1
|
Qu T, Du G, Chen J, Chen A, Li J. Development of Freeze-Thaw Tolerant Yeast Strains via a Hybrid Fusion Evolutionary Strategy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:11841-11854. [PMID: 40325858 DOI: 10.1021/acs.jafc.4c11139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
The freeze-thaw cycle presents a significant challenge to Saccharomyces cerevisiae in industrial applications, impacting its resilience and viability. Traditional genetic modifications in industrial yeast strains have achieved limited success in enhancing freeze-thaw tolerance. To address this, we explored the untapped genetic diversity of wild diploid strains and developed a hybrid fusion evolution (HFE) strategy. This approach involved isolating haploids, implementing targeted modifications to increase glycerol accumulation and aquaporin expression, and subjecting these modified strains to cycles of fusion and selection. The HFE method enabled the development of robust yeast strains with significantly improved freeze-thaw tolerance, from an average of no more than 12% for the initial parents to an average of 67% for the third-generation strains, alongside enhanced resilience to other stresses such as high ethanol and moderate heat. Our findings demonstrate the potential of combining microbial breeding and gene regulation to exploit natural genetic diversity, providing a promising solution to improve industrial yeast strains for sustainable food production under environmental stress conditions.
Collapse
Affiliation(s)
- Tianzhi Qu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Jiaxing Institute of Future Food, Jiaxing 314050, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Anqi Chen
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Tsegaye KN, Alemnew M, Berhane N. Saccharomyces cerevisiae for lignocellulosic ethanol production: a look at key attributes and genome shuffling. Front Bioeng Biotechnol 2024; 12:1466644. [PMID: 39386039 PMCID: PMC11461319 DOI: 10.3389/fbioe.2024.1466644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
These days, bioethanol research is looking at using non-edible plant materials, called lignocellulosic feedstocks, because they are cheap, plentiful, and renewable. However, these materials are complex and require pretreatment to release fermentable sugars. Saccharomyces cerevisiae, the industrial workhorse for bioethanol production, thrives in sugary environments and can handle high levels of ethanol. However, during lignocellulose fermentation, S. cerevisiae faces challenges like high sugar and ethanol concentrations, elevated temperatures, and even some toxic substances present in the pretreated feedstocks. Also, S. cerevisiae struggles to efficiently convert all the sugars (hexose and pentose) present in lignocellulosic hydrolysates. That's why scientists are exploring the natural variations within Saccharomyces strains and even figuring out ways to improve them. This review highlights why Saccharomyces cerevisiae remains a crucial player for large-scale bioethanol production from lignocellulose and discusses the potential of genome shuffling to create even more efficient yeast strains.
Collapse
Affiliation(s)
- Kindu Nibret Tsegaye
- Department of Biology, Gondar College of Teachers Education, Gondar, Ethiopia
- Institute of Biotechnology, University of Gondar, Gondar, Ethiopia
| | - Marew Alemnew
- Institute of Biotechnology, University of Gondar, Gondar, Ethiopia
| | - Nega Berhane
- Institute of Biotechnology, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
3
|
Daute M, Jack F, Walker G. The potential for Scotch Malt Whisky flavour diversification by yeast. FEMS Yeast Res 2024; 24:foae017. [PMID: 38684485 PMCID: PMC11095643 DOI: 10.1093/femsyr/foae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/13/2024] [Accepted: 04/28/2024] [Indexed: 05/02/2024] Open
Abstract
Scotch Whisky, a product of high importance to Scotland, has gained global approval for its distinctive qualities derived from the traditional production process, which is defined in law. However, ongoing research continuously enhances Scotch Whisky production and is fostering a diversification of flavour profiles. To be classified as Scotch Whisky, the final spirit needs to retain the aroma and taste of 'Scotch'. While each production step contributes significantly to whisky flavour-from malt preparation and mashing to fermentation, distillation, and maturation-the impact of yeast during fermentation is crucially important. Not only does the yeast convert the sugar to alcohol, it also produces important volatile compounds, e.g. esters and higher alcohols, that contribute to the final flavour profile of whisky. The yeast chosen for whisky fermentations can significantly influence whisky flavour, so the yeast strain employed is of high importance. This review explores the role of yeast in Scotch Whisky production and its influence on flavour diversification. Furthermore, an extensive examination of nonconventional yeasts employed in brewing and winemaking is undertaken to assess their potential suitability for adoption as Scotch Whisky yeast strains, followed by a review of methods for evaluating new yeast strains.
Collapse
Affiliation(s)
- Martina Daute
- Division of Engineering and Food Sciences, School of Applied Sciences, Abertay University, Bell St, DD1 1HG, Dundee, Scotland
- The Scotch Whisky Research Institute, Research Ave N, EH14 4AP, Edinburgh, Scotland
| | - Frances Jack
- The Scotch Whisky Research Institute, Research Ave N, EH14 4AP, Edinburgh, Scotland
| | - Graeme Walker
- Division of Engineering and Food Sciences, School of Applied Sciences, Abertay University, Bell St, DD1 1HG, Dundee, Scotland
| |
Collapse
|
4
|
Qu C, Peng L, Fei Y, Liang J, Bai W, Liu G. Screening ester-producing yeasts to fortify the brewing of rice-flavor Baijiu for enhanced aromas. Bioengineered 2023; 14:2255423. [PMID: 37715575 PMCID: PMC10506437 DOI: 10.1080/21655979.2023.2255423] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 08/12/2023] [Accepted: 08/17/2023] [Indexed: 09/17/2023] Open
Abstract
To enhance the aromas in Guangdong rice-flavor Baijiu, ester-producing yeast was selected to fortify Baijiu brewing. Among eight kinds of ester-producing yeasts selected, Saccharomyces cerevisiae CM15 (CM15) that showed both the stronger ability to utilize substrates to produce esters and the excellent tolerance to industrially relevant stress factors was chosen. When CM15 was synergistically fermented with six kinds of Kojis from distilleries of rice-flavor liquor in Guangdong, the enhanced total esters had happened to the liquors brewing with the fortified four kinds of Kojis, especially with Koji F. When Koji F was fortified with CM15, the resultant Baijiu showed a higher esters proportion and a lower higher alcohol ratio than that of Baijiu brewed only with Koji F, with the content of ethyl acetate and ethyl lactate increasing by 25% and 214%, respectively. This study suggested that CM15 can be used as a functional microorganism to fortify Baijiu brewing, which might also be suitable for other traditional fermented foods.
Collapse
Affiliation(s)
- Chunyun Qu
- College of Light Industry and Food Sciences, Guangdong Key Laboratory of Science and Technology of Lingnan Special Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, China
| | - Liying Peng
- College of Light Industry and Food Sciences, Guangdong Key Laboratory of Science and Technology of Lingnan Special Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yongtao Fei
- College of Light Industry and Food Sciences, Guangdong Key Laboratory of Science and Technology of Lingnan Special Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, China
| | - Jinglong Liang
- College of Light Industry and Food Sciences, Guangdong Key Laboratory of Science and Technology of Lingnan Special Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, China
| | - Weidong Bai
- College of Light Industry and Food Sciences, Guangdong Key Laboratory of Science and Technology of Lingnan Special Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, China
| | - Gongliang Liu
- College of Light Industry and Food Sciences, Guangdong Key Laboratory of Science and Technology of Lingnan Special Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, China
| |
Collapse
|
5
|
A Comprehensive Mechanistic Yeast Model Able to Switch Metabolism According to Growth Conditions. FERMENTATION 2022. [DOI: 10.3390/fermentation8120710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This paper proposes a general approach for building a mechanistic yeast model able to predict the shift of metabolic pathways. The mechanistic model accounts for the coexistence of several metabolic pathways (aerobic fermentation, glucose respiration, anaerobic fermentation and ethanol respiration) whose activation depends on growth conditions. This general approach is applied to a commercial strain of Saccharomyces cerevisiae. Stoichiometry and yeast kinetics were mostly determined from aerobic and completely anaerobic experiments. Known parameters were taken from the literature, and the remaining parameters were estimated by inverse analysis using the particle swarm optimization method. The optimized set of parameters allows the concentrations to be accurately determined over time, reporting global mean relative errors for all variables of less than 7 and 11% under completely anaerobic and aerobic conditions, respectively. Different affinities of yeast for glucose and ethanol tolerance under aerobic and anaerobic conditions were obtained. Finally, the model was successfully validated by simulating a different experiment, a batch fermentation process without gas injection, with an overall mean relative error of 7%. This model represents a useful tool for the control and optimization of yeast fermentation systems. More generally, the modeling framework proposed here is intended to be used as a building block of a digital twin of any bioproduction process.
