1
|
Mak MHC, Ball LV, O'Hagan A, Walsh CR, Gaskell MG. Involvement of episodic memory in language comprehension: Naturalistic comprehension pushes unrelated words closer in semantic space for at least 12 h. Cognition 2025; 258:106086. [PMID: 39983280 DOI: 10.1016/j.cognition.2025.106086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/21/2025] [Accepted: 02/12/2025] [Indexed: 02/23/2025]
Abstract
Recent experience with a word significantly influences its subsequent interpretation. For instance, encountering bank in a river-related context biases future interpretations toward 'side of a river' (vs. 'financial bank'). To explain this effect, the episodic context account posits that episodic memory helps bind word meanings in the language input, creating a temporary, context-specific representation that can bias subsequent lexical interpretation. This account predicts that even unrelated words would be linked together in episodic memory, potentially altering their interpretation. In Experiments 1-3, participants read unrelated word pairs (e.g., sword-microwave, privacy-export) embedded in meaningful sentences, then completed a speeded relatedness judgement task after delays of 5 min, 20 min, or 12 h (including sleep). Results showed that sentence exposure increased the likelihood of the unrelated pairs being judged as related-a robust effect observed across all delay intervals. Experiment 4 showed that this exposure effect was abolished when words in a target pair were read in separate sentences, suggesting that the exposure effect may be dependent on lexical co-occurrence. Experiment 5, also with a 12-h delay (including sleep), additionally used an innovative word arrangement task to assess word relatedness without presenting the target pairs simultaneously or successively. In line with relatedness judgement, sentence exposure pushed the unrelated words closer in semantic space. Overall, our findings suggest that a context-specific representation, supported by episodic memory, is generated during language comprehension, and in turn, these representations can influence lexical interpretation for at least 12 h and across different linguistic circumstances. We argue that these representations endow the mental lexicon with the efficiency to deal with word burstiness and the dynamic nature of language.
Collapse
Affiliation(s)
- Matthew H C Mak
- Department of Psychology, University of Warwick, Coventry, UK.
| | - Lewis V Ball
- Department of Psychology, University of York, York, UK
| | - Alice O'Hagan
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Catherine R Walsh
- Department of Psychology, University of California, Los Angeles, CA, USA
| | | |
Collapse
|
2
|
Dudysová D, Janků K, Piorecký M, Hantáková V, Orendáčová M, Piorecká V, Štrobl J, Kliková M, Ngo HV, Kopřivová J. Closed-loop auditory stimulation of slow-wave sleep in chronic insomnia: a pilot study. J Sleep Res 2024; 33:e14179. [PMID: 38467353 PMCID: PMC11597015 DOI: 10.1111/jsr.14179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/12/2023] [Accepted: 02/07/2024] [Indexed: 03/13/2024]
Abstract
Insomnia is a prevalent and disabling condition whose treatment is not always effective. This pilot study explores the feasibility and effects of closed-loop auditory stimulation (CLAS) as a potential non-invasive intervention to improve sleep, its subjective quality, and memory consolidation in patients with insomnia. A total of 27 patients with chronic insomnia underwent a crossover, sham-controlled study with 2 nights of either CLAS or sham stimulation. Polysomnography was used to record sleep parameters, while questionnaires and a word-pair memory task were administered to assess subjective sleep quality and memory consolidation. The initial analyses included 17 patients who completed the study, met the inclusion criteria, and received CLAS. From those, 10 (58%) received only a small number of stimuli. In the remaining seven (41%) patients with sufficient CLAS, we evaluated the acute and whole-night effect on sleep. CLAS led to a significant immediate increase in slow oscillation (0.5-1 Hz) amplitude and activity, and reduced delta (1-4 Hz) and sigma/sleep spindle (12-15 Hz) activity during slow-wave sleep across the whole night. All these fundamental sleep rhythms are implicated in sleep-dependent memory consolidation. Yet, CLAS did not change sleep-dependent memory consolidation or sleep macrostructure characteristics, number of arousals, or subjective perception of sleep quality. Results showed CLAS to be feasible in patients with insomnia. However, a high variance in the efficacy of our automated stimulation approach suggests that further research is needed to optimise stimulation protocols to better unlock potential CLAS benefits for sleep structure and subjective sleep quality in such clinical settings.
Collapse
Affiliation(s)
- Daniela Dudysová
- National Institute of Mental HealthKlecanyCzech Republic
- Third Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Karolina Janků
- National Institute of Mental HealthKlecanyCzech Republic
| | - Marek Piorecký
- National Institute of Mental HealthKlecanyCzech Republic
- Faculty of Biomedical EngineeringCzech Technical University in PraguePragueCzech Republic
| | - Veronika Hantáková
- National Institute of Mental HealthKlecanyCzech Republic
- School of Medicine, Medical Sciences and NutritionUniversity of AberdeenAberdeenScotland
| | - Mária Orendáčová
- National Institute of Mental HealthKlecanyCzech Republic
- Third Faculty of MedicineCharles UniversityPragueCzech Republic
- Department of Physiology, Faculty of ScienceCharles University in PraguePragueCzech Republic
| | - Václava Piorecká
- National Institute of Mental HealthKlecanyCzech Republic
- Faculty of Biomedical EngineeringCzech Technical University in PraguePragueCzech Republic
| | - Jan Štrobl
- National Institute of Mental HealthKlecanyCzech Republic
- Faculty of Biomedical EngineeringCzech Technical University in PraguePragueCzech Republic
| | - Monika Kliková
- National Institute of Mental HealthKlecanyCzech Republic
| | - Hong‐Viet V. Ngo
- Center for Brain, Behaviour and MetabolismUniversity of LübeckLübeckGermany
- Department of PsychologyUniversity of LübeckLübeckGermany
- Department of PsychologyUniversity of EssexColchesterUK
| | - Jana Kopřivová
- National Institute of Mental HealthKlecanyCzech Republic
- Third Faculty of MedicineCharles UniversityPragueCzech Republic
| |
Collapse
|
3
|
Gasparello A, Baldassarri A, Degasperi G, Cellini N. The impact of sleep on factual memory retention over 24 hr. J Sleep Res 2024; 33:e14237. [PMID: 38754902 DOI: 10.1111/jsr.14237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/12/2024] [Accepted: 04/30/2024] [Indexed: 05/18/2024]
Abstract
Although a period of sleep seems to benefit the retention of declarative memories, recent studies have challenged both the size of this effect and its active influence on memory consolidation. This study aimed to further investigate the effect of sleep and its time dependency on the consolidation of factual information. In a within-subjects design, 48 participants (Mage = 24.37 ± 4.18 years, 31F) were asked to learn several facts in a multi-sensory "flashcard-like" memory task at 21:00 hours (sleep first condition) or at 09:00 hours (wake first condition). Then, in each condition, participants performed an immediate recall test (T0), and two delayed tests 12 hr (T1) and 24 hr (T2) later. Participants' sleep was recorded at their homes with a portable device. Results revealed that memory retention was better after a night of sleep compared with wakefulness, regardless of the delay from encoding (a few hr versus 12+ hr), but the sleep effect was modest. The decline in memory during the wake period following sleep was smaller compared with the decline observed during the 12 hr of wakefulness after encoding. However, after 24 hr from the encoding, when all participants experienced a period of both sleep and wakefulness, memory performance in the two conditions was similar. Overall, our data suggest that sleep exerts a small, yet beneficial, influence on memory retention by likely reducing interference and actively stabilizing memory traces.
Collapse
Affiliation(s)
| | | | | | - Nicola Cellini
- Department of General Psychology, University of Padua, Padua, Italy
| |
Collapse
|
4
|
Klaassen AL, Rasch B. Difficulty in artificial word learning impacts targeted memory reactivation and its underlying neural signatures. eLife 2024; 12:RP90930. [PMID: 39495109 PMCID: PMC11534334 DOI: 10.7554/elife.90930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024] Open
Abstract
Sleep associated memory consolidation and reactivation play an important role in language acquisition and learning of new words. However, it is unclear to what extent properties of word learning difficulty impact sleep associated memory reactivation. To address this gap, we investigated in 22 young healthy adults the effectiveness of auditory targeted memory reactivation (TMR) during non-rapid eye movement sleep of artificial words with easy and difficult to learn phonotactical properties. Here, we found that TMR of the easy words improved their overnight memory performance, whereas TMR of the difficult words had no effect. By comparing EEG activities after TMR presentations, we found an increase in slow wave density independent of word difficulty, whereas the spindle-band power nested during the slow wave up-states - as an assumed underlying activity of memory reactivation - was significantly higher in the easy/effective compared to the difficult/ineffective condition. Our findings indicate that word learning difficulty by phonotactics impacts the effectiveness of TMR and further emphasize the critical role of prior encoding depth in sleep associated memory reactivation.
Collapse
Affiliation(s)
- Arndt-Lukas Klaassen
- Department of Psychology, Division of Cognitive Biopsychology and Methods, University of FribourgFribourgSwitzerland
- Department of Anesthesiology & Pain Medicine, Inselspital, Bern University Hospital, University of BernBernSwitzerland
| | - Björn Rasch
- Department of Psychology, Division of Cognitive Biopsychology and Methods, University of FribourgFribourgSwitzerland
| |
Collapse
|
5
|
Tavakol S, Kebets V, Royer J, Li Q, Auer H, DeKraker J, Jefferies E, Bernasconi N, Bernasconi A, Helmstaedter C, Arafat T, Armony J, Nathan Spreng R, Caciagli L, Frauscher B, Smallwood J, Bernhardt B. Differential relational memory impairment in temporal lobe epilepsy. Epilepsy Behav 2024; 155:109722. [PMID: 38643660 DOI: 10.1016/j.yebeh.2024.109722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 04/23/2024]
Abstract
OBJECTIVE Temporal lobe epilepsy (TLE) is typically associated with pathology of the hippocampus, a key structure involved in relational memory, including episodic, semantic, and spatial memory processes. While it is widely accepted that TLE-associated hippocampal alterations underlie memory deficits, it remains unclear whether impairments relate to a specific cognitive domain or multiple ones. METHODS We administered a recently validated task paradigm to evaluate episodic, semantic, and spatial memory in 24 pharmacoresistant TLE patients and 50 age- and sex-matched healthy controls. We carried out two-way analyses of variance to identify memory deficits in individuals with TLE relative to controls across different relational memory domains, and used partial least squares correlation to identify factors contributing to variations in relational memory performance across both cohorts. RESULTS Compared to controls, TLE patients showed marked impairments in episodic and spatial memory, with mixed findings in semantic memory. Even when additionally controlling for age, sex, and overall cognitive function, between-group differences persisted along episodic and spatial domains. Moreover, age, diagnostic group, and hippocampal volume were all associated with relational memory behavioral phenotypes. SIGNIFICANCE Our behavioral findings show graded deficits across relational memory domains in people with TLE, which provides further insights into the complex pattern of cognitive impairment in the condition.
