1
|
Zhang EH, Liu D, Xiang Y. Polyprenylated acylphloroglucinols from Hypericum attenuatum and their antidepressant activities. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2025:1-7. [PMID: 40257321 DOI: 10.1080/10286020.2025.2492351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/06/2025] [Accepted: 04/08/2025] [Indexed: 04/22/2025]
Abstract
Three new polycyclic polyprenylated acylphloroglucinols, attenuatumines A-C (1-3), were ioslated from the 90% EtOH extract of the air dried aerial parts of Hypericum attenuatum. Structural elucidation of all the compounds was performed by spectral methods such as 1D and 2D (1H-1H COSY, HMQC, and HMBC) NMR spectroscopy. All the isolated compounds were evaluated for their antidepressant activity by inhibiting reuptake of tritiated serotonin ([3H]-5-HT) and noradrenalinet ([3H]-NE) in rat brain synaptosomes. Compounds 2 exhibited some antidepressant activities in the [3H]-5-HT mode.
Collapse
Affiliation(s)
- En-Hui Zhang
- Department of Pharmacy, The 967th Hospital of Joint Logistic Support Force of PLA, Dalian116041, China
| | - Dan Liu
- Department of Pharmacy, The 967th Hospital of Joint Logistic Support Force of PLA, Dalian116041, China
| | - Yong Xiang
- Department of Pharmacy, The 967th Hospital of Joint Logistic Support Force of PLA, Dalian116041, China
| |
Collapse
|
2
|
Zhong Z, Chen M, Zhu C, Li Y, Zhou M, Wang C, Dong J. Phytochemicals From Salvia substolonifera With Anti-Angiogenic Properties and Substolide H Decreased Oxygen-Induced Retinal Neovascularization. Chem Biodivers 2025; 22:e202401427. [PMID: 39617721 DOI: 10.1002/cbdv.202401427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 11/08/2024] [Accepted: 11/29/2024] [Indexed: 12/08/2024]
Abstract
Retinal neovascularization is a pathological feature of ischemic retinopathy. Current therapeutic approaches are limited, and additional treatment options are needed. This study aims to discover lead compounds from Salvia substolonifera that inhibit angiogenesis. As a result, an undescribed norditerpene lactone, substolide H (3), and eight known compounds (1, 2, and 4-9) have been isolated. The structure was elucidated using synthetic spectroscopy and electron circular dichroism. Compounds 2, 3, 5, 7, and 9 inhibited human umbilical vein endothelial cells (HUVEC) proliferation with IC50 values of 26.47, 6.10, 43.27, 36.81, and 35.11 µM, respectively. Compounds 2, 3, and 7 inhibited HUVEC migration with IC50 values of 12.48, 8.37, and 7.63 µM, respectively. Further studies have shown that the substolide H (3) suppresses tube formation in human umbilical vein endothelial cells and that intravitreous administration suppresses retinal neovascularization in oxygen-induced retinopathy mice. Turning to its mechanism of action, we have shown that the anti-angiogenic effect of the substolide H may be through the downregulation of vascular endothelial growth factor expression and the phosphorylation of VEGFR2, ERK1/2, and protein kinase B. Our study represents the first report of these anti-angiogenic compounds from this plant, and substolide H may be a potential candidate for the treatment of retinal neovascularization.
Collapse
Affiliation(s)
- Zhipeng Zhong
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, China
| | - Min Chen
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, China
| | - Cheng Zhu
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yu Li
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, China
| | - Meilin Zhou
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, China
| | - Chaojie Wang
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jianyong Dong
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
3
|
Xiong W, Zheng B, Liu D, Pu M, Zhou S, Deng Y. Quercetin inhibits endothelial & hepatocellular carcinoma cell crosstalk via reducing extracellular vesicle-mediated VEGFR2 mRNA transfer. Mol Carcinog 2024; 63:2254-2268. [PMID: 39171838 DOI: 10.1002/mc.23807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/26/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024]
Abstract
This study aims to investigate the regulatory effects of quercetin extracellular vesicles (EVs)-mediated expression of vascular endothelial growth factor receptor 2 (VEGFR2) in hepatocellular carcinoma (HCC)-derived circulating tumor cells (CTCs) and the underlying mechanisms. CTCs were isolated from patients with pathologically diagnosed HCC, with VEGFR2 expression visualized by fluorescence in situ hybridization (FISH). The human HCC cell line Huh-7 and SK-HEP-1 were used for in vitro studies to assess EVs uptake, VEGFR2 mRNA transfer, invasion, migration, cancer stem cell (CSC) properties, and VEGF secretion. Results showed that VEGFR2 mRNA was commonly expressed in HCC-CTCs, with a higher incidence in biphenotypic CTCs. Its expression was limited in HCC cell lines, but present in certain liver cells. In vitro experiments confirmed that VEGFR2 mRNA could be transferred to HCC cells via EVs from primary tumor endothelial cells (PTECs), which was impaired by quercetin treatment. Quercetin significantly reduced VEGFR2 mRNA and protein expression in HCC cells, weakened their invasive and metastatic capacities, and diminished VEGFR2-mediated CSC properties. In vivo, quercetin reduced VEGF secretion, impaired angiogenesis, slowed tumor growth, and decreased the number and proportion of VEGFR2-positive CTCs. In summary, VEGFR2 mRNA is present in HCC-CTCs, potentially sourced from PTECs-derived EVs. Quercetin effectively inhibits VEGFR2 expression, impacting HCC cell invasion, metastasis, and CSC characteristics. Besides, it reduces VEGFR2-positive CTCs in vivo. These effects support its therapeutic potential in HCC treatment by targeting the angiogenesis and tumor dissemination pathway.
Collapse
MESH Headings
- Humans
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/genetics
- Quercetin/pharmacology
- Liver Neoplasms/drug therapy
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms/genetics
- Vascular Endothelial Growth Factor Receptor-2/metabolism
- Vascular Endothelial Growth Factor Receptor-2/genetics
- Extracellular Vesicles/metabolism
- RNA, Messenger/genetics
- Neoplastic Cells, Circulating/metabolism
- Neoplastic Cells, Circulating/pathology
- Neoplastic Cells, Circulating/drug effects
- Cell Line, Tumor
- Animals
- Mice
- Gene Expression Regulation, Neoplastic/drug effects
- Cell Movement/drug effects
- Male
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Endothelial Cells/metabolism
- Endothelial Cells/drug effects
- Mice, Nude
- Female
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Wei Xiong
- Department of Hepatobiliary Surgery, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Bo Zheng
- Department of Hepatobiliary Surgery, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Di Liu
- Cancer Center, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Mo Pu
- Department of Hepatobiliary Surgery, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Shijie Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Deng
- Cancer Center, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Wu M, Ye X. Quercetin-4'-O-β-D-glucopyranoside inhibits podocyte injury by SIRT5-mediated desuccinylation of NEK7. Clin Exp Pharmacol Physiol 2024; 51:e13909. [PMID: 39038854 DOI: 10.1111/1440-1681.13909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 05/10/2024] [Accepted: 06/19/2024] [Indexed: 07/24/2024]
Abstract
Diabetic kidney disease (DKD) is a complication of diabetic mellitus. New treatments need to be developed. This study aimed to investigate the effects of quercetin-4'-O-β-D-glucopyranoside (QODG) on podocyte injury. Podocytes were cultured in high glucose (HG) medium, treated with QODG, and overexpressing or knocking down SIRT5. Oxidative stress indicators were assessed using corresponding kits. Pyroptosis was detected by flow cytometry and western blot analysis. Succinylation modification was detected using immunoprecipitation (IP) and western blot analysis. The interaction between NEK7 and NLRP3 was determined by co-IP. The results indicated that QODG inhibited oxidative stress and pyroptosis of podocytes induced by HG. Besides, QODG suppressed succinylation levels in HG-induced podocytes, with the upregulation of SIRT5. Knockdown of SIRT5 reversed the effects of QODG on oxidative stress and pyroptosis. Moreover, SIRT5 inhibited the succinylation of NEK7 and the interaction between NLRP3 and NEK7. In conclusion, QODG upregulates SIRT5 to inhibit the succinylation modification of NEK7, impedes the interaction between NEK7 and NLRP3, and then inhibits the pyroptosis and oxidative stress injury of podocytes under HG conditions. The findings suggested that QODG has the potential to treat DKD and explore a novel underlying mechanism of QODG function.