Collapse
|
6
|
Chen A, Gibney PA. Intracellular trehalose accumulation via the Agt1 transporter promotes freeze-thaw tolerance in Saccharomyces cerevisiae. J Appl Microbiol 2022; 133:2390-2402. [PMID: 35801661 DOI: 10.1111/jam.15700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/21/2022] [Accepted: 07/05/2022] [Indexed: 11/29/2022]
Abstract
AIM This study is to investigate the use of a constitutively expressed trehalose transport protein to directly control intracellular trehalose levels and protect baker's yeast (Saccharomyces cerevisiae) cells against freeze-thaw stress in vivo. METHODS AND RESULTS We used a constitutively overexpressed Agt1 transporter system to investigate the role of trehalose in the freeze-thaw tolerance of yeast cells by regulating intracellular trehalose concentrations independently of intracellular biosynthesis. Using this method, we found that increasing intracellular trehalose in yeast cells improved cell survival rate after 8 days of freezing at -80°C and -20°C. We also observed that freeze-thaw tolerance promoted by intracellular trehalose only occurs in highly concentrated cell pellets rather than cells in liquid suspension. CONCLUSIONS Trehalose is sufficient to provide freeze-thaw tolerance using our Agt1 overexpression system. Freeze-thaw tolerance can be further enhanced by deletion of genes encoding intracellular trehalose degradation enzymes. SIGNIFICANCE AND IMPACT OF STUDY These findings are relevant to improving the freeze-thaw tolerance of baker's yeast in the frozen baked goods industry through engineering strains that can accumulate intracellular trehalose via a constitutively expressed trehalose transporter and inclusion of trehalose into the growth medium.
Collapse
Affiliation(s)
- Anqi Chen
- Department of Food Science, Cornell University, New York
| | | |
Collapse
|
7
|
Gong C, Cao L, Fang D, Zhang J, Kumar Awasthi M, Xue D. Genetic manipulation strategies for ethanol production from bioconversion of lignocellulose waste. BIORESOURCE TECHNOLOGY 2022; 352:127105. [PMID: 35378286 DOI: 10.1016/j.biortech.2022.127105] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Lignocellulose waste was served as promising raw material for bioethanol production. Bioethanol was considered to be a potential alternative energy to take the place of fossil fuels. Lignocellulosic biomass synthesized by plants is regenerative, sufficient and cheap source for bioethanol production. The biotransformation of lignocellulose could exhibit dual significance-reduction of pollution and obtaining of energy. Some strategies are being developing and increasing the utilization of lignocellulose waste to produce ethanol. New technology of bioethanol production from natural lignocellulosic biomass is required. In this paper, the progress in genetic manipulation strategies including gene editing and synthetic genomics for the transformation from lignocellulose to ethanol was reviewed. At last, the application prospect of bioethanol was introduced.
Collapse
Affiliation(s)
- Chunjie Gong
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, PR China
| | - Liping Cao
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, PR China
| | - Donglai Fang
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, PR China
| | - Jiaqi Zhang
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, PR China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Dongsheng Xue
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, PR China.
| |
Collapse
|
8
|
Adebami GE, Kuila A, Ajunwa OM, Fasiku SA, Asemoloye MD. Genetics and metabolic engineering of yeast strains for efficient ethanol production. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | - Arindam Kuila
- Department of Bioscience and Biotechnology Banasthali University Vanasthali India
| | - Obinna M. Ajunwa
- Department of Microbiology Modibbo Adama University of Technology Yola Nigeria
| | - Samuel A. Fasiku
- Department of Biological Sciences Ajayi Crowther University Oyo Nigeria
| | - Michael D. Asemoloye
- Department of Pharmaceutical Science and Technology Tianjin University Tianjin China
| |
Collapse
|
9
|
Abstract
Over the last decades, the constant growth of the world-wide industry has been leading to more and more concerns with its direct impact on greenhouse gas (GHG) emissions. Resulting from that, rising efforts have been dedicated to a global transition from an oil-based industry to cleaner biotechnological processes. A specific example refers to the production of bioethanol to substitute the traditional transportation fuels. Bioethanol has been produced for decades now, mainly from energy crops, but more recently, also from lignocellulosic materials. Aiming to improve process economics, the fermentation of very high gravity (VHG) mediums has for long received considerable attention. Nowadays, with the growth of multi-waste valorization frameworks, VHG fermentation could be crucial for bioeconomy development. However, numerous obstacles remain. This work initially presents the main aspects of a VHG process, giving then special emphasis to some of the most important factors that traditionally affect the fermentation organism, such as nutrients depletion, osmotic stress, and ethanol toxicity. Afterwards, some factors that could possibly enable critical improvements in the future on VHG technologies are discussed. Special attention was given to the potential of the development of new fermentation organisms, nutritionally complete culture media, but also on alternative process conditions and configurations.
Collapse
|
10
|
Wang L, Li B, Wang SP, Xia ZY, Gou M, Tang YQ. Improving multiple stress-tolerance of a flocculating industrial Saccharomyces cerevisiae strain by random mutagenesis and hybridization. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.12.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Schalck T, den Bergh BV, Michiels J. Increasing Solvent Tolerance to Improve Microbial Production of Alcohols, Terpenoids and Aromatics. Microorganisms 2021; 9:249. [PMID: 33530454 PMCID: PMC7912173 DOI: 10.3390/microorganisms9020249] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 12/16/2022] Open
Abstract
Fuels and polymer precursors are widely used in daily life and in many industrial processes. Although these compounds are mainly derived from petrol, bacteria and yeast can produce them in an environment-friendly way. However, these molecules exhibit toxic solvent properties and reduce cell viability of the microbial producer which inevitably impedes high product titers. Hence, studying how product accumulation affects microbes and understanding how microbial adaptive responses counteract these harmful defects helps to maximize yields. Here, we specifically focus on the mode of toxicity of industry-relevant alcohols, terpenoids and aromatics and the associated stress-response mechanisms, encountered in several relevant bacterial and yeast producers. In practice, integrating heterologous defense mechanisms, overexpressing native stress responses or triggering multiple protection pathways by modifying the transcription machinery or small RNAs (sRNAs) are suitable strategies to improve solvent tolerance. Therefore, tolerance engineering, in combination with metabolic pathway optimization, shows high potential in developing superior microbial producers.
Collapse
Affiliation(s)
- Thomas Schalck
- VIB Center for Microbiology, Flanders Institute for Biotechnology, B-3001 Leuven, Belgium; (T.S.); (B.V.d.B.)
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Bram Van den Bergh
- VIB Center for Microbiology, Flanders Institute for Biotechnology, B-3001 Leuven, Belgium; (T.S.); (B.V.d.B.)
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Jan Michiels
- VIB Center for Microbiology, Flanders Institute for Biotechnology, B-3001 Leuven, Belgium; (T.S.); (B.V.d.B.)
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| |
Collapse
|
12
|
Li X, Cen N, Liu L, Chen Y, Yang X, Yu K, Guo J, Liao X, Shi B. Collagen Peptide Provides Saccharomyces cerevisiae with Robust Stress Tolerance for Enhanced Bioethanol Production. ACS APPLIED MATERIALS & INTERFACES 2020; 12:53879-53890. [PMID: 33211491 DOI: 10.1021/acsami.0c18919] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Efficient production of bioethanol is desirable for bioenergy large-scale applications, but it is severely challenged by ethanol and sugar stresses. Here, collagen peptide (CP), as a renewable nitrogen-containing biomass, remarkably enhanced the stress resistance of Saccharomyces cerevisiae SLL-510 against ethanol challenge, based on its unique amino acid composition. Transcriptome analysis showed that the energy, lipid, cofactor, and vitamin metabolism may involve in stress tolerance provided by CP. When CP was added into the media containing 249.99 mg/mL glucose, the bioethanol yield increased from 8.03 to 12.25% (v/v) and 11.35 to 12.29% (v/v) at 43 and 120 h, respectively. Moreover, at 286.79 mg/mL glucose, the highest yield reached 14.48% (v/v), with 99.58% glucose utilization rate. The protection and promotion effects of CP were also shown by four other industrial S. cerevisiae strains. These results coupled with the advantages of abundant reserves, cleanliness, and renewability revealed that CP is a promising economically viable and industrially scalable enhancer for bioethanol fermentation.
Collapse
Affiliation(s)
- Xia Li
- Department of Biomass and Leather Engineering, Sichuan University, Chengdu 610065, PR China
| | - Nengkai Cen
- Department of Biomass and Leather Engineering, Sichuan University, Chengdu 610065, PR China
| | - Lu Liu
- Department of Biomass and Leather Engineering, Sichuan University, Chengdu 610065, PR China
| | - Yongle Chen
- Department of Biomass and Leather Engineering, Sichuan University, Chengdu 610065, PR China
| | - Xi Yang
- Department of Biomass and Leather Engineering, Sichuan University, Chengdu 610065, PR China
| | - Kang Yu
- Department of Biomass and Leather Engineering, Sichuan University, Chengdu 610065, PR China
| | - Junling Guo
- Department of Biomass and Leather Engineering, Sichuan University, Chengdu 610065, PR China
| | - Xuepin Liao
- Department of Biomass and Leather Engineering, Sichuan University, Chengdu 610065, PR China
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, PR China
| | - Bi Shi
- Department of Biomass and Leather Engineering, Sichuan University, Chengdu 610065, PR China
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, PR China
| |
Collapse
|
13
|
Ndukwe JK, Aliyu GO, Onwosi CO, Chukwu KO, Ezugworie FN. Mechanisms of weak acid-induced stress tolerance in yeasts: Prospects for improved bioethanol production from lignocellulosic biomass. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Ruchala J, Kurylenko OO, Dmytruk KV, Sibirny AA. Construction of advanced producers of first- and second-generation ethanol in Saccharomyces cerevisiae and selected species of non-conventional yeasts (Scheffersomyces stipitis, Ogataea polymorpha). J Ind Microbiol Biotechnol 2019; 47:109-132. [PMID: 31637550 PMCID: PMC6970964 DOI: 10.1007/s10295-019-02242-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/01/2019] [Indexed: 12/20/2022]
Abstract
This review summarizes progress in the construction of efficient yeast ethanol producers from glucose/sucrose and lignocellulose. Saccharomyces cerevisiae is the major industrial producer of first-generation ethanol. The different approaches to increase ethanol yield and productivity from glucose in S. cerevisiae are described. Construction of the producers of second-generation ethanol is described for S. cerevisiae, one of the best natural xylose fermenters, Scheffersomyces stipitis and the most thermotolerant yeast known Ogataea polymorpha. Each of these organisms has some advantages and drawbacks. S. cerevisiae is the primary industrial ethanol producer and is the most ethanol tolerant natural yeast known and, however, cannot metabolize xylose. S. stipitis can effectively ferment both glucose and xylose and, however, has low ethanol tolerance and requires oxygen for growth. O. polymorpha grows and ferments at high temperatures and, however, produces very low amounts of ethanol from xylose. Review describes how the mentioned drawbacks could be overcome.
