1
|
Chen J, Li W, Yu L, Zhang B, Li Z, Zou P, Ding B, Dai X, Wang Q. Combined Effects of Ketogenic Diet and Aerobic Exercise on Skeletal Muscle Fiber Remodeling and Metabolic Adaptation in Simulated Microgravity Mice. Metabolites 2025; 15:270. [PMID: 40278399 PMCID: PMC12029359 DOI: 10.3390/metabo15040270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/11/2025] [Accepted: 04/11/2025] [Indexed: 04/26/2025] Open
Abstract
Objective: Prolonged microgravity environments impair skeletal muscle homeostasis by triggering fiber-type transitions and metabolic dysregulation. Although exercise and nutritional interventions may alleviate disuse atrophy, their synergistic effects under microgravity conditions remain poorly characterized. This study investigated the effects of an 8-week ketogenic diet combined with aerobic exercise in hindlimb-unloaded mice on muscle fiber remodeling and metabolic adaptation. Methods: Seven-week-old male C57BL/6J mice were randomly divided into six groups: normal diet control (NC), normal diet with hindlimb unloading (NH), normal diet with hindlimb unloading and exercise (NHE), ketogenic diet control (KC), ketogenic diet with hindlimb unloading (KH), and ketogenic diet with hindlimb unloading and exercise (KHE). During the last two weeks of intervention, hindlimb unloading was applied to simulate microgravity. Aerobic exercise groups performed moderate-intensity treadmill running (12 m/min, 60 min/day, and 6 days/week) for 8 weeks. Body weight, blood ketone, and glucose levels were measured weekly. Post-intervention assessments included the respiratory exchange ratio (RER), exhaustive exercise performance tests, and biochemical analyses of blood metabolic parameters. The skeletal muscle fiber-type composition was evaluated via immunofluorescence staining, lipid deposition was assessed using Oil Red O staining, glycogen content was analyzed by Periodic Acid-Schiff (PAS) staining, and gene expression was quantified using quantitative real-time PCR (RT-qPCR). Results: Hindlimb unloading significantly decreased body weight, induced muscle atrophy, and reduced exercise endurance in mice. However, the combination of KD and aerobic exercise significantly attenuated these adverse effects, as evidenced by increased proportions of oxidative muscle fibers (MyHC-I) and decreased proportions of glycolytic fibers (MyHC-IIb). Additionally, this combined intervention upregulated the expression of lipid metabolism-associated genes, including CPT-1b, HADH, PGC-1α, and FGF21, enhancing lipid metabolism and ketone utilization. These metabolic adaptations corresponded with improved exercise performance, demonstrated by the increased time to exhaustion in the KHE group compared to other hindlimb unloading groups. Conclusions: The combination of a ketogenic diet and aerobic exercise effectively ameliorates simulated microgravity-induced skeletal muscle atrophy and endurance impairment, primarily by promoting a fiber-type transition from MyHC-IIb to MyHC-I and enhancing lipid metabolism gene expression (CPT-1b, HADH, and PGC-1α). These findings underscore the potential therapeutic value of combined dietary and exercise interventions for mitigating muscle atrophy under simulated microgravity conditions.
Collapse
Affiliation(s)
- Jun Chen
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China;
- Sports Nutrition Center, National Institute of Sports Medicine, Beijing 100029, China
| | - Wenjiong Li
- National Key Laboratory of Space Medicine, Beijing 100094, China; (W.L.); (Z.L.); (P.Z.); (B.D.)
| | - Liang Yu
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China; (L.Y.); (B.Z.)
| | - Bowei Zhang
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China; (L.Y.); (B.Z.)
| | - Zhili Li
- National Key Laboratory of Space Medicine, Beijing 100094, China; (W.L.); (Z.L.); (P.Z.); (B.D.)
| | - Peng Zou
- National Key Laboratory of Space Medicine, Beijing 100094, China; (W.L.); (Z.L.); (P.Z.); (B.D.)
| | - Bai Ding
- National Key Laboratory of Space Medicine, Beijing 100094, China; (W.L.); (Z.L.); (P.Z.); (B.D.)
| | - Xiaoqian Dai
- National Key Laboratory of Space Medicine, Beijing 100094, China; (W.L.); (Z.L.); (P.Z.); (B.D.)