Collapse
Affiliation(s)
- Menghua Wu
- Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xiaoli Ye
- Department of Party Building Office, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
5
|
Wei Q, Zhang YH. Flavonoids with Anti-Angiogenesis Function in Cancer. Molecules 2024; 29:1570. [PMID: 38611849 PMCID: PMC11013936 DOI: 10.3390/molecules29071570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/23/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
The formation of new blood vessels, known as angiogenesis, significantly impacts the development of multiple types of cancer. Consequently, researchers have focused on targeting this process to prevent and treat numerous disorders. However, most existing anti-angiogenic treatments rely on synthetic compounds and humanized monoclonal antibodies, often expensive or toxic, restricting patient access to these therapies. Hence, the pursuit of discovering new, affordable, less toxic, and efficient anti-angiogenic compounds is imperative. Numerous studies propose that natural plant-derived products exhibit these sought-after characteristics. The objective of this review is to delve into the anti-angiogenic properties exhibited by naturally derived flavonoids from plants, along with their underlying molecular mechanisms of action. Additionally, we summarize the structure, classification, and the relationship between flavonoids with their signaling pathways in plants as anti-angiogenic agents, including main HIF-1α/VEGF/VEGFR2/PI3K/AKT, Wnt/β-catenin, JNK1/STAT3, and MAPK/AP-1 pathways. Nonetheless, further research and innovative approaches are required to enhance their bioavailability for clinical application.
Collapse
Affiliation(s)
- Qiang Wei
- School of Medicine, Anhui Xinhua University, 555 Wangjiang West Road, Hefei 230088, China;
| | | |
Collapse
|
6
|
Delage P, Ségrestin B, Seyssel K, Chanon S, Vieille-Marchiset A, Durand A, Nemeth A, Métairon S, Charpagne A, Descombes P, Hager J, Laville M, Vidal H, Meugnier E. Adipose tissue angiogenesis genes are down-regulated by grape polyphenols supplementation during a human overfeeding trial. J Nutr Biochem 2023; 117:109334. [PMID: 36965784 DOI: 10.1016/j.jnutbio.2023.109334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/16/2023] [Accepted: 03/18/2023] [Indexed: 03/27/2023]
Abstract
The adaptive response to overfeeding is associated with profound modifications of gene expression in adipose tissue to support lipid storage and weight gain. The objective of this study was to assess in healthy lean men whether a supplementation with polyphenols could interact with these molecular adaptations. Abdominal subcutaneous adipose tissue biopsies were sampled from 42 subjects participating to an overfeeding protocol providing an excess of 50% of their total energy expenditure for 31 days, and who were supplemented with 2 g/day of grape polyphenols or a placebo. Gene expression profiling was performed by RNA sequencing. Overfeeding led to a modification of the expression of 163 and 352 genes in the placebo and polyphenol groups, respectively. The GO functions of these genes were mostly involved in lipid metabolism, followed by genes involved in adipose tissue remodeling and expansion. In response to overfeeding, 812 genes were differentially regulated between groups. Among them, a set of 41 genes were related to angiogenesis and were downregulated in the polyphenol group. Immunohistochemistry targeting PECAM1, as endothelial cell marker, confirmed reduced angiogenesis in this group. Finally, quercetin and isorhamnetin, two polyphenol species enriched in the plasma of the volunteers submitted to the polyphenols, were found to inhibit human umbilical vein endothelial cells migration in vitro. Polyphenol supplementation do not prevent the regulation of genes related to lipid metabolism in human adipose tissue during overfeeding, but impact the angiogenesis pathways. This may potentially contribute to a protection against adipose tissue expansion during dynamic phase of weight gain.
Collapse
Affiliation(s)
- Pauline Delage
- CarMeN Laboratory, INSERM, INRAe, Claude Bernard Lyon 1 University, Pierre-Bénite, F-69310, France.
| | - Bérénice Ségrestin
- CarMeN Laboratory, INSERM, INRAe, Claude Bernard Lyon 1 University, Pierre-Bénite, F-69310, France; CRNH-RA, INSERM, INRAe, Claude Bernard Lyon 1 University, Hospices Civils de Lyon, Pierre-Bénite, F-69310, France; Centre Hospitalier Lyon-Sud, Service d'Endocrinologie Diabète Nutrition Lyon, Hospices Civils de Lyon, Pierre-Bénite, F-69100, France.
| | - Kévin Seyssel
- CarMeN Laboratory, INSERM, INRAe, Claude Bernard Lyon 1 University, Pierre-Bénite, F-69310, France; CRNH-RA, INSERM, INRAe, Claude Bernard Lyon 1 University, Hospices Civils de Lyon, Pierre-Bénite, F-69310, France.
| | - Stéphanie Chanon
- CarMeN Laboratory, INSERM, INRAe, Claude Bernard Lyon 1 University, Pierre-Bénite, F-69310, France.
| | | | - Annie Durand
- CarMeN Laboratory, INSERM, INRAe, Claude Bernard Lyon 1 University, Pierre-Bénite, F-69310, France.
| | - Angéline Nemeth
- CNRS, INSERM, CREATIS, Université de Lyon, INSA-Lyon, Claude Bernard Lyon 1 University, UJM-Saint Etienne, Lyon, France.
| | | | - Aline Charpagne
- Nestlé Research, EPFL Innovation Park, H, Lausanne, Switzerland.
| | | | - Jörg Hager
- Nestlé Research, EPFL Innovation Park, H, Lausanne, Switzerland.
| | - Martine Laville
- CarMeN Laboratory, INSERM, INRAe, Claude Bernard Lyon 1 University, Pierre-Bénite, F-69310, France; CRNH-RA, INSERM, INRAe, Claude Bernard Lyon 1 University, Hospices Civils de Lyon, Pierre-Bénite, F-69310, France; Centre Hospitalier Lyon-Sud, Service d'Endocrinologie Diabète Nutrition Lyon, Hospices Civils de Lyon, Pierre-Bénite, F-69100, France.
| | - Hubert Vidal
- CarMeN Laboratory, INSERM, INRAe, Claude Bernard Lyon 1 University, Pierre-Bénite, F-69310, France; CRNH-RA, INSERM, INRAe, Claude Bernard Lyon 1 University, Hospices Civils de Lyon, Pierre-Bénite, F-69310, France.
| | - Emmanuelle Meugnier
- CarMeN Laboratory, INSERM, INRAe, Claude Bernard Lyon 1 University, Pierre-Bénite, F-69310, France.
| |
Collapse
|
7
|
Caldeira GI, Gouveia LP, Serrano R, Silva OD. Hypericum Genus as a Natural Source for Biologically Active Compounds. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11192509. [PMID: 36235373 PMCID: PMC9573133 DOI: 10.3390/plants11192509] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 06/08/2023]
Abstract
Hypericum L. genus plants are distributed worldwide, with numerous species identified throughout all continents, except Antarctica. These plant species are currently used in various systems of traditional medicine to treat mild depression, wounds and burns, diarrhea, pain, fevers, and their secondary metabolites previously shown, and the in vitro and/or in vivo cytotoxic, antimicrobial, anti-inflammatory, antioxidant, antihyperglycemic, and hepatoprotective activities, as well as the acetylcholinesterase and monoamine oxidase inhibitory activities. We conducted a systematic bibliographic search according to the Cochrane Collaboration guidelines to answer the question: "What is known about plants of Hypericum genus as a source of natural products with potential clinical biological activity?" We documented 414 different natural products with confirmed in vitro/in vivo biological activities, and 58 different Hypericum plant species as sources for these natural products. Phloroglucinols, acylphloroglucinols, xanthones, and benzophenones were the main chemical classes identified. The selective cytotoxicity against tumor cells, cell protection, anti-inflammatory, antimicrobial, antidepressant, anti-Alzheimer's, and adipogenesis-inhibition biological activities are described. Acylphloroglucinols were the most frequent compounds with anticancer and cell-protection mechanisms. To date, no work has been published with a full descriptive list directly relating secondary metabolites to their species of origin, plant parts used, extraction methodologies, mechanisms of action, and biological activities.