Collapse
Affiliation(s)
- Shahin Tavakol
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada.
| | - Valeria Kebets
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada.
| | - Jessica Royer
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada.
| | - Qiongling Li
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada.
| | - Hans Auer
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada.
| | - Jordan DeKraker
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada.
| | | | - Neda Bernasconi
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada.
| | - Andrea Bernasconi
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada.
| | | | - Thaera Arafat
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada.
| | - Jorge Armony
- Department of Psychiatry, McGill University, Montreal, Canada.
| | - R Nathan Spreng
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada.
| | - Lorenzo Caciagli
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Birgit Frauscher
- ANPHY Lab, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada.
| | | | - Boris Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada.
| |
Collapse
|
6
|
Lutz ND, Martínez-Albert E, Friedrich H, Born J, Besedovsky L. Sleep shapes the associative structure underlying pattern completion in multielement event memory. Proc Natl Acad Sci U S A 2024; 121:e2314423121. [PMID: 38377208 PMCID: PMC10907255 DOI: 10.1073/pnas.2314423121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/28/2023] [Indexed: 02/22/2024] Open
Abstract
Sleep supports the consolidation of episodic memory. It is, however, a matter of ongoing debate how this effect is established, because, so far, it has been demonstrated almost exclusively for simple associations, which lack the complex associative structure of real-life events, typically comprising multiple elements with different association strengths. Because of this associative structure interlinking the individual elements, a partial cue (e.g., a single element) can recover an entire multielement event. This process, referred to as pattern completion, is a fundamental property of episodic memory. Yet, it is currently unknown how sleep affects the associative structure within multielement events and subsequent processes of pattern completion. Here, we investigated the effects of post-encoding sleep, compared with a period of nocturnal wakefulness (followed by a recovery night), on multielement associative structures in healthy humans using a verbal associative learning task including strongly, weakly, and not directly encoded associations. We demonstrate that sleep selectively benefits memory for weakly associated elements as well as for associations that were not directly encoded but not for strongly associated elements within a multielement event structure. Crucially, these effects were accompanied by a beneficial effect of sleep on the ability to recall multiple elements of an event based on a single common cue. In addition, retrieval performance was predicted by sleep spindle activity during post-encoding sleep. Together, these results indicate that sleep plays a fundamental role in shaping associative structures, thereby supporting pattern completion in complex multielement events.
Collapse
Affiliation(s)
- Nicolas D. Lutz
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen72076, Germany
- Institute of Medical Psychology, LMU Munich, Munich80336, Germany
| | - Estefanía Martínez-Albert
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen72076, Germany
- Institute of Medical Psychology, LMU Munich, Munich80336, Germany
| | - Hannah Friedrich
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen72076, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen72076, Germany
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen72076, Germany
- German Center for Diabetes Research, Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University Tübingen, Tübingen72076, Germany
| | - Luciana Besedovsky
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen72076, Germany
- Institute of Medical Psychology, LMU Munich, Munich80336, Germany
| |
Collapse
|
7
|
Hudachek L, Wamsley EJ. A meta-analysis of the relation between dream content and memory consolidation. Sleep 2023; 46:zsad111. [PMID: 37058584 DOI: 10.1093/sleep/zsad111] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 03/11/2023] [Indexed: 04/16/2023] Open
Abstract
The frequent appearance of newly learned information in dreams suggests that dream content is influenced by memory consolidation. Many studies have tested this hypothesis by asking whether dreaming about a learning task is associated with improved memory, but results have been inconsistent. We conducted a meta-analysis to determine the strength of the association between learning-related dreams and post-sleep memory improvement. We searched the literature for studies that (1) trained participants on a pre-sleep learning task and then tested their memory after sleep, and (2) associated post-sleep memory improvement with the extent to which dreams incorporated learning task content. Sixteen studies qualified for inclusion, which together reported 45 effects. Integrating across effects, we report a strong and statistically significant association between task-related dreaming and memory performance (SMD = 0.51 [95% CI 0.28, 0.74], p < 0.001). Among studies using polysomnography, this relationship was statistically significant for dreams collected from non-rapid eye movement (NREM) sleep (n = 10) but not for dreams collected from rapid eye movement (REM) sleep (n = 12). There was a significant association between dreaming and memory for all types of learning tasks studied. This meta-analysis provides further evidence that dreaming about a learning task is associated with improved memory performance, suggesting that dream content may be an indication of memory consolidation. Furthermore, we report preliminary evidence that the relationship between dreaming and memory may be stronger in NREM sleep compared to REM.
Collapse
Affiliation(s)
- Lauren Hudachek
- Furman University Department of Psychology and Program in Neuroscience, Greenville, SC, 29613, USA
| | - Erin J Wamsley
- Furman University Department of Psychology and Program in Neuroscience, Greenville, SC, 29613, USA
| |
Collapse
|
8
|
Mak MHC, O'Hagan A, Horner AJ, Gaskell MG. A registered report testing the effect of sleep on Deese-Roediger-McDermott false memory: greater lure and veridical recall but fewer intrusions after sleep. ROYAL SOCIETY OPEN SCIENCE 2023; 10:220595. [PMID: 38077219 PMCID: PMC10698482 DOI: 10.1098/rsos.220595] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 11/14/2023] [Indexed: 12/14/2024]
Abstract
Human memory is known to be supported by sleep. However, less is known about the effect of sleep on false memory, where people incorrectly remember events that never occurred. In the laboratory, false memories are often induced via the Deese-Roediger-McDermott (DRM) paradigm where participants are presented with wordlists comprising semantically related words such as nurse, hospital and sick (studied words). Subsequently, participants are likely to falsely remember that a related lure word such as doctor was presented. Multiple studies have examined whether these false memories are influenced by sleep, with contradictory results. A recent meta-analysis suggests that sleep may increase DRM false memory when short lists are used. We tested this in a registered report (N = 488) with a 2 (Interval: Immediate versus 12 h delay) × 2 (Test Time: 9:00 versus 21:00) between-participant DRM experiment, using short DRM lists (N = 8 words/list) and free recall as the memory test. We found an unexpected time-of-day effect such that completing free recall in the evening led to more intrusions (neither studied nor lure words). Above and beyond this time-of-day effect, the Sleep participants produced fewer intrusions than their Wake counterparts. When this was statistically controlled for, the Sleep participants falsely produced more critical lures. They also correctly recalled more studied words (regardless of intrusions). Exploratory analysis showed that these findings cannot be attributed to differences in output bias, as indexed by the number of total responses. Our overall results cannot be fully captured by existing sleep-specific theories of false memory, but help to define the role of sleep in two more general theories (Fuzzy-Trace and Activation/Monitoring theories) and suggest that sleep may benefit gist abstraction/spreading activation on one hand and memory suppression/source monitoring on the other.
Collapse
Affiliation(s)
- Matthew H. C. Mak
- Department of Psychology, University of York, Heslington, York YO10 5DD, UK
| | - Alice O'Hagan
- Department of Psychology, University of York, Heslington, York YO10 5DD, UK
| | - Aidan J. Horner
- Department of Psychology, University of York, Heslington, York YO10 5DD, UK
| | - M. Gareth Gaskell
- Department of Psychology, University of York, Heslington, York YO10 5DD, UK
| |
Collapse
|
9
|
Walsh CR, Rissman J. Behavioral representational similarity analysis reveals how episodic learning is influenced by and reshapes semantic memory. Nat Commun 2023; 14:7548. [PMID: 37985774 PMCID: PMC10662157 DOI: 10.1038/s41467-023-42770-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 10/20/2023] [Indexed: 11/22/2023] Open
Abstract
While semantic and episodic memory have been shown to influence each other, uncertainty remains as to how this interplay occurs. We introduce a behavioral representational similarity analysis approach to assess whether semantic space can be subtly re-sculpted by episodic learning. Eighty participants learned word pairs that varied in semantic relatedness, and learning was bolstered via either testing or restudying. Next-day recall is superior for semantically related pairs, but there is a larger benefit of testing for unrelated pairs. Analyses of representational change reveal that successful recall is accompanied by a pulling together of paired associates, with cue words in semantically related (but not unrelated) pairs changing more across learning than target words. Our findings show that episodic learning is associated with systematic and asymmetrical distortions of semantic space which improve later recall by making cues more predictive of targets, reducing interference from potential lures, and establishing novel connections within pairs.
Collapse
Affiliation(s)
- Catherine R Walsh
- Department of Psychology, University of California, Los Angeles, CA, USA.
| | - Jesse Rissman
- Department of Psychology, University of California, Los Angeles, CA, USA
- Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, CA, USA
- Brain Research Institute, University of California, Los Angeles, CA, USA
- Integrative Center for Learning and Memory, University of California, Los Angeles, CA, USA
| |
Collapse
|
10
|
Spiller J, Gilmore C. Positive impact of sleep on recall of multiplication facts. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230663. [PMID: 37771973 PMCID: PMC10523070 DOI: 10.1098/rsos.230663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/29/2023] [Indexed: 09/30/2023]
Abstract
This study tested the hypothesis that learning complex multiplication problems (e.g. 8 × 23 = 184) prior to sleep would benefit recall in adult participants compared with learning the problems prior to a period of wakefulness. This study used a within-participant design where all participants learnt complex multiplication problems in two conditions separated by one week. In one condition, learning was before bed (sleep learning condition) and in the other condition learning was in the morning (wake learning condition). In each condition, recall was tested approximately 10.5 h later. Data were collected online from 77 participants. In the subset of the sample with greater than or equal to 60% accuracy at the initial learning session (n = 37), the sleep learning condition participants had better recall compared with the wake learning condition. This equated to a moderate effect size, Cohen's d = 0.51. Regardless of initial levels of learning (n = 70) the same beneficial effect of sleep on recall was found with a small effect size, Cohen's d = 0.33. This study has identified a beneficial effect of learning prior to sleep on recall of complex multiplication problems compared with learning these problems during the daytime. Future research should explore whether similar effects are observed with children learning simple multiplication facts.
Collapse
Affiliation(s)
- Jayne Spiller
- School of Psychology, University of Leicester, Leicester LE1 7RH, UK
- Centre for Mathematical Cognition, University of Loughborough, Loughborough, UK
| | - Camilla Gilmore
- Centre for Mathematical Cognition, University of Loughborough, Loughborough, UK
| |
Collapse
|
11
|
Denis D, Bottary R, Cunningham TJ, Tcheukado MC, Payne JD. The influence of encoding strategy on associative memory consolidation across wake and sleep. Learn Mem 2023; 30:185-191. [PMID: 37726141 PMCID: PMC10547373 DOI: 10.1101/lm.053765.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/19/2023] [Indexed: 09/21/2023]
Abstract
Sleep benefits memory consolidation. However, factors present at initial encoding may moderate this effect. Here, we examined the role that encoding strategy plays in subsequent memory consolidation during sleep. Eighty-nine participants encoded pairs of words using two different strategies. Each participant encoded half of the word pairs using an integrative visualization technique, where the two items were imagined in an integrated scene. The other half were encoded nonintegratively, with each word pair item visualized separately. Memory was tested before and after a period of nocturnal sleep (N = 47) or daytime wake (N = 42) via cued recall tests. Immediate memory performance was significantly better for word pairs encoded using the integrative strategy compared with the nonintegrative strategy (P < 0.001). When looking at the change in recall across the delay, there was significantly less forgetting of integrated word pairs across a night of sleep compared with a day spent awake (P < 0.001), with no significant difference in the nonintegrated pairs (P = 0.19). This finding was driven by more forgetting of integrated compared with not-integrated pairs across the wake delay (P < 0.001), whereas forgetting was equivalent across the sleep delay (P = 0.26). Together, these results show that the strategy engaged in during encoding impacts both the immediate retention of memories and their subsequent consolidation across sleep and wake intervals.