| | - Qirong Wang
- Sports Nutrition Center, National Institute of Sports Medicine, Beijing 100029, China
| |
Collapse
|
2
|
Shimizu J, Kawano F. DNA hypermethylation preceded by H3K27 trimethylation is linked to downregulation of gene expression in disuse muscle atrophy in male mice. Physiol Rep 2025; 13:e70317. [PMID: 40223401 PMCID: PMC11994892 DOI: 10.14814/phy2.70317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/01/2025] [Accepted: 04/01/2025] [Indexed: 04/15/2025] Open
Abstract
Disuse muscle atrophy can result in downregulated gene expression vital to muscle integrity, yet the mechanisms driving this downregulation remain unclear. Epigenetic alterations regulate transcriptional potential, with repressive changes suppressing gene expression. This study explored epigenetic mechanisms of gene downregulation during disuse muscle atrophy. Male C57BL/6J mice underwent hindlimb suspension for 3 or 7 days. The vastus intermedius (VI) muscle was analyzed, showing unchanged mass on day 3, but on day 7, decreased mass and reduced fiber size were assessed via immunohistochemistry. Corresponding to this atrophy timing, qPCR analysis revealed nine downregulated genes on day 7, which were selected for epigenetic analysis; collectively, they showed no downregulation on day 3. Among the nine genes, methylated DNA immunoprecipitation revealed significantly elevated DNA methylation (hypermethylation) in the upstream regions of transcription start sites (TSS) on day 7, which overall negatively correlated with gene expression. Histone marks (H3K27me3, H3K4me3, H3.3, and total H3) were also assessed using chromatin immunoprecipitation, revealing that the repressive histone mark H3K27me3 increased in the regions on day 3 but decreased on day 7. These findings suggest that DNA hypermethylation in the upstream regions preceded by H3K27me3 enrichment contributes to the downregulation of gene expression during disuse muscle atrophy.
Collapse
Affiliation(s)
- Junya Shimizu
- Graduate School of Health ScienceMatsumoto UniversityNaganoJapan
| | - Fuminori Kawano
- Graduate School of Health ScienceMatsumoto UniversityNaganoJapan
| |
Collapse
|
3
|
Miyazaki D, Sato M, Shiba N, Yoshizawa T, Nakamura A. Becker muscular dystrophy mice showed site-specific decay of type IIa fibers with capillary change in skeletal muscle. eLife 2025; 13:RP100665. [PMID: 40094282 PMCID: PMC11913446 DOI: 10.7554/elife.100665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025] Open
Abstract
Becker muscular dystrophy (BMD), an X-linked muscular dystrophy, is mostly caused by an in-frame deletion of Duchenne muscular dystrophy (DMD). BMD severity varies from asymptomatic to severe, associated with the genotype of DMD. However, the underlying mechanisms remain unclear. We established BMD mice carrying three representative exon deletions: ex45-48 del., ex45-47 del., and ex45-49 del. (d45-48, d45-47, and d45-49), with high frequencies and different severities in the human BMD hotspot. All three BMD mice showed muscle weakness, muscle degeneration, and fibrosis, but these changes appeared at different times for each exon deletion, consistent with the severities obtained by the natural history study of BMD. BMD mice showed site-specific muscle changes, unlike mdx mice, which showed diffuse muscle changes, and we demonstrated selective type IIa fiber reduction in BMD mice. Furthermore, BMD mice showed sarcolemmal neuronal nitric oxide synthase (nNOS) reduction and morphological capillary changes around type IIa fibers. These results suggest that capillary changes caused by nNOS reduction may be associated with the mechanism of skeletal muscle degeneration and type IIa fiber reduction in BMD mice. BMD mice may be useful in elucidating the pathomechanisms and developing vascular targeted therapies for human BMD.