Collapse
|
8
|
Abbate F, Maugeri A, Laurà R, Levanti M, Navarra M, Cirmi S, Germanà A. Zebrafish as a Useful Model to Study Oxidative Stress-Linked Disorders: Focus on Flavonoids. Antioxidants (Basel) 2021; 10:antiox10050668. [PMID: 33922976 PMCID: PMC8147052 DOI: 10.3390/antiox10050668] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 12/22/2022] Open
Abstract
The zebrafish is considered one of the most versatile experimental animal models. The transparency of the embryos, the small size, the rapid development and the homology with higher vertebrates have made the zebrafish a valuable model also for drug screening. Its use is closely related for the determination of bioactivity, toxicity and off-target side effects of novel drug candidates, which also allows a thorough evaluation of new targets; thus, it may represent a suitable model for drug screening and the optimization of novel candidates. Flavonoids are polyphenolic compounds widely present in fruits, vegetables and cereals. Polyphenols are important for both plants and humans, considering their involvement in defense mechanisms, particularly against oxidative stress. They protect plants from biotic and abiotic stressors and prevent or treat oxidative-based human diseases. For these reasons, polyphenols are used as nutraceuticals, functional foods and supplements by the pharmaceutical industry. Therefore, the most relevant findings on zebrafish as a useful experimental model to study oxidative stress-linked disorders, focusing on the biological activities of flavonoids, are here summarized and reviewed.
Collapse
Affiliation(s)
- Francesco Abbate
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (R.L.); (M.L.); (A.G.)
- Correspondence: (F.A.); (S.C.)
| | - Alessandro Maugeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (A.M.); (M.N.)
| | - Rosaria Laurà
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (R.L.); (M.L.); (A.G.)
| | - Maria Levanti
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (R.L.); (M.L.); (A.G.)
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (A.M.); (M.N.)
| | - Santa Cirmi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (A.M.); (M.N.)
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy
- Correspondence: (F.A.); (S.C.)
| | - Antonino Germanà
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (R.L.); (M.L.); (A.G.)
| |
Collapse
|
9
|
Khater M, Greco F, Osborn HMI. Antiangiogenic Activity of Flavonoids: A Systematic Review and Meta-Analysis. Molecules 2020; 25:E4712. [PMID: 33066630 PMCID: PMC7594036 DOI: 10.3390/molecules25204712] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 12/16/2022] Open
Abstract
Abstract: An imbalance of angiogenesis contributes to many pathologies such as cancer, arthritis and retinopathy, hence molecules that can modulate angiogenesis are of considerable therapeutic importance. Despite many reports on the promising antiangiogenic properties of naturally occurring flavonoids, no flavonoids have progressed to the clinic for this application. This systematic review and meta-analysis therefore evaluates the antiangiogenic activities of a wide range of flavonoids and is presented in two sections. The first part of the study (Systematic overview) included 402 articles identified by searching articles published before May 2020 using ScienceDirect, PubMed and Web of Science databases. From this initial search, different classes of flavonoids with antiangiogenic activities, related pathologies and use of in vitro and/or in/ex vivo angiogenesis assays were identified. In the second part (Meta-analysis), 25 studies concerning the antiangiogenic evaluation of flavonoids using the in vivo chick chorioallantoic membrane (CAM) assay were included, following a targeted search on articles published prior to June 2020. Meta-analysis of 15 out of the 25 eligible studies showed concentration dependent antiangiogenic activity of six compared subclasses of flavonoids with isoflavones, flavonols and flavones being the most active (64 to 80% reduction of blood vessels at 100 µM). Furthermore, the key structural features required for the antiangiogenic activity of flavonoids were derived from the pooled data in a structure activity relationship (SAR) study. All in all, flavonoids are promising candidates for the development of antiangiogenic agents, however further investigations are needed to determine the key structural features responsible for their activity.
Collapse
Affiliation(s)
- Mai Khater
- School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, UK; (M.K.); (F.G.)
- Therapeutic Chemistry Department, Pharmaceutical & Drug Industries Research Division, National Research Centre, Cairo 12622, Egypt
| | - Francesca Greco
- School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, UK; (M.K.); (F.G.)
| | - Helen M. I. Osborn
- School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, UK; (M.K.); (F.G.)
| |
Collapse
|
10
|
Sai C, Wang J, Li B, Ding L, Wang H, Wang Q, Hua H, Zhang F, Ren Q. Isolation and identification of alkaloids from Macleaya microcarpa by UHPLC-Q-TOF-MS and their cytotoxic activity in vitro, antiangiogenic activity in vivo. BMC Chem 2020; 14:5. [PMID: 31993585 PMCID: PMC6977315 DOI: 10.1186/s13065-020-0660-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 01/10/2020] [Indexed: 11/23/2022] Open
Abstract
Background Extensive bioactivities of alkaloids from the genus Macleaya (Macleaya cordata (Willd.) R. Br. and Macleaya microcarpa (Maxim.) Fedde) have been widely reported, as well as more and more concerned from the scientific communities. However, systematic research on the phytochemical information of M. microcarpa is incomplete. The aim of this study was to rapidly and conveniently qualitative analyze alkaloids from M. microcarpa by ultra-performance liquid chromatography/quadrupole-time-of-fight mass spectrometry (UHPLC–Q-TOF-MS) using accurate mass weight and characteristic fragment ions, furthermore separate and identify the main alkaloids, test antitumor activity in vitro and antiangiogenic activity in vivo. Results A total of 14 alkaloids from fruits of M. microcarpa were identified by UHPLC–Q-TOF-MS, including 5 protopines, 2 benzophenanthridines, 1 dimer, 1 dihydrobenzophenanthridines and 5 unknown structure compounds. Two major alkaloids were isolated by various column chromatographic methods. Their structures were determined by NMR data and related literatures. The two major alkaloids were evaluated for intro cytotoxic activities against HL-60, MCF-7, A-549, and in vivo antiangiogenic activity using transgenic zebrafish. Conclusions Current qualitative method based on UHPLC–Q-TOF-MS technique provided a scientific basis for isolation, structural identification, and in vitro or in vivo pharmacological further study of alkaloids from M. microcarpa in the future.
Collapse
Affiliation(s)
- Chunmei Sai
- 1College of Pharmacy, Jining Medical University, Rizhao, 276826 Shandong China.,Shandong Guangyu Tang Guo Yao Co., Ltd., Jining, 272071 Shandong China
| | - Jian'an Wang
- 1College of Pharmacy, Jining Medical University, Rizhao, 276826 Shandong China
| | - Binjie Li
- 3Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016 Liaoning China
| | - Lin Ding
- 1College of Pharmacy, Jining Medical University, Rizhao, 276826 Shandong China
| | - Huiyun Wang
- 1College of Pharmacy, Jining Medical University, Rizhao, 276826 Shandong China
| | - Qibao Wang
- 1College of Pharmacy, Jining Medical University, Rizhao, 276826 Shandong China
| | - Huiming Hua
- 3Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016 Liaoning China
| | - Fangpeng Zhang
- Shandong Guangyu Tang Guo Yao Co., Ltd., Jining, 272071 Shandong China
| | - Qiang Ren
- 1College of Pharmacy, Jining Medical University, Rizhao, 276826 Shandong China
| |
Collapse
|
11
|
Harishkumar R, Reddy LPK, Karadkar SH, Murad MA, Karthik SS, Manigandan S, Selvaraj CI, Christopher JG. Toxicity and Selective Biochemical Assessment of Quercetin, Gallic Acid, and Curcumin in Zebrafish. Biol Pharm Bull 2019; 42:1969-1976. [DOI: 10.1248/bpb.b19-00296] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | - Shivam H. Karadkar
- School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT)
| | - Musa Al Murad
- School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT)
| | | | - Saravanan Manigandan
- School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT)
| | | | | |
Collapse
|
12
|
Lin W, Tu H, Zhu Y, Guan Y, Liu H, Ling W, Yan P, Dong J. Curcumolide, a unique sesquiterpenoid from Curcuma wenyujin displays anti-angiogenic activity and attenuates ischemia-induced retinal neovascularization. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 64:152923. [PMID: 31450226 DOI: 10.1016/j.phymed.2019.152923] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Targeting vascular endothelial growth factor is a common treatment strategy for neovascular eye disease, a leading cause of visual impairment and blindness. However, these approaches are limited or carry various complications. Therefore, there is an urgent need for the development of unique therapeutic approaches. PURPOSE To investigate the anti-angiogenic effects of curcumolide and its mechanism of action. METHODS /STUDY DESIGNS In this study, we examine the effects of curcumolide on the process of vasculature formation, including cell proliferation, migration, tube formation and apoptosis in vitro using human umbilical vascular endothelial cells (HUVECs). We also assess the anti-angiogenic effects of curcumolide in vivo using a mouse model of oxygen induced retinopathy (OIR). The mechanism of anti-angiogenic effects was investigated by measuring the expression level of various signaling proteins and the molecular docking simulations. RESULTS Intravitreal injection of curcumolide reduced the formation of retinal neovascular tufts and VEGFR2 phosphorylation in the murine OIR model at concentrations administered without definite cellular and retinal toxicities. Curcumolide suppressed VEGF-induced HRMECs proliferation, migration and tube formation in a dose-dependent manner. Meanwhile, it promoted caspase-dependent apoptosis. Curcumolide also inhibited VEGF-induced phosphorylation of VEGFR-2 tyrosine kinase, and suppressed downstream protein kinases of VEGFR2, including Src, FAK, ERK, AKT, and mTOR in HRMECs. In silico study revealed that curcumolide bound with ATP-binding sites of the VEGFR2 kinase unit by the formation of a hydrogen bond and hydrophobic interactions. CONCLUSION Curcumolide has anti-angiogenic activity in HUVECs and in a murine OIR model of ischemia-induced retinal neovascularization, and it might be a potential drug candidate for the treatment of proliferative diabetic retinopathy.