Collapse
Affiliation(s)
- Dan Denis
- Department of Psychology, University of York, York YO10 5DD, United Kingdom
| | - Ryan Bottary
- Institute for Graduate Clinical Psychology, Widener University, Chester, Pennsylvania 19013, USA
| | - Tony J Cunningham
- Center for Sleep and Cognition, Psychiatry Department, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | - Jessica D Payne
- Department of Psychology, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
12
|
Guttesen AÁV, Gaskell MG, Madden EV, Appleby G, Cross ZR, Cairney SA. Sleep loss disrupts the neural signature of successful learning. Cereb Cortex 2023; 33:1610-1625. [PMID: 35470400 PMCID: PMC9977378 DOI: 10.1093/cercor/bhac159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
Sleep supports memory consolidation as well as next-day learning. The influential "Active Systems" account of offline consolidation suggests that sleep-associated memory processing paves the way for new learning, but empirical evidence in support of this idea is scarce. Using a within-subjects (n = 30), crossover design, we assessed behavioral and electrophysiological indices of episodic encoding after a night of sleep or total sleep deprivation in healthy adults (aged 18-25 years) and investigated whether behavioral performance was predicted by the overnight consolidation of episodic associations from the previous day. Sleep supported memory consolidation and next-day learning as compared to sleep deprivation. However, the magnitude of this sleep-associated consolidation benefit did not significantly predict the ability to form novel memories after sleep. Interestingly, sleep deprivation prompted a qualitative change in the neural signature of encoding: Whereas 12-20 Hz beta desynchronization-an established marker of successful encoding-was observed after sleep, sleep deprivation disrupted beta desynchrony during successful learning. Taken together, these findings suggest that effective learning depends on sleep but not necessarily on sleep-associated consolidation.
Collapse
Affiliation(s)
- Anna á V Guttesen
- Department of Psychology, University of York, Heslington, York, YO10 5DD, UK
| | - M Gareth Gaskell
- Department of Psychology, University of York, Heslington, York, YO10 5DD, UK
- York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK
| | - Emily V Madden
- Department of Psychology, University of York, Heslington, York, YO10 5DD, UK
| | - Gabrielle Appleby
- Department of Psychology, University of York, Heslington, York, YO10 5DD, UK
| | - Zachariah R Cross
- Cognitive Neuroscience Laboratory, Australian Research Centre for Interactive and Virtual Environments, Mawson Lakes Campus, Mawson Lakes, South Australia 5095, Australia
| | - Scott A Cairney
- Department of Psychology, University of York, Heslington, York, YO10 5DD, UK
- York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK
| |
Collapse
|
13
|
Cordi MJ, Schreiner T, Rasch B. Is prior knowledge essential? Additional training opportunities restore sleep-associated memory benefits under conditions of low prior knowledge. J Sleep Res 2023:e13834. [PMID: 36703492 DOI: 10.1111/jsr.13834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 11/15/2022] [Accepted: 01/04/2023] [Indexed: 01/28/2023]
Abstract
Sleep-mediated memory benefits are modulated by several factors. Prior knowledge is assumed critical for consolidation during sleep, despite inconclusive empirical findings. Additionally, prior knowledge facilitates encoding, leading to differences in memory strength already before the retention filled with sleep. We tested whether increasing memory strength of unfamiliar learning material pre-sleep can restore sleep-mediated memory benefits in cases of low prior knowledge. One-hundred and fifty-four healthy young students learned translations of Dutch words. One group was German-speaking, the other French-speaking. As French is less similar to Dutch than German, we expected a lower prior knowledge in French participants. We manipulated memory strength during pre-sleep encoding by varying the number of learning possibilities (one and two rounds for German-speaking, two and three rounds for French-speaking participants). When using the same learning paradigm for both groups (two rounds), lower prior knowledge modulated sleep-mediated memory benefits: French-speaking participants showed no advantage in memory after nighttime sleep compared with daytime wakefulness. In contrast, German-speaking participants showed robust sleep-mediated memory benefits. However, increasing memory strength before sleep restored sleep-mediated memory benefits in French subjects to a level of German-speaking participants. Conversely, reducing the training in German-speaking participants reduced sleep-mediated memory benefits. Our results show that prior knowledge and memory strength strongly modulate sleep-associated memory benefits. However, in cases of low prior knowledge, sleep-mediated memory benefits can be successfully restored by additional training. While prior knowledge might modulate encoding and consolidation processes more generally, its effect on sleep-specific processes of memory retention might be less important than previously assumed.
Collapse
Affiliation(s)
- Maren J Cordi
- Department of Psychology, Division of Cognitive Psychology, University of Fribourg, Fribourg, Switzerland.,Sleep and Health Zurich, University of Zurich, Zurich, Switzerland
| | - Thomas Schreiner
- Department of Psychology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Björn Rasch
- Department of Psychology, Division of Cognitive Psychology, University of Fribourg, Fribourg, Switzerland.,Sleep and Health Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
Heydari N, Chaplin W, Hamberger MJ. Development of a Word Paired-Associates Task for Longitudinal Assessment of Memory Overnight. MULTIVARIATE BEHAVIORAL RESEARCH 2023; 58:139-140. [PMID: 36780424 DOI: 10.1080/00273171.2022.2160949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
|
15
|
Pacozzi L, Knüsel L, Ruch S, Henke K. Inverse forgetting in unconscious episodic memory. Sci Rep 2022; 12:20595. [PMID: 36446829 PMCID: PMC9709067 DOI: 10.1038/s41598-022-25100-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Forming memories of experienced episodes calls upon the episodic memory system. Episodic encoding may proceed with and without awareness of episodes. While up to 60% of consciously encoded episodes are forgotten after 10 h, the fate of unconsciously encoded episodes is unknown. Here we track over 10 h, which are filled with sleep or daytime activities, the retention of unconsciously and consciously experienced episodes. The episodes were displayed in cartoon clips that were presented weakly and strongly masked for conscious and unconscious encoding, respectively. Clip retention was tested for distinct clips directly after encoding, 3 min and 10 h after encoding using a forced-choice test that demands deliberate responses in both consciousness conditions. When encoding was conscious, retrieval accuracy decreased by 25% from 3 min to 10 h, irrespective of sleep or wakefulness. When encoding was unconscious, retrieval accuracy increased from 3 min to 10 h and depended on sleep. Hence, opposite to the classic forgetting curve, unconsciously acquired episodic memories strengthen over time and hinge on sleep on the day of learning to gain influence over human behavior.
Collapse
Affiliation(s)
- Luca Pacozzi
- Institute of Psychology, University of Bern, 3012, Bern, Switzerland.
| | - Leona Knüsel
- Institute of Psychology, University of Bern, 3012, Bern, Switzerland
| | - Simon Ruch
- Institute for Neuromodulation and Neurotechnology, Department of Neurosurgery and Neurotechnology, University Hospital and University of Tuebingen, 72076, Tübingen, Germany
| | - Katharina Henke
- Institute of Psychology, University of Bern, 3012, Bern, Switzerland
| |
Collapse
|
16
|
Ashton JE, Staresina BP, Cairney SA. Sleep bolsters schematically incongruent memories. PLoS One 2022; 17:e0269439. [PMID: 35749391 PMCID: PMC9231735 DOI: 10.1371/journal.pone.0269439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 05/21/2022] [Indexed: 11/25/2022] Open
Abstract
Our ability to recall memories is improved when sleep follows learning, suggesting that sleep facilitates memory consolidation. A number of factors are thought to influence the impact of sleep on newly learned information, such as whether or not we rehearse that information (e.g. via restudy or retrieval practice), or the extent to which the information is consistent with our pre-existing schematic knowledge. In this pre-registered, online study, we examined the effects of both rehearsal and schematic congruency on overnight consolidation. Participants learned noun-colour pairings (e.g. elephant-red) and rated each pairing as plausible or implausible before completing a baseline memory assessment. Afterwards, participants engaged in a period of restudy or retrieval practice for the pairings, and then entered a 12 h retention interval of overnight sleep or daytime wakefulness. Follow-up assessments were completed immediately after sleep or wake, and again 24 h after learning. Our data indicated that overnight consolidation was amplified for restudied relative to retested noun-colour pairings, but only when sleep occurred soon after learning. Furthermore, whereas plausible (i.e. schematically congruent) pairings were generally better remembered than implausible (i.e. schematically incongruent) pairings, the benefits of sleep were stronger for implausible relative to plausible memories. These findings challenge the notion that schema-conformant memories are preferentially strengthened during post-learning sleep.
Collapse
Affiliation(s)
| | | | - Scott A. Cairney
- Department of Psychology, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
- * E-mail:
| |
Collapse
|
17
|
Denis D, Kim SY, Kark SM, Daley RT, Kensinger EA, Payne JD. Slow oscillation-spindle coupling is negatively associated with emotional memory formation following stress. Eur J Neurosci 2022; 55:2632-2650. [PMID: 33511691 DOI: 10.1111/ejn.15132] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 01/12/2021] [Accepted: 01/17/2021] [Indexed: 01/14/2023]
Abstract
Both stress and sleep enhance emotional memory. They also interact, with the largest effect of sleep on emotional memory being seen when stress occurs shortly before or after encoding. Slow wave sleep (SWS) is critical for long-term episodic memory, facilitated by the temporal coupling of slow oscillations and sleep spindles. Prior work in humans has shown these associations for neutral information in non-stressed participants. Whether coupling interacts with stress to facilitate emotional memory formation is unknown. Here, we addressed this question by reanalyzing an existing dataset of 64 individuals. Participants underwent a psychosocial stressor (32) or comparable control (32) prior to the encoding of 150-line drawings of neutral, positive, and negative images. All participants slept overnight with polysomnography, before being given a surprise memory test the following day. In the stress group, time spent in SWS was positively correlated with memory for images of all valences. Results were driven by those who showed a high cortisol response to the stressor, compared to low responders. The amount of slow oscillation-spindle coupling during SWS was negatively associated with neutral and emotional memory in the stress group only. The association with emotional memory was significantly stronger than for neutral memory within the stress group. These results suggest that stress around the time of initial memory formation impacts the relationship between slow wave sleep and memory.
Collapse
Affiliation(s)
- Dan Denis
- Department of Psychology, University of Notre Dame, Notre Dame, IN, USA
| | - Sara Y Kim
- Department of Psychology, University of Notre Dame, Notre Dame, IN, USA
| | - Sarah M Kark
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, USA
| | - Ryan T Daley
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, USA
| | | | - Jessica D Payne
- Department of Psychology, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
18
|
Zhang J, Whitehurst LN, Mednick SC. The Role of Sleep for Episodic Memory Consolidation: Stabilizing or Rescuing? Neurobiol Learn Mem 2022; 191:107621. [DOI: 10.1016/j.nlm.2022.107621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 03/01/2022] [Accepted: 04/04/2022] [Indexed: 12/25/2022]
|
19
|
Ben-Zion D, Gabitov E, Prior A, Bitan T. Effects of Sleep on Language and Motor Consolidation: Evidence of Domain General and Specific Mechanisms. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2022; 3:180-213. [PMID: 37215556 PMCID: PMC10158628 DOI: 10.1162/nol_a_00060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 10/21/2021] [Indexed: 05/24/2023]
Abstract
The current study explores the effects of time and sleep on the consolidation of a novel language learning task containing both item-specific knowledge and the extraction of grammatical regularities. We also compare consolidation effects in language and motor sequence learning tasks, to ask whether consolidation mechanisms are domain general. Young adults learned to apply plural inflections to novel words based on morphophonological rules embedded in the input, and learned to type a motor sequence using a keyboard. Participants were randomly assigned into one of two groups, practicing each task during either the morning or evening hours. Both groups were retested 12 and 24 hours post-training. Performance on frequent trained items in the language task stabilized only following sleep, consistent with a hippocampal mechanism for item-specific learning. However, regularity extraction, indicated by generalization to untrained items in the linguistic task, as well as performance on motor sequence learning, improved 24 hours post-training, irrespective of the timing of sleep. This consolidation process is consistent with a frontostriatal skill-learning mechanism, common across the language and motor domains. This conclusion is further reinforced by cross-domain correlations at the individual level between improvement across 24 hours in the motor task and in the low-frequency trained items in the linguistic task, which involve regularity extraction. Taken together, our results at the group and individual levels suggest that some aspects of consolidation are shared across the motor and language domains, and more specifically, between motor sequence learning and grammar learning.
