1
|
Murthi P, Kalionis B. Homeobox genes in the human placenta: Twists and turns on the path to find novel targets. Placenta 2024; 157:28-36. [PMID: 38908943 DOI: 10.1016/j.placenta.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/25/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
Fetal growth restriction (FGR) is a clinically important human pregnancy disorder that is thought to originate early in pregnancy and while its aetiology is not well understood, the disorder is associated with placental insufficiency. Currently treatment for FGR is limited by increased surveillance using ultrasound monitoring and premature delivery, or corticosteroid medication in the third trimester to prolong pregnancy. There is a pressing need for novel strategies to detect and treat FGR at its early stage. Homeobox genes are well established as master regulators of early embryonic development and increasing evidence suggests they are also important in regulating early placental development. Most important is that specific homeobox genes are abnormally expressed in human FGR. This review focusses on identifying the molecular pathways controlled by homeobox genes in the normal and FGR-affected placenta. This information will begin to address the knowledge gap in the molecular aetiology of FGR and lay the foundation for identifying potential diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Padma Murthi
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; Department of Maternal Fetal Medicine, Pregnancy Research Centre, Royal Women's Hospital and Department of Obstetrics, Gynaecology and Newborn Health, University of Melbourne, Parkville, Victoria, Australia.
| | - Bill Kalionis
- Department of Maternal Fetal Medicine, Pregnancy Research Centre, Royal Women's Hospital and Department of Obstetrics, Gynaecology and Newborn Health, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
2
|
Zhou J, Tian Y, Qu Y, Williams M, Yuan Y, Karvas RM, Sheridan MA, Schulz LC, Ezashi T, Roberts MR, Schust DJ. The immune checkpoint molecule, VTCN1/B7-H4, guides differentiation and suppresses proinflammatory responses and MHC class I expression in an embryonic stem cell-derived model of human trophoblast. Front Endocrinol (Lausanne) 2023; 14:1069395. [PMID: 37008954 PMCID: PMC10062451 DOI: 10.3389/fendo.2023.1069395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/26/2023] [Indexed: 03/18/2023] Open
Abstract
The placenta acts as a protective barrier to pathogens and other harmful substances present in the maternal circulation throughout pregnancy. Disruption of placental development can lead to complications of pregnancy such as preeclampsia, intrauterine growth retardation and preterm birth. In previous work, we have shown that expression of the immune checkpoint regulator, B7-H4/VTCN1, is increased upon differentiation of human embryonic stem cells (hESC) to an in vitro model of primitive trophoblast (TB), that VTCN1/B7-H4 is expressed in first trimester but not term human placenta and that primitive trophoblast may be uniquely susceptible to certain pathogens. Here we report on the role of VTCN1 in trophoblast lineage development and anti-viral responses and the effects of changes in these processes on major histocompatibility complex (MHC) class I expression and peripheral NK cell phenotypes.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, MO, United States
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, United States
| | - Yuchen Tian
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Ying Qu
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, MO, United States
| | - Madyson Williams
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, MO, United States
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Ye Yuan
- Research Department, Colorado Center for Reproductive Medicine, Lone Tree, CO, United States
| | - Rowan M. Karvas
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
| | - Megan A. Sheridan
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, MO, United States
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Laura C. Schulz
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, MO, United States
| | - Toshihiko Ezashi
- Research Department, Colorado Center for Reproductive Medicine, Lone Tree, CO, United States
| | - Michael R. Roberts
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| | - Danny J. Schust
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, MO, United States
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| |
Collapse
|
3
|
The pathologic changes of human placental macrophages in women with hyperglycemia in pregnancy. Placenta 2022; 130:60-66. [DOI: 10.1016/j.placenta.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 10/24/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
|
4
|
Quantitative SUMO proteomics identifies PIAS1 substrates involved in cell migration and motility. Nat Commun 2020; 11:834. [PMID: 32047143 PMCID: PMC7012886 DOI: 10.1038/s41467-020-14581-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/07/2020] [Indexed: 01/09/2023] Open
Abstract
The protein inhibitor of activated STAT1 (PIAS1) is an E3 SUMO ligase that plays important roles in various cellular pathways. Increasing evidence shows that PIAS1 is overexpressed in various human malignancies, including prostate and lung cancers. Here we used quantitative SUMO proteomics to identify potential substrates of PIAS1 in a system-wide manner. We identified 983 SUMO sites on 544 proteins, of which 62 proteins were assigned as putative PIAS1 substrates. In particular, vimentin (VIM), a type III intermediate filament protein involved in cytoskeleton organization and cell motility, was SUMOylated by PIAS1 at Lys-439 and Lys-445 residues. VIM SUMOylation was necessary for its dynamic disassembly and cells expressing a non-SUMOylatable VIM mutant showed a reduced level of migration. Our approach not only enables the identification of E3 SUMO ligase substrates but also yields valuable biological insights into the unsuspected role of PIAS1 and VIM SUMOylation on cell motility. PIAS1 is an E3 SUMO ligase involved in various cellular processes. Here, the authors use quantitative proteomics to identify potential PIAS1 substrates in human cells and elucidate the biological consequences of PIAS1-mediated SUMOylation of vimentin.