Collapse
Affiliation(s)
- Daigo Miyazaki
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of MedicineMatsumotoJapan
- Intractable Disease Care Center, Shinshu University HospitalMatsumotoJapan
| | - Mitsuto Sato
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of MedicineMatsumotoJapan
- Department of Brain Disease Research, Shinshu University School of MedicineMatsumotoJapan
| | - Naoko Shiba
- Department of Regenerative Science and Medicine, Shinshu UniversityMatsumotoJapan
| | - Takahiro Yoshizawa
- Research Center for Advanced Science and Technology, Shinshu UniversityMatsumotoJapan
| | - Akinori Nakamura
- Department of Clinical Research, NHO Matsumoto Medical CenterMatsumotoJapan
- Third Department of Medicine, Shinshu University School of MedicineMatsumotoJapan
| |
Collapse
|
4
|
Sklivas AB, Hettinger ZR, Rose S, Mantuano A, Confides AL, Rigsby S, Peelor FF, Miller BF, Butterfield TA, Dupont-Versteegden EE. Responses of skeletal muscle to mechanical stimuli in female rats following and during muscle disuse atrophy. J Appl Physiol (1985) 2025; 138:652-665. [PMID: 39884317 DOI: 10.1152/japplphysiol.00802.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/06/2024] [Accepted: 01/20/2025] [Indexed: 02/01/2025] Open
Abstract
The purpose of this study was to investigate the ability of mechanotherapy to enhance recovery or prevent loss of muscle size with disuse in female rats. Female F344/BN rats were assigned to weight bearing (WB), hindlimb suspended (HS) for 14 days with reambulation for 7 days without mechanotherapy or reambulation (RA) with mechanotherapy (RAM) (study 1), or to WB, HS for 7 days, with HS mechanotherapy (HSM) or without mechanotherapy (study 2) to gastrocnemius muscle. Muscle fiber cross-sectional area (CSA) and fiber type, collagen, satellite cell number, and protein synthesis (ksyn) and degradation (kdeg) were assessed. Study 1: muscle weight, but not CSA, was higher in RAM compared with HS, but CSA was higher in RA compared with HS. Myofibrillar ksyn was higher in RA and RAM compared to WB and HS but not different between RA and RAM. Myofibrillar kdeg was lower with mechanotherapy compared to HS. Study 2: muscle weight, CSA, and myofibrillar ksyn and kdeg were not different with mechanotherapy. Collagen content was lower with mechanotherapy but collagen ksyn was not. Mechanotherapy was not associated with changes in fiber type, satellite cell, or myonuclear number in either study. Compared to males, female rats had less muscle loss with HS, which was associated with less loss of myofibrillar ksyn. Recovery from atrophy was associated with higher ksyn in female and lower kdeg in male rats. Female rat muscles do not exhibit a growth response to mechanotherapy with disuse or reambulation. Furthermore, male and female rats show distinct responses to different mechanical stimuli.NEW & NOTEWORTHY This study investigates the response of female rats to mechanical stimulation in both active and passive forms following and during muscle disuse atrophy. New findings indicate that female rats respond to active loading with enhanced muscle regrowth and protein synthesis, whereas passive loading using mechanotherapy did not affect atrophy or recovery of female muscles. Comparison with published data indicates that there are distinct differences in male and female rats in their response to mechanical stimuli.
Collapse
MESH Headings
- Animals
- Female
- Muscle, Skeletal/physiopathology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiology
- Muscle, Skeletal/pathology
- Rats
- Hindlimb Suspension
- Muscular Disorders, Atrophic/physiopathology
- Muscular Disorders, Atrophic/metabolism
- Muscular Disorders, Atrophic/pathology
- Rats, Inbred F344
- Muscular Atrophy/physiopathology
- Weight-Bearing/physiology
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/physiology
- Satellite Cells, Skeletal Muscle/metabolism
- Collagen/metabolism
Collapse
Affiliation(s)
- Alexander B Sklivas
- Department Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, Kentucky, United States
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Zachary R Hettinger
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Sarah Rose
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Alessandra Mantuano
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Amy L Confides
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Sandra Rigsby
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Frederick F Peelor
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, Oklahoma, United States
| | - Timothy A Butterfield
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, Kentucky, United States
- Department Athletic Training and Clinical Nutrition, College Health Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Esther E Dupont-Versteegden
- Department Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, Kentucky, United States
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
5
|
Meacci E, Chirco A, Garcia-Gil M. Potential Vitamin E Signaling Mediators in Skeletal Muscle. Antioxidants (Basel) 2024; 13:1383. [PMID: 39594525 PMCID: PMC11591548 DOI: 10.3390/antiox13111383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Vitamin E (Vit E) deficiency studies underline the relevance of this vitamin in skeletal muscle (SkM) homeostasis. The knowledge of the effectors and modulators of Vit E action in SkM cells is limited, especially in aging and chronic diseases characterized by a decline in musculoskeletal health. Vit E comprises eight fat-soluble compounds grouped into tocopherols and tocotrienols, which share the basic chemical structure but show different biological properties and potentials to prevent diseases. Vit E has antioxidant and non-antioxidant activities and both favorable and adverse effects depending on the specific conditions and tissues. In this review, we focus on the actual knowledge of Vit E forms in SkM functions and new potential signaling effectors (i.e., bioactive sphingolipids and myokines). The possible advantages of Vit E supplementation in counteracting SkM dysfunctions in sarcopenia and under microgravity will also be discussed.