Collapse
Affiliation(s)
- Dafna Ben-Zion
- Department of Learning Disabilities, University of Haifa, Haifa, Israel
- Edmond J. Safra Brain Research Center for the Study of Learning Disabilities, University of Haifa, Haifa, Israel
- Institute of Information Processing and Decision Making, University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel
| | - Ella Gabitov
- McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Anat Prior
- Department of Learning Disabilities, University of Haifa, Haifa, Israel
- Edmond J. Safra Brain Research Center for the Study of Learning Disabilities, University of Haifa, Haifa, Israel
| | - Tali Bitan
- Institute of Information Processing and Decision Making, University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel
- Department of Psychology, University of Haifa, Haifa, Israel
- Department of Speech Language Pathology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
20
|
Halonen R, Kuula L, Antila M, Pesonen AK. The Overnight Retention of Novel Metaphors Associates With Slow Oscillation-Spindle Coupling but Not With Respiratory Phase at Encoding. Front Behav Neurosci 2021; 15:712774. [PMID: 34531730 PMCID: PMC8439423 DOI: 10.3389/fnbeh.2021.712774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/04/2021] [Indexed: 11/16/2022] Open
Abstract
Accumulating evidence emphasizes the relevance of oscillatory synchrony in memory consolidation during sleep. Sleep spindles promote memory retention, especially when occurring in the depolarized upstate of slow oscillation (SO). A less studied topic is the inter-spindle synchrony, i.e. the temporal overlap and phasic coherence between spindles perceived in different electroencephalography channels. In this study, we examined how synchrony between SOs and spindles, as well as between simultaneous spindles, is associated with the retention of novel verbal metaphors. Moreover, we combined the encoding of the metaphors with respiratory phase (inhalation/exhalation) with the aim of modulating the strength of memorized items, as previous studies have shown that inhalation entrains neural activity, thereby benefiting memory in a waking condition. In the current study, 27 young adults underwent a two-night mixed-design study with a 12-h delayed memory task during both sleep and waking conditions. As expected, we found better retention over the delay containing sleep, and this outcome was strongly associated with the timing of SO–spindle coupling. However, no associations were observed regarding inter-spindle synchrony or respiratory phase. These findings contribute to a better understanding of the importance of SO–spindle coupling for memory. In contrast, the observed lack of association with inter-spindle synchrony may emphasize the local nature of spindle-related plasticity.
Collapse
Affiliation(s)
- Risto Halonen
- Sleepwell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Liisa Kuula
- Sleepwell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Minea Antila
- Sleepwell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anu-Katriina Pesonen
- Sleepwell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
21
|
No benefit of auditory closed-loop stimulation on memory for semantically-incongruent associations. Neurobiol Learn Mem 2021; 183:107482. [PMID: 34182134 DOI: 10.1016/j.nlm.2021.107482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/27/2021] [Accepted: 06/22/2021] [Indexed: 02/03/2023]
Abstract
Auditory closed-loop stimulation has gained traction in recent years as a means of enhancing slow oscillatory activity and, consequently, sleep-associated memory consolidation. Previous studies on this topic have primarily focused on the consolidation of semantically-congruent associations. In this study, we investigated the effect of auditory closed-loop stimulation on the overnight retention of semantically-incongruent associations. Twelve healthy males (age: M = 20.06, SD = 2.02 years) participated in two experimental conditions (simulation and sham). In the stimulation condition, clicks were delivered in phase with slow oscillation up-states, whereas in the sham condition no auditory stimuli were applied. Corroborating earlier work, stimulation (vs. sham) enhanced the slow oscillation rhythm, phase-coupled spindle activity and slow oscillation power. However, there was no benefit of stimulation on overnight memory retention. These findings suggest that closed-loop stimulation does not benefit semantically-incongruent associations.
Collapse
|
22
|
Timing storytime to maximize children's ability to retain new vocabulary. J Exp Child Psychol 2021; 210:105207. [PMID: 34157497 DOI: 10.1016/j.jecp.2021.105207] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/22/2021] [Accepted: 05/19/2021] [Indexed: 11/22/2022]
Abstract
Shared storybook reading is a key aid to vocabulary acquisition during childhood. However, word learning research has tended to use unnaturalistic (explicit) training regimes. Using a storybook paradigm, we examined whether children (particularly those with weaker vocabularies) are more likely to retain new words if they learn them closer to sleep. Parents read their children (5- to 7-year-olds; N = 237) an alien adventure story that contained 12 novel words with illustrations at one of two training times: at bedtime or 3-5 h before bedtime. Using online tasks, parents tested their children's ability to recall the new words (production) and associate them with pictures (comprehension) immediately after hearing the story and again the following morning. As hypothesized, we replicated two findings. First, children showed overnight improvements in their ability to produce and comprehend new words when tested again the next day. Second, children with better existing vocabulary knowledge showed larger overnight gains in new word comprehension. Counter to expectations, overnight gains in comprehension were larger if the story was read 3-5 h before bedtime rather than at bedtime. These ecologically valid findings are consistent with theories that characterize word learning as a prolonged process supported by mechanisms such as consolidation and retrieval practice, with existing vocabulary knowledge acting as an important source of variability in retention. The findings provide preliminary evidence that encountering new words in stories later in the day (but not too close to sleep) may help to harness vocabulary growth and may be more beneficial than leaving shared storybook reading just for bedtime.
Collapse
|
23
|
Dimanico MM, Klaassen AL, Wang J, Kaeser M, Harvey M, Rasch B, Rainer G. Aspects of tree shrew consolidated sleep structure resemble human sleep. Commun Biol 2021; 4:722. [PMID: 34117351 PMCID: PMC8196209 DOI: 10.1038/s42003-021-02234-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/11/2021] [Indexed: 11/17/2022] Open
Abstract
Understanding human sleep requires appropriate animal models. Sleep has been extensively studied in rodents, although rodent sleep differs substantially from human sleep. Here we investigate sleep in tree shrews, small diurnal mammals phylogenetically close to primates, and compare it to sleep in rats and humans using electrophysiological recordings from frontal cortex of each species. Tree shrews exhibited consolidated sleep, with a sleep bout duration parameter, τ, uncharacteristically high for a small mammal, and differing substantially from the sleep of rodents that is often punctuated by wakefulness. Two NREM sleep stages were observed in tree shrews: NREM, characterized by high delta waves and spindles, and an intermediate stage (IS-NREM) occurring on NREM to REM transitions and consisting of intermediate delta waves with concomitant theta-alpha activity. While IS-NREM activity was reliable in tree shrews, we could also detect it in human EEG data, on a subset of transitions. Finally, coupling events between sleep spindles and slow waves clustered near the beginning of the sleep period in tree shrews, paralleling humans, whereas they were more evenly distributed in rats. Our results suggest considerable homology of sleep structure between humans and tree shrews despite the large difference in body mass between these species. Dimanico et al investigated sleep in tree shrews using electrophysiological recordings and compared it to equivalent read-outs in rats and humans. They reported that there was considerable homology of sleep structure between humans and tree shrews despite the difference in body mass between these species.
Collapse
Affiliation(s)
- Marta M Dimanico
- Department of Neuroscience and Movement Sciences, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Arndt-Lukas Klaassen
- Department of Neuroscience and Movement Sciences, Section of Medicine, University of Fribourg, Fribourg, Switzerland.,Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Jing Wang
- Department of Neuroscience and Movement Sciences, Section of Medicine, University of Fribourg, Fribourg, Switzerland.,Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Melanie Kaeser
- Department of Neuroscience and Movement Sciences, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Michael Harvey
- Department of Neuroscience and Movement Sciences, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Björn Rasch
- Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Gregor Rainer
- Department of Neuroscience and Movement Sciences, Section of Medicine, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
24
|
Benear SL, Ngo CT, Olson IR, Newcombe NS. Understanding relational binding in early childhood: Interacting effects of overlap and delay. J Exp Child Psychol 2021; 208:105152. [PMID: 33895601 DOI: 10.1016/j.jecp.2021.105152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/05/2021] [Accepted: 03/11/2021] [Indexed: 10/21/2022]
Abstract
Episodic memories typically share overlapping elements in distinctive combinations, and to be valuable for future behavior they need to withstand delays. There is relatively little work on whether children have special difficulty with overlap or withstanding delay. However, Yim, Dennis, and Sloutsky (Psychological Science, 2013, Vol. 24, pp. 2163-2172) suggested that extensive overlap is more problematic for younger children, and Darby and Sloutsky (Psychological Science, 2015, Vol. 26, pp. 1937-1946) reported that a 48-h delay period actually improves children's memory for overlapping pairs of items. In the current study, we asked how children's episodic memory is affected by stimulus overlap, delay, and age using visual stimuli containing either overlapping or unique item pairs. Children aged 4 and 6 years were tested both immediately and after a 24-h delay. As expected, older children performed better than younger children, and both age groups performed worse on overlapping pairs. Surprisingly, the 24-h delay had only a marginal effect on overall accuracy. Although there were no interactions, when errors were examined, there was evidence that delay buffered memory for overlapping pairs against cross-contextual confusion for younger children.
Collapse
Affiliation(s)
- Susan L Benear
- Department of Psychology, Temple University, Philadelphia, PA 19122, USA.
| | - Chi T Ngo
- Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195 Berlin, Germany
| | - Ingrid R Olson
- Department of Psychology, Temple University, Philadelphia, PA 19122, USA
| | - Nora S Newcombe
- Department of Psychology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
25
|
Lokhandwala S, Spencer RMC. Slow wave sleep in naps supports episodic memories in early childhood. Dev Sci 2021; 24:e13035. [PMID: 32881204 PMCID: PMC7988587 DOI: 10.1111/desc.13035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 11/03/2022]
Abstract
Naps have been shown to benefit visuospatial learning in early childhood. This benefit has been associated with sleep spindles during the nap. However, whether young children's naps and their accompanying physiology benefit other forms of declarative learning is unknown. Using a novel storybook task, we found performance in children (N = 22, mean age = 51.23 months) was better following a nap compared to performance following an equivalent interval spent awake. Moreover, performance remained better the following day if a nap followed learning. Change in post-nap performance was positively associated with the amount of time spent in slow wave sleep during the nap. This suggests that slow wave sleep in naps may support episodic memory consolidation in early childhood. Taken in conjunction with prior work, these results suggest that multiple features of brain physiology during naps may contribute to declarative memory processing in early childhood.
