1
|
Xiao S, Zhang P, Zhang G, Li W, Lin H, Hu X. Inhibition of toll-like receptor 4 activation by apigenin and chrysin via competition for sites and conformational changes. Int J Biol Macromol 2023; 252:126415. [PMID: 37598817 DOI: 10.1016/j.ijbiomac.2023.126415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
The activation of toll-like receptor 4 (TLR4) signaling is crucial for initiating and coordinating the immune response against infections, and is proved as a vital target for inflammatory diseases. Herein, TLR4 with sufficient amount and functional activity was generated by heterologous expression and used to investigate the mechanism of apigenin (Api)/chrysin (Chr) inhibition of TLR4 activation. The results demonstrated that Api/Chr exhibited a strong fluorescence quenching effect through a static quenching and a high binding affinity (Ka > 105 L·mol-1) with TLR4, indicating the potential of Api/Chr as a TLR4 inhibitor. Additionally, the binding of Api/Chr induced a loose and unstable conformation of TLR4 with evidence like the decreased hydrophobicity of the tryptophan microenvironment, decreased α-helix content and increased free sulfhydryl content, resulting in reduced stability of the TLR4. The computer simulations revealed that Api/Chr occupied the myeloid differentiation factor 2 (MD-2) binding region, preventing MD-2 from binding to TLR4. Furthermore, the accuracy of the binding site between Api/Chr and TLR4 was confirmed through genetic mutations. Overall, the mechanism by which Api/Chr inhibited TLR4 activation was elucidated at the macroscopic and molecular levels, providing the worthful information concerning the future therapeutic application of Api/Chr as a natural TLR4 inhibitor.
Collapse
Affiliation(s)
- Shuang Xiao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Peng Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Guowen Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Wenwen Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Haowen Lin
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Xing Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
2
|
Nalinratana N, Suriya U, Laprasert C, Wisidsri N, Poldorn P, Rungrotmongkol T, Limpanasitthikul W, Wu HC, Chang HS, Chansriniyom C. In vitro and in silico studies of 7'',8''-buddlenol D anti-inflammatory lignans from Carallia brachiata as p38 MAP kinase inhibitors. Sci Rep 2023; 13:3558. [PMID: 36864126 PMCID: PMC9981598 DOI: 10.1038/s41598-023-30475-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
Excessive macrophage activation induces the release of high levels of inflammatory mediators which not only amplify chronic inflammation and degenerative diseases but also exacerbate fever and retard wound healing. To identify anti-inflammatory molecules, we examined Carallia brachiata-a medicinal terrestrial plant from Rhizophoraceae. Furofuran lignans [(-)-(7''R,8''S)-buddlenol D (1) and (-)-(7''S,8''S)-buddlenol D (2)] isolated from the stem and bark inhibited nitric oxide (half maximal inhibitory concentration (IC50): 9.25 ± 2.69 and 8.43 ± 1.20 micromolar for 1 and 2, respectively) and prostaglandin E2 (IC50: 6.15 ± 0.39 and 5.70 ± 0.97 micromolar for 1 and 2, respectively) productions in lipopolysaccharide-induced RAW264.7 cells. From western blotting, 1 and 2 suppressed LPS-induced inducible nitric oxide synthase and cyclooxygenase-2 expression in a dose-dependent manner (0.3-30 micromolar). Moreover, analysis of the mitogen-activated protein kinase (MAPK) signaling pathway showed decreased p38 phosphorylation levels in 1- and 2-treated cells, while phosphorylated ERK1/2 and JNK levels were unaffected. This discovery agreed with in silico studies which suggested 1 and 2 bound to the ATP-binding site in p38-alpha MAPK based on predicted binding affinity and intermolecular interaction docking. In summary, 7'',8''-buddlenol D epimers demonstrated anti-inflammatory activities via p38 MAPK inhibition and may be used as viable anti-inflammatory therapies.