Collapse
Affiliation(s)
- Elisabetta Meacci
- Department of Experimental and clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Firenze, Italy
- Interuniversity Institute of Myology, University of Florence, 50134 Firenze, Italy
| | - Antony Chirco
- Department of Experimental and clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Firenze, Italy
| | - Mercedes Garcia-Gil
- Department of Biology, Unit of Physiology, University of Pisa, Via S. Zeno 31, 56127 Pisa, Italy;
| |
Collapse
|
6
|
Di Filippo ES, Chiappalupi S, Falone S, Dolo V, Amicarelli F, Marchianò S, Carino A, Mascetti G, Valentini G, Piccirillo S, Balsamo M, Vukich M, Fiorucci S, Sorci G, Fulle S. The MyoGravity project to study real microgravity effects on human muscle precursor cells and tissue. NPJ Microgravity 2024; 10:92. [PMID: 39362881 PMCID: PMC11450100 DOI: 10.1038/s41526-024-00432-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/22/2024] [Indexed: 10/05/2024] Open
Abstract
Microgravity (µG) experienced during space flights promotes adaptation in several astronauts' organs and tissues, with skeletal muscles being the most affected. In response to reduced gravitational loading, muscles (especially, lower limb and antigravity muscles) undergo progressive mass loss and alteration in metabolism, myofiber size, and composition. Skeletal muscle precursor cells (MPCs), also known as satellite cells, are responsible for the growth and maintenance of muscle mass in adult life as well as for muscle regeneration following damage and may have a major role in µG-induced muscle wasting. Despite the great relevance for astronaut health, very few data are available about the effects of real µG on human muscles. Based on the MyoGravity project, this study aimed to analyze: (i) the cellular and transcriptional alterations induced by real µG in human MPCs (huMPCs) and (ii) the response of human skeletal muscle to normal gravitational loading after prolonged exposure to µG. We evaluated the transcriptomic changes induced by µG on board the International Space Station (ISS) in differentiating huMPCs isolated from Vastus lateralis muscle biopsies of a pre-flight astronaut and an age- and sex-matched volunteer, in comparison with the same cells cultured on the ground in standard gravity (1×g) conditions. We found that huMPCs differentiated under real µG conditions showed: (i) upregulation of genes related to cell adhesion, plasma membrane components, and ion transport; (ii) strong downregulation of genes related to the muscle contraction machinery and sarcomere organization; and (iii) downregulation of muscle-specific microRNAs (myomiRs). Moreover, we had the unique opportunity to analyze huMPCs and skeletal muscle tissue of the same astronaut before and 30 h after a long-duration space flight on board the ISS. Prolonged exposure to real µG strongly affected the biology and functionality of the astronaut's satellite cells, which showed a dramatic reduction of responsiveness to activating stimuli and proliferation rate, morphological changes, and almost inability to fuse into myotubes. RNA-Seq analysis of post- vs. pre-flight muscle tissue showed that genes involved in muscle structure and remodeling are promptly activated after landing following a long-duration space mission. Conversely, genes involved in the myelination process or synapse and neuromuscular junction organization appeared downregulated. Although we have investigated only one astronaut, these results point to a prompt readaptation of the skeletal muscle mechanical components to the normal gravitational loading, but the inability to rapidly recover the physiological muscle myelination/innervation pattern after landing from a long-duration space flight. Together with the persistent functional deficit observed in the astronaut's satellite cells after prolonged exposure to real µG, these results lead us to hypothesize that a condition of inefficient regeneration is likely to occur in the muscles of post-flight astronauts following damage.