Collapse
Affiliation(s)
- Sanna Lokhandwala
- Department of Psychological & Brain SciencesUniversity of MassachusettsAmherstMAUSA
- Developmental Science ProgramUniversity of MassachusettsAmherstMAUSA
| | - Rebecca M. C. Spencer
- Department of Psychological & Brain SciencesUniversity of MassachusettsAmherstMAUSA
- Developmental Science ProgramUniversity of MassachusettsAmherstMAUSA
- Neuroscience & Behavior ProgramUniversity of MassachusettsAmherstMAUSA
- Institute for Applied Life SciencesUniversity of MassachusettsAmherstMAUSA
| |
Collapse
|
26
|
Tavakol S, Li Q, Royer J, Vos de Wael R, Larivière S, Lowe A, Paquola C, Jefferies E, Hartley T, Bernasconi A, Bernasconi N, Smallwood J, Bohbot V, Caciagli L, Bernhardt B. A Structure-Function Substrate of Memory for Spatial Configurations in Medial and Lateral Temporal Cortices. Cereb Cortex 2021; 31:3213-3225. [PMID: 33667310 DOI: 10.1093/cercor/bhab001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 12/21/2020] [Accepted: 12/27/2020] [Indexed: 01/30/2023] Open
Abstract
Prior research has shown a role of the medial temporal lobe, particularly the hippocampal-parahippocampal complex, in spatial cognition. Here, we developed a new paradigm, the conformational shift spatial task (CSST), which examines the ability to encode and retrieve spatial relations between unrelated items. This task is short, uses symbolic cues, incorporates two difficulty levels, and can be administered inside the scanner. A cohort of 48 healthy young adults underwent the CSST, together with a set of behavioral measures and multimodal magnetic resonance imaging (MRI). Inter-individual differences in CSST performance correlated with scores on an established spatial memory paradigm, but neither with episodic memory nor mnemonic discrimination, supporting specificity. Analyzing high-resolution structural MRI data, individuals with better spatial memory showed thicker medial and lateral temporal cortices. Functional relevance of these findings was supported by task-based functional MRI analysis in the same participants and ad hoc meta-analysis. Exploratory resting-state functional MRI analyses centered on clusters of morphological effects revealed additional modulation of intrinsic network integration, particularly between lateral and medial temporal structures. Our work presents a novel spatial memory paradigm and supports an integrated structure-function substrate in the human temporal lobe. Task paradigms are programmed in python and made open access.
Collapse
Affiliation(s)
- Shahin Tavakol
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Qiongling Li
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Jessica Royer
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Reinder Vos de Wael
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Sara Larivière
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Alex Lowe
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Casey Paquola
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
| | | | | | - Andrea Bernasconi
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Neda Bernasconi
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
| | | | - Veronique Bohbot
- Douglas Mental Health University Institute, McGill University, Montreal, Quebec H4H 1R3, Canada
| | - Lorenzo Caciagli
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, WC1N 3BG London, United Kingdom.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Boris Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
27
|
Petzka M, Charest I, Balanos GM, Staresina BP. Does sleep-dependent consolidation favour weak memories? Cortex 2021; 134:65-75. [PMID: 33259969 PMCID: PMC7805594 DOI: 10.1016/j.cortex.2020.10.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/31/2020] [Accepted: 10/02/2020] [Indexed: 12/25/2022]
Abstract
Sleep stabilizes newly acquired memories, a process referred to as memory consolidation. According to recent studies, sleep-dependent consolidation processes might be deployed to different extents for different types of memories. In particular, weaker memories might benefit greater from post-learning sleep than stronger memories. However, under standard testing conditions, sleep-dependent consolidation effects for stronger memories might be obscured by ceiling effects. To test this possibility, we devised a new memory paradigm (Memory Arena) in which participants learned temporospatial arrangements of objects. Prior to a delay period spent either awake or asleep, training thresholds were controlled to yield relatively weak or relatively strong memories. After the delay period, retrieval difficulty was controlled via the presence or absence of a retroactive interference task. Under standard testing conditions (no interference), a sleep-dependent consolidation effect was indeed observed for weaker memories only. Critically though, with increased retrieval demands, sleep-dependent consolidation effects were seen for both weaker and stronger memories. These results suggest that all memories are consolidated during sleep, but that memories of different strengths require different testing conditions to unveil their benefit from post-learning sleep.
Collapse
Affiliation(s)
- Marit Petzka
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Ian Charest
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - George M Balanos
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Bernhard P Staresina
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham, UK.
| |
Collapse
|
28
|
Plamberger CP, Van Wijk HE, Kerschbaum H, Pletzer BA, Gruber G, Oberascher K, Dresler M, Hahn MA, Hoedlmoser K. Impact of menstrual cycle phase and oral contraceptives on sleep and overnight memory consolidation. J Sleep Res 2020; 30:e13239. [PMID: 33348471 PMCID: PMC8365641 DOI: 10.1111/jsr.13239] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/14/2020] [Accepted: 11/02/2020] [Indexed: 01/17/2023]
Abstract
Sleep spindles benefit declarative memory consolidation and are considered to be a biological marker for general cognitive abilities. However, the impact of sexual hormones and hormonal oral contraceptives (OCs) on these relationships are less clear. Thus, we here investigated the influence of endogenous progesterone levels of naturally cycling women and women using OCs on nocturnal sleep and overnight memory consolidation. Nineteen healthy women using OCs (MAge = 21.4, SD = 2.1 years) were compared to 43 healthy women with a natural menstrual cycle (follicular phase: n = 16, MAge = 21.4, SD = 3.1 years; luteal phase: n = 27, MAge = 22.5, SD = 3.6 years). Sleep spindle density and salivary progesterone were measured during an adaptation and an experimental night. A word pair association task preceding the experimental night followed by two recalls (pre‐sleep and post‐sleep) was performed to test declarative memory performance. We found that memory performance improved overnight in all women. Interestingly, women using OCs (characterized by a low endogenous progesterone level but with very potent synthetic progestins) and naturally cycling women during the luteal phase (characterized by a high endogenous progesterone level) had a higher fast sleep spindle density compared to naturally cycling women during the follicular phase (characterized by a low endogenous progesterone level). Furthermore, we observed a positive correlation between endogenous progesterone level and fast spindle density in women during the luteal phase. Results suggest that the use of OCs and the menstrual cycle phase affects sleep spindles and therefore should be considered in further studies investigating sleep spindles and cognitive performance.
Collapse
Affiliation(s)
| | - Helen Elisabeth Van Wijk
- Department of Psychology, Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria.,Radboud University, Nijmegen, The Netherlands
| | - Hubert Kerschbaum
- Department of Cell Biology, Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| | - Belinda Angela Pletzer
- Department of Psychology, Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| | - Georg Gruber
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Karin Oberascher
- Department of Cell Biology, Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| | | | - Michael Andreas Hahn
- Department of Psychology, Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| | - Kerstin Hoedlmoser
- Department of Psychology, Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| |
Collapse
|
29
|
The association between sleep-wake ratio and overnight picture recognition is moderated by BDNF genotype. Neurobiol Learn Mem 2020; 177:107353. [PMID: 33253827 DOI: 10.1016/j.nlm.2020.107353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 09/17/2020] [Accepted: 11/24/2020] [Indexed: 11/23/2022]
Abstract
A wealth of studies supports the role of sleep in memory performance. Experimentally controlled studies indicate that prolonged wake after memory encoding is detrimental for memory outcome whereas sleep protects from wake-time interference and promotes memory consolidation. We examined how the natural distribution of wake and sleep between encoding and retrieval associated with overnight picture recognition accuracy among 161 adolescents following their typical sleep schedule with an in-home polysomnography. The memorized pictures varied in their level of arousal (calm to exciting) and valence (negative to positive). Suspecting genotypic influence on the sensitivity for sleep/wake dynamics, we also assessed if these associations were affected by known gene polymorphisms involved in neural plasticity and sleep homeostasis: brain-derived neurotrophic factor (BDNF) Val66Met and Catechol-O-methyltransferase (COMT) Val158Met. In the whole sample, overnight recognition accuracy was associated with the levels of arousal and valence of the pictures, but not with sleep percentage (i.e. the percentage of time spent asleep between memory encoding and retrieval). While the allelic status of BDNF or COMT did not have any main effect on recognition accuracy, a significant moderation by BDNF Val66Met was found (p = .004): the subgroup homozygous for valine allele showed positive association between sleep percentage and recognition accuracy. This was underlain by detrimental influence of wake, rather than by any memory benefit of sleep. Our results complement the mounting evidence that the relation between sleep and memory performance is moderated by BDNF Val66Met. Further studies are needed to clarify the specific mechanisms.
Collapse
|
30
|
Denis D, Schapiro AC, Poskanzer C, Bursal V, Charon L, Morgan A, Stickgold R. The roles of item exposure and visualization success in the consolidation of memories across wake and sleep. ACTA ACUST UNITED AC 2020; 27:451-456. [PMID: 33060281 PMCID: PMC7571267 DOI: 10.1101/lm.051383.120] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 08/17/2020] [Indexed: 12/31/2022]
Abstract
Memory consolidation during sleep does not benefit all memories equally. Initial encoding strength appears to play a role in governing where sleep effects are seen, but it is unclear whether sleep preferentially consolidates weaker or stronger memories. We manipulated encoding strength along two dimensions—the number of item presentations, and success at visualizing each item, in a sample of 82 participants. Sleep benefited memory of successfully visualized items only. Within these, the sleep–wake difference was largest for more weakly encoded information. These results suggest that the benefit of sleep on memory is seen most clearly for items that are encoded to a lower initial strength.
Collapse
Affiliation(s)
- Dan Denis
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Anna C Schapiro
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Craig Poskanzer
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| | - Verda Bursal
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| | - Lily Charon
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| | - Alexandra Morgan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| | - Robert Stickgold
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
31
|
Associations between sleep practices and social behavior of children and adolescents: a systematic review. J Public Health (Oxf) 2020. [DOI: 10.1007/s10389-020-01388-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
32
|
Westerberg CE, Wofford N, Menssor S, Reininger BP, Deason RG. Face category differentially influences face memories after a delay. JOURNAL OF COGNITIVE PSYCHOLOGY 2020. [DOI: 10.1080/20445911.2020.1809432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
| | - Nathan Wofford
- Department of Psychology, Texas State University, San Marcos, TX, USA
| | - Safia Menssor
- Department of Psychology, Texas State University, San Marcos, TX, USA
| | | | - Rebecca G. Deason
- Department of Psychology, Texas State University, San Marcos, TX, USA
| |
Collapse
|
33
|
Collins MB, Wamsley EJ. Effect of postlearning meditation on memory consolidation: level of focused attention matters. ACTA ACUST UNITED AC 2020; 27:250-253. [PMID: 32414942 PMCID: PMC7233149 DOI: 10.1101/lm.051151.119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/28/2020] [Indexed: 11/25/2022]
Abstract
Recent studies demonstrate that eyes-closed rest benefits memory consolidation, perhaps due to reduced attention to environmental stimuli. Here, we asked whether focusing attention to internal thoughts and feelings after learning similarly blocks memory consolidation. Verbal memory was tested following an eyes-closed consolidation period filled with either focused attention to breath or quiet rest. Although breath-focus did not impair memory relative to quiet rest overall, participants who reported being more successful in maintaining breath-focus during this condition showed increased forgetting. We interpret these findings as incompatible with a simple sensory-interference-based account of rest's effect on memory.