Collapse
Affiliation(s)
- Nonthaneth Nalinratana
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Utid Suriya
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chanyanuch Laprasert
- Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nakuntwalai Wisidsri
- Faculty of Integrative Medicine, Rajamangala University of Technology Thanyaburi, Pathum Thani, 12130, Thailand
| | - Preeyaporn Poldorn
- Biocatalyst and Environmental Biotechnology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thanyada Rungrotmongkol
- Biocatalyst and Environmental Biotechnology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | - Ho-Cheng Wu
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan
| | - Hsun-Shuo Chang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chaisak Chansriniyom
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
- Natural Products and Nanoparticles Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
3
|
Khan E, Khan M, Khan S, Lohani M, Bushara NZA, Marouf HAA, Punnoose K, Ahmad IZ. Computational modeling of cyanobacterial phytoconstituents against toll-like receptors of skin cancer. J Biomol Struct Dyn 2023; 41:12292-12304. [PMID: 36744519 DOI: 10.1080/07391102.2023.2174600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/01/2023] [Indexed: 02/07/2023]
Abstract
Melanoma is an extremely dangerous disease. The diagnosis and treatment of it may be difficult because of its diversity and complexity. More than 90% of the marine biomass (microflora and microalgae) constitutes the natural biodiversity reserves. TLR-related research developments indicate possible cancer therapeutic possibilities. In addition to its significant function in innate immunity, TLR activation is connected to the start of pyroptosis, apoptosis, or autophagy in malignance cells. For these reasons, TLR agonists are appealing candidates for the production of cancer medications. From the web databases, the ternary structures of the receptors (TLR3 and TLR4) and ligands are extracted. Sixty-nine compounds were subjected to a drug likeness filter, but only twenty-two were screened further for evaluating ADMET criteria, in which only seven compounds satisfied the pharmacological properties. These compounds are further analyzed for docking parameters against TLRs (TLR3 and TLR4) and molecular simulation investigation of the best cluster to evaluate the complex stability. Molecular docking methodology discovered that Scytonmein has a significant binding potential energy of -5.21 and -7.92 kcal/mol against TLR3 and TLR4, respectively, in comparison to the redock co-crystal structure (-3.98 and -4.30 kcal/mol, respectively). The simulation analysis demonstrates the significant stability of the Scytonemin and TLR4 complexes in terms of average RMSD and RMSF compared to the redock complex, while criteria like solvent-accessible surface area (SASA), gyration (Rg) and hydrogen bonding have further supported the significant interaction and stability of the conformations.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Elhan Khan
- Natural Products Laboratory, Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, India
| | - Mahvish Khan
- Department of Biology, College of Science, Ha'il University, Ha'il, Saudi Arabia
| | - Saif Khan
- Department of Basic Dental and Medical Sciences, College of Dentistry, Ha'il University, Ha'il, Saudi Arabia
| | | | - Nashwa Zaki Ali Bushara
- Department of Preventive Dental Sciences, College of Dentistry, Ha'il University, Ha'il, Saudi Arabia
| | - Hussein Abdul Aziz Marouf
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Ha'il University, Ha'il, Saudi Arabia
| | - Kurian Punnoose
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Ha'il University, Ha'il, Saudi Arabia
| | - Iffat Zareen Ahmad
- Natural Products Laboratory, Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
4
|
Wang S, Ji T, Wang L, Qu Y, Wang X, Wang W, Lv M, Wang Y, Li X, Jiang P. Exploration of the mechanism by which Huangqi Guizhi Wuwu decoction inhibits Lps-induced inflammation by regulating macrophage polarization based on network pharmacology. BMC Complement Med Ther 2023; 23:8. [PMID: 36624435 PMCID: PMC9830836 DOI: 10.1186/s12906-022-03826-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Huangqi Guizhi Wuwu decoction (HQGZWWD) is a traditional Chinese herbal medicine formulation with significant anti-inflammatory activity. However, its underlying mechanism remains unknown. Through network pharmacology and experimental validation, this study aimed to examine the potential mechanism of HQGZWWD in regulating macrophage polarization and inflammation. METHODS The active components were obtained from the Traditional Chinese Medicine Systems Pharmacology database and Analysis Platform (TCMSP), whereas the corresponding targets were obtained from the TCMSP and Swiss Target Prediction database. The GeneCards database identified targets associated with macrophage polarization and inflammation. Multiple networks were developed to identify the key compounds, principal biological processes, and pathways of HQGZWWD that regulate macrophage polarization and inflammation. Autodock Vina is utilized to assess the binding ability between targets and active compounds. Finally, confirm the experiment's central hypothesis. Human histiocytic lymphoma (U-937) cells were transformed into M1 macrophages following stimulation with Lipopolysaccharide (LPS) to evaluate the effect of HQGZWWD drug-containing mouse serum (HQGZWWD serum) on regulating macrophage polarization and inflammation. RESULTS A total of 54 active components and 859 HQGZWWD targets were obtained. There were 9972 targets associated with macrophage polarization and 11,109 targets associated with inflammation. After screening, 34 overlapping targets were identified, of which 5 were identified as central targets confirmed by experiments, including the α7 nicotinic acetylcholine receptor (α7 nAchR), interleukin 6 (IL-6), Interleukin-1 beta (IL-1β), interleukin 10 (IL-10) and growth factor beta (TGF-β1). Pathway enrichment analysis revealed that 34 overlapping targets were enriched in multiple pathways associated with macrophage polarization and inflammation, including the TGF beta signaling pathway, NF-kappa B signaling pathway, JAK-STAT signaling pathway, and TNF signaling pathway. Molecular docking confirmed that the majority of HQGZWWD's compounds can bind to the target. In vitro experiments, HQGZWWD serum was shown to up-regulate the expression of α7 nAchR, reduce the number of M1 macrophages, stimulate the production of M2 macrophages, inhibit the expression of pro-inflammatory cytokines IL-6 and IL1-β, and increase the expression of anti-inflammatory cytokines IL-10 and TGF-β1. CONCLUSION HQGZWWD can regulate the number of M1/M2 macrophages and the level of inflammatory cytokines, and the underlying mechanism may be related to the up-regulation of α7 nAchR expression.
