1
|
Cousin VN, Perez GF, Payne KJ, Voll RE, Rizzi M, Mueller CG, Warnatz K. Lymphoid stromal cells - potential implications for the pathogenesis of CVID. Front Immunol 2023; 14:1122905. [PMID: 36875120 PMCID: PMC9982092 DOI: 10.3389/fimmu.2023.1122905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/03/2023] [Indexed: 02/19/2023] Open
Abstract
Non-hematopoietic lymphoid stromal cells (LSC) maintain lymph node architecture and form niches allowing the migration, activation, and survival of immune cells. Depending on their localization in the lymph node, these cells display heterogeneous properties and secrete various factors supporting the different activities of the adaptive immune response. LSCs participate in the transport of antigen from the afferent lymph as well as in its delivery into the T and B cell zones and organize cell migration via niche-specific chemokines. While marginal reticular cells (MRC) are equipped for initial B-cell priming and T zone reticular cells (TRC) provide the matrix for T cell-dendritic cell interactions within the paracortex, germinal centers (GC) only form when both T- and B cells successfully interact at the T-B border and migrate within the B-cell follicle containing the follicular dendritic cell (FDC) network. Unlike most other LSCs, FDCs are capable of presenting antigen via complement receptors to B cells, which then differentiate within this niche and in proximity to T follicular helper (TFH) cells into memory and plasma cells. LSCs are also implicated in maintenance of peripheral immune tolerance. In mice, TRCs induce the alternative induction of regulatory T cells instead of TFH cells by presenting tissue-restricted self-antigens to naïve CD4 T cells via MHC-II expression. This review explores potential implications of our current knowledge of LSC populations regarding the pathogenesis of humoral immunodeficiency and autoimmunity in patients with autoimmune disorders or common variable immunodeficiency (CVID), the most common form of primary immunodeficiency in humans.
Collapse
Affiliation(s)
- Victoria N Cousin
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,University of Freiburg, Faculty of Biology, Freiburg, Germany.,Freiburg Spemann Graduate School of Biology and Medicine (SGBM), Albert Ludwigs University Freiburg, Faculty of Biology, Freiburg, Germany
| | - Guillermo F Perez
- Immunologie, Immunopathologie et Chimie Thérapeutique, CNRS UPR3572, Strasbourg, France.,Faculty of Life Science, University of Strasbourg, Strasbourg, France
| | - Kathryn J Payne
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,University of Freiburg, Faculty of Biology, Freiburg, Germany
| | - Reinhard E Voll
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marta Rizzi
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Division of Clinical and Experimental Immunology, Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Christopher G Mueller
- Immunologie, Immunopathologie et Chimie Thérapeutique, CNRS UPR3572, Strasbourg, France.,Faculty of Life Science, University of Strasbourg, Strasbourg, France
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
2
|
Dasoveanu DC, Park HJ, Ly CL, Shipman WD, Chyou S, Kumar V, Tarlinton D, Ludewig B, Mehrara BJ, Lu TT. Lymph node stromal CCL2 limits antibody responses. Sci Immunol 2020; 5:5/45/eaaw0693. [PMID: 32198221 DOI: 10.1126/sciimmunol.aaw0693] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 11/26/2019] [Accepted: 02/11/2020] [Indexed: 12/12/2022]
Abstract
Nonhematopoietic stromal cells in lymph nodes such as fibroblastic reticular cells (FRCs) can support the survival of plasmablasts and plasma cells [together, antibody-forming cells (AFCs)]. However, a regulatory function for the stromal compartment in AFC accumulation has not been appreciated. Here, we show that chemokine ligand 2 (CCL2)-expressing stromal cells limit AFC survival. FRCs express high levels of CCL2 in vessel-rich areas of the T cell zone and the medulla, where AFCs are located. FRC CCL2 is up-regulated during AFC accumulation, and we use lymph node transplantation to show that CCL2 deficiency in BP3+ FRCs and lymphatic endothelial cells increases AFC survival without affecting B or germinal center cell numbers. Monocytes are key expressers of the CCL2 receptor CCR2, as monocyte depletion and transfer late in AFC responses increases and decreases AFC accumulation, respectively. Monocytes express reactive oxygen species (ROS) in an NADPH oxidase 2 (NOX2)-dependent manner, and NOX2-deficient monocytes fail to reduce AFC numbers. Stromal CCL2 modulates both monocyte accumulation and ROS production, and is regulated, in part, by manipulations that modulate vascular permeability. Together, our results reveal that the lymph node stromal compartment, by influencing monocyte accumulation and functional phenotype, has a regulatory role in AFC survival. Our results further suggest a role for inflammation-induced vascular activity in tuning the lymph node microenvironment. The understanding of stromal-mediated AFC regulation in vessel-rich environments could potentially be harnessed to control antibody-mediated autoimmunity.