Collapse
Affiliation(s)
- Justyna Ruchala
- Department of Microbiology and Biotechnology, University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland
| | - Olena O Kurylenko
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, NAS of Ukraine, Drahomanov Street, 14/16, Lviv, 79005, Ukraine
| | - Kostyantyn V Dmytruk
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, NAS of Ukraine, Drahomanov Street, 14/16, Lviv, 79005, Ukraine
| | - Andriy A Sibirny
- Department of Microbiology and Biotechnology, University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland.
| |
Collapse
|
15
|
Saini P, Beniwal A, Kokkiligadda A, Vij S. Response and tolerance of yeast to changing environmental stress during ethanol fermentation. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.07.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Kim B, Kim HS. Identification of novel genes to assign enhanced tolerance to osmotic stress in Saccharomyces cerevisiae. FEMS Microbiol Lett 2018; 365:5040221. [PMID: 29931330 DOI: 10.1093/femsle/fny149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 06/18/2018] [Indexed: 11/14/2022] Open
Abstract
Saccharomyces cerevisiae strains tolerant to osmotic stress are important for ethanol production during very high gravity (VHG) fermentation. We aimed to identify novel genes that confer enhanced tolerance to osmotic stress in S. cerevisiae. Two strains tolerant to up to 30% (w/v) glucose were isolated by screening a transposon-mediated mutant library. Two genes were identified: TIS11 and SDS23. In addition, the ability of these genes to confer osmotic stress tolerance was demonstrated by disrupting and overexpressing the open reading frame of each gene. The two transposon mutants grew faster than the control strain in YPD rich medium containing 30% (w/v) glucose and showed activation of Hog1p in response to VHG glucose. The disruption of genes identified in this study, TIS11 and SDS23, provides a basis for improved tolerance to osmotic stress under VHG fermentation condition.
Collapse
Affiliation(s)
- Bora Kim
- Division of Biomedicinal Chemistry and Cosmetics, Mokwon University, 88, Doanbuk-ro, Seo-gu, Daejeon, 35349, Republic of Korea
| | - Hyun-Soo Kim
- Department of Food Science and Technology, Jungwon University, 85, Munmu-ro, Goesan-eup, Goesan-gun, Chungbuk 28024, Republic of Korea
| |
Collapse
|
17
|
Kordowska-Wiater M, Lisiecka U, Kostro K. Improvement of Candida parapsilosis by genome shuffling for the efficient production of arabitol from l-arabinose. Food Sci Biotechnol 2018; 27:1395-1403. [PMID: 30319849 PMCID: PMC6170280 DOI: 10.1007/s10068-018-0369-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/16/2018] [Accepted: 03/27/2018] [Indexed: 01/07/2023] Open
Abstract
Arabitol is used in the food industry as a low-calorie sweetener. It is produced by yeasts during the biotransformation process of l-arabinose. Genome shuffling was performed in Candida parapsilosis DSM 70125, an efficient producer of arabitol, to obtain fusants with improved arabitol production ability. Four mutants from the parental library were used for the first round of genome shuffling. The best fusants, GSI-1 and GSI-10A, were subjected to a second round of genome shuffling. Finally, two fusants, GSII-3 and GSII-16, produced concentrations of arabitol that were 50% higher than that of the wild-type strain during selection culture. Under the optimal conditions established for C. parapsilosis, the two fusants produced 11.83 and 11.75 g/L of arabitol and were approximately 15-16% more efficient than the wild-type strain. Flow cytometry analysis showed that the ploidy of the new strains did not change.
Collapse
Affiliation(s)
- Monika Kordowska-Wiater
- 1Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
| | - Urszula Lisiecka
- 2Department of Epizootiology and Clinic of Infectious Diseases, University of Life Sciences in Lublin, Głęboka 30, 20-950 Lublin, Poland
| | - Krzysztof Kostro
- 2Department of Epizootiology and Clinic of Infectious Diseases, University of Life Sciences in Lublin, Głęboka 30, 20-950 Lublin, Poland
| |
Collapse
|
18
|
Zhang K, Fang YH, Gao KH, Sui Y, Zheng DQ, Wu XC. Effects of genome duplication on phenotypes and industrial applications of Saccharomyces cerevisiae strains. Appl Microbiol Biotechnol 2017; 101:5405-5414. [PMID: 28429058 DOI: 10.1007/s00253-017-8284-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/27/2017] [Accepted: 03/30/2017] [Indexed: 01/21/2023]
Abstract
Polyploidy is common in Saccharomyces cerevisiae strains, but the physiological and phenotypic effects of ploidy changes have not been fully clarified. Here, isogenic diploid, triploid, and tetraploid S. cerevisiae strains were constructed from a haploid strain, CEN.PK2-1C. Stress tolerance and ethanol fermentation performance of the four euploid strains were compared. Each euploid strain had strengths and weaknesses in tolerance to certain stressors, and no single strain was tolerant of all stressors. The diploid had higher ethanol production than the other strains in normal fermentation medium, while the triploid strain showed the fastest fermentation rate in the presence of inhibitors found in lignocellulosic hydrolysate. Physiological determination revealed diverse physiological attributes, such as trehalose, ergosterol, glutathione, and anti-oxidative enzymes among the strains. Our analyses suggest that both ploidy parity and number of chromosome sets contribute to changes in physiological status. Using qRT-PCR, different expression patterns of genes involved in the regulation of cell morphology and the biosynthesis of key physiological attributes among strains were determined. Our data provide novel insights into the multiple effects of genome duplication on yeast cells and are a useful reference for breeding excellent strains used in specific industrial applications.
Collapse
Affiliation(s)
- Ke Zhang
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China.,Ocean College, Zhejiang University, Zhoushan, Zhejiang Province, 316021, China
| | - Ya-Hong Fang
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Ke-Hui Gao
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Yang Sui
- Ocean College, Zhejiang University, Zhoushan, Zhejiang Province, 316021, China
| | - Dao-Qiong Zheng
- Ocean College, Zhejiang University, Zhoushan, Zhejiang Province, 316021, China.
| | - Xue-Chang Wu
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China.
| |
Collapse
|
19
|
Tian J, Zhang S, Li H. Changes in intracellular metabolism underlying the adaptation of Saccharomyces cerevisiae strains to ethanol stress. ANN MICROBIOL 2017. [DOI: 10.1007/s13213-016-1251-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
20
|
Overexpression of smORF YNR034W-A/EGO4 in Saccharomyces cerevisiae increases the fermentative efficiency of Agave tequilana Weber must. ACTA ACUST UNITED AC 2017; 44:63-74. [DOI: 10.1007/s10295-016-1871-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/09/2016] [Indexed: 10/20/2022]
Abstract
Abstract
Fermentative processes are widely used to produce food, beverages and biofuels. Saccharomyces cerevisiae is an efficient ethanol-producing microorganism. However, a concentration of high ethanol and other metabolites can affect yeast viability and decrease the ethanol yield. Many studies have focused on improving the fermentative efficiency, mostly through the genetic engineering of genes that have a direct impact on specific metabolic pathways. In the present study, we characterized a small open reading frame encoding a protein with an unknown function and biological role termed YNR034W-A. We analyzed the expression profile of the YNR034W-A gene during growth and glucose treatment, finding that it is expressed during the diauxic shift and stationary phase and is negatively regulated by glucose. We overexpressed the YNR034W-A gene in the BY4741 laboratory strain and a wild-type yeast strain (AR5) isolated during the Tequila fermentation process. Transformant derivatives of the AR5 strain showed an improved fermentative efficiency during fermentation of Agave tequilana Weber juice. We suggest that the improved fermentative efficiency is the result of a higher stress tolerance response in the YNR034W-A overexpressing transformant.