Collapse
|
5
|
Fan B, Jin Y, Zhang H, Zhao R, Sun M, Sun M, Yuan X, Wang W, Wang X, Chen Z, Liu W, Yu N, Wang Q, Liu T, Li X. MicroRNA‑21 contributes to renal cell carcinoma cell invasiveness and angiogenesis via the PDCD4/c‑Jun (AP‑1) signalling pathway. Int J Oncol 2019; 56:178-192. [PMID: 31789394 DOI: 10.3892/ijo.2019.4928] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 10/14/2019] [Indexed: 12/17/2022] Open
Abstract
Accumulating evidence has demonstrated that microRNAs are associated with malignant biological behaviour, including tumorigenesis, cancer progression and metastasis via the regulation of target gene expression. Our previous study demonstrated that programmed cell death protein 4 (PDCD4), which is a tumour suppressor gene, is a target of microRNA‑21 (miR‑21), which affects the proliferation and transformation capabilities of renal cell carcinoma (RCC) cells. However, the role of miR‑21 in the molecular mechanism underlying the migration, invasion and angiogenesis of RCC remains poorly understood. The effects of miR‑21 on the invasion, migration and angiogenesis of RCC cells was determined through meta‑analysis and regulation of miR‑21 expression in vitro. After searching several databases, 6 articles including a total of 473 patients met the eligibility criteria for this analysis. The combined results of the meta‑analysis revealed that increased miR‑21 expression was significantly associated with adverse prognosis in patients with RCC, with a pooled hazard ratio estimate of 1.740. In in vitro experiments, we demonstrated that a miR‑21 inhibitor decreased the number of migrating and invading A498 and 786‑O RCC cells, along with a decrease in PDCD4, c‑Jun, matrix metalloproteinase (MMP)2 and MMP9 expression. Additionally, inhibition of miR‑21 was revealed to reduce tube formation and tube junctions in the endothelial cell line HMEC‑1 by affecting the expression of angiotensin‑1 and vascular endothelial growth factor A, whereas PDCD4 small interfering RNA exerted opposite effects on the same cells. Overall, these findings, along with evidence‑based molecular biology, demonstrated that miR‑21 expression promoted the migration, invasion and angiogenic abilities of RCC cells by directly targeting the PDCD4/c‑Jun signalling pathway. The results may help elucidate the molecular mechanism underlying the development and progression of RCC and provide a promising target for microRNA‑based therapy.
Collapse
Affiliation(s)
- Bo Fan
- Department of Urology, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Yiying Jin
- Department of Urology, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Hongshuo Zhang
- Department of Biochemistry, Institute of Glycobiology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Rui Zhao
- Department of Pharmacy, Zhongshan College of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Man Sun
- Department of Clinical Medicine, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Mengfan Sun
- Department of Pharmacy, Zhongshan College of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Xiaoying Yuan
- Department of Anatomy, College of Basic Medicine, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Wei Wang
- Department of Urology, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Xiaogang Wang
- Department of Urology, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Zhiqi Chen
- Department of Urology, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Wankai Liu
- Department of Urology, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Na Yu
- Department of Urology, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Qun Wang
- Department of Urology, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Tingjiao Liu
- Department of Oral Pathology, College of Stomatology of Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Xiancheng Li
- Department of Urology, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
6
|
Morales-Prieto DM, Barth E, Murrieta-Coxca JM, Favaro RR, Gutiérrez-Samudio RN, Chaiwangyen W, Ospina-Prieto S, Gruhn B, Schleußner E, Marz M, Markert UR. Identification of miRNAs and associated pathways regulated by Leukemia Inhibitory Factor in trophoblastic cell lines. Placenta 2019; 88:20-27. [PMID: 31586768 DOI: 10.1016/j.placenta.2019.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 08/06/2019] [Accepted: 09/10/2019] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Leukemia Inhibitory Factor (LIF) regulates behavior of trophoblast cells and their interaction with immune and endothelial cells. In vitro, trophoblast cell response to LIF may vary depending on the cell model. Reported differences in the miRNA profile of trophoblastic cells may be responsible for these observations. Therefore, miRNA expression was investigated in four trophoblastic cell lines under LIF stimulation followed by in silico analysis of altered miRNAs and their associated pathways. METHODS Low density TaqMan miRNA assays were used to quantify levels of 762 mature miRNAs under LIF stimulation in three choriocarcinoma-derived (JEG-3, ACH-3P and AC1-M59) and a trophoblast immortalized (HTR-8/SVneo) cell lines. Expression of selected miRNAs was confirmed in primary trophoblast cells and cell lines by qPCR. Targets and associated pathways of the differentially expressed miRNAs were inferred from the miRTarBase followed by a KEGG Pathway Enrichment Analysis. HTR-8/SVneo and JEG-3 cells were transfected with miR-21-mimics and expression of miR-21 targets was assessed by qPCR. RESULTS A similar number of miRNAs changed in each tested cell line upon LIF stimulation, however, low coincidence of individual miRNA species was observed and occurred more often among choriocarcinoma-derived cells (complete data set at http://www.ncbi.nlm.nih.gov/geo/ under GEO accession number GSE130489). Altered miRNAs were categorized into pathways involved in human diseases, cellular processes and signal transduction. Six cascades were identified as significantly enriched, including JAK/STAT and TGFB-SMAD. Upregulation of miR-21-3p was validated in all cell lines and primary cells and STAT3 was confirmed as its target. DISCUSSION Dissimilar miRNA responses may be involved in differences of LIF effects on trophoblastic cell lines.