Collapse
Affiliation(s)
- Sutong Wang
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, Jinan, 250014 Shandong China
| | - Tianshu Ji
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, Jinan, 250014 Shandong China
| | - Lin Wang
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, Jinan, 250014 Shandong China
| | - Yiwei Qu
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, Jinan, 250014 Shandong China
| | - Xinhui Wang
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, Jinan, 250014 Shandong China
| | - Wenting Wang
- grid.464481.b0000 0004 4687 044XNational Clincial Research Center for Cardiovascular Diseases of Traditional Chinese Medicine, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091 China
| | - Mujie Lv
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, Jinan, 250014 Shandong China
| | - Yongcheng Wang
- grid.479672.9Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011 China
| | - Xiao Li
- grid.479672.9Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011 China
| | - Ping Jiang
- grid.479672.9Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011 China
| |
Collapse
|
5
|
Human-Based Immune Responsive In Vitro Infection Models for Validation of Novel TLR4 Antagonists Identified by Computational Discovery. Microorganisms 2022; 10:microorganisms10020243. [PMID: 35208698 PMCID: PMC8876567 DOI: 10.3390/microorganisms10020243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/14/2022] Open
Abstract
Infectious diseases are still a major problem worldwide. This includes microbial infections, with a constant increase in resistance to the current anti-infectives employed. Toll-like receptors (TLRs) perform a fundamental role in pathogen recognition and activation of the innate immune response. Promising new approaches to combat infections and inflammatory diseases involve modulation of the host immune system via TLR4. TLR4 and its co-receptors MD2 and CD14 are required for immune response to fungal and bacterial infection by recognition of microbial cell wall components, making it a prime target for drug development. To evaluate the efficacy of anti-infective compounds early on, we have developed a series of human-based immune responsive infection models, including immune responsive 3D-skin infection models for modeling fungal infections. By using computational methods: pharmacophore modeling and molecular docking, we identified a set of 46 potential modulators of TLR4, which were screened in several tests systems of increasing complexity, including immune responsive 3D-skin infection models. We could show a strong suppression of cytokine and chemokine response induced by lipopolysacharide (LPS) and Candida albicans for individual compounds. The development of human-based immune responsive assays provides a more accurate and reliable basis for development of new anti-inflammatory or immune-modulating drugs.
Collapse
|
6
|
Chruszcz M, Chew FT, Hoffmann‐Sommergruber K, Hurlburt BK, Mueller GA, Pomés A, Rouvinen J, Villalba M, Wöhrl BM, Breiteneder H. Allergens and their associated small molecule ligands-their dual role in sensitization. Allergy 2021; 76:2367-2382. [PMID: 33866585 PMCID: PMC8286345 DOI: 10.1111/all.14861] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/07/2021] [Accepted: 04/10/2021] [Indexed: 02/06/2023]
Abstract
Many allergens feature hydrophobic cavities that allow the binding of primarily hydrophobic small‐molecule ligands. Ligand‐binding specificities can be strict or promiscuous. Serum albumins from mammals and birds can assume multiple conformations that facilitate the binding of a broad spectrum of compounds. Pollen and plant food allergens of the family 10 of pathogenesis‐related proteins bind a variety of small molecules such as glycosylated flavonoid derivatives, flavonoids, cytokinins, and steroids in vitro. However, their natural ligand binding was reported to be highly specific. Insect and mammalian lipocalins transport odorants, pheromones, catecholamines, and fatty acids with a similar level of specificity, while the food allergen β‐lactoglobulin from cow's milk is notably more promiscuous. Non‐specific lipid transfer proteins from pollen and plant foods bind a wide variety of lipids, from phospholipids to fatty acids, as well as sterols and prostaglandin B2, aided by the high plasticity and flexibility displayed by their lipid‐binding cavities. Ligands increase the stability of allergens to thermal and/or proteolytic degradation. They can also act as immunomodulatory agents that favor a Th2 polarization. In summary, ligand‐binding allergens expose the immune system to a variety of biologically active compounds whose impact on the sensitization process has not been well studied thus far.
Collapse
Affiliation(s)
- Maksymilian Chruszcz
- Department of Chemistry and Biochemistry University of South Carolina Columbia SC USA
| | - Fook Tim Chew
- Department of Biological Sciences National University of Singapore Singapore
| | - Karin Hoffmann‐Sommergruber
- Division of Medical Biotechnology Department of Pathophysiology and Allergy Research Medical University of Vienna Vienna Austria
| | - Barry K. Hurlburt
- Agricultural Research Service Southern Regional Research Center US Department of Agriculture New Orleans LA USA
| | - Geoffrey A. Mueller
- National Institute of Environmental Health Sciences National Institutes of Health Research Triangle Park NC USA
| | - Anna Pomés
- Indoor Biotechnologies, Inc. Charlottesville VA USA
| | - Juha Rouvinen
- Department of Chemistry University of Eastern Finland Joensuu Finland
| | - Mayte Villalba
- Department of Biochemistry and Molecular Biology Universidad Complutense de Madrid Madrid Spain
| | | | - Heimo Breiteneder
- Division of Medical Biotechnology Department of Pathophysiology and Allergy Research Medical University of Vienna Vienna Austria
| |
Collapse
|
7
|
Ain QU, Batool M, Choi S. TLR4-Targeting Therapeutics: Structural Basis and Computer-Aided Drug Discovery Approaches. Molecules 2020; 25:molecules25030627. [PMID: 32023919 PMCID: PMC7037830 DOI: 10.3390/molecules25030627] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 02/06/2023] Open
Abstract
The integration of computational techniques into drug development has led to a substantial increase in the knowledge of structural, chemical, and biological data. These techniques are useful for handling the big data generated by empirical and clinical studies. Over the last few years, computer-aided drug discovery methods such as virtual screening, pharmacophore modeling, quantitative structure-activity relationship analysis, and molecular docking have been employed by pharmaceutical companies and academic researchers for the development of pharmacologically active drugs. Toll-like receptors (TLRs) play a vital role in various inflammatory, autoimmune, and neurodegenerative disorders such as sepsis, rheumatoid arthritis, inflammatory bowel disease, Alzheimer's disease, multiple sclerosis, cancer, and systemic lupus erythematosus. TLRs, particularly TLR4, have been identified as potential drug targets for the treatment of these diseases, and several relevant compounds are under preclinical and clinical evaluation. This review covers the reported computational studies and techniques that have provided insights into TLR4-targeting therapeutics. Furthermore, this article provides an overview of the computational methods that can benefit a broad audience in this field and help with the development of novel drugs for TLR-related disorders.