Collapse
Affiliation(s)
- Weiwei Lin
- Pharmacy School, Wenzhou Medical University, A509, Pharmacy School Building, Wenzhou, Zhejiang Province 325035, PR China
| | - Hongfeng Tu
- Pharmacy School, Wenzhou Medical University, A509, Pharmacy School Building, Wenzhou, Zhejiang Province 325035, PR China
| | - Yao Zhu
- Pharmacy School, Wenzhou Medical University, A509, Pharmacy School Building, Wenzhou, Zhejiang Province 325035, PR China
| | - Yijian Guan
- Pharmacy School, Wenzhou Medical University, A509, Pharmacy School Building, Wenzhou, Zhejiang Province 325035, PR China
| | - Hui Liu
- Pharmacy School, Wenzhou Medical University, A509, Pharmacy School Building, Wenzhou, Zhejiang Province 325035, PR China
| | - Wei Ling
- Pharmacy School, Wenzhou Medical University, A509, Pharmacy School Building, Wenzhou, Zhejiang Province 325035, PR China
| | - Pengcheng Yan
- Pharmacy School, Wenzhou Medical University, A509, Pharmacy School Building, Wenzhou, Zhejiang Province 325035, PR China
| | - Jianyong Dong
- Pharmacy School, Wenzhou Medical University, A509, Pharmacy School Building, Wenzhou, Zhejiang Province 325035, PR China.
| |
Collapse
|
13
|
Lv Y, Hao J, Liu C, Huang H, Ma Y, Yang X, Tang L. Anti-diabetic effects of a phenolic-rich extract from Hypericum attenuatum Choisy in KK-Ay mice mediated through AMPK /PI3K/Akt/GSK3β signaling and GLUT4, PPARγ, and PPARα expression. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103506] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
14
|
Jing Y, Wang G, Xiao Q, Zhou Y, Wei Y, Gong Z. Antiangiogenic effects of AA-PMe on HUVECs in vitro and zebrafish in vivo. Onco Targets Ther 2018; 11:1871-1884. [PMID: 29670362 PMCID: PMC5894717 DOI: 10.2147/ott.s157747] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Angiogenesis plays a vital role in many physiological and pathological processes and several diseases are connected with its dysregulation. Asiatic acid (AA) has demonstrated anticancer properties and we suspect this might be attributable to an effect on angio-genesis. A modified derivative of AA, N-(2α,3β,23-acetoxyurs-12-en-28-oyl)-L-proline methyl ester (AA-PMe), has improved efficacy over its parent compound, but its effect on blood vessel development remains unclear. Methods In this study, we investigated the antiangiogenic activity of AA and AA-PMe in zebrafish embryos and human umbilical vein endothelial cells (HUVECs). First of all, we treated HUVECs with increasing concentrations of AA-PMe or AA, with or without vascular endothelial growth factor (VEGF) present, and assessed cell viability, tube formation, and cell migration and invasion. Quantitative real-time polymerase chain reaction and Western blot analysis were later used to determine the role of vascular endothelial growth factor receptor 2 (VEGFR2)-mediated signaling in AA-PMe inhibition of angiogenesis. We extended these studies to follow angiogenesis using Tg(fli:EGFP) transgenic zebrafish embryos. For these experiments, embryos were treated with varying concentrations of AA-PMe or AA from 24 to 72 hours postfertilization prior to morphological observation, angiogenesis assessment, and endogenous alkaline phosphatase assay. VEGFR2 expression in whole embryos following AA-PMe treatment was also determined. Results We found AA-PMe decreased cell viability and inhibited migration and tube formation in a dose-dependent manner in HUVECs. Similarly, AA-PMe disrupted the formation of intersegmental vessels, the dorsal aorta, and the posterior cardinal vein in zebrafish embryos. Both in vitro and in vivo AA-PMe surpassed AA in its ability to block angiogenesis by suppressing VEGF-induced phosphorylation of VEGFR2 and disrupting downstream extracellular regulated protein kinase and AKT signaling. Conclusion For the first time, this study reveals that AA-PMe acts as a potent VEGFR2 kinase inhibitor and exerts powerful antiangiogenic activity, suggesting it to be a promising therapeutic candidate for further research.
Collapse
Affiliation(s)
- Yue Jing
- Center for New Drug Research and Development, College of Life Science, Nanjing Normal University, Nanjing, China.,Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Gang Wang
- Center for New Drug Research and Development, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Qi Xiao
- Center for New Drug Research and Development, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Yachun Zhou
- Center for New Drug Research and Development, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Yingjie Wei
- Key Laboratory of Oral Drug Delivery System of Chinese Materia Medica of State Administration of Traditional Chinese Medicine, Jiangsu Branch of China Academy of Chinese Medical Science, Nanjing, China
| | - Zhunan Gong
- Center for New Drug Research and Development, College of Life Science, Nanjing Normal University, Nanjing, China
| |
Collapse
|
15
|
He L, Liu C, Sun C, Wang J, Zhi K, Sun D, Wang H, Wang Q, Lin N. Wu-Tou Decoction Inhibits Angiogenesis in Experimental Arthritis by Targeting VEGFR2 Signaling Pathway. Rejuvenation Res 2018; 21:442-455. [PMID: 29385909 DOI: 10.1089/rej.2017.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Wu-tou decoction (WTD) is a classic traditional Chinese medicine formula and has been extensively used for the treatment of rheumatoid arthritis (RA). Previous reports indicate that WTD possesses anti-inflammatory and antinociceptive activities, and inhibits the development of arthritic joints and disease severity of collagen-induced arthritis (CIA) or adjuvant-induced rats; however, its action on angiogenesis of RA has not been clarified. This study aims to determine the anti-angiogenic activity of WTD in CIA rats and in various angiogenesis models. Our data showed that WTD (0.95, 1.9, and 3.8 g/kg) markedly reduced the immature blood vessels in synovial membrane tissues of inflamed joints from CIA rats. It also inhibited in vivo angiogenesis in chick embryo and VEGF165-induced microvessel sprout formation ex vivo. Meanwhile, WTD suppressed VEGF165-/MH7A-induced migration, invasion, adhesion, and tube formation of human umbilical vein endothelial cells (HUVECs). Moreover, WTD significantly reduced the expression of angiogenic activators, including vascular endothelial growth factor (VEGF), VEGFR2, interleukin (IL)-1β, IL-17, transforming growth factor-β, platelet-derived growth factor, placenta growth factor, angiopoietin (Ang) I and Ang II in synovium of CIA rats, and/or in HUVECs. More interestingly, WTD blocked the autophosphorylation of VEGF165-induced VEGFR2 and consequently downregulated the signaling pathways of activated AKT, ERK1/2, JNK, and p38 in VEGF165-induced HUVECs. These findings suggest for the first time that WTD possesses the anti-angiogenic effect in RA in vivo, ex vivo, and in vitro by interrupting the targeting of VEGFR2 activation.