Collapse
Affiliation(s)
- Dragos C Dasoveanu
- Physiology Biophysics and Systems Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA.,Autoimmunity and Inflammation Program, Hospital for Special Surgery Research Institute, New York, NY 10021, USA
| | - Hyeung Ju Park
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Catherine L Ly
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - William D Shipman
- Autoimmunity and Inflammation Program, Hospital for Special Surgery Research Institute, New York, NY 10021, USA.,Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, NY 10065, USA.,Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Susan Chyou
- Autoimmunity and Inflammation Program, Hospital for Special Surgery Research Institute, New York, NY 10021, USA
| | - Varsha Kumar
- Autoimmunity and Inflammation Program, Hospital for Special Surgery Research Institute, New York, NY 10021, USA
| | - David Tarlinton
- Department of Immunology and Pathology, Monash University, Melbourne, Victoria 3004, Australia
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen CH-9007, Switzerland.,Institute of Experimental Immunology, University of Zürich, Zürich CH-8057, Switzerland
| | - Babak J Mehrara
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Theresa T Lu
- Autoimmunity and Inflammation Program, Hospital for Special Surgery Research Institute, New York, NY 10021, USA. .,Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA.,Pediatric Rheumatology, Hospital for Special Surgery, New York, NY 10021, USA.,Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
3
|
Dasoveanu DC, Shipman WD, Chia JJ, Chyou S, Lu TT. Regulation of Lymph Node Vascular-Stromal Compartment by Dendritic Cells. Trends Immunol 2016; 37:764-777. [PMID: 27638128 DOI: 10.1016/j.it.2016.08.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/15/2016] [Accepted: 08/22/2016] [Indexed: 12/24/2022]
Abstract
During normal and pathologic immune responses, lymph nodes can swell considerably. The lymph node vascular-stromal compartment supports and regulates the developing immune responses and undergoes dynamic expansion and remodeling. Recent studies have shown that dendritic cells (DCs), best known for their antigen presentation roles, can directly regulate the vascular-stromal compartment, pointing to a new perspective on DCs as facilitators of lymphoid tissue function. Here, we review the phases of lymph node vascular-stromal growth and remodeling during immune responses, discuss the roles of DCs, and discuss how this understanding can potentially be used for developing novel therapeutic approaches.
Collapse
Affiliation(s)
- Dragos C Dasoveanu
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021, USA; Physiology, Biophysics and Systems Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - William D Shipman
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA; Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, NY 10065, USA
| | - Jennifer J Chia
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA; Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, NY 10065, USA
| | - Susan Chyou
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021, USA
| | - Theresa T Lu
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA; Pediatric Rheumatology, Hospital for Special Surgery, New York, NY 10021, USA; Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
4
|
Kumar V, Dasoveanu DC, Chyou S, Tzeng TC, Rozo C, Liang Y, Stohl W, Fu YX, Ruddle NH, Lu TT. A dendritic-cell-stromal axis maintains immune responses in lymph nodes. Immunity 2015; 42:719-30. [PMID: 25902483 DOI: 10.1016/j.immuni.2015.03.015] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 01/17/2015] [Accepted: 02/28/2015] [Indexed: 12/23/2022]
Abstract
Within secondary lymphoid tissues, stromal reticular cells support lymphocyte function, and targeting reticular cells is a potential strategy for controlling pathogenic lymphocytes in disease. However, the mechanisms that regulate reticular cell function are not well understood. Here we found that during an immune response in lymph nodes, dendritic cells (DCs) maintain reticular cell survival in multiple compartments. DC-derived lymphotoxin beta receptor (LTβR) ligands were critical mediators, and LTβR signaling on reticular cells mediated cell survival by modulating podoplanin (PDPN). PDPN modulated integrin-mediated cell adhesion, which maintained cell survival. This DC-stromal axis maintained lymphocyte survival and the ongoing immune response. Our findings provide insight into the functions of DCs, LTβR, and PDPN and delineate a DC-stromal axis that can potentially be targeted in autoimmune or lymphoproliferative diseases.