Collapse
Affiliation(s)
| | | | - Sangdun Choi
- Correspondence: ; Tel.: +82-31-219-2600; Fax: +82-31-219-1615
| |
Collapse
|
8
|
Yang J, Liu R, Lu F, Xu F, Zheng J, Li Z, Cui W, Wang C, Zhang J, Xu S, Zhou W, Wang Q, Chen J, Chen X. Fast Green FCF Attenuates Lipopolysaccharide-Induced Depressive-Like Behavior and Downregulates TLR4/Myd88/NF-κB Signal Pathway in the Mouse Hippocampus. Front Pharmacol 2019; 10:501. [PMID: 31139084 PMCID: PMC6519320 DOI: 10.3389/fphar.2019.00501] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 04/23/2019] [Indexed: 01/09/2023] Open
Abstract
Depression is a common neuropsychiatric disorder and new anti-depressive treatments are still in urgent demand. Fast Green FCF, a safe biocompatible color additive, has been suggested to mitigate chronic pain. However, Fast green FCF’s effect on depression is unknown. We aimed to investigate Fast green FCF’s effect on lipopolysaccharide (LPS)-induced depressive-like behavior and the underlying mechanisms. Pretreatment of Fast green FCF (100 mg/kg, i.p. daily for 7 days) alleviated depressive-like behavior in LPS-treated mice. Fast green FCF suppressed the LPS-induced microglial and astrocyte activation in the hippocampus. Fast green FCF decreased the mRNA and protein levels of Toll-like receptor 4 (TLR4) and Myeloid differentiation primary response 88 (Myd88) and suppressed the phosphorylation of nuclear factor-κB (NF-κB) in the hippocampus of LPS-treated mice. Fast green FCF also downregulated hippocampal tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6, but did not alter the level of the brain-derived neurotrophic factor (BDNF) in the hippocampus of LPS-treated mice. The molecular docking simulation predicts that Fast green FCF may interact with TLR4 and interrupt the formation of the TLR4-MD2 complex. In conclusion, the anti-depressive action of Fast green FCF in LPS-treated mice may involve the suppression of neuroinflammation and the downregulation of TLR4/Myd88/NF-κB signal pathway in mouse hippocampus. Our findings indicate the potential of Fast green FCF for controlling depressive symptoms.
Collapse
Affiliation(s)
- Jing Yang
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Rongjun Liu
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Fan Lu
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Fang Xu
- Department of Anesthesiology, Ningbo No. 2 Hospital, Ningbo, China
| | - Jinwei Zheng
- Department of Anesthesiology, Ningbo No. 2 Hospital, Ningbo, China
| | - Zhao Li
- Department of Anesthesiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei Cui
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Chuang Wang
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Junfang Zhang
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Shujun Xu
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Wenhua Zhou
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Qinwen Wang
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Junping Chen
- Department of Anesthesiology, Ningbo No. 2 Hospital, Ningbo, China
| | - Xiaowei Chen
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| |
Collapse
|
9
|
Sun S, He M, VanPatten S, Al-Abed Y. Mechanistic insights into high mobility group box-1 (HMGb1)-induced Toll-like receptor 4 (TLR4) dimer formation. J Biomol Struct Dyn 2018; 37:3721-3730. [PMID: 30238832 DOI: 10.1080/07391102.2018.1526712] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Supplemental data for this article can be accessed here.High mobility group box-1 (HMGb1), an endogenous danger-associated molecular pattern protein (DAMP) whose extracellular release has been associated with sterile injury and various inflammatory diseases and conditions, has been shown to be a valuable clinical drug target. Elucidation of the specific interactions with the HMGb1 receptor, Toll-like receptor 4 (TLR4) and adaptor protein myeloid differentiation factor-2 (MD-2), will lead to more precisely targeted therapeutics. We sought to examine detailed interactions and dynamics of the HMGb1 A-box and B-box fragments, as well as the intact protein using in silico protein-protein docking (ZDOCK, ZRANK) and molecular dynamics (Schrödinger Desmond, New York, NY). Mutagenesis and SPR-binding studies allowed us to draw further conclusions regarding the details of the HMGb1-TLR4-MD2 interaction and shed light on the reasons for the opposing biological activities of HMGb1 A-box and B-box fragments. From our findings, we hypothesize that disulfide A-box fragment binds as an anchor toward the TLR4-MD-2 but does not facilitate the TLR4 dimer formation, thereby competing with the HMGb1-binding site and preventing HMGb1-induced signaling and downstream inflammation, whereas the pro-inflammatory B-box fragment retains the MD-2 active conformation and binds to both TLR4 proteins in the complex to aid TLR4 dimer formation, which activates the intracellular signaling for downstream inflammatory pathways and cytokine release. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shan Sun
- a Center for Molecular Innovation , The Feinstein Institute for Medical Research , Manhasset , NY 11030 , USA
| | - Mingzhu He
- a Center for Molecular Innovation , The Feinstein Institute for Medical Research , Manhasset , NY 11030 , USA
| | - Sonya VanPatten
- a Center for Molecular Innovation , The Feinstein Institute for Medical Research , Manhasset , NY 11030 , USA
| | - Yousef Al-Abed
- a Center for Molecular Innovation , The Feinstein Institute for Medical Research , Manhasset , NY 11030 , USA
| |
Collapse
|
10
|
Naftaly S, Cohen I, Shahar A, Hockla A, Radisky ES, Papo N. Mapping protein selectivity landscapes using multi-target selective screening and next-generation sequencing of combinatorial libraries. Nat Commun 2018; 9:3935. [PMID: 30258049 PMCID: PMC6158287 DOI: 10.1038/s41467-018-06403-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 09/04/2018] [Indexed: 12/22/2022] Open
Abstract
Characterizing the binding selectivity landscape of interacting proteins is crucial both for elucidating the underlying mechanisms of their interaction and for developing selective inhibitors. However, current mapping methods are laborious and cannot provide a sufficiently comprehensive description of the landscape. Here, we introduce a novel and efficient strategy for comprehensively mapping the binding landscape of proteins using a combination of experimental multi-target selective library screening and in silico next-generation sequencing analysis. We map the binding landscape of a non-selective trypsin inhibitor, the amyloid protein precursor inhibitor (APPI), to each of the four human serine proteases (kallikrein-6, mesotrypsin, and anionic and cationic trypsins). We then use this map to dissect and improve the affinity and selectivity of APPI variants toward each of the four proteases. Our strategy can be used as a platform for the development of a new generation of target-selective probes and therapeutic agents based on selective protein-protein interactions.