Collapse
Affiliation(s)
- Ester Sara Di Filippo
- Department of Neuroscience Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-Pescara, 66100, Chieti, Italy
- Interuniversity Institute of Myology (IIM), 06132, Perugia, Italy
| | - Sara Chiappalupi
- Interuniversity Institute of Myology (IIM), 06132, Perugia, Italy
- Department Medicine and Surgery, University of Perugia, 06132, Perugia, Italy
- Consorzio Interuniversitario Biotecnologie (CIB), 34127, Trieste, Italy
| | - Stefano Falone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Vincenza Dolo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Fernanda Amicarelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Silvia Marchianò
- Department Medicine and Surgery, University of Perugia, 06132, Perugia, Italy
| | - Adriana Carino
- Department Medicine and Surgery, University of Perugia, 06132, Perugia, Italy
| | | | | | | | - Michele Balsamo
- Kayser Italia S.r.l, Via di Popogna, 501, 57128, Livorno, Italy
| | - Marco Vukich
- European Space Agency, Keplerlaan 1, NL-2200, AG, Noordwijk, The Netherlands
| | - Stefano Fiorucci
- Department Medicine and Surgery, University of Perugia, 06132, Perugia, Italy
| | - Guglielmo Sorci
- Interuniversity Institute of Myology (IIM), 06132, Perugia, Italy
- Department Medicine and Surgery, University of Perugia, 06132, Perugia, Italy
- Consorzio Interuniversitario Biotecnologie (CIB), 34127, Trieste, Italy
| | - Stefania Fulle
- Department of Neuroscience Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-Pescara, 66100, Chieti, Italy.
- Interuniversity Institute of Myology (IIM), 06132, Perugia, Italy.
| |
Collapse
|
7
|
Masuzawa R, Rosa Flete HK, Shimizu J, Kawano F. Age-related histone H3.3 accumulation associates with a repressive chromatin in mouse tibialis anterior muscle. J Physiol Sci 2024; 74:41. [PMID: 39277714 PMCID: PMC11401410 DOI: 10.1186/s12576-024-00935-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/25/2024] [Indexed: 09/17/2024]
Abstract
The present study aimed to investigate age-related changes in histone variant H3.3 and its role in the aging process of mouse tibialis anterior muscle. H3.3 level significantly increased with age and correlated with H3K27me3 level. Acute exercise successfully upregulated the target gene expression in 8-wk-old mice, whereas no upregulation was noted in 53-wk-old mice. H3K27me3 level was increased at these loci in response to acute exercise in 8-wk-old mice. However, in 53-wk-old mice, H3.3 and H3K27me3 levels were increased at rest and were not affected by acute exercise. Furthermore, forced H3.3 expression in the skeletal muscle of 8-wk-old mice led to a gradual improvement in motor function. The results suggest that age-related H3.3 accumulation induces the formation of repressive chromatin in the mouse tibialis anterior muscle. However, H3.3 accumulation also appears to play a positive role in enhancing skeletal muscle function.
Collapse
Affiliation(s)
- Ryo Masuzawa
- Graduate School of Health Science, Matsumoto University, 2095-1 Niimura, Matsumoto, Nagano, 390-1295, Japan
| | - Hemilce Karina Rosa Flete
- Graduate School of Health Science, Matsumoto University, 2095-1 Niimura, Matsumoto, Nagano, 390-1295, Japan
| | - Junya Shimizu
- Graduate School of Health Science, Matsumoto University, 2095-1 Niimura, Matsumoto, Nagano, 390-1295, Japan
| | - Fuminori Kawano
- Graduate School of Health Science, Matsumoto University, 2095-1 Niimura, Matsumoto, Nagano, 390-1295, Japan.
| |
Collapse
|
8
|
Braun JL, Fajardo VA. Spaceflight increases sarcoplasmic reticulum Ca 2+ leak and this cannot be counteracted with BuOE treatment. NPJ Microgravity 2024; 10:78. [PMID: 39030182 PMCID: PMC11271499 DOI: 10.1038/s41526-024-00419-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024] Open
Abstract
Spending time in a microgravity environment is known to cause significant skeletal muscle atrophy and weakness via muscle unloading, which can be partly attributed to Ca2+ dysregulation. The sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) pump is responsible for bringing Ca2+ from the cytosol into its storage site, the sarcoplasmic reticulum (SR), at the expense of ATP. We have recently demonstrated that, in the soleus of space-flown mice, the Ca2+ uptake ability of the SERCA pump is severely impaired and this may be attributed to increases in reactive oxygen/nitrogen species (RONS), to which SERCA is highly susceptible. The purpose of this study was therefore to investigate whether treatment with the antioxidant, Manganese(III) meso-tetrakis(N-n-butoxyethylpyridinium-2-yl)porphyrin, MnTnBuOE-2-PyP5+ (BuOE), could attenuate muscle atrophy and SERCA dysfunction. We received soleus muscles from the rodent research 18 mission which had male mice housed on the international space station for 35 days and treated with either saline or BuOE. Spaceflight significantly reduced the soleus:body mass ratio and significantly increased SERCA's ionophore ratio, a measure of SR Ca2+ leak, and 4-HNE content (marker of RONS), none of which could be rescued by BuOE treatment. In conclusion, we find that spaceflight induces significant soleus muscle atrophy and SR Ca2+ leak that cannot be counteracted with BuOE treatment. Future work should investigate alternative therapeutics that are specifically aimed at increasing SERCA activation or reducing Ca2+ leak.