Collapse
Affiliation(s)
- Megan B Collins
- Department of Psychology and Program in Neuroscience, Furman University, Greenville, South Carolina 29613, USA
| | - Erin J Wamsley
- Department of Psychology and Program in Neuroscience, Furman University, Greenville, South Carolina 29613, USA
| |
Collapse
|
34
|
Frase L, Regen W, Kass S, Rambach A, Baglioni C, Feige B, Hennig J, Riemann D, Nissen C, Spiegelhalder K. Hippocampal and medial prefrontal cortical volume is associated with overnight declarative memory consolidation independent of specific sleep oscillations. J Sleep Res 2020; 29:e13062. [PMID: 32374066 DOI: 10.1111/jsr.13062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/17/2020] [Accepted: 04/10/2020] [Indexed: 11/29/2022]
Abstract
The current study was designed to further clarify the influence of brain morphology, sleep oscillatory activity and age on memory consolidation. Specifically, we hypothesized, that a smaller volume of hippocampus, parahippocampal and medial prefrontal cortex negatively impacts declarative, but not procedural, memory consolidation. Explorative analyses were conducted to demonstrate whether a decrease in slow-wave activity negatively impacts declarative memory consolidation, and whether these factors mediate age effects on memory consolidation. Thirty-eight healthy participants underwent an acquisition session in the evening and a retrieval session in the morning after night-time sleep with polysomnographic monitoring. Declarative memory was assessed with the paired-associate word list task, while procedural memory was tested using the mirror-tracing task. All participants underwent high-resolution magnetic resonance imaging. Participants with smaller hippocampal, parahippocampal and medial prefrontal cortex volumes displayed a reduced overnight declarative, but not procedural memory consolidation. Mediation analyses showed significant age effects on overnight declarative memory consolidation, but no significant mediation effects of brain morphology on this association. Further mediation analyses showed that the effects of age and brain morphology on overnight declarative memory consolidation were not mediated by polysomnographic variables or sleep electroencephalogram spectral power variables. Thus, the results suggest that the association between age, specific brain area volume and overnight memory consolidation is highly relevant, but does not necessarily depend on slow-wave sleep as previously conceptualized.
Collapse
Affiliation(s)
- Lukas Frase
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Wolfram Regen
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stéphanie Kass
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Albena Rambach
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Chiara Baglioni
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bernd Feige
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jürgen Hennig
- Department of Radiology - Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dieter Riemann
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Nissen
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,University Hospital of Psychiatry and Psychotherapy, Bern, Switzerland
| | - Kai Spiegelhalder
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
35
|
Hołda M, Głodek A, Dankiewicz-Berger M, Skrzypińska D, Szmigielska B. Ill-Defined Problem Solving Does Not Benefit From Daytime Napping. Front Psychol 2020; 11:559. [PMID: 32328010 PMCID: PMC7161088 DOI: 10.3389/fpsyg.2020.00559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 03/09/2020] [Indexed: 12/11/2022] Open
Abstract
The main goal of the present study was to explore the role of sleep in the process of ill-defined problem solving. The results of previous studies indicate that various cognitive processes are largely dependent on the quality and quantity of sleep. However, while sleep-related memory consolidation seems to be well-grounded, with regard to the impact of sleep on problem solving, existing research yields mixed and rather inconclusive results. Moreover, this effect has been mainly tested using simple and well-defined, common laboratory problems, such as the remote associate test (RAT), crossword and anagram puzzles, numeric and logic problems, etc. What is lacking is research on the effect of sleep on solving more complex and more real-life oriented ill-defined problems. In the present study, we hypothesized that sleep can improve performance in solving this kind of problems. The study involved 40 participants, randomly assigned to two experimental conditions: sleep group and waking group. The experimental protocol comprised three stages: problem presentation, retention interval, and testing stage. The problem was presented to the participants in the form of an interactive computer game concerning a complex, elaborate crime story. During the retention interval, the participants—depending on the condition—took a nap or stayed awake; sleeping participants underwent polysomnography recording, while waking participants performed activities not related to the experimental problem. In the testing stage, participants tried to solve the presented problem. The solutions generated were assessed both for quality (reasonableness, consistency, and story recall) and creativity (fluency, flexibility, originality, and elaboration). Contrary to expectations, we found no effect of sleep on ill-defined problem solving. Neither quality nor creativity of the solutions generated by the participants was higher in the nap group than in the waking group. There were also no performance improvements with regard to any sleep stage or incidence of dreams. Our study adds to a growing body of evidence that sleep probably might provide an incubation gap, but not a facilitating environment serving the purpose of problem solving, at least with regard to ill-defined problems.
Collapse
Affiliation(s)
- Małgorzata Hołda
- Section of Sleep Psychology, Institute of Psychology, Jagiellonian University, Cracow, Poland
| | - Anna Głodek
- Section of Sleep Psychology, Institute of Psychology, Jagiellonian University, Cracow, Poland
| | - Malwina Dankiewicz-Berger
- Department of Educational Psychology, Institute of Psychology, Pedagogical University of Cracow, Cracow, Poland
| | - Dagna Skrzypińska
- Section of Sleep Psychology, Institute of Psychology, Jagiellonian University, Cracow, Poland
| | - Barbara Szmigielska
- Section of Sleep Psychology, Institute of Psychology, Jagiellonian University, Cracow, Poland
| |
Collapse
|
36
|
Sun L, Zhou H, Cichon J, Yang G. Experience and sleep-dependent synaptic plasticity: from structure to activity. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190234. [PMID: 32248786 DOI: 10.1098/rstb.2019.0234] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Synaptic plasticity is important for learning and memory. With increasing evidence linking sleep states to changes in synaptic strength, an emerging view is that sleep promotes learning and memory by facilitating experience-induced synaptic plasticity. In this review, we summarize the recent progress on the function of sleep in regulating cortical synaptic plasticity. Specifically, we outline the electroencephalogram signatures of sleep states (e.g. slow-wave sleep, rapid eye movement sleep, spindles), sleep state-dependent changes in gene and synaptic protein expression, synaptic morphology, and neuronal and network activity. We highlight studies showing that post-experience sleep potentiates experience-induced synaptic changes and discuss the potential mechanisms that may link sleep-related brain activity to synaptic structural remodelling. We conclude that both synapse formation or strengthening and elimination or weakening occur across sleep. This sleep-dependent synaptic plasticity plays an important role in neuronal circuit refinement during development and after learning, while sleep disorders may contribute to or exacerbate the development of common neurological diseases. This article is part of the Theo Murphy meeting issue 'Memory reactivation: replaying events past, present and future'.
Collapse
Affiliation(s)
- Linlin Sun
- Department of Anesthesiology, Columbia University, New York, NY, USA
| | - Hang Zhou
- Department of Anesthesiology, Columbia University, New York, NY, USA
| | - Joseph Cichon
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Guang Yang
- Department of Anesthesiology, Columbia University, New York, NY, USA
| |
Collapse
|
37
|
Ashton JE, Harrington MO, Langthorne D, Ngo HVV, Cairney SA. Sleep deprivation induces fragmented memory loss. ACTA ACUST UNITED AC 2020; 27:130-135. [PMID: 32179655 PMCID: PMC7079571 DOI: 10.1101/lm.050757.119] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/03/2020] [Indexed: 01/13/2023]
Abstract
Sleep deprivation increases rates of forgetting in episodic memory. Yet, whether an extended lack of sleep alters the qualitative nature of forgetting is unknown. We compared forgetting of episodic memories across intervals of overnight sleep, daytime wakefulness, and overnight sleep deprivation. Item-level forgetting was amplified across daytime wakefulness and overnight sleep deprivation, as compared to sleep. Importantly, however, overnight sleep deprivation led to a further deficit in associative memory that was not observed after daytime wakefulness. These findings suggest that sleep deprivation induces fragmentation among item memories and their associations, altering the qualitative nature of episodic forgetting.
Collapse
Affiliation(s)
- Jennifer E Ashton
- Department of Psychology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Marcus O Harrington
- Department of Psychology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Diane Langthorne
- Department of Psychology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Hong-Viet V Ngo
- Donders Institute for Brain, Cognition, and Behaviour, 6526 HR Nijmegen, The Netherlands
| | - Scott A Cairney
- Department of Psychology, University of York, Heslington, York YO10 5DD, United Kingdom.,York Biomedical Research Institute (YBRI), University of York, Heslington, York YO10 5DD, United Kingdom
| |
Collapse
|
38
|
Walker S, Gaskell MG, Knowland VCP, Fletcher FE, Cairney SA, Henderson LM. Growing up with interfering neighbours: the influence of time of learning and vocabulary knowledge on written word learning in children. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191597. [PMID: 32269794 PMCID: PMC7137956 DOI: 10.1098/rsos.191597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/27/2020] [Indexed: 06/11/2023]
Abstract
Evidence suggests that new vocabulary undergoes a period of strengthening and integration offline, particularly during sleep. Practical questions remain, however, including whether learning closer to bedtime can optimize consolidation, and whether such an effect varies with vocabulary ability. To examine this, children aged 8-12-years-old (n 59) were trained on written novel forms (e.g. BANARA) in either the morning (long delay) or the evening (short delay). Immediately after training and the next day, lexical competition (a marker of integration) was assessed via speeded semantic decisions to neighbouring existing words (e.g. BANANA); explicit memory was measured via recognition and recall tasks. There were no main effects indicating performance changes across sleep for any task, counter to studies of spoken word learning. However, a significant interaction was found, such that children with poorer vocabulary showed stronger lexical competition on the day after learning if there was a short delay between learning and sleep. Furthermore, while poorer vocabulary was associated with slower novel word recognition speed before and after sleep for the long delay group, this association was only present before sleep for the short delay group. Thus, weak vocabulary knowledge compromises novel word acquisition, and when there is a longer period of post-learning wake, this disadvantage remains after a consolidation opportunity. However, when sleep occurs soon after learning, consolidation processes can compensate for weaker encoding and permit lexical integration. These data provide preliminary suggestion that children with poorer vocabulary may benefit from learning new words closer to bedtime.
Collapse
Affiliation(s)
| | | | | | | | | | - L. M. Henderson
- Department of Psychology, University of York, York YO10 5DD, UK
| |
Collapse
|
39
|
Tucker MA, Humiston GB, Summer T, Wamsley E. Comparing the Effects of Sleep and Rest on Memory Consolidation. Nat Sci Sleep 2020; 12:79-91. [PMID: 32099493 PMCID: PMC7007500 DOI: 10.2147/nss.s223917] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 11/28/2019] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION There is ample evidence that overnight sleep and daytime naps benefit memory retention, compared to comparable amounts of active wakefulness. Yet recent evidence also suggests that a period of post-training rest (eg, quiet wakefulness with eyes closed) provides a similar memory benefit compared to wake. However, the relative benefits of sleep vs quiet waking rest on memory remain poorly understood. Here, we assessed the extent to which sleep provides a unique memory benefit, above and beyond that conferred by quiet waking rest. METHODS In a sample of healthy undergraduate students (N=83), we tested the effect of 30 mins of post-learning sleep, rest, or active wake on concept learning (dot pattern classification) and declarative memory (word pair associates) across a 4-hr daytime training-retest interval. RESULTS AND CONCLUSIONS Contrary to our hypotheses, we found no differences in performance between the three conditions for either task. The findings are interpreted with reference to methodological considerations including the length of the experimental interval, the nature of the tasks used, and challenges inherent in creating experimental conditions that can be executed by participants.