Collapse
|
21
|
Li Z, Wang D, Shi YC. Effects of nitrogen source on ethanol production in very high gravity fermentation of corn starch. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2016.10.055] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Evidence for a Role for the Plasma Membrane in the Nanomechanical Properties of the Cell Wall as Revealed by an Atomic Force Microscopy Study of the Response of Saccharomyces cerevisiae to Ethanol Stress. Appl Environ Microbiol 2016; 82:4789-4801. [PMID: 27235439 DOI: 10.1128/aem.01213-16] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/23/2016] [Indexed: 01/06/2023] Open
Abstract
UNLABELLED A wealth of biochemical and molecular data have been reported regarding ethanol toxicity in the yeast Saccharomyces cerevisiae However, direct physical data on the effects of ethanol stress on yeast cells are almost nonexistent. This lack of information can now be addressed by using atomic force microscopy (AFM) technology. In this report, we show that the stiffness of glucose-grown yeast cells challenged with 9% (vol/vol) ethanol for 5 h was dramatically reduced, as shown by a 5-fold drop of Young's modulus. Quite unexpectedly, a mutant deficient in the Msn2/Msn4 transcription factor, which is known to mediate the ethanol stress response, exhibited a low level of stiffness similar to that of ethanol-treated wild-type cells. Reciprocally, the stiffness of yeast cells overexpressing MSN2 was about 35% higher than that of the wild type but was nevertheless reduced 3- to 4-fold upon exposure to ethanol. Based on these and other data presented herein, we postulated that the effect of ethanol on cell stiffness may not be mediated through Msn2/Msn4, even though this transcription factor appears to be a determinant in the nanomechanical properties of the cell wall. On the other hand, we found that as with ethanol, the treatment of yeast with the antifungal amphotericin B caused a significant reduction of cell wall stiffness. Since both this drug and ethanol are known to alter, albeit by different means, the fluidity and structure of the plasma membrane, these data led to the proposition that the cell membrane contributes to the biophysical properties of yeast cells. IMPORTANCE Ethanol is the main product of yeast fermentation but is also a toxic compound for this process. Understanding the mechanism of this toxicity is of great importance for industrial applications. While most research has focused on genomic studies of ethanol tolerance, we investigated the effects of ethanol at the biophysical level and found that ethanol causes a strong reduction of the cell wall rigidity (or stiffness). We ascribed this effect to the action of ethanol perturbing the cell membrane integrity and hence proposed that the cell membrane contributes to the cell wall nanomechanical properties.
Collapse
|
23
|
Yi C, Wang F, Dong S, Li H. Changes of trehalose content and expression of relative genes during the bioethanol fermentation by Saccharomyces cerevisiae. Can J Microbiol 2016; 62:827-835. [PMID: 27510429 DOI: 10.1139/cjm-2015-0832] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Traditionally, trehalose is considered as a protectant to improve the ethanol tolerance of Saccharomyces cerevisiae. In this study, to clarify the changes and roles of trehalose during the bioethanol fermentation, trehalose content and expression of related genes at lag, exponential, and stationary phases (i.e., 2, 8, and 16 h of batch fermentation process) were determined. Although yeast cells at exponential and stationary phase had higher trehalose content than cells at lag phase (P < 0.01), there was no significant difference in trehalose content between exponential and stationary phases (P > 0.05). Moreover, expression of the trehalose degradation-related genes NTH1 and NTH2 decreased at exponential phase in comparison with that at lag phase; compared with cells at lag phase, cells at stationary phase had higher expression of TPS1, ATH1, NTH1, and NTH2 but lower expression of TPS2. During the lag-exponential phase transition, downregulation of NTH1 and NTH2 promoted accumulation of trehalose, and to some extent, trehalose might confer ethanol tolerance to S. cerevisiae before stationary phase. During the exponential-stationary phase transition, upregulation of TPS1 contributed to accumulation of trehalose, and Tps1 protein might be indispensable in yeast cells to withstand ethanol stress at the stationary phase. Moreover, trehalose would be degraded to supply carbon source at stationary phase.
Collapse
Affiliation(s)
- Chenfeng Yi
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, P.R. China.,Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, P.R. China
| | - Fenglian Wang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, P.R. China.,Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, P.R. China
| | - Shijun Dong
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, P.R. China.,Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, P.R. China
| | - Hao Li
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, P.R. China.,Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, P.R. China
| |
Collapse
|
24
|
Wu X, Zhang L, Jin X, Fang Y, Zhang K, Qi L, Zheng D. Deletion of JJJ1 improves acetic acid tolerance and bioethanol fermentation performance of Saccharomyces cerevisiae strains. Biotechnol Lett 2016; 38:1097-106. [PMID: 27067354 DOI: 10.1007/s10529-016-2085-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 03/17/2016] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To improve tolerance to acetic acid that is present in lignocellulosic hydrolysates and affects bioethanol production by Saccharomyces cerevisiae. RESULTS Saccharomyces cerevisiae strains with improved tolerance to acetic acid were obtained through deletion of the JJJ1 gene. The lag phase of the JJJ1 deletion mutant BYΔJJJ1 was ~16 h shorter than that of the parent strain, BY4741, when the fermentation medium contained 4.5 g acetic acid/l. Additionally, the specific ethanol production rate of BYΔJJJ1 was increased (0.057 g/g h) compared to that of the parent strain (0.051 g/g h). Comparative transcription and physiological analyses revealed higher long chain fatty acid, trehalose, and catalase contents might be critical factors responsible for the acetic acid resistance of JJJ1 knockout strains. CONCLUSIONS JJJ1 deletion improves acetic acid tolerance and ethanol fermentation performance of S. cerevisiae.
Collapse
Affiliation(s)
- Xuechang Wu
- College of Life Science, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Lijie Zhang
- College of Life Science, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Xinna Jin
- College of Life Science, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Yahong Fang
- College of Life Science, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Ke Zhang
- College of Life Science, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Lei Qi
- Ocean College, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Daoqiong Zheng
- Ocean College, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China.
| |
Collapse
|
25
|
Zhang K, Zhang LJ, Fang YH, Jin XN, Qi L, Wu XC, Zheng DQ. Genomic structural variation contributes to phenotypic change of industrial bioethanol yeast Saccharomyces cerevisiae. FEMS Yeast Res 2016; 16:fov118. [PMID: 26733503 DOI: 10.1093/femsyr/fov118] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/25/2015] [Indexed: 11/14/2022] Open
Abstract
Genomic structural variation (GSV) is a ubiquitous phenomenon observed in the genomes of Saccharomyces cerevisiae strains with different genetic backgrounds; however, the physiological and phenotypic effects of GSV are not well understood. Here, we first revealed the genetic characteristics of a widely used industrial S. cerevisiae strain, ZTW1, by whole genome sequencing. ZTW1 was identified as an aneuploidy strain and a large-scale GSV was observed in the ZTW1 genome compared with the genome of a diploid strain YJS329. These GSV events led to copy number variations (CNVs) in many chromosomal segments as well as one whole chromosome in the ZTW1 genome. Changes in the DNA dosage of certain functional genes directly affected their expression levels and the resultant ZTW1 phenotypes. Moreover, CNVs of large chromosomal regions triggered an aneuploidy stress in ZTW1. This stress decreased the proliferation ability and tolerance of ZTW1 to various stresses, while aneuploidy response stress may also provide some benefits to the fermentation performance of the yeast, including increased fermentation rates and decreased byproduct generation. This work reveals genomic characters of the bioethanol S. cerevisiae strain ZTW1 and suggests that GSV is an important kind of mutation that changes the traits of industrial S. cerevisiae strains.
Collapse
Affiliation(s)
- Ke Zhang
- College of Life Science, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Li-Jie Zhang
- College of Life Science, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Ya-Hong Fang
- College of Life Science, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Xin-Na Jin
- College of Life Science, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Lei Qi
- Ocean College, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Xue-Chang Wu
- College of Life Science, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Dao-Qiong Zheng
- Ocean College, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| |
Collapse
|
26
|
Chen Z, Zheng Z, Yi C, Wang F, Niu Y, Li H. Intracellular metabolic changes in Saccharomyces cerevisiae and promotion of ethanol tolerance during the bioethanol fermentation process. RSC Adv 2016. [DOI: 10.1039/c6ra19254h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
During the batch bioethanol fermentation process, although Saccharomyces cerevisiae cells are challenged by accumulated ethanol, our previous work showed that the ethanol tolerance of S. cerevisiae increased as fermentation time increased.
Collapse
Affiliation(s)
- Ze Chen
- Beijing Key Laboratory of Bioprocess
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Zhou Zheng
- Key Laboratory of Marine Bioactive Substance
- The First Institute of Oceanography
- State Oceanic Administration (SOA)
- Qingdao 266061
- China
| | - Chenfeng Yi
- Beijing Key Laboratory of Bioprocess
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Fenglian Wang
- Beijing Key Laboratory of Bioprocess
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Yuanpu Niu
- Beijing Key Laboratory of Bioprocess
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Hao Li
- Beijing Key Laboratory of Bioprocess
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|
27
|
Caspeta L, Castillo T, Nielsen J. Modifying Yeast Tolerance to Inhibitory Conditions of Ethanol Production Processes. Front Bioeng Biotechnol 2015; 3:184. [PMID: 26618154 PMCID: PMC4641163 DOI: 10.3389/fbioe.2015.00184] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 10/28/2015] [Indexed: 11/17/2022] Open
Abstract
Saccharomyces cerevisiae strains having a broad range of substrate utilization, rapid substrate consumption, and conversion to ethanol, as well as good tolerance to inhibitory conditions are ideal for cost-competitive ethanol production from lignocellulose. A major drawback to directly design S. cerevisiae tolerance to inhibitory conditions of lignocellulosic ethanol production processes is the lack of knowledge about basic aspects of its cellular signaling network in response to stress. Here, we highlight the inhibitory conditions found in ethanol production processes, the targeted cellular functions, the key contributions of integrated -omics analysis to reveal cellular stress responses according to these inhibitors, and current status on design-based engineering of tolerant and efficient S. cerevisiae strains for ethanol production from lignocellulose.