Collapse
Affiliation(s)
- Si Naftaly
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Itay Cohen
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Anat Shahar
- The National Institute for Biotechnology in the Negev (NIBN), Beer-Sheva, Israel
| | - Alexandra Hockla
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida, 32224, USA
| | - Evette S Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida, 32224, USA
| | - Niv Papo
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
11
|
Ferulic Acid Rescues LPS-Induced Neurotoxicity via Modulation of the TLR4 Receptor in the Mouse Hippocampus. Mol Neurobiol 2018; 56:2774-2790. [PMID: 30058023 DOI: 10.1007/s12035-018-1280-9] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/23/2018] [Indexed: 12/22/2022]
Abstract
Microglia play a crucial role in the inflammatory brain response to infection. However, overactivation of microglia is neurotoxic. Toll-like receptor 4 (TLR4) is involved in microglial activation via lipopolysaccharide (LPS), which triggers a variety of cytotoxic pro-inflammatory markers that produce deleterious effects on neuronal cells. Ferulic acid (FA) is a phenolic compound that exerts antioxidant and anti-inflammatory effects in neurodegenerative disease. However, the manner in which FA inhibits neuroinflammation-induced neurodegeneration is poorly understood. Therefore, we investigated the anti-inflammatory effects of FA against LPS-induced neuroinflammation in the mouse brain. First, we provide evidence that FA interferes with TLR4 interaction sites, which are required for the activation of microglia-induced neuroinflammation, and further examined the potential mechanism of its neuroprotective effects in the mouse hippocampus using molecular docking simulation and immunoblot analysis. Our results indicated that FA treatment inhibited glial cell activation, p-JNK, p-NFKB, and downstream signaling molecules, such as iNOS, COX-2, TNF-α, and IL-1β, in the mouse hippocampus and BV2 microglial cells. FA treatment strongly inhibited mitochondrial apoptotic signaling molecules, such as Bax, cytochrome C, caspase-3, and PARP-1, and reversed deregulated synaptic proteins, including PSD-95, synaptophysin, SNAP-25, and SNAP-23, and synaptic dysfunction in LPS-treated mice. These findings demonstrated that FA treatment interfered with the TLR4/MD2 complex binding site, which is crucial for evoking neuroinflammation via microglia activation and inhibited NFKB likely via a JNK-dependent mechanism, which suggests a therapeutic implication for neuroinflammation-induced neurodegeneration.
Collapse
|
12
|
Knoops B, Becker S, Poncin MA, Glibert J, Derclaye S, Clippe A, Alsteens D. Specific Interactions Measured by AFM on Living Cells between Peroxiredoxin-5 and TLR4: Relevance for Mechanisms of Innate Immunity. Cell Chem Biol 2018; 25:550-559.e3. [PMID: 29551349 DOI: 10.1016/j.chembiol.2018.02.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/08/2018] [Accepted: 02/07/2018] [Indexed: 12/14/2022]
Abstract
Inflammation is a pathophysiological response of innate immunity to infection or tissue damage. This response is among others triggered by factors released by damaged or dying cells, termed damage-associated molecular pattern (DAMP) molecules that act as danger signals. DAMPs interact with pattern recognition receptors (PRRs) to contribute to the induction of inflammation. However, how released peroxiredoxins (PRDXs) are able to activate PRRs, such as Toll-like receptors (TLRs), remains elusive. Here, we used force-distance curve-based atomic force microscopy to investigate the molecular mechanisms by which extracellular human PRDX5 can activate a proinflammatory response. Single-molecule experiments demonstrated that PRDX5 binds to purified TLR4 receptors, on macrophage-differentiated THP-1 cells, and on human TLR4-transfected CHO cells. These findings suggest that extracellular PRDX5 can specifically trigger a proinflammatory response. Moreover, our work also revealed that PRDX5 binding induces a cellular mechanoresponse. Collectively, this study provides insights into the role of extracellular PRDX5 in innate immunity.