Collapse
Affiliation(s)
- Jessica L Braun
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Val A Fajardo
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada.
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada.
| |
Collapse
|
9
|
Luo W, Zhang H, Wan R, Cai Y, Liu Y, Wu Y, Yang Y, Chen J, Zhang D, Luo Z, Shang X. Biomaterials-Based Technologies in Skeletal Muscle Tissue Engineering. Adv Healthc Mater 2024; 13:e2304196. [PMID: 38712598 DOI: 10.1002/adhm.202304196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/26/2024] [Indexed: 05/08/2024]
Abstract
For many clinically prevalent severe injuries, the inherent regenerative capacity of skeletal muscle remains inadequate. Skeletal muscle tissue engineering (SMTE) seeks to meet this clinical demand. With continuous progress in biomedicine and related technologies including micro/nanotechnology and 3D printing, numerous studies have uncovered various intrinsic mechanisms regulating skeletal muscle regeneration and developed tailored biomaterial systems based on these understandings. Here, the skeletal muscle structure and regeneration process are discussed and the diverse biomaterial systems derived from various technologies are explored in detail. Biomaterials serve not merely as local niches for cell growth, but also as scaffolds endowed with structural or physicochemical properties that provide tissue regenerative cues such as topographical, electrical, and mechanical signals. They can also act as delivery systems for stem cells and bioactive molecules that have been shown as key participants in endogenous repair cascades. To achieve bench-to-bedside translation, the typical effect enabled by biomaterial systems and the potential underlying molecular mechanisms are also summarized. Insights into the roles of biomaterials in SMTE from cellular and molecular perspectives are provided. Finally, perspectives on the advancement of SMTE are provided, for which gene therapy, exosomes, and hybrid biomaterials may hold promise to make important contributions.
Collapse
Affiliation(s)
- Wei Luo
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Hanli Zhang
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Renwen Wan
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Yuxi Cai
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Yinuo Liu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
| | - Yang Wu
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Yimeng Yang
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Jiani Chen
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, Hong Kong
| | - Zhiwen Luo
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Xiliang Shang
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| |
Collapse
|
10
|
Masiero G, Ferrarese G, Perazzolo E, Baraldo M, Nogara L, Tezze C. Custom-made 3D-printed boot as a model of disuse-induced atrophy in murine skeletal muscle. PLoS One 2024; 19:e0304380. [PMID: 38820523 PMCID: PMC11142711 DOI: 10.1371/journal.pone.0304380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 05/10/2024] [Indexed: 06/02/2024] Open
Abstract
Skeletal muscle atrophy is characterized by a decrease in muscle mass and strength caused by an imbalance in protein synthesis and degradation. This process naturally occurs upon reduced or absent physical activity, often related to illness, forced bed rest, or unhealthy lifestyles. Currently, no treatment is available for atrophy, and it can only be prevented by overloading exercise, causing severe problems for patients who cannot exercise due to chronic diseases, disabilities, or being bedridden. The two murine models commonly used to induce muscle atrophy are hindlimb suspension and ankle joint immobilization, both of which come with criticalities. The lack of treatments and the relevance of this atrophic process require a unilateral, safe, and robust model to induce muscle atrophy. In this work, we designed and developed a 3D-printed cast to be used for the study of disuse skeletal muscle atrophy. Applying two halves of the cast is non-invasive, producing little to no swelling or skin damage. The application of the cast induces, in 2-weeks immobilized leg, the activation of atrophy-related genes, causing a muscle weight loss up to 25% in the gastrocnemius muscle, and 31% in the soleus muscle of the immobilized leg compared to the control leg. The cross-sectional area of the fibers is decreased by 31% and 34% respectively, with a peculiar effect on fiber types. In the immobilized gastrocnemius, absolute muscle force is reduced by 38%, while normalized force is reduced by 16%. The contralateral leg did not show signs of overload or hypertrophy when compared to free roaming littermates, offering a good internal control over the immobilized limb. Upon removing the cast, the mice effectively recovered mass and force in 3 weeks.
