of causal interactions among community members, and lead to reduced dynamic stability, but higher coexistence among prey species. These results correspond to time-varying changes in species interactions, including emergence of morphological characteristics that appeared to reduce predation, and indirectly facilitate growth of predator-susceptible species. Jointly, our findings suggest that careful consideration of both context and time may be necessary to predict and explain outcomes in multi-trophic systems.
Collapse
Affiliation(s)
- Canan Karakoç
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318, Leipzig, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| | - Adam Thomas Clark
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany.,Department of Physiological Diversity, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318, Leipzig, Germany.,Synthesis Centre for Biodiversity Sciences (sDiv), Deutscher Platz 5e, 04103, Leipzig, Germany
| | - Antonis Chatzinotas
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318, Leipzig, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany.,Institute of Biology, Leipzig University, Talstrasse 33, 04103, Leipzig, Germany
| |
Collapse
|
4
|
Antonucci Di Carvalho J, Wickham SA. Simulating eutrophication in a metacommunity landscape: an aquatic model ecosystem. Oecologia 2019; 189:461-474. [PMID: 30523402 PMCID: PMC6394664 DOI: 10.1007/s00442-018-4319-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 12/02/2018] [Indexed: 12/03/2022]
Abstract
Aquatic habitats are often characterized by both high diversity and the threat of multiple anthropogenic stressors. Our research deals with temporal and spatial aspects of two of the main threats for biodiversity, namely eutrophication and fragmentation. It is known that pulsed nutrient addition creates temporal differences in environmental conditions, promoting higher diversity by preventing the best competitor from dominating. Furthermore, a metacommunity landscape with intermediate connectivity increases autotrophs' diversity and stability. However, it is yet unclear if these two factors are additive in increasing diversity and if the effects extend to the consumer level. With the goal of understanding how eutrophication impacts biodiversity in a metacommunity landscape, we hypothesized that pulsed nutrient addition will increase diversity among both autotrophs and heterotrophs, and this effect will be even greater in a metacommunity landscape. We simulated eutrophication and fragmentation in a microcosm experiment using phytoplankton as primary producers and microzooplankton as grazers. Four treatment combinations were tested including two different landscapes (metacommunity and isolated community) and two forms of nutrient supply (pulsed and continuous): metacommunity/continuous nutrient addition (MC); metacommunity/pulsed nutrient addition (MP); isolated community/continuous nutrient addition (IC); isolated community/pulsed nutrient addition (IP). As expected, pulsed nutrient addition had a persistent positive effect on phytoplankton diversity, with a weaker influence of landscape type. In contrast, the grazer community strongly benefited from a metacommunity landscape, with less significance of pulsed or continuous nutrient addition. Overall, the metacommunity landscape with pulsed nutrient supply supported higher diversity of primary producers and grazers.
Collapse
Affiliation(s)
- Josie Antonucci Di Carvalho
- Department of Ecology and Evolution, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria.
| | - Stephen A Wickham
- Department of Ecology and Evolution, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria
| |
Collapse
|
5
|
Johnston NK, Pu Z, Jiang L. Predator identity influences metacommunity assembly. J Anim Ecol 2016; 85:1161-70. [PMID: 27349796 DOI: 10.1111/1365-2656.12551] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 05/06/2016] [Indexed: 11/29/2022]
Abstract
Predation is among the most important biotic factors influencing natural communities, yet we have a rather rudimentary understanding of its role in modulating metacommunity assembly. We experimentally examined the effects of two different predators (a generalist and a specialist) on metacommunity assembly, using protist microcosm metacommunities that varied in predator identity, dispersal among local communities and the history of species colonization into local communities. Generalist predation resulted in reduced α diversity and increased β diversity irrespective of dispersal, likely due to predation-induced stochastic extinction of different prey species in different local communities. Dispersal, however, induced source-sink dynamics in the presence of specialist predators, resulting in higher α diversity and marginally lower β diversity. These results demonstrate the distinct effects of different predators on prey metacommunity assembly, emphasizing the need to explore the role of predator diet breadth in structuring metacommunities.