Collapse
Affiliation(s)
| | - Emanuel Barth
- Friedrich-Schiller-University Jena, Faculty of Mathematics and Computer Science, RNA Bioinformatics and High Throughput Analysis, Germany; Leibniz Institute for Age Research, Fritz Lipman Institute (FLI), Beutenbergstrasse 11, 07745, Jena, Germany
| | - Jose Martín Murrieta-Coxca
- Placenta-Labor, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany; Departamento de Inmunología, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Mexico City, Mexico
| | - Rodolfo R Favaro
- Placenta-Labor, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | | | - Wittaya Chaiwangyen
- Placenta-Labor, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | | | - Bernd Gruhn
- Children's Hospital, Friedrich-Schiller University Jena, Kochstraße 2, 07745, Jena, Germany
| | - Ekkehard Schleußner
- Placenta-Labor, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Manja Marz
- Friedrich-Schiller-University Jena, Faculty of Mathematics and Computer Science, RNA Bioinformatics and High Throughput Analysis, Germany; Leibniz Institute for Age Research, Fritz Lipman Institute (FLI), Beutenbergstrasse 11, 07745, Jena, Germany; European Virus Bioinformatics Center, Leutragraben 1, 07743, Jena, Germany
| | - Udo R Markert
- Placenta-Labor, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.
| |
Collapse
|
7
|
Estradiol promotes trophoblast viability and invasion by activating SGK1. Biomed Pharmacother 2019; 117:109092. [DOI: 10.1016/j.biopha.2019.109092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/24/2019] [Accepted: 06/04/2019] [Indexed: 01/02/2023] Open
|
8
|
New Insights into the Process of Placentation and the Role of Oxidative Uterine Microenvironment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9174521. [PMID: 31341539 PMCID: PMC6615000 DOI: 10.1155/2019/9174521] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/28/2019] [Indexed: 12/18/2022]
Abstract
For a successful pregnancy to occur, a predecidualized receptive endometrium must be invaded by placental differentiated cells (extravillous trophoblast cells (EVTs)) and, at the same time, continue decidualization. EVT invasion is aimed at anchoring the placenta to the maternal uterus and ensuring local blood supply increase necessary to provide normal placental and foetal development. The first is achieved by migrating through the maternal endometrium and deeper into the myometrium, while the second by transforming uterine spiral arteries into large vessels. This process is a tightly regulated battle comprising interests of both the mother and the foetus. Invading EVTs are required to perform a scope of functions: move, adhere, proliferate, differentiate, interact, and digest the extracellular matrix (ECM); tolerate hypoxia; transform the maternal spiral arteries; and die by apoptosis. All these functions are modulated by their surrounding microenvironment: oxygen, soluble factors (e.g., cytokines, growth factors, and hormones), ECM proteins, and reactive oxygen species. A deeper comprehension of oxidative uterine microenvironment contribution to trophoblast function will be addressed in this review.
Collapse
|
9
|
Verma S, Pal R, Gupta SK. Decrease in invasion of HTR-8/SVneo trophoblastic cells by interferon gamma involves cross-communication of STAT1 and BATF2 that regulates the expression of JUN. Cell Adh Migr 2018; 12:432-446. [PMID: 29394132 DOI: 10.1080/19336918.2018.1434030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Trophoblast invasion is one of the critical steps during embryo implantation. IFNG secreted during pregnancy by uterine NK cells acts as a negative regulator of invasion. IFNG in a dose dependent fashion inhibits invasion of HTR-8/SVneo trophoblastic cells. It phosphorylates STAT1 both at tyr 701 and ser 727 residues. Silencing of STAT1 significantly increases invasion (∼59%) of the cells. Based on NGS data, out of 207 genes, BATF2 expression was significantly increased after IFNG treatment. Silencing of BATF2 significantly increases the invasion of cells with (∼53%) or without (∼44%) treatment with IFNG. Expression of BATF2 and STAT1 is dependent on each other, silencing of one significantly inhibit the expression of other. Interestingly, phosphorylated JUN is also regulated by BATF2 and STAT1. Collectively, these findings showed that decrease in the invasion of HTR-8/SVneo cells after IFNG treatment is controlled by STAT1 and BATF2, which further regulates the expression of JUN.