Collapse
Affiliation(s)
- Giulio Masiero
- Department of Biomedical Science, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Giulia Ferrarese
- Department of Biomedical Science, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Eleonora Perazzolo
- Department of Biomedical Science, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | | | - Leonardo Nogara
- Department of Biomedical Science, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Caterina Tezze
- Department of Biomedical Science, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| |
Collapse
|
11
|
Ferraro S, Dave A, Cereda C, Verduci E, Marcovina S, Zuccotti G. Space research to explore novel biochemical insights on Earth. Clin Chim Acta 2024; 558:119673. [PMID: 38621588 DOI: 10.1016/j.cca.2024.119673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
Travel to space has overcome unprecedent technological challenges and this has resulted in transfer of these technological results on Earth to better our lives. Health technology, medical devices, and research advancements in human biology are the first beneficiaries of this transfer. The real breakthrough came with the International Space Station, which endorsed multidisciplinary international scientific collaborations and boosted the research on pathophysiological adaptation of astronauts to life on space. These studies evidenced that life in space appeared to have exposed the astronauts to an accelerated aging-related pathophysiological dysregulation across multiple systems. In this review we emphasize the interaction between several biomarkers and their alteration in concentrations/expression/function by space stress factors. These altered interactions, suggest that different biochemical and hormonal factors, and cell signals, contribute to a complex network of pathophysiological mechanisms, orchestrating the homeostatic dysregulation of various organs/metabolic pathways. The main effects of space travel on altering cell organelles biology, ultrastructure, and cross-talk, have been observed in cell aging as well as in the disruption of metabolic pathways, which are also the causal factor of rare inherited metabolic disorders, one of the major pediatric health issue. The pathophysiologic breakthrough from space research could allow the development of precision health both on Earth and Space by promoting the validation of improved biomarker-based risk scores and the exploration of new pathophysiologic hypotheses and therapeutic targets. Nonstandard abbreviations: International Space Station (ISS), Artificial Intelligence (AI), European Space Agency (ESA), National Aeronautics and Space Agency (NASA), Low Earth Orbit (LEO), high sensitive troponin (hs-cTn), high sensitive troponin I (hs-cTn I), high sensitive troponin T, Brain Natriuretic Peptide (BNP), N terminal Brain Natriuretic Peptide (NT-BNP), cardiovascular disease (CVD), parathyroid hormone (PTH), urinary hydroxyproline (uHP), urinary C- and N-terminal telopeptides (uCTX and uNTX), pyridinoline (PYD), deoxypyridinoline (DPD), half-time (HF), serum Bone Alkaline Phosphatase (sBSAP), serum Alkaline Phosphatase (sAP), Carboxy-terminal Propeptide of Type 1 Procollagen (P1CP), serum Osteocalcin (sOC)), advanced glycation end products (AGEs), glycated hemoglobin A1c (HbA1c), Insulin-like growth factor 1 (IGF1), Growth Hormone (GH), amino acid (AA), β-hydroxy-β methyl butyrate (HMB), maple syrup urine disease (MSUD), non-communicable diseases (NCDs).
Collapse
Affiliation(s)
- Simona Ferraro
- Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy.