Collapse
Affiliation(s)
- Luis Caspeta
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos , Cuernavaca , Mexico
| | - Tania Castillo
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos , Cuernavaca , Mexico
| | - Jens Nielsen
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology , Gothenburg , Sweden ; Department of Biology and Biological Engineering, Chalmers University of Technology , Gothenburg , Sweden ; Novo Nordisk Foundation Center for Biosustainability , Hørsholm , Denmark
| |
Collapse
|
28
|
Mathew AS, Wang J, Luo J, Yau ST. Enhanced ethanol production via electrostatically accelerated fermentation of glucose using Saccharomyces cerevisiae. Sci Rep 2015; 5:15713. [PMID: 26514277 PMCID: PMC4626793 DOI: 10.1038/srep15713] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/17/2015] [Indexed: 11/16/2022] Open
Abstract
The global demand for ethanol as an alternative fuel continues to rise. Advancement in all aspects of ethanol production is deemed beneficial to the ethanol industry. Traditional fermentation requires 50–70 hours to produce the maximum ethanol concentration of 7–8% (v/v). Here we demonstrate an electrostatic fermentation method that is capable of accelerating the fermentation of glucose using generic Saccharomyces cerevisiae as the fermenting microorganism to produce ethanol. The method, when applied to the batch fermentation of 1 liter fermenting mixture containing dry yeast without pre-culture, is able to achieve ethanol yield on the high gravity level (12.3% v/v) in 24 hours. The fermentation results in almost complete consumption of glucose. With pre-cultured yeast, ethanol yield can reach 14% v/v in 20 hours. The scale-up capability of the method is demonstrated with 2 liter fermenting mixture. The method does not consume external energy due to its electrostatic nature. Our results indicate the applicability of the fermentation technique to industry applications.
Collapse
Affiliation(s)
- Anup Sam Mathew
- Department of Electrical and Computer Engineering, Cleveland State University, Cleveland, Ohio 44115, USA
| | - Jiapeng Wang
- Department of Electrical and Computer Engineering, Cleveland State University, Cleveland, Ohio 44115, USA
| | - Jieling Luo
- Department of Electrical and Computer Engineering, Cleveland State University, Cleveland, Ohio 44115, USA
| | - Siu-Tung Yau
- Department of Electrical and Computer Engineering, Cleveland State University, Cleveland, Ohio 44115, USA.,The Applied Bioengineering Program, Cleveland State University, Cleveland, Ohio 44115, USA
| |
Collapse
|
29
|
Wang Y, Zhang S, Liu H, Zhang L, Yi C, Li H. Changes and roles of membrane compositions in the adaptation of Saccharomyces cerevisiae to ethanol. J Basic Microbiol 2015; 55:1417-26. [PMID: 26265555 DOI: 10.1002/jobm.201500300] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/09/2015] [Indexed: 11/11/2022]
Abstract
Bioethanol fermentation by Saccharomyces cerevisiae is often stressed by the accumulation of ethanol. Cell membrane is the first assaulting target of ethanol. Ethanol-adapted S. cerevisiae strains provide opportunity to shed light on membrane functions in the ethanol tolerance. This study aimed at clarifying the roles of cell membrane in the ethanol tolerance of S. cerevisiae through comparing membrane components between S. cerevisiae parental strain and ethanol-adapted strains. A directed evolutionary engineering was performed to obtain the ethanol-adapted S. cerevisiae strains. The parental, ethanol-adapted M5 and M10 strains were selected to be compared the percentage of viable cells after exposing to ethanol stress and cell membrane compositions (i.e., ergosterol, trehalose, and fatty acids). Compared with the parental strain, M5 or M10 strain had higher survival rate in the presence of 10% v/v ethanol. Compared with that in the parental strain, contents of trehalose, ergosterol, and fatty acids increased about 15.7, 12.1, and 29.3%, respectively, in M5 strain, and about 47.5, 107.8, and 61.5%, respectively, in M10 strain. Moreover, expression differences of genes involved in fatty acids metabolisms among the parental, M5 and M10 strains were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR), and results demonstrated that M5 or M10 strain had higher expression of ACC1 and OLE1 than the parental strain. These results indicated that although being exposed to step-wise increased ethanol, S. cerevisiae cells might remodel membrane components or structure to adapt to the ethanol stress.
Collapse
Affiliation(s)
- Yanfeng Wang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P.R. China
| | - Shuxian Zhang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P.R. China
| | - Huaqing Liu
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P.R. China
| | - Lei Zhang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P.R. China
| | - Chenfeng Yi
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P.R. China
| | - Hao Li
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P.R. China
| |
Collapse
|
30
|
Zheng YL, Wang SA. Stress Tolerance Variations in Saccharomyces cerevisiae Strains from Diverse Ecological Sources and Geographical Locations. PLoS One 2015; 10:e0133889. [PMID: 26244846 PMCID: PMC4526645 DOI: 10.1371/journal.pone.0133889] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/03/2015] [Indexed: 11/17/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae is a platform organism for bioethanol production from various feedstocks and robust strains are desirable for efficient fermentation because yeast cells inevitably encounter stressors during the process. Recently, diverse S. cerevisiae lineages were identified, which provided novel resources for understanding stress tolerance variations and related shaping factors in the yeast. This study characterized the tolerance of diverse S. cerevisiae strains to the stressors of high ethanol concentrations, temperature shocks, and osmotic stress. The results showed that the isolates from human-associated environments overall presented a higher level of stress tolerance compared with those from forests spared anthropogenic influences. Statistical analyses indicated that the variations of stress tolerance were significantly correlated with both ecological sources and geographical locations of the strains. This study provides guidelines for selection of robust S. cerevisiae strains for bioethanol production from nature.
Collapse
Affiliation(s)
- Yan-Lin Zheng
- College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Shi-An Wang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| |
Collapse
|
31
|
Radecka D, Mukherjee V, Mateo RQ, Stojiljkovic M, Foulquié-Moreno MR, Thevelein JM. Looking beyond Saccharomyces: the potential of non-conventional yeast species for desirable traits in bioethanol fermentation. FEMS Yeast Res 2015; 15:fov053. [PMID: 26126524 DOI: 10.1093/femsyr/fov053] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2015] [Indexed: 01/18/2023] Open
Abstract
Saccharomyces cerevisiae has been used for millennia in the production of food and beverages and is by far the most studied yeast species. Currently, it is also the most used microorganism in the production of first-generation bioethanol from sugar or starch crops. Second-generation bioethanol, on the other hand, is produced from lignocellulosic feedstocks that are pretreated and hydrolyzed to obtain monomeric sugars, mainly D-glucose, D-xylose and L-arabinose. Recently, S. cerevisiae recombinant strains capable of fermenting pentose sugars have been generated. However, the pretreatment of the biomass results in hydrolysates with high osmolarity and high concentrations of inhibitors. These compounds negatively influence the fermentation process. Therefore, robust strains with high stress tolerance are required. Up to now, more than 2000 yeast species have been described and some of these could provide a solution to these limitations because of their high tolerance to the most predominant stress conditions present in a second-generation bioethanol reactor. In this review, we will summarize what is known about the non-conventional yeast species showing unusual tolerance to these stresses, namely Zygosaccharomyces rouxii (osmotolerance), Kluyveromyces marxianus and Ogataea (Hansenula) polymorpha (thermotolerance), Dekkera bruxellensis (ethanol tolerance), Pichia kudriavzevii (furan derivatives tolerance) and Z. bailii (acetic acid tolerance).
Collapse
Affiliation(s)
- Dorota Radecka
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Vaskar Mukherjee
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium Laboratory for Process Microbial Ecology and Bioinspirational Management, Cluster for Bioengineering Technology (CBeT), Department of Microbial and Molecular Systems (M2S), KU Leuven, Campus De Nayer, B-2860 Sint-Katelijne-Waver, Flanders, Belgium
| | - Raquel Quintilla Mateo
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Marija Stojiljkovic
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - María R Foulquié-Moreno
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Johan M Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| |
Collapse
|
32
|
Cray JA, Stevenson A, Ball P, Bankar SB, Eleutherio ECA, Ezeji TC, Singhal RS, Thevelein JM, Timson DJ, Hallsworth JE. Chaotropicity: a key factor in product tolerance of biofuel-producing microorganisms. Curr Opin Biotechnol 2015; 33:228-59. [PMID: 25841213 DOI: 10.1016/j.copbio.2015.02.010] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/13/2015] [Accepted: 02/18/2015] [Indexed: 10/23/2022]
Abstract
Fermentation products can chaotropically disorder macromolecular systems and induce oxidative stress, thus inhibiting biofuel production. Recently, the chaotropic activities of ethanol, butanol and vanillin have been quantified (5.93, 37.4, 174kJ kg(-1)m(-1) respectively). Use of low temperatures and/or stabilizing (kosmotropic) substances, and other approaches, can reduce, neutralize or circumvent product-chaotropicity. However, there may be limits to the alcohol concentrations that cells can tolerate; e.g. for ethanol tolerance in the most robust Saccharomyces cerevisiae strains, these are close to both the solubility limit (<25%, w/v ethanol) and the water-activity limit of the most xerotolerant strains (0.880). Nevertheless, knowledge-based strategies to mitigate or neutralize chaotropicity could lead to major improvements in rates of product formation and yields, and also therefore in the economics of biofuel production.