Collapse
Affiliation(s)
- Sonam Verma
- a Reproductive Cell Biology Laboratory, National Institute of Immunology , New Delhi - 110 067 , India
| | - Rahul Pal
- b Immunoendocrinology Laboratory, National Institute of Immunology , New Delhi , India
| | - Satish Kumar Gupta
- a Reproductive Cell Biology Laboratory, National Institute of Immunology , New Delhi - 110 067 , India
| |
Collapse
|
10
|
Winship A, Dimitriadis E. Interleukin 11 is upregulated in preeclampsia and leads to inflammation and preeclampsia features in mice. J Reprod Immunol 2017; 125:32-38. [PMID: 29195119 DOI: 10.1016/j.jri.2017.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/31/2017] [Accepted: 11/24/2017] [Indexed: 12/18/2022]
Abstract
Preeclampsia is a dangerous pregnancy complication, which is often associated with fetal growth restriction and can have serious life-long effects for both mother and baby. While the establishment of the placenta in the first trimester is the sentinel event in the development of preeclampsia little is known of the critical mechanisms of placentation that lead to the syndrome. Locally produced inflammatory cytokines are thought to play a role in the development of preeclampsia. This review summarizes the evidence that interleukin 11 is dysregulated in preeclampsia and contributes to the initiation of preeclampsia via effects on placentation. It discusses the benefits and drawbacks of targeting IL11 as a novel treatment option for preeclampsia.
Collapse
Affiliation(s)
- Amy Winship
- Centre for Reproductive Health, The Hudson Institute of Medical Research, Clayton, 3168, VIC, Australia; Department of Molecular and Translational Medicine, Monash University, Clayton, 3800, VIC, Australia; Department of Anatomy and Developmental Biology, Monash University, Clayton, 3800, VIC, Australia
| | - Eva Dimitriadis
- Centre for Reproductive Health, The Hudson Institute of Medical Research, Clayton, 3168, VIC, Australia; Department of Molecular and Translational Medicine, Monash University, Clayton, 3800, VIC, Australia; Department of Anatomy and Developmental Biology, Monash University, Clayton, 3800, VIC, Australia.
| |
Collapse
|
11
|
Godbole G, Suman P, Malik A, Galvankar M, Joshi N, Fazleabas A, Gupta SK, Modi D. Decrease in Expression of HOXA10 in the Decidua After Embryo Implantation Promotes Trophoblast Invasion. Endocrinology 2017; 158:2618-2633. [PMID: 28520923 PMCID: PMC6283436 DOI: 10.1210/en.2017-00032] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 05/12/2017] [Indexed: 12/20/2022]
Abstract
An important step toward successful pregnancy involves invasion of the trophoblast cells into the decidua for placentation. Herein, we show that in the human and baboon decidua HOXA10 expression is downregulated after implantation and that this reduction is most prominent in the decidual cells juxtaposed to the invading placental villi. The supernatants derived from HOXA10-depleted human decidual cells increase the invasiveness of the trophoblast cell lines ACH-3P and JEG3 in vitro; this increase is due to higher expression and activity of matrix metalloproteases (MMPs) and reduced expression of tissue inhibitors of MMPs in both the cell lines. The proinvasive ability of HOXA10-depleted decidual cells is due to increased levels and secretion of leukemia inhibitor factor (LIF) and interleukin (IL)-6. Both these cytokines individually promote invasion of ACH-3P and JEG3 cell by increasing the activities of MMPs and decreasing mRNA levels of TIMPs. Finally, we demonstrate that the supernatants derived from HOXA10-depleted decidual cell-phosphorylated STAT3 (Tyr 705) and knocking down STAT3 in ACH-3P and JEG3 cells restrained the invasion mediated by supernatants derived from HOXA10-depleted decidual cells. These results imply that STAT3 activity is essential and sufficient to promote invasion in response to downregulation of HOXA10 in decidual cells. We propose that downregulation of HOXA10 in the decidual cells promotes the expression of LIF and IL-6, which, in a paracrine manner, activates STAT3 in the trophoblast cells, leading to an increase in MMPs to facilitate invasion.
Collapse
Affiliation(s)
- Geeta Godbole
- Molecular and Cellular Biology Laboratory, National Institute for Research in Reproductive Health, Indian Council of Medical Research, Parel, Mumbai 400012, India
| | - Pankaj Suman
- Reproductive Cell Biology Laboratory, National Institute of Immunology, New Delhi 110067, India
| | - Ankita Malik
- Reproductive Cell Biology Laboratory, National Institute of Immunology, New Delhi 110067, India
| | - Mosami Galvankar
- Molecular and Cellular Biology Laboratory, National Institute for Research in Reproductive Health, Indian Council of Medical Research, Parel, Mumbai 400012, India
| | - Niraj Joshi
- Department of Obstetrics, Gynaecology & Reproductive Biology, Michigan State University, Grand Rapids, Michigan 49503
| | - Asgerally Fazleabas
- Department of Obstetrics, Gynaecology & Reproductive Biology, Michigan State University, Grand Rapids, Michigan 49503
- Department of Women's Health, Spectrum Health System, Grand Rapids, Michigan 49341
| | - Satish Kumar Gupta
- Reproductive Cell Biology Laboratory, National Institute of Immunology, New Delhi 110067, India
| | - Deepak Modi
- Molecular and Cellular Biology Laboratory, National Institute for Research in Reproductive Health, Indian Council of Medical Research, Parel, Mumbai 400012, India
| |
Collapse
|
12
|
Malik A, Pal R, Gupta SK. Interdependence of JAK-STAT and MAPK signaling pathways during EGF-mediated HTR-8/SVneo cell invasion. PLoS One 2017; 12:e0178269. [PMID: 28542650 PMCID: PMC5444796 DOI: 10.1371/journal.pone.0178269] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/10/2017] [Indexed: 12/03/2022] Open