Collapse
Affiliation(s)
- Lianhua He
- 1 Guangzhou University of Chinese Medicine , Guangzhou, China .,2 Institute of Chinese Materia Medica , China Academy of Chinese Medical Sciences, Beijing, China
| | - Chunfang Liu
- 2 Institute of Chinese Materia Medica , China Academy of Chinese Medical Sciences, Beijing, China
| | - Congcong Sun
- 2 Institute of Chinese Materia Medica , China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingxia Wang
- 2 Institute of Chinese Materia Medica , China Academy of Chinese Medical Sciences, Beijing, China
| | - Kai Zhi
- 2 Institute of Chinese Materia Medica , China Academy of Chinese Medical Sciences, Beijing, China
| | - Danni Sun
- 2 Institute of Chinese Materia Medica , China Academy of Chinese Medical Sciences, Beijing, China
| | - Hui Wang
- 2 Institute of Chinese Materia Medica , China Academy of Chinese Medical Sciences, Beijing, China
| | - Qianqian Wang
- 2 Institute of Chinese Materia Medica , China Academy of Chinese Medical Sciences, Beijing, China
| | - Na Lin
- 1 Guangzhou University of Chinese Medicine , Guangzhou, China .,2 Institute of Chinese Materia Medica , China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
16
|
Tal T, Kilty C, Smith A, LaLone C, Kennedy B, Tennant A, McCollum CW, Bondesson M, Knudsen T, Padilla S, Kleinstreuer N. Screening for angiogenic inhibitors in zebrafish to evaluate a predictive model for developmental vascular toxicity. Reprod Toxicol 2016; 70:70-81. [PMID: 28007540 DOI: 10.1016/j.reprotox.2016.12.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 12/06/2016] [Accepted: 12/16/2016] [Indexed: 01/21/2023]
Abstract
Chemically-induced vascular toxicity during embryonic development may cause a wide range of adverse effects. To identify putative vascular disrupting chemicals (pVDCs), a predictive pVDC signature was constructed from 124 U.S. EPA ToxCast high-throughput screening (HTS) assays and used to rank 1060 chemicals for their potential to disrupt vascular development. Thirty-seven compounds were selected for targeted testing in transgenic Tg(kdrl:EGFP) and Tg(fli1:EGFP) zebrafish embryos to identify chemicals that impair developmental angiogenesis. We hypothesized that zebrafish angiogenesis toxicity data would correlate with human cell-based and cell-free in vitro HTS ToxCast data. Univariate statistical associations used to filter HTS data based on correlations with zebrafish angiogenic inhibition in vivo revealed 132 total significant associations, 33 of which were already captured in the pVDC signature, and 689 non-significant assay associations. Correlated assays were enriched in cytokine and extracellular matrix pathways. Taken together, the findings indicate the utility of zebrafish assays to evaluate an HTS-based predictive toxicity signature and also provide an experimental basis for expansion of the pVDC signature with novel HTS assays.
Collapse
Affiliation(s)
| | - Claire Kilty
- UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - Andrew Smith
- UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | | | - Brendán Kennedy
- UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | | | - Catherine W McCollum
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA
| | - Maria Bondesson
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA; Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA
| | | | | | | |
Collapse
|
17
|
Polyphenol-based nutraceuticals for the control of angiogenesis: Analysis of the critical issues for human use. Pharmacol Res 2016; 111:384-393. [PMID: 27402192 DOI: 10.1016/j.phrs.2016.07.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 07/07/2016] [Indexed: 12/29/2022]
Abstract
Angiogenesis, the formation of new blood-vessel, is crucial in the pathogenesis of several diseases, and thus represents a druggable target for the prevention and treatment of different disorders. It is nowadays well kwon how diet can control cancer development and progression, and how the use of certain diet components can prevent cancer development. Several studies, also from our lab, now indicate that natural plant products including nutraceuticals modulate tumor angiogenesis. In this review, it is reported how phytochemicals, comprising hydroxytyrosol, resveratrol, genistein, curcumin, and the green tea component epigallocatechin-3-gallate among the others, negatively regulate angiogenesis. A single plant-derived compound may affect both endothelial and tumor cells, with the common denominator of anti-inflammatory and radical scavenger activities. Beside these positive features, documented in cellular and animal models, a series of critical issues should be considered from a pharmacological point of view as: what is the best source of bioactive compounds: food and beverages, extracted phytocomplexes, isolated nutraceuticals or synthetic analogues? How is the bioavailability of the compounds of interest in relation to the above source? Is there any biological activity by circulating metabolic derivatives? What is the best formulation, administration route and posology? How safe are in humans? How strong and reliable are the clinical trials designed for their use alone or in combination with conventional chemotherapy? After a dissertation of these critical points, the conclusion can be drawn that novel and effective strategies should be optimized to improve their bioavailability and efficacy, considering their exploitation as chemopreventive and/or curative approaches.
Collapse
|
18
|
Wang YC, Wu YN, Wang SL, Lin QH, He MF, Liu QL, Wang JH. Docosahexaenoic Acid Modulates Invasion and Metastasis of Human Ovarian Cancer via Multiple Molecular Pathways. Int J Gynecol Cancer 2016; 26:994-1003. [PMID: 27258728 PMCID: PMC4920273 DOI: 10.1097/igc.0000000000000746] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 03/23/2016] [Accepted: 03/28/2016] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE We investigated the effect of docosahexaenoic acid (DHA) on the invasion and metastasis of ovarian cancer cells (A2780, HO8910, and SKOV-3). METHODS Cytotoxicity assay was performed to determine the optimal doses of DHA in this experiment. The effects of DHA on invasion ability were assessed by invasion assay. The expressions of messenger RNA and/or proteins associated with invasion or metastasis were detected by quantitative Real Time-Polymerase Chain Reaction or Western blot. The effect of DHA on cell metastasis was assessed in xenograft model of zebrafish. RESULTS Docosahexaenoic acid and α-linolenic acid could reduce the cell vitalities in dose-dependent manner. However, DHA inhibited the invasion and metastasis of ovarian cancer cells, but α-linolenic acid did not (**P < 0.01). Docosahexaenoic acid could downregulate the expressions of WAVE3, vascular endothelial cell growth factor, and MMP-9, and upregulate KISS-1, TIMP-1, and PPAR-γ, which negatively correlated with cell invasion and metastasis (*P < 0.05). Docosahexaenoic acid restrained the development of subintestinal vessels and cancer cell metastasis in xenograft model of zebrafish (**P < 0.01). CONCLUSIONS Docosahexaenoic acid inhibited the invasion and metastasis of ovarian cancer cells in vitro and in vivo through the modulation of NF-κB signaling pathway, suggesting that DHA is a promising candidate for ovarian cancer therapy.
Collapse
Affiliation(s)
- Ying-Chun Wang
- *Department of Gynecological Oncology Surgery, Jiangsu Cancer Hospital & Institute, Nanjing Medical University; †China Pharmaceutical University; ‡Nanjing University of Technology School of Pharmaceutical Science; §Department of Obstetrics and Gynecology, Jiangning Hospital, Nanjing Medical University; and ∥Jinling Hospital, Nanjing University, Nanjing, China
| | | | | | | | | | | | | |
Collapse
|
19
|
Nikhil K, Sharan S, Wishard R, Palla SR, Krishna Peddinti R, Roy P. Pterostilbene carboxaldehyde thiosemicarbazone, a resveratrol derivative inhibits 17β-Estradiol induced cell migration and proliferation in HUVECs. Steroids 2016; 108:17-30. [PMID: 26850466 DOI: 10.1016/j.steroids.2016.01.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 01/09/2016] [Accepted: 01/29/2016] [Indexed: 11/23/2022]
Abstract
Angiogenesis plays important roles in tumor growth and metastasis, thus development of a novel angiogenesis inhibitor is essential for the improvement of therapeutics against cancer. Thrombospondins-1 (TSP-1) is a potent endogenous inhibitor of angiogenesis that acts through direct effects on endothelial cell migration, proliferation, survival, and activating apoptotic pathways. TSP-1 has been shown to disrupt estrogen-induced endothelial cell proliferation and migration. Here we investigated the potential of pterostilbene carboxaldehyde thiosemicarbazone (PTERC-T), a novel resveratrol (RESV) derivative, to inhibit angiogenesis induced by female sex steroids, particularly 17β-Estradiol (E2), on Human umbilical vein endothelial cells (HUVECs) and to elucidate the involvement of TSP-1 in PTERC-T action. Our results showed that PTERC-T significantly inhibited 17β-E2-stimulated proliferation of HUVECs and induced apoptosis as determined by annexin V/propidium iodide staining and cleaved caspase-3 expression. Furthermore, PTERC-T also inhibited endothelial cell migration, and invasion in chick chorioallantoic membrane (CAM) assay. In contrast, RESV failed to inhibit 17β-E2 induced HUVECs proliferation and invasion at similar dose. PTERC-T was also found to increase TSP-1 protein expression levels in a dose-dependent manner which, however, was counteracted by co-incubation with p38MAPK or JNK inhibitors, suggesting involvement of these pathways in PTERC-T action. These results suggest that the inhibitory effect of PTERC-T on 17β-E2 induced angiogenesis is associated, at least in part, with its induction of endothelial cell apoptosis and inhibition of cell migration through targeting TSP-1. Thus, PTERC-T could be considered as a potential lead compound for developing a class of new drugs targeting angiogenesis-related diseases.