Collapse
Affiliation(s)
- Jonathan A Cray
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Andrew Stevenson
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Philip Ball
- 18 Hillcourt Road, East Dulwich, London SE22 0PE, UK
| | - Sandip B Bankar
- Department of Chemical Engineering, College of Engineering, Bharati Vidyapeeth University, Pune-Satara Road, Pune 411043, India
| | - Elis C A Eleutherio
- Universidade Federal do Rio de Janeiro, Instituto de Quimica, Programa de Pós-graduação Bioquimica, Rio de Janeiro, RJ, Brazil
| | - Thaddeus C Ezeji
- Department of Animal Sciences and Ohio Agricultural Research and Development Center (OARDC), The Ohio State University, 305 Gerlaugh Hall, 1680 Madison Avenue, Wooster, OH 44691, USA
| | - Rekha S Singhal
- Department of Food Engineering and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra 400019, India
| | - Johan M Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven and Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, Flanders, Leuven-Heverlee B-3001, Belgium
| | - David J Timson
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| |
Collapse
|
33
|
Snoek T, Picca Nicolino M, Van den Bremt S, Mertens S, Saels V, Verplaetse A, Steensels J, Verstrepen KJ. Large-scale robot-assisted genome shuffling yields industrial Saccharomyces cerevisiae yeasts with increased ethanol tolerance. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:32. [PMID: 25759747 PMCID: PMC4354739 DOI: 10.1186/s13068-015-0216-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 01/29/2015] [Indexed: 05/26/2023]
Abstract
BACKGROUND During the final phases of bioethanol fermentation, yeast cells face high ethanol concentrations. This stress results in slower or arrested fermentations and limits ethanol production. Novel Saccharomyces cerevisiae strains with superior ethanol tolerance may therefore allow increased yield and efficiency. Genome shuffling has emerged as a powerful approach to rapidly enhance complex traits including ethanol tolerance, yet previous efforts have mostly relied on a mutagenized pool of a single strain, which can potentially limit the effectiveness. Here, we explore novel robot-assisted strategies that allow to shuffle the genomes of multiple parental yeasts on an unprecedented scale. RESULTS Screening of 318 different yeasts for ethanol accumulation, sporulation efficiency, and genetic relatedness yielded eight heterothallic strains that served as parents for genome shuffling. In a first approach, the parental strains were subjected to multiple consecutive rounds of random genome shuffling with different selection methods, yielding several hybrids that showed increased ethanol tolerance. Interestingly, on average, hybrids from the first generation (F1) showed higher ethanol production than hybrids from the third generation (F3). In a second approach, we applied several successive rounds of robot-assisted targeted genome shuffling, yielding more than 3,000 targeted crosses. Hybrids selected for ethanol tolerance showed increased ethanol tolerance and production as compared to unselected hybrids, and F1 hybrids were on average superior to F3 hybrids. In total, 135 individual F1 and F3 hybrids were tested in small-scale very high gravity fermentations. Eight hybrids demonstrated superior fermentation performance over the commercial biofuel strain Ethanol Red, showing a 2 to 7% increase in maximal ethanol accumulation. In an 8-l pilot-scale test, the best-performing hybrid fermented medium containing 32% (w/v) glucose to dryness, yielding 18.7% (v/v) ethanol with a productivity of 0.90 g ethanol/l/h and a yield of 0.45 g ethanol/g glucose. CONCLUSIONS We report the use of several different large-scale genome shuffling strategies to obtain novel hybrids with increased ethanol tolerance and fermentation capacity. Several of the novel hybrids show best-parent heterosis and outperform the commonly used bioethanol strain Ethanol Red, making them interesting candidate strains for industrial production.
Collapse
Affiliation(s)
- Tim Snoek
- />Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium
- />Laboratory for Systems Biology, VIB, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Martina Picca Nicolino
- />Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium
- />Laboratory for Systems Biology, VIB, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Stefanie Van den Bremt
- />Laboratory of Enzyme, Fermentation and Brewing Technology, KU Leuven technologiecampus Ghent, Gebroeders De Smetstraat 1, 9000 Ghent, Belgium
| | - Stijn Mertens
- />Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium
- />Laboratory for Systems Biology, VIB, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Veerle Saels
- />Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium
- />Laboratory for Systems Biology, VIB, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Alex Verplaetse
- />Laboratory of Enzyme, Fermentation and Brewing Technology, KU Leuven technologiecampus Ghent, Gebroeders De Smetstraat 1, 9000 Ghent, Belgium
| | - Jan Steensels
- />Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium
- />Laboratory for Systems Biology, VIB, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Kevin J Verstrepen
- />Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium
- />Laboratory for Systems Biology, VIB, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| |
Collapse
|
34
|
Genomic reconstruction to improve bioethanol and ergosterol production of industrial yeast Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 2014; 42:207-18. [PMID: 25475753 DOI: 10.1007/s10295-014-1556-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 11/21/2014] [Indexed: 10/24/2022]
Abstract
Baker's yeast (Saccharomyces cerevisiae) is the common yeast used in the fields of bread making, brewing, and bioethanol production. Growth rate, stress tolerance, ethanol titer, and byproducts yields are some of the most important agronomic traits of S. cerevisiae for industrial applications. Here, we developed a novel method of constructing S. cerevisiae strains for co-producing bioethanol and ergosterol. The genome of an industrial S. cerevisiae strain, ZTW1, was first reconstructed through treatment with an antimitotic drug followed by sporulation and hybridization. A total of 140 mutants were selected for ethanol fermentation testing, and a significant positive correlation between ergosterol content and ethanol production was observed. The highest performing mutant, ZG27, produced 7.9 % more ethanol and 43.2 % more ergosterol than ZTW1 at the end of fermentation. Chromosomal karyotyping and proteome analysis of ZG27 and ZTW1 suggested that this breeding strategy caused large-scale genome structural variations and global gene expression diversities in the mutants. Genetic manipulation further demonstrated that the altered expression activity of some genes (such as ERG1, ERG9, and ERG11) involved in ergosterol synthesis partly explained the trait improvement in ZG27.
Collapse
|
35
|
Viscosity reduction of cassava for very high gravity ethanol fermentation using cell wall degrading enzymes from Aspergillus aculeatus. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.07.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
36
|
Mukherjee V, Steensels J, Lievens B, Van de Voorde I, Verplaetse A, Aerts G, Willems KA, Thevelein JM, Verstrepen KJ, Ruyters S. Phenotypic evaluation of natural and industrial Saccharomyces yeasts for different traits desirable in industrial bioethanol production. Appl Microbiol Biotechnol 2014; 98:9483-98. [PMID: 25267160 DOI: 10.1007/s00253-014-6090-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/09/2014] [Accepted: 09/10/2014] [Indexed: 01/17/2023]
Abstract
Saccharomyces cerevisiae is the organism of choice for many food and beverage fermentations because it thrives in high-sugar and high-ethanol conditions. However, the conditions encountered in bioethanol fermentation pose specific challenges, including extremely high sugar and ethanol concentrations, high temperature, and the presence of specific toxic compounds. It is generally considered that exploring the natural biodiversity of Saccharomyces strains may be an interesting route to find superior bioethanol strains and may also improve our understanding of the challenges faced by yeast cells during bioethanol fermentation. In this study, we phenotypically evaluated a large collection of diverse Saccharomyces strains on six selective traits relevant for bioethanol production with increasing stress intensity. Our results demonstrate a remarkably large phenotypic diversity among different Saccharomyces species and among S. cerevisiae strains from different origins. Currently applied bioethanol strains showed a high tolerance to many of these relevant traits, but several other natural and industrial S. cerevisiae strains outcompeted the bioethanol strains for specific traits. These multitolerant strains performed well in fermentation experiments mimicking industrial bioethanol production. Together, our results illustrate the potential of phenotyping the natural biodiversity of yeasts to find superior industrial strains that may be used in bioethanol production or can be used as a basis for further strain improvement through genetic engineering, experimental evolution, or breeding. Additionally, our study provides a basis for new insights into the relationships between tolerance to different stressors.
Collapse
Affiliation(s)
- Vaskar Mukherjee
- Laboratory for Process Microbial Ecology and Bioinspirational Management, Cluster for Bioengineering Technology (CBeT), Department of Microbial and Molecular Systems (M2S), Campus De Nayer, KU Leuven, Fortsesteenweg 30A, B-2860, Sint-Katelijne-Waver, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Steensels J, Snoek T, Meersman E, Nicolino MP, Voordeckers K, Verstrepen KJ. Improving industrial yeast strains: exploiting natural and artificial diversity. FEMS Microbiol Rev 2014; 38:947-95. [PMID: 24724938 PMCID: PMC4293462 DOI: 10.1111/1574-6976.12073] [Citation(s) in RCA: 287] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 01/31/2014] [Accepted: 04/02/2014] [Indexed: 12/23/2022] Open
Abstract
Yeasts have been used for thousands of years to make fermented foods and beverages, such as beer, wine, sake, and bread. However, the choice for a particular yeast strain or species for a specific industrial application is often based on historical, rather than scientific grounds. Moreover, new biotechnological yeast applications, such as the production of second-generation biofuels, confront yeast with environments and challenges that differ from those encountered in traditional food fermentations. Together, this implies that there are interesting opportunities to isolate or generate yeast variants that perform better than the currently used strains. Here, we discuss the different strategies of strain selection and improvement available for both conventional and nonconventional yeasts. Exploiting the existing natural diversity and using techniques such as mutagenesis, protoplast fusion, breeding, genome shuffling and directed evolution to generate artificial diversity, or the use of genetic modification strategies to alter traits in a more targeted way, have led to the selection of superior industrial yeasts. Furthermore, recent technological advances allowed the development of high-throughput techniques, such as 'global transcription machinery engineering' (gTME), to induce genetic variation, providing a new source of yeast genetic diversity.