Abstract
Invasion of trophoblast cells is spatio-temporally regulated by various cytokines and growth factors. In pregnancy, complications like preeclampsia, shallow invasion of trophoblast cells and low amounts of epidermal growth factor (EGF) have been reported. In the present study, regulatory mechanisms associated with EGF-mediated invasion in HTR-8/SVneo trophoblastic cells have been delineated. Treatment of HTR-8/SVneo cells with EGF (10 ng/ml) led to eight fold increase (p < 0.05) in invasion. Increased invasion of HTR-8/SVneo cells by EGF was associated with an increase in phosphorylation of ERK½. In addition, significant phosphorylation of STAT1 (ser 727) and STAT3 (both tyr 705 and ser 727 residues) was also observed, accompanied by a decrease in total STAT1. Inhibition of ERK½ phosphorylation by U0126 (10 μM) led to a significant decrease in EGF-mediated invasion with simultaneous decrease in the phosphorylated forms of STAT3 and STAT1. Decrease in total STAT1 was also reversed on inhibition of ERK½. Interestingly, inhibition of STAT3 by siRNA led to a significant decrease in EGF-mediated invasion of HTR-8/SVneo cells and phosphorylation of STAT1, but it did not have any effect on the activation of ERK½. On the other hand, inhibition of STAT1 by siRNA, also led to a significant decrease in the EGF-mediated invasion of HTR-8/SVneo cells, showed concomitant decrease in ERK½ phosphorylation and STAT3 phosphorylation at ser 727 residue. These results suggest cross-communication between ERK½ and JAK-STAT pathways during EGF-mediated increase in invasion of trophoblast cells; phosphorylation at ser 727 residue of both STAT3 and STAT1 appears to be critical.
Collapse
Affiliation(s)
- Ankita Malik
- Reproductive Cell Biology Laboratory, National Institute of Immunology, New Delhi, Delhi, India
| | - Rahul Pal
- Immunoendocrinology Laboratory, National Institute of Immunology, New Delhi, Delhi, India
| | - Satish Kumar Gupta
- Reproductive Cell Biology Laboratory, National Institute of Immunology, New Delhi, Delhi, India
- * E-mail:
| |
Collapse
|
13
|
Winship A, Menkhorst E, Van Sinderen M, Dimitriadis E. Interleukin 11: similar or opposite roles in female reproduction and reproductive cancer? Reprod Fertil Dev 2017; 28:395-405. [PMID: 25151993 DOI: 10.1071/rd14128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/03/2014] [Indexed: 12/12/2022] Open
Abstract
During placental development and carcinogenesis, cell invasion and migration are critical events in establishing a self-supporting vascular supply. Interleukin (IL)-11 is a pleiotropic cytokine that affects the invasive and migratory capabilities of trophoblast cells that form the placenta during pregnancy, as well as various malignant cell types. The endometrium is the site of embryo implantation during pregnancy; conversely, endometrial carcinoma is the most common gynaecological malignancy. Here, we review what is known about the role of IL-11 in trophoblast function and in gynaecological malignancies, focusing primarily on the context of the uterine environment.
Collapse
Affiliation(s)
- Amy Winship
- Embryo Implantation Laboratory, MIMR-PHI Institute, 27-31 Wright Street, Clayton, Vic. 3168, Australia
| | - Ellen Menkhorst
- Embryo Implantation Laboratory, MIMR-PHI Institute, 27-31 Wright Street, Clayton, Vic. 3168, Australia
| | - Michelle Van Sinderen
- Embryo Implantation Laboratory, MIMR-PHI Institute, 27-31 Wright Street, Clayton, Vic. 3168, Australia
| | - Evdokia Dimitriadis
- Embryo Implantation Laboratory, MIMR-PHI Institute, 27-31 Wright Street, Clayton, Vic. 3168, Australia
| |
Collapse
|
14
|
Sehgal S, Bhatnagar S, Pallavi SK. Provocative ideas on human placental biology: A prerequisite for prevention and treatment of neonatal health challenges. Am J Reprod Immunol 2017; 77. [PMID: 28276106 DOI: 10.1111/aji.12656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 01/28/2017] [Indexed: 01/09/2023] Open
Abstract
A 2-day invite-only meeting on generating "Provocative Ideas on human placental research" was organized on 1-2 December 2015 at the Translational Health Science and Technology Institute, Faridabad. This meeting was sponsored by Department of Biotechnology, Ministry of Science and Technology, Govt. of India. The objectives of this meeting were the critical evaluation of placental physiology and its development. Special emphasis was placed on understanding the consequences and implications of placental development in sustenance of pregnancy and in pregnancy-associated complications such as preeclampsia, intrauterine growth restriction, and preterm birth. This meeting brought together experienced as well as novice clinicians and biologists who have a keen interest in the field of placental biology, including development of new technologies and methods for evaluating the role of placenta in predicting pregnancy outcomes. The meeting primarily focused on (i) high-throughput "-omics" approaches, (ii) maternal nutrition and placental function, (iii) placental infection and inflammation, (iv) real-time evaluation of placental development: tools for placental research, and (v) epidemiologic relevance of placental-based research. Unanimous consensus emerged among the participants to carry out additional work focused on these areas. In this article, we summarize the talks and review the published literature on the above-mentioned niches. As a direct outcome of this meeting, a request for applications has been announced by the Department of Biotechnology, Government of India, for pursuing research in this vital but understudied domain.