Collapse
Affiliation(s)
- Kumar Nikhil
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand, India
| | - Shruti Sharan
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand, India
| | - Rohan Wishard
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand, India
| | - Srinivasa Rao Palla
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand, India
| | - Rama Krishna Peddinti
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand, India
| | - Partha Roy
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand, India.
| |
Collapse
|
20
|
Li L, Liu N, Dai X, Yan H, Zhang L, Xing L, Wang Y, Wang Y. Development of a dual screening strategy to identify pro-angiogenic compounds from natural products: application on Tongmai Yangxin Pills. RSC Adv 2016. [DOI: 10.1039/c6ra19212b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Establishment and application the dual-screening strategy to screen pro-angiogenic compounds from natural products for the first time.
Collapse
Affiliation(s)
- Lailai Li
- Institute of Traditional Chinese Medicine Research
- Key Laboratory of Formula of Traditional Chinese Medicine
- Tianjin State Key Laboratory of Modern Chinese Medicine
- Tianjin University of Traditional Chinese Medicine
- Tianjin 300193
| | - Ningning Liu
- Institute of Traditional Chinese Medicine Research
- Key Laboratory of Formula of Traditional Chinese Medicine
- Tianjin State Key Laboratory of Modern Chinese Medicine
- Tianjin University of Traditional Chinese Medicine
- Tianjin 300193
| | - Xiangdong Dai
- Institute of Traditional Chinese Medicine Research
- Key Laboratory of Formula of Traditional Chinese Medicine
- Tianjin State Key Laboratory of Modern Chinese Medicine
- Tianjin University of Traditional Chinese Medicine
- Tianjin 300193
| | - Haifeng Yan
- Institute of Traditional Chinese Medicine Research
- Key Laboratory of Formula of Traditional Chinese Medicine
- Tianjin State Key Laboratory of Modern Chinese Medicine
- Tianjin University of Traditional Chinese Medicine
- Tianjin 300193
| | - Ling Zhang
- The Second Affiliated Hospital Zhejiang University School of Medicine
- Zhejiang University
- Hangzhou 310058
- China
| | - Leilei Xing
- Institute of Traditional Chinese Medicine Research
- Key Laboratory of Formula of Traditional Chinese Medicine
- Tianjin State Key Laboratory of Modern Chinese Medicine
- Tianjin University of Traditional Chinese Medicine
- Tianjin 300193
| | - Yi Wang
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
| | - Yi Wang
- Institute of Traditional Chinese Medicine Research
- Key Laboratory of Formula of Traditional Chinese Medicine
- Tianjin State Key Laboratory of Modern Chinese Medicine
- Tianjin University of Traditional Chinese Medicine
- Tianjin 300193
| |
Collapse
|
21
|
Shen L, Zhu J, Chen F, Lin W, Cai J, Zhong J, Zhong H. RUNX1-Evi-1 fusion gene inhibited differentiation and apoptosis in myelopoiesis: an in vivo study. BMC Cancer 2015; 15:970. [PMID: 26674644 PMCID: PMC4682245 DOI: 10.1186/s12885-015-1961-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 11/30/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) 1-Evi-1 is a chimeric gene generated by the t (3; 21) (q26; q22) translocation, which leads into malignant transformation of hematopoietic stem cells by unclear mechanisms. This in vivo study aimed to establish a stable line of zebrafish expressing the human RUNX1-Evi-1 fusion gene under the control of a heat stress-inducible bidirectional promoter, and investigate its roles in hematopoiesis and hematologic malignancies. METHODS We introduced human RUNX1-Evi-1 fusion gene into embryonic zebrafish through a heat-shock promoter to establish Tg(RE:HSE:EGFP) zebrafish. Two males and one female mosaic F0 zebrafish embryos (2.1%) were identified as stable positive germline transgenic zebrafish. RESULTS The population of immature myeloid cells and hematopoietic blast cells were accumulated in peripheral blood and single cell suspension from kidney of adult Tg(RE:HSE:EGFP) zebrafish. RUNX1-Evi-1 presented an intensive influence on hematopoietic regulatory factors. Consequently, primitive hematopoiesis was enhanced by upregulation of gata2 and scl, while erythropoiesis was downregulated due to the suppression of gata1. Early stage of myelopoiesis was flourishing with the high expression of pu.1, but it was inhibited along with the low expression of mpo. Microarray analysis demonstrated that RUNX1-Evi-1 not only upregulated proteasome, cell cycle, glycolysis/gluconeogenesis, tyrosine metabolism, drug metabolism, and PPAR pathway, but also suppressed transforming growth factor β, Jak-STAT, DNA replication, mismatch repair, p53 pathway, JNK signaling pathway, and nucleotide excision repair. Interestingly, histone deacetylase 4 was significantly up-regulated. Factors in cell proliferation were obviously suppressed after 3-day treatment with histone deacetylase inhibitor, valproic acid. Accordingly, higher proportion of G1 arrest and apoptosis were manifested by the propidium iodide staining. CONCLUSION RUNX1-Evi-1 may promote proliferation and apoptosis resistance of primitive hematopoietic cell, and inhibit the differentiation of myeloid cells with the synergy of different pathways and factors. VPA may be a promising choice in the molecular targeting therapy of RUNX1-Evi-1-related leukemia.
Collapse
Affiliation(s)
- Lijing Shen
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Jianyi Zhu
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Fangyuan Chen
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, China.
| | - Wenjie Lin
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Jiayi Cai
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Jihua Zhong
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Hua Zhong
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
22
|
Deng Q, Bai S, Gao W, Tong L. Pristimerin inhibits angiogenesis in adjuvant-induced arthritic rats by suppressing VEGFR2 signaling pathways. Int Immunopharmacol 2015; 29:302-313. [PMID: 26548348 DOI: 10.1016/j.intimp.2015.11.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 10/24/2015] [Accepted: 11/02/2015] [Indexed: 12/25/2022]
Abstract
Rheumatoid arthritis (RA) is a progressive, inflammatory autoimmune disease. As RA progresses, the hyperplastic synovial pannus creates a hypoxic, inflammatory environment that induces angiogenesis. Further vascularization of the synovial tissue promotes pannus growth and continued infiltration of inflammatory leukocytes, thus perpetuating the disease. Pristimerin inhibits inflammation and tumor angiogenesis. The present study focused on the inhibition of angiogenesis by Pristimerin in adjuvant-induced arthritic rats and the underlying molecular mechanisms. Our results clearly demonstrate for the first time that Pristimerin significantly reduces vessel density in synovial membrane tissues of inflamed joints and reduces the expression of pro-angiogenic factors in sera, including TNF-α, Ang-1, and MMP-9. Pristimerin also decreased the expression of VEGF and p-VEGFR2 in the synovial membrane, whereas the total amount of VEGFR2 remained unchanged. Pristimerin suppressed the sprouting vessels of the aortic ring and inhibited VEGF-induced HFLS-RA migration in vitro. Pristimerin also inhibited VEGF-induced proliferation, migration and tube formation by HUVECs, blocked the autophosphorylation of VEGF-induced VEGFR2 and consequently downregulated the signaling pathways of activated PI3K, AKT, mTOR, ERK1/2, JNK, and p38 in VEGF-induced HUVECs. Our results indicate that Pristimerin suppressed synovial angiogenesis in our rat model and in vitro by interrupting the targeting of VEGFR2 activation. Therefore, Pristimerin has potential as an angiogenesis inhibitor in the treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Qiudi Deng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Shutong Bai
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Wanjiao Gao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Li Tong
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
23
|
Exploring the Molecular Interactions of 7,8-Dihydroxyflavone and Its Derivatives with TrkB and VEGFR2 Proteins. Int J Mol Sci 2015; 16:21087-108. [PMID: 26404256 PMCID: PMC4613243 DOI: 10.3390/ijms160921087] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/21/2015] [Accepted: 08/26/2015] [Indexed: 11/16/2022] Open
Abstract
7,8-dihydroxyflavone (7,8-DHF) is a TrkB receptor agonist, and treatment with this flavonoid derivative brings about an enhanced TrkB phosphorylation and promotes downstream cellular signalling. Flavonoids are also known to exert an inhibitory effect on the vascular endothelial growth factor receptor (VEGFR) family of tyrosine kinase receptors. VEGFR2 is one of the important receptors involved in the regulation of vasculogenesis and angiogenesis and has also been implicated to exhibit various neuroprotective roles. Its upregulation and uncontrolled activity is associated with a range of pathological conditions such as age-related macular degeneration and various proliferative disorders. In this study, we investigated molecular interactions of 7,8-DHF and its derivatives with both the TrkB receptor as well as VEGFR2. Using a combination of molecular docking and computational mapping tools involving molecular dynamics approaches we have elucidated additional residues and binding energies involved in 7,8-DHF interactions with the TrkB Ig2 domain and VEGFR2. Our investigations have revealed for the first time that 7,8-DHF has dual biochemical action and its treatment may have divergent effects on the TrkB via its extracellular Ig2 domain and on the VEGFR2 receptor through the intracellular kinase domain. Contrary to its agonistic effects on the TrkB receptor, 7,8-DHF was found to downregulate VEGFR2 phosphorylation both in 661W photoreceptor cells and in retinal tissue.