Collapse
Affiliation(s)
- Jan Steensels
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU LeuvenLeuven, Belgium
- Laboratory for Systems Biology, VIBLeuven, Belgium
| | - Tim Snoek
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU LeuvenLeuven, Belgium
- Laboratory for Systems Biology, VIBLeuven, Belgium
| | - Esther Meersman
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU LeuvenLeuven, Belgium
- Laboratory for Systems Biology, VIBLeuven, Belgium
| | - Martina Picca Nicolino
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU LeuvenLeuven, Belgium
- Laboratory for Systems Biology, VIBLeuven, Belgium
| | - Karin Voordeckers
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU LeuvenLeuven, Belgium
- Laboratory for Systems Biology, VIBLeuven, Belgium
| | - Kevin J Verstrepen
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU LeuvenLeuven, Belgium
- Laboratory for Systems Biology, VIBLeuven, Belgium
| |
Collapse
|
38
|
Simple assay of trehalose in industrial yeast. Food Chem 2014; 158:335-9. [DOI: 10.1016/j.foodchem.2014.02.067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 02/05/2014] [Accepted: 02/17/2014] [Indexed: 01/28/2023]
|
39
|
Kasavi C, Eraslan S, Arga KY, Oner ET, Kirdar B. A system based network approach to ethanol tolerance in Saccharomyces cerevisiae. BMC SYSTEMS BIOLOGY 2014; 8:90. [PMID: 25103914 PMCID: PMC4236716 DOI: 10.1186/s12918-014-0090-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 07/15/2014] [Indexed: 01/23/2023]
Abstract
Background Saccharomyces cerevisiae has been widely used for bio-ethanol production and development of rational genetic engineering strategies leading both to the improvement of productivity and ethanol tolerance is very important for cost-effective bio-ethanol production. Studies on the identification of the genes that are up- or down-regulated in the presence of ethanol indicated that the genes may be involved to protect the cells against ethanol stress, but not necessarily required for ethanol tolerance. Results In the present study, a novel network based approach was developed to identify candidate genes involved in ethanol tolerance. Protein-protein interaction (PPI) network associated with ethanol tolerance (tETN) was reconstructed by integrating PPI data with Gene Ontology (GO) terms. Modular analysis of the constructed networks revealed genes with no previously reported experimental evidence related to ethanol tolerance and resulted in the identification of 17 genes with previously unknown biological functions. We have randomly selected four of these genes and deletion strains of two genes (YDR307W and YHL042W) were found to exhibit improved tolerance to ethanol when compared to wild type strain. The genome-wide transcriptomic response of yeast cells to the deletions of YDR307W and YHL042W in the absence of ethanol revealed that the deletion of YDR307W and YHL042W genes resulted in the transcriptional re-programming of the metabolism resulting from a mis-perception of the nutritional environment. Yeast cells perceived an excess amount of glucose and a deficiency of methionine or sulfur in the absence of YDR307W and YHL042W, respectively, possibly resulting from a defect in the nutritional sensing and signaling or transport mechanisms. Mutations leading to an increase in ribosome biogenesis were found to be important for the improvement of ethanol tolerance. Modulations of chronological life span were also identified to contribute to ethanol tolerance in yeast. Conclusions The system based network approach developed allows the identification of novel gene targets for improved ethanol tolerance and supports the highly complex nature of ethanol tolerance in yeast.
Collapse
Affiliation(s)
| | | | | | | | - Betul Kirdar
- Department of Chemical Engineering, Boğaziçi University, Istanbul, Turkey.
| |
Collapse
|
40
|
Adaptive Evolution of Saccharomyces cerevisiae with Enhanced Ethanol Tolerance for Chinese Rice Wine Fermentation. Appl Biochem Biotechnol 2014; 173:1940-54. [DOI: 10.1007/s12010-014-0978-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 05/19/2014] [Indexed: 12/28/2022]
|
41
|
Wang H, Ji B, Ren H, Meng C. The relationship between lysine 4 on histone H3 methylation levels of alcohol tolerance genes and changes of ethanol tolerance in Saccharomyces cerevisiae. Microb Biotechnol 2014; 7:307-14. [PMID: 24779776 PMCID: PMC4241724 DOI: 10.1111/1751-7915.12121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/31/2013] [Accepted: 01/22/2013] [Indexed: 01/09/2023] Open
Abstract
We evaluated whether epigenetic changes contributed to improve ethanol tolerance in mutant
populations of Saccharomyces cerevisiae (S. cerevisiae). Two
ethanol-tolerant variants of S. cerevisiae were used to evaluate the genetic
stability in the process of stress-free passage cultures. We found that acquired ethanol tolerance
was lost and transcription level of some genes (HSP104, PRO1,
TPS1, and SOD1) closely related to ethanol tolerance decreased
significantly after the 10th passage in ethanol-free medium. Tri-methylation of lysine 4 on histone
H3 (H3K4) enhanced at the promoter of HSP104, PRO1,
TPS1 and SOD1 in ethanol-tolerant variants of S.
cerevisiae was also diminished after tenth passage in stress-free cultures. The ethanol
tolerance was reacquired when exogenous SOD1 transferred in some tolerance-lost
strains. This showed that H3K4 methylation is involved in phenotypic variation with regard to
ethanol tolerance with respect to classic breeding methods used in yeast.
Collapse
Affiliation(s)
- Hang Wang
- Department of Bioengineering, College of Biological Science and Biotechnology, Fuzhou University, Fuzhou, Fujian, China
| | | | | | | |
Collapse
|
42
|
Evolutionary engineering by genome shuffling. Appl Microbiol Biotechnol 2014; 98:3877-87. [PMID: 24595425 DOI: 10.1007/s00253-014-5616-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/11/2014] [Accepted: 02/12/2014] [Indexed: 01/28/2023]
Abstract
An upsurge in the bioeconomy drives the need for engineering microorganisms with increasingly complex phenotypes. Gains in productivity of industrial microbes depend on the development of improved strains. Classical strain improvement programmes for the generation, screening and isolation of such mutant strains have existed for several decades. An alternative to traditional strain improvement methods, genome shuffling, allows the directed evolution of whole organisms via recursive recombination at the genome level. This review deals chiefly with the technical aspects of genome shuffling. It first presents the diversity of organisms and phenotypes typically evolved using this technology and then reviews available sources of genetic diversity and recombination methodologies. Analysis of the literature reveals that genome shuffling has so far been restricted to microorganisms, both prokaryotes and eukaryotes, with an overepresentation of antibiotics- and biofuel-producing microbes. Mutagenesis is the main source of genetic diversity, with few studies adopting alternative strategies. Recombination is usually done by protoplast fusion or sexual recombination, again with few exceptions. For both diversity and recombination, prospective methods that have not yet been used are also presented. Finally, the potential of genome shuffling for gaining insight into the genetic basis of complex phenotypes is also discussed.
Collapse
|
43
|
Koppram R, Tomás-Pejó E, Xiros C, Olsson L. Lignocellulosic ethanol production at high-gravity: challenges and perspectives. Trends Biotechnol 2014; 32:46-53. [DOI: 10.1016/j.tibtech.2013.10.003] [Citation(s) in RCA: 253] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 10/07/2013] [Accepted: 10/10/2013] [Indexed: 11/30/2022]
|
44
|
Zheng D, Zhang K, Gao K, Liu Z, Zhang X, Li O, Sun J, Zhang X, Du F, Sun P, Qu A, Wu X. Construction of novel Saccharomyces cerevisiae strains for bioethanol active dry yeast (ADY) production. PLoS One 2013; 8:e85022. [PMID: 24376860 PMCID: PMC3871550 DOI: 10.1371/journal.pone.0085022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 11/20/2013] [Indexed: 11/18/2022] Open
Abstract
The application of active dry yeast (ADY) in bioethanol production simplifies operation processes and reduces the risk of bacterial contamination. In the present study, we constructed a novel ADY strain with improved stress tolerance and ethanol fermentation performances under stressful conditions. The industrial Saccharomyces cerevisiae strain ZTW1 showed excellent properties and thus subjected to a modified whole-genome shuffling (WGS) process to improve its ethanol titer, proliferation capability, and multiple stress tolerance for ADY production. The best-performing mutant, Z3-86, was obtained after three rounds of WGS, producing 4.4% more ethanol and retaining 2.15-fold higher viability than ZTW1 after drying. Proteomics and physiological analyses indicated that the altered expression patterns of genes involved in protein metabolism, plasma membrane composition, trehalose metabolism, and oxidative responses contribute to the trait improvement of Z3-86. This work not only successfully developed a novel S. cerevisiae mutant for application in commercial bioethanol production, but also enriched the current understanding of how WGS improves the complex traits of microbes.