Collapse
Affiliation(s)
- Shilpi Sehgal
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Shinjini Bhatnagar
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - S K Pallavi
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| |
Collapse
|
15
|
Liu J, Song G, Lin X, Pang X, Meng T. Upregulated unique long 16 binding protein 1 detected in preeclamptic placenta affects human extravillous trophoblast cell line (HTR-8/SVneo) invasion by modulating the function of uterine natural killer cells. Exp Ther Med 2017; 13:1447-1455. [PMID: 28413491 PMCID: PMC5377380 DOI: 10.3892/etm.2017.4143] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 12/23/2016] [Indexed: 11/05/2022] Open
Abstract
Well-controlled trophoblast invasion at the maternal-fetal interface is crucial for normal placentation and successful pregnancy, otherwise pathological conditions of pregnancy occur, such as preeclampsia. In previous studies, it has been demonstrated that unique long 16 binding protein (ULBP)1, a ligand for the natural-killer group (NKG)2D receptor on uterine natural killer (uNK) cells, is upregulated in the placenta in patients with preeclampsia. As they are present on the majority of the decidua, uNK have an important role in pregnancy. The aim of the present study was to determine the role of ULBP1 in trophoblast cell invasion, which is closely associated with the occurrence of preeclampsia. In the present study, ULBP1 expression levels in placentas collected after cesarean section from women with preeclampsia and normal pregnant women were determined by immunohistochemistry, reverse transcription-quantitative polymerase chain reaction and western blotting. The effects of ULBP1 on extravillous trophoblast cell line (HTR-8/SVneo) invasion mediated via uNK cells and the underlying mechanisms were investigated. mRNA and protein expression levels of ULBP1 were significantly upregulated (P<0.05) in preeclamptic placentas compared with normal controls. ULBP1 inhibited HTR-8/SVneo cells via the regulation of biological functions of uNK cells, including the downregulation of NKG2D expression on uNK cells and the stimulation of production of cytokines and chemokines that affect extravillous cytotrophoblast invasion by uNK cells. ULBP1 may have an important role in the pathophysiology of preeclampsia through the modification of biological functions of uNK cells, which may affect trophoblast invasion.
Collapse
Affiliation(s)
- Jing Liu
- Department of Obstetrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Guang Song
- Department of Ultrasound, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xuewen Lin
- Department of Stem Cells and Regenerative Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xining Pang
- Department of Stem Cells and Regenerative Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Tao Meng
- Department of Obstetrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
16
|
Sharma S, Godbole G, Modi D. Decidual Control of Trophoblast Invasion. Am J Reprod Immunol 2016; 75:341-50. [DOI: 10.1111/aji.12466] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 11/18/2015] [Indexed: 12/25/2022] Open
Affiliation(s)
- Shipra Sharma
- Molecular and Cellular Biology Laboratory; National Institute for Research in Reproductive Health; Mumbai India
| | - Geeta Godbole
- Molecular and Cellular Biology Laboratory; National Institute for Research in Reproductive Health; Mumbai India
| | - Deepak Modi
- Molecular and Cellular Biology Laboratory; National Institute for Research in Reproductive Health; Mumbai India
| |
Collapse
|
17
|
Effects of Human Umbilical Cord Mesenchymal Stem Cells on Human Trophoblast Cell Functions In Vitro. Stem Cells Int 2016; 2016:9156731. [PMID: 26949402 PMCID: PMC4753693 DOI: 10.1155/2016/9156731] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 08/23/2015] [Accepted: 10/08/2015] [Indexed: 12/19/2022] Open
Abstract
Trophoblast cell dysfunction is involved in many disorders during pregnancy such as preeclampsia and intrauterine growth restriction. Few treatments exist, however, that target improving trophoblast cell function. Human umbilical cord mesenchymal stem cells (hUCMSCs) are capable of self-renewing, can undergo multilineage differentiation, and have homing abilities; in addition, they have immunomodulatory effects and paracrine properties and thus are a prospective source for cell therapy. To identify whether hUCMSCs can regulate trophoblast cell functions, we treated trophoblast cells with hUCMSC supernatant or cocultured them with hUCMSCs. Both treatments remarkably enhanced the migration and invasion abilities of trophoblast cells and upregulated their proliferation ability. At a certain concentration, hUCMSCs also modulated hCG, PIGF, and sEndoglin levels in the trophoblast culture medium. Thus, hUCMSCs have a positive effect on trophoblast cellular functions, which may provide a new avenue for treatment of placenta-related diseases during pregnancy.