Collapse
|
24
|
Farooq M, El-Faham A, Khattab SN, Elkayal AM, Ibrahim MF, Taha NA, Baabbad A, Wadaan MAM, Hamed EA. Biological screening of novel derivatives of valproic acid for anticancer and antiangiogenic properties. Asian Pac J Cancer Prev 2015; 15:7785-92. [PMID: 25292064 DOI: 10.7314/apjcp.2014.15.18.7785] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Valproic acid (VPA) is a potent anticancer and antiangiogenic agent. However, design and synthesis of chemical derivatives with improved antiangiogenic and anticancer activities are still necessary. In this study a library of novel derivatives of VPA was synthesized and tested. METHODS A human liver cancer cell line (HepG2) and a human normal embryonic kidney cell line (HEK 293) were exposed to various concentrations of VPA derivatives for 24 hours and cell viability was checked by MTT colorimetric assay. Anti-angiogenic properties were evaluated in transgenic zebrafish embryos. RESULTS N-valproylglycine derivatives suppressed survival almost 70% (p value 0.001) in HepG2 cells but only 10-12% in HEK 293 cells (p value 0.133). They also suppressed angiogenic blood vessel formation by 80% when used between 2-20 μM in zebrafish embryos. Valproic acid hydrazides showed moderate level of anticancer activity by affecting 30-50% (p value 0.001) of cell viability in HepG2 cells and 8-10% in HEK293 cells (p value 0.034). CONCLUSION The majority of compounds in this study showed potent and stronger antiangiogenic and anticancer activity than VPA. They proved selectively toxic to cancer cells and safer for normal cells. Moreover, these compounds inhibited developmental angiogenesis in zebrafish embryos. Based on the fact that liver is a highly vascularized organ, in case of liver carcinoma these compounds have the potential to target the pathological angiogenesis and could be an effective strategy to treat hepatocellular carcinoma.
Collapse
Affiliation(s)
- Muhammad Farooq
- Bioproducts Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia E-mail :
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
McKay TB, Lyon D, Sarker-Nag A, Priyadarsini S, Asara JM, Karamichos D. Quercetin attenuates lactate production and extracellular matrix secretion in keratoconus. Sci Rep 2015; 5:9003. [PMID: 25758533 PMCID: PMC4355637 DOI: 10.1038/srep09003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 02/16/2015] [Indexed: 11/20/2022] Open
Abstract
Keratoconus(KC) is an ecstatic corneal disease leading to corneal-thinning and the formation of a cone-like cornea. Elevated lactate levels, increased oxidative stress, and myofibroblast formation have all been previously reported. In the current study, we assess the role of Quercetin on collagen secretion and myofibroblast formation in KC in vitro. Human corneal fibroblasts(HCFs) and human keratoconus cells(HKCs) were treated with a stable Vitamin C derivative and cultured for 4 weeks, stimulating formation of a self-assembled extracellular matrix. All samples were analyzed using Western blots and targeted tandem mass spectrometry. Our data showed that Quercetin significantly down regulates myofibroblast differentiation and fibrotic markers, such as α-smooth muscle actin (α-SMA) and Collagen III (Col III), in both HCFs and HKCs. Collagen III secretion was reduced 80% in both HCFs and HKCs following Quercetin treatment. Furthermore, Quercetin reduced lactate production by HKCs to normal HCF levels. Quercetin down regulated TGF-βR2 and TGF-β2 expression in HKCs suggesting a significant link to the TGF-β pathway. These results assert that Quercetin is a key regulator of fibrotic markers and ECM assembly by modulating cellular metabolism and TGF-β signaling. Our study suggests that Quercetin is a potential therapeutic for treatment of corneal dystrophies, such as KC.
Collapse
Affiliation(s)
- T. B. McKay
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - D. Lyon
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - A. Sarker-Nag
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - S. Priyadarsini
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - J. M. Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - D. Karamichos
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
26
|
Yu P, Ye L, Wang H, Du G, Zhang J, Zuo Y, Zhang J, Tian J. NSK-01105, a novel sorafenib derivative, inhibits human prostate tumor growth via suppression of VEGFR2/EGFR-mediated angiogenesis. PLoS One 2014; 9:e115041. [PMID: 25551444 PMCID: PMC4281216 DOI: 10.1371/journal.pone.0115041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 11/17/2014] [Indexed: 11/19/2022] Open
Abstract
The purpose of this study is to investigate the anti-angiogenic activities of NSK-01105, a novel sorafenib derivative, in in vitro, ex vivo and in vivo models, and explore the potential mechanisms. NSK-01105 significantly inhibited vascular endothelial growth factor (VEGF)-induced migration and tube formation of human umbilical vein endothelial cells at non-cytotoxic concentrations as shown by wound-healing, transwell migration and endothelial cell tube formation assays, respectively. Cell viability and invasion of LNCaP and PC-3 cells were significantly inhibited by cytotoxicity assay and matrigel invasion assay. Furthermore, NSK-01105 also inhibited ex vivo angiogenesis in matrigel plug assay. Western blot analysis showed that NSK-01105 down-regulated VEGF-induced phosphorylation of VEGF receptor 2 (VEGFR2) and the activation of epidermal growth factor receptor (EGFR). Tumor volumes were significantly reduced by NSK-01105 at 60 mg/kg/day in both xenograft models. Immunohistochemical staining demonstrated a close association between inhibition of tumor growth and neovascularization. Collectively, our results suggest a role of NSK-01105 in treatment for human prostate tumors, and one of the potential mechanisms may be attributed to anti-angiogenic activities.
Collapse
Affiliation(s)
- Pengfei Yu
- School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Liang Ye
- State Key Laboratory of Long-acting and Targeting Drug Delivery System, Non-clinical Research Department, Luye Pharma Group Ltd., Yantai, Shandong 264003, China
- School of Pharmaceutical Sciences and Institute of Material Medical, Binzhou Medical University, Yantai, Shandong 264005, China
| | - Hongbo Wang
- State Key Laboratory of Long-acting and Targeting Drug Delivery System, Non-clinical Research Department, Luye Pharma Group Ltd., Yantai, Shandong 264003, China
- School of Pharmacy, Yantai University, Yantai, Shandong 264005, China
| | - Guangying Du
- State Key Laboratory of Long-acting and Targeting Drug Delivery System, Non-clinical Research Department, Luye Pharma Group Ltd., Yantai, Shandong 264003, China
- School of Pharmacy, Yantai University, Yantai, Shandong 264005, China
| | - Jianzhao Zhang
- State Key Laboratory of Long-acting and Targeting Drug Delivery System, Non-clinical Research Department, Luye Pharma Group Ltd., Yantai, Shandong 264003, China
| | - Yanhua Zuo
- Affiliated Hospital of Medical College of Qingdao University, Qingdao, Shandong 266001, China
| | - Jinghai Zhang
- School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
- * E-mail: (JZ); (JT)
| | - Jingwei Tian
- State Key Laboratory of Long-acting and Targeting Drug Delivery System, Non-clinical Research Department, Luye Pharma Group Ltd., Yantai, Shandong 264003, China
- School of Pharmacy, Yantai University, Yantai, Shandong 264005, China
- * E-mail: (JZ); (JT)
| |
Collapse
|
27
|
Chen BL, Wang LT, Huang KH, Wang CC, Chiang CK, Liu SH. Quercetin attenuates renal ischemia/reperfusion injury via an activation of AMP-activated protein kinase-regulated autophagy pathway. J Nutr Biochem 2014; 25:1226-1234. [PMID: 25087994 DOI: 10.1016/j.jnutbio.2014.05.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 05/06/2014] [Accepted: 05/29/2014] [Indexed: 01/13/2023]
Abstract
Renal ischemia/reperfusion (I/R) is a major cause of acute renal failure. Quercetin, a flavonoid antioxidant, presents in many kinds of food. The molecular mechanism of quercetin on renal protection during I/R is still unclear. Here, we investigated the role of AMP-activated protein kinase (AMPK)-regulated autophagy in renal protection by quercetin. To investigate whether quercetin protects renal cells from I/R-induced cell injury, an in vitro model of I/R and an in vivo I/R model were used. Cell apoptosis was determined by propidium iodide/annexin V staining. Western blotting and immunofluorescence were used to determine the autophagy. AMPK expression was inhibited with appropriate short hairpin RNA (shRNA). In cultured renal tubular cell I/R model, quercetin decreased the cell injury, up-regulated the AMPK phosphorylation, down-regulated the mammalian target of rapamycin (mTOR) phosphorylation and activated autophagy during I/R. Knockdown of AMPK by shRNA transfection decreased the quercetin-induced autophagy but did not affect the mTOR phosphorylation. In I/R mouse model, quercetin decreased the increased serum creatinine level and altered renal histological score. Quercetin also increased AMPK phosphorylation, inhibited the mTOR phosphorylation and activated autophagy in the kidneys of I/R mice. These results suggest that quercetin activates an AMPK-regulated autophagy signaling pathway, which offers a protective effect in renal I/R injury.