Collapse
Affiliation(s)
- Daoqiong Zheng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Ke Zhang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Kehui Gao
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Zewei Liu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Xing Zhang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Ou Li
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jianguo Sun
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Xiaoyang Zhang
- State Key Laboratory of Motor Vehicle Biofuel Technology (Tianguan Group Co., Ltd.), Nanyang, Henan Province, China
| | - Fengguang Du
- State Key Laboratory of Motor Vehicle Biofuel Technology (Tianguan Group Co., Ltd.), Nanyang, Henan Province, China
| | - Peiyong Sun
- State Key Laboratory of Motor Vehicle Biofuel Technology (Tianguan Group Co., Ltd.), Nanyang, Henan Province, China
| | - Aimin Qu
- State Key Laboratory of Motor Vehicle Biofuel Technology (Tianguan Group Co., Ltd.), Nanyang, Henan Province, China
| | - Xuechang Wu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
- * E-mail:
| |
Collapse
|
45
|
Zheng DQ, Chen J, Zhang K, Gao KH, Li O, Wang PM, Zhang XY, Du FG, Sun PY, Qu AM, Wu S, Wu XC. Genomic structural variations contribute to trait improvement during whole-genome shuffling of yeast. Appl Microbiol Biotechnol 2013; 98:3059-70. [PMID: 24346281 DOI: 10.1007/s00253-013-5423-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 11/17/2013] [Accepted: 11/18/2013] [Indexed: 11/24/2022]
Abstract
Whole-genome shuffling (WGS) is a powerful technology of improving the complex traits of many microorganisms. However, the molecular mechanisms underlying the altered phenotypes in isolates were less clarified. Isolates with significantly enhanced stress tolerance and ethanol titer under very-high-gravity conditions were obtained after WGS of the bioethanol Saccharomyces cerevisiae strain ZTW1. Karyotype analysis and RT-qPCR showed that chromosomal rearrangement occurred frequently in genome shuffling. Thus, the phenotypic effects of genomic structural variations were determined in this study. RNA-Seq and physiological analyses revealed the diverse transcription pattern and physiological status of the isolate S3-110 and ZTW1. Our observations suggest that the improved stress tolerance of S3-110 can be largely attributed to the copy number variations in large DNA regions, which would adjust the ploidy of yeast cells and expression levels of certain genes involved in stress response. Overall, this work not only constructed shuffled S. cerevisiae strains that have potential industrial applications but also provided novel insights into the molecular mechanisms of WGS and enhanced our knowledge on this useful breeding strategy.
Collapse
Affiliation(s)
- Dao-Qiong Zheng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Wang PM, Zheng DQ, Chi XQ, Li O, Qian CD, Liu TZ, Zhang XY, Du FG, Sun PY, Qu AM, Wu XC. Relationship of trehalose accumulation with ethanol fermentation in industrial Saccharomyces cerevisiae yeast strains. BIORESOURCE TECHNOLOGY 2013; 152:371-376. [PMID: 24316480 DOI: 10.1016/j.biortech.2013.11.033] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 11/11/2013] [Accepted: 11/13/2013] [Indexed: 06/02/2023]
Abstract
The protective effect and the mechanisms of trehalose accumulation in industrial Saccharomyces cerevisiae strains were investigated during ethanol fermentation. The engineered strains with more intercellular trehalose achieved significantly higher fermentation rates and ethanol yields than their wild strain ZS during very high gravity (VHG) fermentation, while their performances were not different during regular fermentation. The VHG fermentation performances of these strains were consistent with their growth capacity under osmotic stress and ethanol stress, the key stress factors during VHG fermentation. These results suggest that trehalose accumulation is more important for VHG fermentation of industrial yeast strains than regular one. The differences in membrane integrity and antioxidative capacity of these strains indicated the possible mechanisms of trehalose as a protectant under VHG condition. Therefore, trehalose metabolic engineering may be a useful strategy for improving the VHG fermentation performance of industrial yeast strains.
Collapse
Affiliation(s)
- Pin-Mei Wang
- Ocean College, Zhejiang University, Hangzhou 310058, Zhejiang Province, China; Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Dao-Qiong Zheng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Xiao-Qin Chi
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen University Affiliated Zhongshan Hospital, Xiamen 361004, Fujian Province, China
| | - Ou Li
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Chao-Dong Qian
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Tian-Zhe Liu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Xiao-Yang Zhang
- State Key Laboratory of Motor Vehicle Biofuel Technology, Nanyang 473000, Henan Province, China
| | - Feng-Guang Du
- State Key Laboratory of Motor Vehicle Biofuel Technology, Nanyang 473000, Henan Province, China
| | - Pei-Yong Sun
- State Key Laboratory of Motor Vehicle Biofuel Technology, Nanyang 473000, Henan Province, China
| | - Ai-Min Qu
- State Key Laboratory of Motor Vehicle Biofuel Technology, Nanyang 473000, Henan Province, China
| | - Xue-Chang Wu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China.
| |
Collapse
|
47
|
Streptomycin resistance-aided genome shuffling to improve doramectin productivity of Streptomyces avermitilis NEAU1069. ACTA ACUST UNITED AC 2013; 40:877-89. [DOI: 10.1007/s10295-013-1280-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 04/25/2013] [Indexed: 11/30/2022]
Abstract
Abstract
Genome shuffling is an efficient approach for the rapid engineering of microbial strains with desirable industrial phenotypes. In this study, a strategy of incorporating streptomycin resistance screening into genome shuffling (GS-SR) was applied for rapid improvement of doramectin production by Streptomyces avermitilis NEAU1069. The starting mutant population was generated through treatment of the spores with N-methyl-N’-nitro-N-nitrosoguanidine and ultraviolet (UV) irradiation, respectively, and five mutants with higher productivity of doramectin were selected as starting strains for GS-SR. Finally, a genetically stable strain F4-137 was obtained and characterized to be able to yield 992 ± 4.4 mg/l doramectin in a shake flask, which was 7.3-fold and 11.2-fold higher than that of the starting strain UV-45 and initial strain NEAU1069, respectively. The doramectin yield by F4-137 in a 50-l fermentor reached 930.3 ± 3.8 mg/l. Furthermore, the factors associated with the improved doramectin yield were investigated and the results suggested that mutations in ribosomal protein S12 and the enhanced production of cyclohexanecarboxylic coenzyme A may contribute to the improved performance of the shuffled strains. The random amplified polymorphic DNA analysis showed a genetic diversity among the shuffled strains, which confirmed the occurrence of genome shuffling. In conclusion, our results demonstrated that GS-SR is a powerful method for enhancing the production of secondary metabolites in Streptomyces.
Collapse
|
48
|
Nielsen J, Larsson C, van Maris A, Pronk J. Metabolic engineering of yeast for production of fuels and chemicals. Curr Opin Biotechnol 2013; 24:398-404. [DOI: 10.1016/j.copbio.2013.03.023] [Citation(s) in RCA: 235] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 03/18/2013] [Accepted: 03/27/2013] [Indexed: 01/01/2023]
|
49
|
Mutations of the TATA-binding protein confer enhanced tolerance to hyperosmotic stress in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2013; 97:8227-38. [PMID: 23709042 DOI: 10.1007/s00253-013-4985-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/28/2013] [Accepted: 05/05/2013] [Indexed: 11/27/2022]
Abstract
Previously, it was shown that overexpression of either of two SPT15 mutant alleles, SPT15-M2 and SPT15-M3, which encode mutant TATA-binding proteins, confer enhanced ethanol tolerance in Saccharomyces cerevisiae. In this study, we demonstrated that strains overexpressing SPT15-M2 or SPT15-M3 were tolerant to hyperosmotic stress caused by high concentrations of glucose, salt, and sorbitol. The enhanced tolerance to high glucose concentrations in particular improved ethanol production from very high gravity (VHG) ethanol fermentations. The strains displayed constitutive and sustained activation of Hog1, a central kinase in the high osmolarity glycerol (HOG) signal transduction pathway of S. cerevisiae. However, the cell growth defect known to be caused by constitutive and sustained activation of Hog1 was not observed. We also found that reactive oxygen species (ROS) were accumulated to a less extent upon exposure to high glucose concentration in our osmotolerant strains. We identified six new genes (GPH1, HSP12, AIM17, SSA4, USV1, and IGD1), the individual deletion of which renders cells sensitive to 50 % glucose. In spite of the presence of multiple copies of stress response element in their promoters, it was apparent that those genes were not controlled at the transcriptional level by the HOG pathway under the high glucose conditions. Combined with previously published results, overexpression of SPT15-M2 or SPT15-M3 clearly provides a basis for improved tolerance to ethanol and osmotic stress, which enables construction of strains of any genetic background that need enhanced tolerance to high concentrations of ethanol and glucose, promoting the feasibility for VHG ethanol fermentation.
Collapse
|
50
|
Zheng DQ, Liu TZ, Chen J, Zhang K, Li O, Zhu L, Zhao YH, Wu XC, Wang PM. Comparative functional genomics to reveal the molecular basis of phenotypic diversities and guide the genetic breeding of industrial yeast strains. Appl Microbiol Biotechnol 2013; 97:2067-76. [DOI: 10.1007/s00253-013-4698-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 01/03/2013] [Accepted: 01/04/2013] [Indexed: 10/27/2022]
|