Collapse
Affiliation(s)
- Bernard Knoops
- Université catholique de Louvain, Institut des Sciences de la Vie (ISV), 1348 Louvain-la-Neuve, Belgium.
| | - Sarah Becker
- Université catholique de Louvain, Institut des Sciences de la Vie (ISV), 1348 Louvain-la-Neuve, Belgium
| | - Mégane Anne Poncin
- Université catholique de Louvain, Institut des Sciences de la Vie (ISV), 1348 Louvain-la-Neuve, Belgium
| | - Julien Glibert
- Université catholique de Louvain, Institut des Sciences de la Vie (ISV), 1348 Louvain-la-Neuve, Belgium
| | - Sylvie Derclaye
- Université catholique de Louvain, Institut des Sciences de la Vie (ISV), 1348 Louvain-la-Neuve, Belgium
| | - André Clippe
- Université catholique de Louvain, Institut des Sciences de la Vie (ISV), 1348 Louvain-la-Neuve, Belgium
| | - David Alsteens
- Université catholique de Louvain, Institut des Sciences de la Vie (ISV), 1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
13
|
Cuccioloni M, Mozzicafreddo M, Bonfili L, Cecarini V, Giangrossi M, Falconi M, Saitoh SI, Eleuteri AM, Angeletti M. Interfering with the high-affinity interaction between wheat amylase trypsin inhibitor CM3 and toll-like receptor 4: in silico and biosensor-based studies. Sci Rep 2017; 7:13169. [PMID: 29030601 PMCID: PMC5640651 DOI: 10.1038/s41598-017-13709-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/27/2017] [Indexed: 12/18/2022] Open
Abstract
Wheat amylase/trypsin bi-functional inhibitors (ATIs) are protein stimulators of innate immune response, with a recently established role in promoting both gastrointestinal and extra-gastrointestinal inflammatory syndromes. These proteins have been reported to trigger downstream intestinal inflammation upon activation of TLR4, a member of the Toll-like family of proteins that activates signalling pathways and induces the expression of immune and pro-inflammatory genes. In this study, we demonstrated the ability of ATI to directly interact with TLR4 with nanomolar affinity, and we kinetically and structurally characterized the interaction between these macromolecules by means of a concerted approach based on surface plasmon resonance binding analyses and computational studies. On the strength of these results, we designed an oligopeptide capable of preventing the formation of the complex between ATI and the receptor.
Collapse
Affiliation(s)
| | - Matteo Mozzicafreddo
- School of Biosciences and Biotechnology, University of Camerino, 62032, Camerino, Italy
| | - Laura Bonfili
- School of Biosciences and Biotechnology, University of Camerino, 62032, Camerino, Italy
| | - Valentina Cecarini
- School of Biosciences and Biotechnology, University of Camerino, 62032, Camerino, Italy
| | - Mara Giangrossi
- School of Biosciences and Biotechnology, University of Camerino, 62032, Camerino, Italy
| | - Maurizio Falconi
- School of Biosciences and Biotechnology, University of Camerino, 62032, Camerino, Italy
| | - Shin-Ichiroh Saitoh
- Division of Innate Immunity, Department of Microbiology and Immunology, The University of Tokyo, 4-6-1 Shirokanedai, Minatoku, Tokyo, 108 8639, Japan
| | - Anna Maria Eleuteri
- School of Biosciences and Biotechnology, University of Camerino, 62032, Camerino, Italy
| | - Mauro Angeletti
- School of Biosciences and Biotechnology, University of Camerino, 62032, Camerino, Italy
| |
Collapse
|
14
|
Mueller GA. Contributions and Future Directions for Structural Biology in the Study of Allergens. Int Arch Allergy Immunol 2017; 174:57-66. [PMID: 28992615 DOI: 10.1159/000481078] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Allergy is defined as an inappropriate immune response to something normally considered harmless. The symptomatic immune response is driven by IgE antibodies directed against allergens. The study of allergens has contributed significantly to our understanding of allergic disease in 3 main areas. First, identifying allergens as the cause of symptoms and developing allergen standards has led to many advances in exposure assessment and patient diagnostics. Second, a biochemical understanding of allergens has suggested a number of hypotheses related to the mechanisms of allergic sensitization. And finally, studies of allergen-antibody interactions have contributed to understanding the cross-reactivity of allergens, mapping patient epitopes, and the development of hypoallergens. In this review, a few select cases are highlighted where structural biology, in particular, has contributed significantly to allergen research and provided new avenues for investigation.
Collapse
Affiliation(s)
- Geoffrey A Mueller
- Department of Health and Human Services, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| |
Collapse
|
15
|
TLR4 Signaling Pathway Modulators as Potential Therapeutics in Inflammation and Sepsis. Vaccines (Basel) 2017; 5:vaccines5040034. [PMID: 28976923 PMCID: PMC5748601 DOI: 10.3390/vaccines5040034] [Citation(s) in RCA: 417] [Impact Index Per Article: 52.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 09/29/2017] [Accepted: 10/01/2017] [Indexed: 02/06/2023] Open
Abstract
Toll-Like Receptor 4 (TLR4) signal pathway plays an important role in initiating the innate immune response and its activation by bacterial endotoxin is responsible for chronic and acute inflammatory disorders that are becoming more and more frequent in developed countries. Modulation of the TLR4 pathway is a potential strategy to specifically target these pathologies. Among the diseases caused by TLR4 abnormal activation by bacterial endotoxin, sepsis is the most dangerous one because it is a life-threatening acute system inflammatory condition that still lacks specific pharmacological treatment. Here, we review molecules at a preclinical or clinical phase of development, that are active in inhibiting the TLR4-MyD88 and TLR4-TRIF pathways in animal models. These are low-molecular weight compounds of natural and synthetic origin that can be considered leads for drug development. The results of in vivo studies in the sepsis model and the mechanisms of action of drug leads are presented and critically discussed, evidencing the differences in treatment results from rodents to humans.