Collapse
|
18
|
LPS Induces Occludin Dysregulation in Cerebral Microvascular Endothelial Cells via MAPK Signaling and Augmenting MMP-2 Levels. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:120641. [PMID: 26290681 PMCID: PMC4531183 DOI: 10.1155/2015/120641] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 06/28/2015] [Accepted: 06/29/2015] [Indexed: 12/18/2022]
Abstract
Disrupted blood-brain barrier (BBB) integrity contributes to cerebral edema during central nervous system infection. The current study explored the mechanism of lipopolysaccharide- (LPS-) induced dysregulation of tight junction (TJ) proteins. Human cerebral microvascular endothelial cells (hCMEC/D3) were exposed to LPS, SB203580 (p38MAPK inhibitor), or SP600125 (JNK inhibitor), and cell vitality was determined by MTT assay. The proteins expressions of p38MAPK, JNK, and TJs (occludin and zonula occludens- (ZO-) 1) were determined by western blot. The mRNA levels of TJ components and MMP-2 were measured with quantitative real-time polymerase chain reaction (qRT-PCR), and MMP-2 protein levels were determined by enzyme-linked immunosorbent assay (ELISA). LPS, SB203580, and SP600125 under respective concentrations of 10, 7.69, or 0.22 µg/mL had no effects on cell vitality. Treatment with LPS decreased mRNA and protein levels of occludin and ZO-1 and enhanced p38MAPK and JNK phosphorylation and MMP-2 expression. These effects were attenuated by pretreatment with SB203580 or SP600125, but not in ZO-1 expression. Both doxycycline hyclate (a total MMP inhibitor) and SB-3CT (a specific MMP-2 inhibitor) partially attenuated the LPS-induced downregulation of occludin. These data suggest that MMP-2 overexpression and p38MAPK/JNK pathways are involved in the LPS-mediated alterations of occludin in hCMEC/D3; however, ZO-1 levels are not influenced by p38MAPK/JNK.
Collapse
|
19
|
Ospina-Prieto S, Chaiwangyen W, Pastuschek J, Schleussner E, Markert UR, Morales-Prieto DM. STAT5 is Activated by Epidermal Growth Factor and Induces Proliferation and Invasion in Trophoblastic Cells. Reprod Sci 2015; 22:1358-66. [PMID: 25862676 DOI: 10.1177/1933719115578923] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Epidermal growth factor (EGF) is expressed by decidual and trophoblast cells and influences manifold cellular functions during embryo implantation. Thus far, signaling of EGF via Signal Transducer and Activator of Transcription 5 (STAT5) has been only partially investigated. STAT5 stimulates proliferation and cell cycle progression in several cell types. Its dysregulation is associated with pregnancy. The aim of this study was to investigate STAT5 activation and function mediated by EGF in 2 trophoblastic cell lines, namely, HTR8/SVneo and JAR. Additionally, expression of STAT5B messenger RNA (mRNA) in trophoblast models has been compared to that of primary cells isolated from term placentas. Our results demonstrate the highest STAT5B mRNA expression in isolated trophoblast cells, lower expression in HTR8/SVneo cells, and the significantly lowest in JAR cells. Moreover, EGF-mediated STAT5 activation increases cell proliferation and viability in both cell lines. The STAT5 knockdown results in significant decrease in cell viability induced by EGF. Only in HTR8/SVneo cells, invasion decreases after STAT5 silencing and this effect cannot be rescued by further addition of EGF. These results demonstrate that STAT5 activated by EGF constitutes an important cascade for the regulation of cell proliferation and invasion in trophoblast cells.
Collapse
Affiliation(s)
| | - Wittaya Chaiwangyen
- Department of Obstetrics, University Hospital Jena, Placenta-Lab, Bachstraße, Jena, Germany
| | - Jana Pastuschek
- Department of Obstetrics, University Hospital Jena, Placenta-Lab, Bachstraße, Jena, Germany
| | - Ekkehard Schleussner
- Department of Obstetrics, University Hospital Jena, Placenta-Lab, Bachstraße, Jena, Germany
| | - Udo R Markert
- Department of Obstetrics, University Hospital Jena, Placenta-Lab, Bachstraße, Jena, Germany
| | - Diana M Morales-Prieto
- Department of Obstetrics, University Hospital Jena, Placenta-Lab, Bachstraße, Jena, Germany
| |
Collapse
|
20
|
Expression of RGC32 in human normal and preeclamptic placentas and its role in trophoblast cell invasion and migration. Placenta 2015; 36:350-6. [DOI: 10.1016/j.placenta.2014.12.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/18/2014] [Accepted: 12/15/2014] [Indexed: 11/18/2022]
|
21
|
Stimulation of the JAK/STAT pathway by LIF and OSM in the human granulosa cell line COV434. J Reprod Immunol 2015; 108:48-55. [PMID: 25817464 DOI: 10.1016/j.jri.2015.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 02/25/2015] [Accepted: 03/03/2015] [Indexed: 01/30/2023]
Abstract
The development of the follicle and competent oocyte is highly coordinated, requiring interplay among several systems. These implicate endocrine, immune, and metabolic signals, intrafollicular paracrine factors from theca, mural, and cumulus granulosa cells, and the oocyte itself. Granulosa cells play a key role in their interaction. COV434 is one of the few human granulosa cell lines that can be used as an in vitro model for ovarian research. We aimed to evaluate the possible activation of the Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling pathway by IL-6-type cytokines leukemia inhibitory factor (LIF) and oncostatin M (OSM) in COV434 cells. Expression of GP130 (glycoprotein 130), STAT3 (signal transducer and activators of transcription 3), PIAS3 (protein inhibitor of activated STAT 3), and SOCS3 (suppressor of cytokine signaling 3) genes after stimulation with LIF or OSM was assessed using RT-qPCR (real-time PCR). GP130 transcripts were significantly upregulated after incubation with LIF or OSM for 24h. Expression of the STAT3 gene was stimulated only after incubation with LIF, but not OSM. SOCS3 showed significant upregulation for all time periods and the levels of PIAS3 were initially down- and after 24h upregulated. Furthermore, the major signaling components of the JAK/STAT pathway, GP130 and STAT3, and the kinase activation patterns of STAT3, were examined at protein level. We found constitutive protein expression for GP130, STAT3, pSTAT3(ser727) and upregulation of pSTAT3(tyr705) by LIF and OSM. Our results demonstrate the activation of the JAK/STAT pathway by LIF and OSM in human granulosa cells.