Collapse
Affiliation(s)
- Matthew A Tucker
- University of South Carolina School of Medicine, Department of Biomedical Sciences, Greenville, SC, USA
| | - Graelyn B Humiston
- Furman University, Department of Psychology and Program in Neuroscience, Greenville, SC, USA
| | - Theodore Summer
- Furman University, Department of Psychology and Program in Neuroscience, Greenville, SC, USA
| | - Erin Wamsley
- Furman University, Department of Psychology and Program in Neuroscience, Greenville, SC, USA
| |
Collapse
|
40
|
Morgan DP, Tamminen J, Seale-Carlisle TM, Mickes L. The impact of sleep on eyewitness identifications. ROYAL SOCIETY OPEN SCIENCE 2019; 6:170501. [PMID: 31903193 PMCID: PMC6936295 DOI: 10.1098/rsos.170501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Sleep aids the consolidation of recently acquired memories. Evidence strongly indicates that sleep yields substantial improvements on recognition memory tasks relative to an equivalent period of wake. Despite the known benefits that sleep has on memory, researchers have not yet investigated the impact of sleep on eyewitness identifications. Eyewitnesses to crimes are often presented with a line-up (which is a type of recognition memory test) that contains the suspect (who is innocent or guilty) and fillers (who are known to be innocent). Sleep may enhance the ability to identify the guilty suspect and not identify the innocent suspect (i.e. discriminability). Sleep may also impact reliability (i.e. the likelihood that the identified suspect is guilty). In the current study, we manipulated the presence or the absence of sleep in a forensically relevant memory task. Participants witnessed a video of a mock crime, made an identification or rejected the line-up, and rated their confidence. Critically, some participants slept between witnessing the crime and making a line-up decision, while others remained awake. The prediction that participants in the sleep condition would have greater discriminability compared to participants in the wake condition was not supported. There were also no differences in reliability.
Collapse
Affiliation(s)
- D. P. Morgan
- Department of Clinical Psychology, University of Heidelberg, Mannheim, Germany
- Department of Addiction Behavior and Addiction Medicine, University of Heidelberg, Mannheim, Germany
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - J. Tamminen
- Department of Psychology, Royal Holloway, University of London, Egham, UK
| | | | - L. Mickes
- Department of Psychology, University of Bristol, Bristol, UK
- Department of Psychology, University of California, San Diego, CA, USA
| |
Collapse
|
41
|
Closed-Loop Acoustic Stimulation Enhances Sleep Oscillations But Not Memory Performance. eNeuro 2019; 6:ENEURO.0306-19.2019. [PMID: 31604814 PMCID: PMC6831893 DOI: 10.1523/eneuro.0306-19.2019] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/17/2019] [Accepted: 09/24/2019] [Indexed: 11/21/2022] Open
Abstract
Slow oscillations and spindle activity during non-rapid eye movement sleep have been implicated in memory consolidation. Closed-loop acoustic stimulation has previously been shown to enhance slow oscillations and spindle activity during sleep and improve verbal associative memory. We assessed the effect of closed-loop acoustic stimulation during a daytime nap on a virtual reality spatial navigation task in 12 healthy human subjects in a randomized within-subject crossover design. We show robust enhancement of slow oscillation and spindle activity during sleep. However, no effects on behavioral performance were observed when comparing real versus sham stimulation. To explore whether memory enhancement effects were task specific and dependent on nocturnal sleep, in a second experiment with 19 healthy subjects, we aimed to replicate a previous study that used closed-loop acoustic stimulation to enhance memory for word pairs. The methods used were as close as possible to those used in the original study, except that we used a double-blind protocol, in which both subject and experimenter were unaware of the test condition. Again, we successfully enhanced slow oscillation and spindle power, but again did not strengthen associative memory performance with stimulation. We conclude that enhancement of sleep oscillations may be insufficient to enhance memory performance in spatial navigation or verbal association tasks, and provide possible explanations for lack of behavioral replication.
Collapse
|
42
|
Hanoğlu L, Ercan FB, Mantar N, Helvacı Yılmaz N, Sitrava S, Özer F, Yuluğ B. Accelerated forgetting and verbal memory consolidation process in idiopathic nondement Parkinson's disease. J Clin Neurosci 2019; 70:208-213. [PMID: 31473091 DOI: 10.1016/j.jocn.2019.08.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/04/2019] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Episodic memory impairment and underlying pathophysiology in Parkinson's Disease (PD) is poorly investigated. Formerly, it was thought to be a secondary effect of impairment in fronto-striatal circuit. However, recent studies hypothesized that there is a dual progression of PD and memory loss is possibly related to posterior cortex rather than frontal. To understand the impairment, underlying mechanisms should be investigated. Although consolidation is one of these mechanisms consolidation phase of episodic memory in PD was not investigated yet. Recently accelerated long term forgetting (ALF) phenomenon is emphasized in consolidation researches. METHOD Here it is evaluated the presence of accelerated long-term forgetting in nondemented PD as a consequence of a deficit in consolidation process. 32 patients and 33 controls participated in the study. Turkish Verbal Memory Process Test (VMPT) was applied to both groups. Delayed recall (DR) scores collected after 30 min, one week and six weeks. Forgetting rates were calculated based on these scores. RESULTS There was significant difference in DR scores of patients compared to controls in the 30th minute and sixth week. Forgetting rate between 30th minute-1st week did not differ but 1st-6th week was found statistically significant across groups. CONCLUSIONS To the best of our knowledge, this is the first study investigating verbal memory consolidation in PD. Results suggested that impairment is possibly related to the late phase of consolidation of verbal memory in neocortex.
Collapse
Affiliation(s)
- L Hanoğlu
- Istanbul Medipol University, Institute of Medical Science, Department of Neuroscience, Istanbul, Turkey; Istanbul Medipol University, REMER, Clinical Electrophysiology, Neuroimaging and Neuromodulation Laboratory, Istanbul, Turkey; Istanbul Medipol University, School of Medicine, Department of Neurology, Istanbul, Turkey
| | - F B Ercan
- Istanbul Medipol University, Institute of Medical Science, Department of Neuroscience, Istanbul, Turkey.
| | - N Mantar
- Istanbul Medipol University, Institute of Medical Science, Department of Neuroscience, Istanbul, Turkey
| | - N Helvacı Yılmaz
- Istanbul Medipol University, School of Medicine, Department of Neurology, Istanbul, Turkey
| | - S Sitrava
- Istanbul Medipol University, Psychological Counseling Center, Istanbul, Turkey
| | - F Özer
- Koç University, Topkapı Hospital, Department of Neurology, Istanbul, Turkey
| | - B Yuluğ
- Alanya University, Faculty of Medicine, Department of Neurology, Antalya, Turkey
| |
Collapse
|
43
|
Strachan JWA, Guttesen AÁV, Smith AK, Gaskell MG, Tipper SP, Cairney SA. Investigating the formation and consolidation of incidentally learned trust. J Exp Psychol Learn Mem Cogn 2019; 46:684-698. [PMID: 31355651 PMCID: PMC7115124 DOI: 10.1037/xlm0000752] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
People make inferences about the trustworthiness of others based on their observed gaze behavior. Faces that consistently look toward a target location are rated as more trustworthy than those that look away from the target. Representations of trust are important for future interactions; yet little is known about how they are consolidated in long-term memory. Sleep facilitates memory consolidation for incidentally learned information and may therefore support the retention of trust representations. We investigated the consolidation of trust inferences across periods of sleep or wakefulness. In addition, we employed a memory cueing procedure (targeted memory reactivation [TMR]) in a bid to strengthen certain trust memories over others. We observed no difference in the retention of trust inferences following delays of sleep or wakefulness, and there was no effect of TMR in either condition. Interestingly, trust inferences remained stable 1 week after learning, irrespective of the initial postlearning delay. A second experiment showed that this implicit learning occurs despite participants’ being unable to explicitly recall the gaze behavior of specific faces immediately after encoding. Together, these results suggest that gist-like, social inferences are formed at the time of learning without retaining the original episodic memory and thus do not benefit from offline consolidation through replay. We discuss our findings in the context of a novel framework whereby trust judgments reflect an efficient, powerful, and adaptable storage device for social information.
Collapse
|
44
|
Kim SY, Kark SM, Daley RT, Alger SE, Rebouças D, Kensinger EA, Payne JD. Interactive effects of stress reactivity and rapid eye movement sleep theta activity on emotional memory formation. Hippocampus 2019; 30:829-841. [PMID: 31313866 DOI: 10.1002/hipo.23138] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/17/2019] [Accepted: 06/25/2019] [Indexed: 12/16/2022]
Abstract
Sleep and stress independently enhance emotional memory consolidation. In particular, theta oscillations (4-7 Hz) during rapid eye movement (REM) sleep increase coherence in an emotional memory network (i.e., hippocampus, amygdala, and prefrontal cortex) and enhance emotional memory. However, little is known about how stress during learning might interact with subsequent REM theta activity to affect emotional memory. In the current study, we examined whether the relationship between REM theta activity and emotional memory differs as a function of pre-encoding stress exposure and reactivity. Participants underwent a psychosocial stressor (the Trier Social Stress Task; n = 32) or a comparable control task (n = 32) prior to encoding. Task-evoked cortisol reactivity was assessed by salivary cortisol rise from pre- to post-stressor, and participants in the stress condition were additionally categorized as high or low cortisol responders via a median split. During incidental encoding, participants studied 150 line drawings of negative, neutral, and positive images, followed by the complete color photo. All participants then slept overnight in the lab with polysomnographic recording. The next day, they were given a surprise recognition memory task. Results showed that memory was better for emotional relative to neutral information. Critically, these findings were observed only in the stress condition. No emotional memory benefit was observed in the control condition. In stressed participants, REM theta power significantly predicted memory for emotional information, specifically for positive items. This relationship was observed only in high cortisol responders. For low responders and controls, there was no relationship between REM theta and memory of any valence. These findings provide evidence that elevated stress at encoding, and accompanying changes in neuromodulators such as cortisol, may interact with theta activity during REM sleep to promote selective consolidation of emotional information.
Collapse
Affiliation(s)
- Sara Y Kim
- Department of Psychology, University of Notre Dame, Notre Dame, Indiana
| | - Sarah M Kark
- Department of Psychology, Boston College, Chestnut Hill, Massachusetts
| | - Ryan T Daley
- Department of Psychology, Boston College, Chestnut Hill, Massachusetts
| | - Sara E Alger
- Department of Psychology, University of Notre Dame, Notre Dame, Indiana.,Walter Reed Army Institute of Research, Silver Spring
| | - Daniella Rebouças
- Department of Psychology, University of Notre Dame, Notre Dame, Indiana
| | | | - Jessica D Payne
- Department of Psychology, University of Notre Dame, Notre Dame, Indiana
| |
Collapse
|
45
|
Rehel S, Legrand N, Lecouvey G, Laniepce A, Bertran F, Fleury P, Madeleine S, Eustache F, Desgranges B, Rauchs G. Effects of Sleep and Age on Prospective Memory Consolidation: A Walk in a Virtual Museum. Clocks Sleep 2019; 1:332-351. [PMID: 33089173 PMCID: PMC7445809 DOI: 10.3390/clockssleep1030028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 07/15/2019] [Indexed: 02/06/2023] Open
Abstract
Prospective memory (PM) refers to our ability to perform actions at the appropriate moment, either when a predetermined event occurs (event-based, EB) or after a predetermined amount of time (time-based, TB). Sleep favors the consolidation of both EB and TB intentions, but whether this benefit is preserved during ageing is still subject to debate. PM was assessed in 28 young and 27 older healthy volunteers using a virtual environment. Participants had to learn and execute intentions after intervals filled with either daytime wakefulness or nighttime sleep. Intentions consisted of four TB, four EB with a strong link between the cue triggering retrieval and the action to be performed (EB-link) and four with no link (EB-nolink). PM was not affected by age, whatever the type of intention and the nature of the retention interval. While sleep reinforced all types of intentions in young participants, this benefit was only observed for TB and EB-link intentions in older adults. Sleep also reinforced the intrinsic PM components in both groups. Thus, when assessed using complex realistic situations, PM is not impaired in ageing. Results are discussed in the light of memory schema theory and the possible impact of cognitive reserve on sleep and memory.