Collapse
Affiliation(s)
- Varsha Kumar
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021, USA
| | - Dragos C Dasoveanu
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021, USA
| | - Susan Chyou
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021, USA
| | - Te-Chen Tzeng
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021, USA
| | - Cristina Rozo
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021, USA
| | - Yong Liang
- Department of Pathology, Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - William Stohl
- Department of Rheumatology, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - Yang-Xin Fu
- Department of Pathology, Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Nancy H Ruddle
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06520, USA
| | - Theresa T Lu
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021, USA; Pediatric Rheumatology, Hospital for Special Surgery, New York, NY 10021, USA; Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10021, USA.
| |
Collapse
|
5
|
Benahmed F, Chyou S, Dasoveanu D, Chen J, Kumar V, Iwakura Y, Lu TT. Multiple CD11c+ cells collaboratively express IL-1β to modulate stromal vascular endothelial growth factor and lymph node vascular-stromal growth. THE JOURNAL OF IMMUNOLOGY 2014; 192:4153-63. [PMID: 24659690 DOI: 10.4049/jimmunol.1301765] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lymphadenopathy in autoimmune and other lymphoproliferative diseases is in part characterized by immunoblasts and vascular proliferation. The lymph node vasculature, along with the nonvascular stromal compartment, supports lymphocyte function, and targeting vascular-stromal expansion in inflamed nodes may modulate lymphocyte function in disease. CD11c(+) cells are essential for vascular-stromal proliferation and the upregulation of vascular endothelial growth factor (VEGF) needed for vascular proliferation. However, targetable CD11c(+) cell-derived molecular mediators, the identity of relevant CD11c(+) cells, and whether CD11c(+) cells directly stimulate VEGF-expressing stromal cells are poorly understood. In this study we show that CD11c(+) CD11b(+) CCR2-dependent monocytes and CCR7-dependent dendritic cells express IL-1β. IL-1β blockade, IL-1β deficiency in radiosensitive cells, and CCR2/CCR7 double deficiency but not single deficiency all attenuate immunization-induced vascular-stromal proliferation. gp38(+) stromal fibroblastic reticular cells (FRCs) that express VEGF are enriched for Thy1(+) cells and partially overlap with CCL21-expressing FRCs, and FRC VEGF is attenuated with IL-1β deficiency or blockade. IL-1β localizes to the outer borders of the T zone, where VEGF-expressing cells are also enriched. Ex vivo, CD11b(+) cells enriched for IL-1β(+) cells can directly induce cultured gp38(+)Thy1(+) FRCs to upregulate VEGF. Taken together, these results suggest a mechanism whereby multiple recruited CD11c(+) populations express IL-1β and directly modulate FRC function to help promote the initiation of vascular-stromal growth in stimulated lymph nodes. These data provide new insight into how CD11c(+) cells regulate the lymph node vascular-stromal compartment, add to the evolving understanding of functional stromal subsets, and suggest a possible utility for IL-1β blockade in preventing inflammatory lymph node growth.
Collapse
Affiliation(s)
- Fairouz Benahmed
- Autoimmunity and Inflammation Program and Pediatric Rheumatology, Hospital for Special Surgery, New York, NY 10021
| | | | | | | | | | | | | |
Collapse
|
6
|
Lu TT, Browning JL. Role of the Lymphotoxin/LIGHT System in the Development and Maintenance of Reticular Networks and Vasculature in Lymphoid Tissues. Front Immunol 2014; 5:47. [PMID: 24575096 PMCID: PMC3920476 DOI: 10.3389/fimmu.2014.00047] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 01/27/2014] [Indexed: 01/08/2023] Open
Abstract
Lymphoid organs are meeting zones where lymphocytes come together and encounter antigens present in the blood and lymph or as delivered by cells migrating from the draining tissue bed. The exquisite efficiency of this process relies heavily on highly specialized anatomy to direct and position the various players. Gated entry and exit control access to these theaters and reticular networks and associated chemokines guide cells into the proper sections. Lymphoid tissues are remarkably plastic, being able to expand dramatically and then involute upon resolution of the danger. All of the reticular scaffolds and vascular and lymphatic components adapt accordingly. As such, the lymph node (LN) is a wonderful example of a physiologic remodeling process and is potentially a guide to study such elements in pathological settings such as fibrosis, chronic infection, and tumor metastasis. The lymphotoxin/LIGHT axis delivers critical differentiation signals that direct and hone differentiation of both reticular networks and the vasculature. Considerable progress has been made recently in understanding the mesenchymal differentiation pathways leading to these specialized networks and in the remodeling that occurs in reactive LNs. In this article, we will review some new advances in the area in terms of developmental, differentiation, and maintenance events mediated by this axis.