Collapse
|
22
|
Suman P, Gupta SK. STAT3 and ERK1/2 cross-talk in leukaemia inhibitory factor mediated trophoblastic JEG-3 cell invasion and expression of mucin 1 and Fos. Am J Reprod Immunol 2014; 72:65-74. [PMID: 24716848 DOI: 10.1111/aji.12248] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/09/2014] [Indexed: 01/06/2023] Open
Abstract
PROBLEM The aim of this study was to investigate the relative importance of STAT3 and ERK1/2 activation in leukaemia inhibitory factor (LIF)-mediated invasion of JEG-3 cells. METHOD OF STUDY Matrigel matrix-based invasion assay; Western blot; cDNA microarray; quantitative RT-PCR; gene silencing by siRNA. RESULTS Leukaemia inhibitory factor treatment led to the activation of STAT3 and ERK1/2 signaling pathways which was followed by changes in the expression of several invasion-associated molecules such as mucin1 (MUC1), Fos, Jun, etc. Abrogation of either STAT3 or ERK1/2 signaling reduced (P < 0.05) the LIF-mediated invasion of JEG-3 cells. It was associated with a significant reduction in the expression of both MUC1 and Fos, suggesting a common denominator in LIF-STAT3-ERK1/2 signaling. To this effect, we observed a decrease in LIF-mediated p-STAT3 (Ser727) upon blocking STAT3 or ERK1/2 signaling. CONCLUSIONS ERK1/2 as well as JAK-STAT-mediated STAT3 (Ser727) phosphorylation play an important role in LIF-mediated JEG-3 trophoblastic cell invasion and gene expression.
Collapse
Affiliation(s)
- Pankaj Suman
- Reproductive Cell Biology Laboratory, National Institute of Immunology, New Delhi, India
| | | |
Collapse
|
23
|
Suman P, Shembekar N, Gupta SK. Leukemia inhibitory factor increases the invasiveness of trophoblastic cells through integrated increase in the expression of adhesion molecules and pappalysin 1 with a concomitant decrease in the expression of tissue inhibitor of matrix metalloproteinases. Fertil Steril 2013; 99:533-42. [DOI: 10.1016/j.fertnstert.2012.10.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 09/05/2012] [Accepted: 10/02/2012] [Indexed: 12/21/2022]
|
24
|
Morales-Prieto D, Chaiwangyen W, Ospina-Prieto S, Schneider U, Herrmann J, Gruhn B, Markert U. MicroRNA expression profiles of trophoblastic cells. Placenta 2012; 33:725-34. [DOI: 10.1016/j.placenta.2012.05.009] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 05/09/2012] [Accepted: 05/18/2012] [Indexed: 12/16/2022]
|
25
|
Suman P, Gupta SK. Comparative analysis of the invasion-associated genes expression pattern in first trimester trophoblastic (HTR-8/SVneo) and JEG-3 choriocarcinoma cells. Placenta 2012; 33:874-7. [PMID: 22800585 DOI: 10.1016/j.placenta.2012.06.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 06/15/2012] [Accepted: 06/20/2012] [Indexed: 11/28/2022]
Abstract
Several cellular models of trophoblast have been proposed to understand their invasion. We had reported that JEG-3 and HTR-8/SVneo cells show differential invasive behavior in response to IL-11 treatment. So, the present study aims to compare the expression of invasion-associated molecules in these two cell lines by performing cDNA microarray followed by quantitative RT-PCR. We have observed that HTR-8/SVneo cells have significantly higher invasiveness than JEG-3 cells, which might be due to higher expression of proteases and signaling intermediates of JAK/STAT and MAPK signaling pathways. Like extravillous trophoblasts (EVTs), a higher expression of functionally significant proteases like MMP1, MMP2, MMP9, PLAU etc in HTR-8/SVneo cells, project them as a close mimic of EVTs under in vitro conditions.
Collapse
Affiliation(s)
- P Suman
- Reproductive Cell Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | |
Collapse
|