Collapse
|
16
|
Balancing Inflammation: Computational Design of Small-Molecule Toll-like Receptor Modulators. Trends Pharmacol Sci 2017; 38:155-168. [DOI: 10.1016/j.tips.2016.10.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/10/2016] [Accepted: 10/12/2016] [Indexed: 12/25/2022]
|
17
|
Shirian J, Sharabi O, Shifman JM. Cold Spots in Protein Binding. Trends Biochem Sci 2016; 41:739-745. [PMID: 27477052 DOI: 10.1016/j.tibs.2016.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/22/2016] [Accepted: 07/01/2016] [Indexed: 11/19/2022]
Abstract
Understanding the energetics and architecture of protein-binding interfaces is important for basic research and could potentially facilitate the design of novel binding domains for biotechnological applications. It is well accepted that a few key residues at binding interfaces (binding hot spots) are responsible for contributing most to the free energy of binding. In this opinion article, we introduce a new concept of 'binding cold spots', or interface positions occupied by suboptimal amino acids. Such positions exhibit a potential for affinity enhancement through various mutations. We give several examples of cold spots from different protein-engineering studies and argue that identification of such positions is crucial for studies of protein evolution and protein design.
Collapse
Affiliation(s)
- Jason Shirian
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Oz Sharabi
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Julia M Shifman
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
18
|
de Aguiar C, Costa MGS, Verli H. Dynamics on human Toll-like receptor 4 complexation to MD-2: the coreceptor stabilizing function. Proteins 2015; 83:373-82. [PMID: 25488602 DOI: 10.1002/prot.24739] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 10/20/2014] [Accepted: 11/26/2014] [Indexed: 12/30/2022]
Abstract
The interaction between human Toll-like receptor 4 (hTLR4) and its coreceptor, myeloid differentiation factor 2 (MD-2), is important in Gram-negative bacteria lipopolysaccharide (LPS) recognition. In this process, MD-2 recognizes LPS and promotes the dimerization of the complex hTLR4-MD-2-LPS, triggering an intracellular immune signaling. In this study, we employed distinct computational methods to explore the dynamical properties of the hTLR4-MD-2 complex and investigated the implications of the coreceptor complexation to the structural biology of hTLR4. We characterized both global and local dynamics of free and MD-2 complexed hTLR4, in both (hTLR4-MD-2)1 and (hTLR4-MD-2)2 states. Both molecular dynamics and normal mode analysis reveled a stabilization of the terminal regions of hTLR4 upon complexation to MD-2. We are able to identify conserved important residues involved on the hTLR4-MD-2 interaction dynamics and disclose C-terminal motions that may be associated to the signaling process upon oligomerization.
Collapse
Affiliation(s)
- Carla de Aguiar
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, CP 15005, Porto Alegre, 91500-970, RS, Brazil
| | | | | |
Collapse
|
19
|
Gupta CL, Akhtar S, Sayyed U, Pathak N, Bajpai P. In silicoanalysis of human Toll-like receptor 7 ligand binding domain. Biotechnol Appl Biochem 2015; 63:441-50. [DOI: 10.1002/bab.1377] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/23/2015] [Indexed: 12/28/2022]
Affiliation(s)
| | - Salman Akhtar
- Department of Bioengineering; Integral University; Lucknow India
| | - Uzma Sayyed
- Department of Biosciences; Integral University; Lucknow India
| | - Neelam Pathak
- Department of Biosciences; Integral University; Lucknow India
| | - Preeti Bajpai
- Department of Biosciences; Integral University; Lucknow India
| |
Collapse
|
20
|
Oshiro S, Honda S. Imparting albumin-binding affinity to a human protein by mimicking the contact surface of a bacterial binding protein. ACS Chem Biol 2014; 9:1052-60. [PMID: 24533528 DOI: 10.1021/cb400946m] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Attachment of a bacterial albumin-binding protein module is an attractive strategy for extending the plasma residence time of protein therapeutics. However, a protein fused with such a bacterial module could induce unfavorable immune reactions. To address this, we designed an alternative binding protein by imparting albumin-binding affinity to a human protein using molecular surface grafting. The result was a series of human-derived 6 helix-bundle proteins, one of which specifically binds to human serum albumin (HSA) with adequate affinity (KD = 100 nM). The proteins were designed by transferring key binding residues of a bacterial albumin-binding module, Finegoldia magna protein G-related albumin-binding domain (GA) module, onto the human protein scaffold. Despite 13-15 mutations, the designed proteins maintain the original secondary structure by virtue of careful grafting based on structural informatics. Competitive binding assays and thermodynamic analyses of the best binders show that the binding mode resembles that of the GA module, suggesting that the contacting surface of the GA module is mimicked well on the designed protein. These results indicate that the designed protein may act as an alternative low-risk binding module to HSA. Furthermore, molecular surface grafting in combination with structural informatics is an effective approach for avoiding deleterious mutations on a target protein and for imparting the binding function of one protein onto another.