Collapse
Affiliation(s)
- Theresa T Lu
- Autoimmunity and Inflammation Program and Pediatric Rheumatology, Hospital for Special Surgery , New York, NY , USA ; Department of Microbiology and Immunology, Weill Cornell Medical College , New York, NY , USA
| | - Jeffrey L Browning
- Department of Microbiology and Section of Rheumatology, Boston University School of Medicine , Boston, MA , USA
| |
Collapse
|
7
|
Kumar V, Chyou S, Stein JV, Lu TT. Optical projection tomography reveals dynamics of HEV growth after immunization with protein plus CFA and features shared with HEVs in acute autoinflammatory lymphadenopathy. Front Immunol 2012; 3:282. [PMID: 22973277 PMCID: PMC3435517 DOI: 10.3389/fimmu.2012.00282] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 08/21/2012] [Indexed: 12/02/2022] Open
Abstract
The vascular–stromal compartment of lymph nodes is important for lymph node function, and high endothelial venules (HEVs) play a critical role in controlling the entry of recirculating lymphocytes. In autoimmune and autoinflammatory diseases, lymph node swelling is often accompanied by apparent HEV expansion and, potentially, targeting HEV expansion could be used therapeutically to limit autoimmunity. In previous studies using mostly flow cytometry analysis, we defined three differentially regulated phases of lymph node vascular–stromal growth: initiation, expansion, and the re-establishment of vascular quiescence and stabilization. In this study, we use optical projection tomography to better understand the morphologic aspects of HEV growth upon immunization with ovalbumin/CFA (OVA/CFA). We find HEV elongation as well as modest arborization during the initiation phase, increased arborization during the expansion phase, and, finally, vessel narrowing during the re-establishment of vascular quiescence and stabilization. We also examine acutely enlarged autoinflammatory lymph nodes induced by regulatory T cell depletion and show that HEVs are expanded and morphologically similar to the expanded HEVs in OVA/CFA-stimulated lymph nodes. These results reinforce the idea of differentially regulated, distinct phases of vascular–stromal growth after immunization and suggest that insights gained from studying immunization-induced lymph node vascular growth may help to understand how the lymph node vascular–stromal compartment could be therapeutically targeted in autoimmune and autoinflammatory diseases.
Collapse
Affiliation(s)
- Varsha Kumar
- Autoimmunity and Inflammation Program and Pediatric Rheumatology, Hospital for Special Surgery New York, NY, USA
| | | | | | | |
Collapse
|
8
|
Benahmed F, Ely S, Lu TT. Lymph node vascular-stromal growth and function as a potential target for controlling immunity. Clin Immunol 2012; 144:109-16. [PMID: 22717771 PMCID: PMC3932544 DOI: 10.1016/j.clim.2012.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Revised: 04/30/2012] [Accepted: 05/03/2012] [Indexed: 12/16/2022]
Abstract
Lymphadenopathy occurs in many autoimmune and inflammatory diseases, and vascular proliferation is a common feature in the enlarged lymph nodes. The lymph node vasculature plays critical roles in delivering immune cells as well as oxygen and micronutrients, and therefore represents a potential target for therapeutic manipulation of immunity. In this review, we discuss recent insights made in understanding the growth and function of the vascular and associated stromal compartment in immune-stimulated lymph nodes and the potential utility of altering this process in autoimmune diseases.
Collapse
Affiliation(s)
- Fairouz Benahmed
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021, USA.
| | | | | |
Collapse
|