Collapse
Affiliation(s)
- Bo-Lin Chen
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Li-Ting Wang
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuo-How Huang
- Department of Urology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ching-Chia Wang
- Department of Pediatrics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Kang Chiang
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Integrated Diagnostics and Therapeutics, College of Medicine and Hospital, National Taiwan University, Taipei, Taiwan.
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Pediatrics, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
28
|
Immediate and long-term consequences of vascular toxicity during zebrafish development. Reprod Toxicol 2014; 48:51-61. [PMID: 24907688 DOI: 10.1016/j.reprotox.2014.05.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/21/2014] [Accepted: 05/27/2014] [Indexed: 01/02/2023]
Abstract
Proper formation of the vascular system is necessary for embryogenesis, and chemical disruption of vascular development may be a key event driving developmental toxicity. In order to test the effect of environmental chemicals on this critical process, we evaluated a quantitative assay in transgenic zebrafish using angiogenesis inhibitors that target VEGFR2 (PTK787) or EGFR (AG1478). Both PTK787 and AG1478 exposure impaired intersegmental vessel (ISV) sprouting, while AG1478 also produced caudal and pectoral fin defects at concentrations below those necessary to blunt ISV morphogenesis. The functional consequences of vessel toxicity during early development included decreased body length and survival in juvenile cohorts developmentally exposed to inhibitor concentrations sufficient to completely block ISV sprouting angiogenesis. These data show that concentration-dependent disruption of the presumed targets for these inhibitors produce adverse outcomes at advanced life stages.
Collapse
|
29
|
Chen LK, Qiang PF, Xu QP, Zhao YH, Dai F, Zhang L. Trans-3,4,5,4'-tetramethoxystilbene, a resveratrol analog, potently inhibits angiogenesis in vitro and in vivo. Acta Pharmacol Sin 2013; 34:1174-82. [PMID: 23770989 PMCID: PMC3764339 DOI: 10.1038/aps.2013.60] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 04/12/2013] [Indexed: 12/30/2022]
Abstract
Aim: Trans-3,4,5,4′-tetramethoxystilbene (DMU-212) has shown strong antiproliferative activities against a variety of cancer cells. The aim of this study was to investigate the anti-angiogenic effects of DMU-212 in vitro and in vivo. Methods: Human umbilical vein endothelial cells (HUVECs) were used in this study. Cell viability was studied with MTT assay, and cell apoptosis was evaluated using TUNEL assay and morphological observation. The expression of the related genes and proteins was analyzed with qRT-PCR and Western blot, respectively. Angiogenesis of HUVECs were studied using cell migration and capillary-like tube formation assays in vitro, and mouse Matrigel plug assay and chick chorioallantoic membrane (CAM) assay in vivo. The tyrosine kinase activities of VEGFR1 and VEGFR2 were measured using commercial kits. Results: DMU-212 (5–80 μmol/L) significantly inhibited VEGF-stimulated proliferation of HUVECs (IC50 value was approximately 20 μmol/L), and induced apoptosis. Furthermore, DMU-212 concentration-dependently inhibited VEGF-induced migration of HUVECs and capillary-like structure formation in vitro. DMU-212 also inhibited VEGF-induced generation of new vasculature in Matrigel plugs in vivo with significantly decreased area of infiltrating CD31-positive endothelial cells, and inhibited newly formed microvessels in chick CAMs. Moreover, DMU-212 concentration-dependently suppressed VEGF-induced phosphorylation of VEGFR2, and inhibited phosphorylation of multiple downstream signaling components in the VEGFR2 pathway, including c-Src, FAK, Erk1/2, Akt, mTOR, and p70S6K in HUVECs. DMU-212 had no effect on VEGF-induced phosphorylation of VEGFR1. Conclusion: DMU-212 is a potent inhibitor of angiogenesis that exerts anti-angiogenic activity at least in part through the VEGFR2 signaling pathway.
Collapse
|
30
|
Zhang L, Jing H, Cui L, Li H, Zhou B, Zhou G, Dai F. 3,4-dimethoxystilbene, a resveratrol derivative with anti-angiogenic effect, induces both macroautophagy and apoptosis in endothelial cells. J Cell Biochem 2013; 114:697-707. [DOI: 10.1002/jcb.24411] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Accepted: 09/24/2012] [Indexed: 12/28/2022]
|
31
|
Pratheeshkumar P, Son YO, Budhraja A, Wang X, Ding S, Wang L, Hitron A, Lee JC, Kim D, Divya SP, Chen G, Zhang Z, Luo J, Shi X. Luteolin inhibits human prostate tumor growth by suppressing vascular endothelial growth factor receptor 2-mediated angiogenesis. PLoS One 2012; 7:e52279. [PMID: 23300633 PMCID: PMC3534088 DOI: 10.1371/journal.pone.0052279] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 11/12/2012] [Indexed: 12/11/2022] Open
Abstract
Angiogenesis, the formation of new blood vessels from pre-existing vascular beds, is essential for tumor growth, invasion, and metastasis. Luteolin is a common dietary flavonoid found in fruits and vegetables. We studied the antiangiogenic activity of luteolin using in vitro, ex vivo, and in vivo models. In vitro studies using rat aortic ring assay showed that luteolin at non-toxic concentrations significantly inhibited microvessel sprouting and proliferation, migration, invasion and tube formation of endothelial cells, which are key events in the process of angiogenesis. Luteolin also inhibited ex vivo angiogenesis as revealed by chicken egg chorioallantoic membrane assay (CAM) and matrigel plug assay. Gelatin zymographic analysis demonstrated the inhibitory effect of luteolin on the activation of matrix metalloproteinases MMP-2 and MMP-9. Western blot analysis showed that luteolin suppressed VEGF induced phosphorylation of VEGF receptor 2 and their downstream protein kinases AKT, ERK, mTOR, P70S6K, MMP-2, and MMP-9 in HUVECs. Proinflammatory cytokines such as IL-1β, IL-6, IL-8, and TNF-α level were significantly reduced by the treatment of luteolin in PC-3 cells. Luteolin (10 mg/kg/d) significantly reduced the volume and the weight of solid tumors in prostate xenograft mouse model, indicating that luteolin inhibited tumorigenesis by targeting angiogenesis. CD31 and CD34 immunohistochemical staining further revealed that the microvessel density could be remarkably suppressed by luteolin. Moreover, luteolin reduced cell viability and induced apoptosis in prostate cancer cells, which were correlated with the downregulation of AKT, ERK, mTOR, P70S6K, MMP-2, and MMP-9 expressions. Taken together, our findings demonstrate that luteolin inhibits human prostate tumor growth by suppressing vascular endothelial growth factor receptor 2-mediated angiogenesis.
Collapse
Affiliation(s)
- Poyil Pratheeshkumar
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Young-Ok Son
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Amit Budhraja
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Xin Wang
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Songze Ding
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Lei Wang
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Andrew Hitron
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Jeong-Chae Lee
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Donghern Kim
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Sasidharan Padmaja Divya
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, India
| | - Gang Chen
- Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Zhuo Zhang
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Jia Luo
- Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Xianglin Shi
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|