Collapse
Affiliation(s)
- Satoshi Oshiro
- Department
of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Shinya Honda
- Department
of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
- Biomedical
Research Institute, National Institute of Advanced Industrial Science and Technology, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| |
Collapse
|
21
|
Abstract
Protein engineering is at an exciting stage because designed protein-protein interactions are being used in many applications. For instance, three designed proteins are now in clinical trials. Although there have been many successes over the last decade, protein engineering still faces numerous challenges. Often, designs do not work as anticipated and they still require substantial redesign. The present review focuses on the successes, the challenges and the limitations of rational protein design today.
Collapse
|
22
|
Novel toll-like receptor 4 (TLR4) antagonists identified by structure- and ligand-based virtual screening. Eur J Med Chem 2013; 70:393-9. [PMID: 24177366 DOI: 10.1016/j.ejmech.2013.10.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 10/01/2013] [Accepted: 10/07/2013] [Indexed: 11/24/2022]
Abstract
Toll-like receptor 4 (TLR4) in complex with its accessory protein MD-2 represents an emerging target for the treatment of severe sepsis and neuropathic pain. We performed structure-based and ligand-based virtual screening targeting the TLR4-MD-2 interface. Three in silico hit compounds showed promising TLR4 antagonistic activities with micromolar IC50 values. These compounds also suppressed cytokine secretion by human peripheral blood mononuclear cells. The specific affinity of the most potent hit was confirmed by surface plasmon resonance direct-binding experiments. The results of our study represent a very promising starting point for the development of potent small-molecule antagonists of TLR4.
Collapse
|
23
|
Mikulecký P, Černý J, Biedermannová L, Petroková H, Kuchař M, Vondrášek J, Malý P, Šebo P, Schneider B. Increasing affinity of interferon-γ receptor 1 to interferon-γ by computer-aided design. BIOMED RESEARCH INTERNATIONAL 2013; 2013:752514. [PMID: 24199198 PMCID: PMC3807708 DOI: 10.1155/2013/752514] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 08/06/2013] [Accepted: 08/13/2013] [Indexed: 12/12/2022]
Abstract
We describe a computer-based protocol to design protein mutations increasing binding affinity between ligand and its receptor. The method was applied to mutate interferon-γ receptor 1 (IFN-γ-Rx) to increase its affinity to natural ligand IFN-γ, protein important for innate immunity. We analyzed all four available crystal structures of the IFN-γ-Rx/IFN-γ complex to identify 40 receptor residues forming the interface with IFN-γ. For these 40 residues, we performed computational mutation analysis by substituting each of the interface receptor residues by the remaining standard amino acids. The corresponding changes of the free energy were calculated by a protocol consisting of FoldX and molecular dynamics calculations. Based on the computed changes of the free energy and on sequence conservation criteria obtained by the analysis of 32 receptor sequences from 19 different species, we selected 14 receptor variants predicted to increase the receptor affinity to IFN-γ. These variants were expressed as recombinant proteins in Escherichia coli, and their affinities to IFN-γ were determined experimentally by surface plasmon resonance (SPR). The SPR measurements showed that the simple computational protocol succeeded in finding two receptor variants with affinity to IFN-γ increased about fivefold compared to the wild-type receptor.
Collapse
Affiliation(s)
- Pavel Mikulecký
- Institute of Biotechnology AS CR, v. v. i., Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Jiří Černý
- Institute of Biotechnology AS CR, v. v. i., Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Lada Biedermannová
- Institute of Biotechnology AS CR, v. v. i., Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Hana Petroková
- Institute of Biotechnology AS CR, v. v. i., Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Milan Kuchař
- Institute of Biotechnology AS CR, v. v. i., Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Jiří Vondrášek
- Institute of Biotechnology AS CR, v. v. i., Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Petr Malý
- Institute of Biotechnology AS CR, v. v. i., Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Peter Šebo
- Institute of Biotechnology AS CR, v. v. i., Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Bohdan Schneider
- Institute of Biotechnology AS CR, v. v. i., Vídeňská 1083, 142 20 Prague, Czech Republic
| |
Collapse
|
24
|
Muñoz I, Sepulcre MP, Meseguer J, Mulero V. Molecular cloning, phylogenetic analysis and functional characterization of soluble Toll-like receptor 5 in gilthead seabream, Sparus aurata. FISH & SHELLFISH IMMUNOLOGY 2013; 35:36-45. [PMID: 23571319 DOI: 10.1016/j.fsi.2013.03.374] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 03/22/2013] [Accepted: 03/24/2013] [Indexed: 06/02/2023]
Abstract
Two forms of TLR5, one membrane-anchored and one soluble, have been described in some teleost fish species. However, the exact role of each form has been poorly studied. In the present study, we show that the mRNA levels of soluble gilthead seabream TLR5 (sbTLR5S) are highly induced in head kidney, spleen, liver and blood after Vibrio anguillarum infection, suggesting an important role for sbTLR5S in the innate immune response against bacteria. Comparative genomic and phylogenetic analyses revealed a co-evolution pattern of both genes across fish species and a proximal location in their genomes, further suggesting a functional link between them. To further investigate this issue, the coding sequence of the sbTLR5S was cloned and the corresponding recombinant protein was produced in HEK293 cells. The gene product was secreted to the culture medium as a soluble factor and a physical interaction between flagellin and sbTLR5S was demonstrated. Collectively, these results suggest that sbTLR5S plays an important role in modulating the flagellin-mediated immune response in seabream.
Collapse
Affiliation(s)
- Iciar Muñoz
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain.
| | | | | | | |
Collapse
|