Collapse
Affiliation(s)
- Stéphane Rehel
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, GIP Cyceron, 14000 Caen, France
| | - Nicolas Legrand
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, GIP Cyceron, 14000 Caen, France
| | - Grégory Lecouvey
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, GIP Cyceron, 14000 Caen, France
| | - Alice Laniepce
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, GIP Cyceron, 14000 Caen, France
| | - Françoise Bertran
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, GIP Cyceron, 14000 Caen, France
- Unité d’exploration et de traitement des troubles du sommeil, CHU, 14000 Caen, France
| | - Philippe Fleury
- Centre Interdisciplinaire de Réalité Virtuelle, UNICAEN, 14000 Caen, France
| | - Sophie Madeleine
- Centre Interdisciplinaire de Réalité Virtuelle, UNICAEN, 14000 Caen, France
| | - Francis Eustache
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, GIP Cyceron, 14000 Caen, France
| | - Béatrice Desgranges
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, GIP Cyceron, 14000 Caen, France
| | - Géraldine Rauchs
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, GIP Cyceron, 14000 Caen, France
- Correspondence: ; Tel.: +33-(0)2-31-47-01-34
| |
Collapse
|
46
|
Bueno-Lopez A, Eggert T, Dorn H, Danker-Hopfe H. Slow oscillatory transcranial direct current stimulation (so-tDCS) during slow wave sleep has no effects on declarative memory in healthy young subjects. Brain Stimul 2019; 12:948-958. [DOI: 10.1016/j.brs.2019.02.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 12/14/2022] Open
|
47
|
Heinrich EC, Djokic MA, Gilbertson D, DeYoung PN, Bosompra NO, Wu L, Anza-Ramirez C, Orr JE, Powell FL, Malhotra A, Simonson TS. Cognitive function and mood at high altitude following acclimatization and use of supplemental oxygen and adaptive servoventilation sleep treatments. PLoS One 2019; 14:e0217089. [PMID: 31188839 PMCID: PMC6561544 DOI: 10.1371/journal.pone.0217089] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/03/2019] [Indexed: 11/19/2022] Open
Abstract
Impairments in cognitive function, mood, and sleep quality occur following ascent to high altitude. Low oxygen (hypoxia) and poor sleep quality are both linked to impaired cognitive performance, but their independent contributions at high altitude remain unknown. Adaptive servoventilation (ASV) improves sleep quality by stabilizing breathing and preventing central apneas without supplemental oxygen. We compared the efficacy of ASV and supplemental oxygen sleep treatments for improving daytime cognitive function and mood in high-altitude visitors (N = 18) during acclimatization to 3,800 m. Each night, subjects were randomly provided with ASV, supplemental oxygen (SpO2 > 95%), or no treatment. Each morning subjects completed a series of cognitive function tests and questionnaires to assess mood and multiple aspects of cognitive performance. We found that both ASV and supplemental oxygen (O2) improved daytime feelings of confusion (ASV: p < 0.01; O2: p < 0.05) and fatigue (ASV: p < 0.01; O2: p < 0.01) but did not improve other measures of cognitive performance at high altitude. However, performance improved on the trail making tests (TMT) A and B (p < 0.001), the balloon analog risk test (p < 0.0001), and the psychomotor vigilance test (p < 0.01) over the course of three days at altitude after controlling for effects of sleep treatments. Compared to sea level, subjects reported higher levels of confusion (p < 0.01) and performed worse on the TMT A (p < 0.05) and the emotion recognition test (p < 0.05) on nights when they received no treatment at high altitude. These results suggest that stabilizing breathing (ASV) or increasing oxygenation (supplemental oxygen) during sleep can reduce feelings of fatigue and confusion, but that daytime hypoxia may play a larger role in other cognitive impairments reported at high altitude. Furthermore, this study provides evidence that some aspects of cognition (executive control, risk inhibition, sustained attention) improve with acclimatization.
Collapse
Affiliation(s)
- Erica C. Heinrich
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Matea A. Djokic
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Dillon Gilbertson
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Pamela N. DeYoung
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Naa-Oye Bosompra
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Lu Wu
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Cecilia Anza-Ramirez
- Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jeremy E. Orr
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Frank L. Powell
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Atul Malhotra
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Tatum S. Simonson
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
48
|
Walker S, Henderson LM, Fletcher FE, Knowland VCP, Cairney SA, Gaskell MG. Learning to live with interfering neighbours: the influence of time of learning and level of encoding on word learning. ROYAL SOCIETY OPEN SCIENCE 2019; 6:181842. [PMID: 31183121 PMCID: PMC6502395 DOI: 10.1098/rsos.181842] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/15/2019] [Indexed: 06/09/2023]
Abstract
New vocabulary is consolidated offline, particularly during sleep; however, the parameters that influence consolidation remain unclear. Two experiments investigated effects of exposure level and delay between learning and sleep on adults' consolidation of novel competitors (e.g. BANARA) to existing words (e.g. BANANA). Participants made speeded semantic decisions (i.e. a forced choice: natural versus man-made) to the existing words, with the expectation that novel word learning would inhibit responses due to lexical competition. This competition was observed, particularly when assessed after sleep, for both standard and high exposure levels (10 and 20 exposures per word; Experiment 1). Using a lower exposure level (five exposures; Experiment 2), no post-sleep enhancement of competition was observed, despite evidence of consolidation when explicit knowledge of novel word memory was tested. Thus, when encoding is relatively weak, consolidation-related lexical integration is particularly compromised. There was no evidence that going to bed soon after learning is advantageous for overnight consolidation; however, there was some preliminary suggestion that longer gaps between learning and bed-onset were associated with better explicit memory of novel words one week later, but only at higher levels of exposure. These findings suggest that while lexical integration can occur overnight, weaker lexical traces may not be able to access overnight integration processes in the sleeping brain. Furthermore, the finding that longer-term explicit memory of stronger (but not weaker) traces benefit from periods of wake following learning deserves examination in future research.
Collapse
Affiliation(s)
| | | | | | | | | | - M. G. Gaskell
- Department of Psychology, University of York, York YO10 5DD, UK
| |
Collapse
|
49
|
Chakravarty K, Shukla G, Poornima S, Agarwal P, Gupta A, Mohammed A, Ray S, Pandey RM, Goyal V, Srivastava A, Behari M. Effect of sleep quality on memory, executive function, and language performance in patients with refractory focal epilepsy and controlled epilepsy versus healthy controls - A prospective study. Epilepsy Behav 2019; 92:176-183. [PMID: 30665125 DOI: 10.1016/j.yebeh.2018.12.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 12/30/2018] [Accepted: 12/30/2018] [Indexed: 01/16/2023]
Abstract
We aimed to evaluate the effect of sleep quality on memory, executive function, and language performance in patients with refractory focal epilepsy and controlled epilepsy and compare these with healthy individuals. We prospectively enrolled 37 adolescent and adult patients with refractory focal epilepsy (Group 1) and controlled epilepsy (Group 2) in each group. History pertaining to epilepsy and sleep were recorded, and all patients underwent overnight polysomnography. Language, memory, and executive function assessments were done using Western Aphasia Battery, Post Graduate Institute (PGI) memory scale, and battery of four executive function tests (Trail Making Test A & B, Digit symbol test, Stroop Task, and Verbal Fluency Test), respectively. Forty age- and sex-matched controls were also included in the study. Significant differences were noted in both objective and subjective sleep parameters among all the groups. On polysomnography, parameters like total sleep time, sleep efficiency, sleep latency, and rapid eye movement (REM) latency were found to be significantly worse in Group 1 as compared with Group 2. Cognitive and executive parameters were significantly impaired in Group 1. Shorter total sleep time, poorer sleep efficiency, and prolonged sleep latencies were observed to be associated with poor memory and executive function in patients with refractory epilepsy. Our study strongly suggests that sleep disturbances, mainly shorter total sleep time, poor sleep efficiency, and prolonged sleep latencies, are associated with impaired memory and executive function in patients with refractory focal epilepsy and to a lesser extent, among those with medically controlled epilepsy.
Collapse
Affiliation(s)
- Kamalesh Chakravarty
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Garima Shukla
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India.
| | - Shivani Poornima
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Priya Agarwal
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Anupama Gupta
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Afsar Mohammed
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Sucharita Ray
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Ravindra M Pandey
- Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| | - Vinay Goyal
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Achal Srivastava
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Madhuri Behari
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
50
|
Baran B, Correll D, Vuper TC, Morgan A, Durrant SJ, Manoach DS, Stickgold R. Spared and impaired sleep-dependent memory consolidation in schizophrenia. Schizophr Res 2018; 199:83-89. [PMID: 29706447 PMCID: PMC6151291 DOI: 10.1016/j.schres.2018.04.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 02/03/2018] [Accepted: 04/11/2018] [Indexed: 10/17/2022]
Abstract
OBJECTIVE Cognitive deficits in schizophrenia are the strongest predictor of disability and effective treatment is lacking. This reflects our limited mechanistic understanding and consequent lack of treatment targets. In schizophrenia, impaired sleep-dependent memory consolidation correlates with reduced sleep spindle activity, suggesting sleep spindles as a potentially treatable mechanism. In the present study we investigated whether sleep-dependent memory consolidation deficits in schizophrenia are selective. METHODS Schizophrenia patients and healthy individuals performed three tasks that have been shown to undergo sleep-dependent consolidation: the Word Pair Task (verbal declarative memory), the Visual Discrimination Task (visuoperceptual procedural memory), and the Tone Task (statistical learning). Memory consolidation was tested 24 h later, after a night of sleep. RESULTS Compared with controls, schizophrenia patients showed reduced overnight consolidation of word pair learning. In contrast, both groups showed similar significant overnight consolidation of visuoperceptual procedural memory. Neither group showed overnight consolidation of statistical learning. CONCLUSION The present findings extend the known deficits in sleep-dependent memory consolidation in schizophrenia to verbal declarative memory, a core, disabling cognitive deficit. In contrast, visuoperceptual procedural memory was spared. These findings support the hypothesis that sleep-dependent memory consolidation deficits in schizophrenia are selective, possibly limited to tasks that rely on spindles. These findings reinforce the importance of deficient sleep-dependent memory consolidation among the cognitive deficits of schizophrenia and suggest sleep physiology as a potentially treatable mechanism.
Collapse
Affiliation(s)
- Bengi Baran
- Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA.
| | - David Correll
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA,Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Tessa C. Vuper
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA,Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Alexandra Morgan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Simon J. Durrant
- School of Psychology, University of Lincoln, Lincoln, UK,School of Psychological Sciences, University of Manchester, Brunswick Street, Manchester, UK
| | - Dara S. Manoach
- Harvard Medical School, Boston, MA,Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA,Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Robert Stickgold
- Harvard Medical School, Boston, MA,Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|