Collapse
Affiliation(s)
- Nicole K Johnston
- School of Biology, Georgia Institute of Technology, Atlanta, GA, USA
| | - Zhichao Pu
- School of Biology, Georgia Institute of Technology, Atlanta, GA, USA
| | - Lin Jiang
- School of Biology, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
6
|
Grainger TN, Gilbert B. Dispersal and diversity in experimental metacommunities: linking theory and practice. OIKOS 2016. [DOI: 10.1111/oik.03018] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tess Nahanni Grainger
- Dept of Ecology and Evolutionary Biology; Univ. of Toronto; 25 Willcocks Street Toronto ON, M5S 3B2 Canada
| | - Benjamin Gilbert
- Dept of Ecology and Evolutionary Biology; Univ. of Toronto; 25 Willcocks Street Toronto ON, M5S 3B2 Canada
| |
Collapse
|
7
|
Atobe T, Osada Y, Takeda H, Kuroe M, Miyashita T. Habitat connectivity and resident shared predators determine the impact of invasive bullfrogs on native frogs in farm ponds. Proc Biol Sci 2014; 281:20132621. [PMID: 24827433 PMCID: PMC4046391 DOI: 10.1098/rspb.2013.2621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Accepted: 04/10/2014] [Indexed: 11/12/2022] Open
Abstract
Habitat connectivity is considered to have an important role on the persistence of populations in the face of habitat fragmentation, in particular, for species with conservation concern. However, it can also impose indirect negative effects on native species through the spread of invasive species. Here, we investigated direct and indirect effects of habitat connectivity on populations of invasive bullfrogs and native wrinkled frogs and how these effects are modified by the presence of common carp, a resident shared predator, in a farm pond system in Japan. The distribution pattern analysis using a hierarchical Bayesian modelling indicated that bullfrogs had negative effects on wrinkled frogs, and that these negative effects were enhanced with increasing habitat connectivity owing to the metapopulation structure of bullfrogs. The analysis also suggested that common carp mitigated these impacts, presumably owing to a top-down trophic cascade through preferential predation on bullfrog tadpoles. These presumed interspecific interactions were supported by evidence from laboratory experiments, i.e. predation by carp was more intense on bullfrog tadpoles than on wrinkled frog tadpoles owing to the difference in refuge use. Our results indicate that metacommunity perspectives could provide useful insights for establishing effective management strategies of invasive species living in patchy habitats.
Collapse
Affiliation(s)
- Takashi Atobe
- Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yutaka Osada
- Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hayato Takeda
- Faculty of Medicine, Tsukuba University, Ibaraki, Japan
| | - Misako Kuroe
- Graduate School of Science, Kyushu University, Fukuoka, Japan
| | - Tadashi Miyashita
- Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
8
|
Haegeman B, Loreau M. General relationships between consumer dispersal, resource dispersal and metacommunity diversity. Ecol Lett 2013; 17:175-84. [PMID: 24304725 DOI: 10.1111/ele.12214] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/13/2013] [Accepted: 10/09/2013] [Indexed: 12/01/2022]
Abstract
One of the central questions of metacommunity theory is how dispersal of organisms affects species diversity. Here, we show that the diversity-dispersal relationship should not be studied in isolation of other abiotic and biotic flows in the metacommunity. We study a mechanistic metacommunity model in which consumer species compete for an abiotic or biotic resource. We consider both consumer species specialised to a habitat patch, and generalist species capable of using the resource throughout the metacommunity. We present analytical results for different limiting values of consumer dispersal and resource dispersal, and complement these results with simulations for intermediate dispersal values. Our analysis reveals generic patterns for the combined effects of consumer and resource dispersal on the metacommunity diversity of consumer species, and shows that hump-shaped relationships between local diversity and dispersal are not universal. Diversity-dispersal relationships can also be monotonically increasing or multimodal. Our work is a new step towards a general theory of metacommunity diversity integrating dispersal at multiple trophic levels.
Collapse
Affiliation(s)
- Bart Haegeman
- Centre for Biodiversity Theory and Modelling, Experimental Ecology Station, Centre National de la Recherche Scientifique, Moulis, France
| | | |
Collapse
|
9
|
Limberger R, Wickham SA. Transitory versus persistent effects of connectivity in environmentally homogeneous metacommunities. PLoS One 2012; 7:e44555. [PMID: 22952993 PMCID: PMC3431365 DOI: 10.1371/journal.pone.0044555] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 08/07/2012] [Indexed: 11/19/2022] Open
Abstract
While the effect of habitat connectivity on local and regional diversity has been analysed in a number of studies, time-dependent dynamics in metacommunities have received comparatively little consideration. When local patches of a metacommunity are identical in environmental conditions but differ in initial community composition, dispersal among patches may result in homogenization of local communities. In a microcosm experiment with benthic ciliates, we tested the hypothesis that the effect of connectivity on diversity is time-dependent and only transitory, with the degree of connectivity affecting the time to homogenization but not the final outcome. Six microcosms were connected to a metacommunity with one of three levels of connectivity. The six patches differed in initial community composition but were identical in environmental conditions. We found a time-dependent and transitory effect of connectivity on local and regional richness and on local Shannon diversity, while Bray-Curtis dissimilarity and regional Shannon diversity were persistently affected by connectivity. Local richness increased and regional richness decreased with connectivity during the initial phase of the experiment but soon converged to similar values in all three connectivity treatments. Local Shannon diversity was unimodally related to time, with maximum diversity reached sooner with high than with medium or low connectivity. Eventually, however, local diversity converged to similar values irrespective of connectivity. At the regional scale, Shannon diversity was persistently lower with high than with low connectivity. While initial differences in community composition vanished with medium and high connectivity, they were maintained with low connectivity resulting in persistently high beta and regional diversity. The effect of connectivity on ciliate community composition translated down to the algal resource, as stronger dominance of the superior competitor with high and medium connectivity resulted in stronger depletion of the resource.
Collapse
|