| | - Anilkumar Dave
- Space Economy and Open Innovation, Darwix srl, Venice, Italy
| | - Cristina Cereda
- Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy; Center of Functional Genomics and Rare Diseases
| | - Elvira Verduci
- Department of Health Sciences, University of Milan, Milan, Italy; Metabolic Diseases Unit, Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy
| | | | - Gianvincenzo Zuccotti
- Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy; Department of Biomedical and Clinical Science, University of Milan, Milan, Italy
| |
Collapse
|
12
|
Blottner D, Moriggi M, Trautmann G, Furlan S, Block K, Gutsmann M, Torretta E, Barbacini P, Capitanio D, Rittweger J, Limper U, Volpe P, Gelfi C, Salanova M. Nitrosative Stress in Astronaut Skeletal Muscle in Spaceflight. Antioxidants (Basel) 2024; 13:432. [PMID: 38671880 PMCID: PMC11047620 DOI: 10.3390/antiox13040432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Long-duration mission (LDM) astronauts from the International Space Station (ISS) (>180 ISS days) revealed a close-to-normal sarcolemmal nitric oxide synthase type-1 (NOS1) immunoexpression in myofibers together with biochemical and quantitative qPCR changes in deep calf soleus muscle. Nitro-DIGE analyses identified functional proteins (structural, metabolic, mitochondrial) that were over-nitrosylated post- vs. preflight. In a short-duration mission (SDM) astronaut (9 ISS days), s-nitrosylation of a nodal protein of the glycolytic flux, specific proteins in tricarboxylic acid (TCA) cycle, respiratory chain, and over-nitrosylation of creatine kinase M-types as signs of impaired ATP production and muscle contraction proteins were seen. S-nitrosylation of serotransferrin (TF) or carbonic anhydrase 3 (CA3b and 3c) represented signs of acute response microgravity muscle maladaptation. LDM nitrosoprofiles reflected recovery of mitochondrial activity, contraction proteins, and iron transporter TF as signs of muscle adaptation to microgravity. Nitrosated antioxidant proteins, alcohol dehydrogenase 5/S-nitrosoglutathione reductase (ADH5/GSNOR), and selenoprotein thioredoxin reductase 1 (TXNRD1) levels indicated signs of altered redox homeostasis and reduced protection from nitrosative stress in spaceflight. This work presents a novel spaceflight-generated dataset on s-nitrosylated muscle protein signatures from astronauts that helps both to better understand the structural and molecular networks associated to muscular nitrosative stress and to design countermeasures to dysfunction and impaired performance control in human spaceflight missions.
Collapse
Affiliation(s)
- Dieter Blottner
- Institute of Integrative Neuroanatomy, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany; (G.T.); (K.B.); (M.G.); (M.S.)
- NeuroMuscular System and Signaling Group, Center of Space Medicine and Extreme Environments, 10115 Berlin, Germany
| | - Manuela Moriggi
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy; (M.M.); (P.B.); (D.C.); (C.G.)
| | - Gabor Trautmann
- Institute of Integrative Neuroanatomy, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany; (G.T.); (K.B.); (M.G.); (M.S.)
| | - Sandra Furlan
- C.N.R. Neuroscience Institute, I-35121 Padova, Italy;
| | - Katharina Block
- Institute of Integrative Neuroanatomy, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany; (G.T.); (K.B.); (M.G.); (M.S.)
| | - Martina Gutsmann
- Institute of Integrative Neuroanatomy, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany; (G.T.); (K.B.); (M.G.); (M.S.)
| | - Enrica Torretta
- Laboratory of Proteomics and Lipidomics, IRCCS Orthopedic Institute Galeazzi, Via R. Galeazzi 4, 20161 Milan, Italy;
| | - Pietro Barbacini
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy; (M.M.); (P.B.); (D.C.); (C.G.)
| | - Daniele Capitanio
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy; (M.M.); (P.B.); (D.C.); (C.G.)
| | - Joern Rittweger
- Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (J.R.); (U.L.)
| | - Ulrich Limper
- Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (J.R.); (U.L.)
- Anesthesiology and Intensive Care Medicine, Merheim Medical Center, Witten/Herdecke University, 51109 Cologne, Germany
| | - Pompeo Volpe
- Department of Biomedical Sciences, Università di Padova, I-35121 Padova, Italy;
| | - Cecilia Gelfi
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy; (M.M.); (P.B.); (D.C.); (C.G.)
- Laboratory of Proteomics and Lipidomics, IRCCS Orthopedic Institute Galeazzi, Via R. Galeazzi 4, 20161 Milan, Italy;
| | - Michele Salanova
- Institute of Integrative Neuroanatomy, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany; (G.T.); (K.B.); (M.G.); (M.S.)
- NeuroMuscular System and Signaling Group, Center of Space Medicine and Extreme Environments, 10115 Berlin, Germany
| |
Collapse
|
13
|
Sayed RKA, Hibbert JE, Jorgenson KW, Hornberger TA. The Structural Adaptations That Mediate Disuse-Induced Atrophy of Skeletal Muscle. Cells 2023; 12:2811. [PMID: 38132132 PMCID: PMC10741885 DOI: 10.3390/cells12242811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023] Open
Abstract
The maintenance of skeletal muscle mass plays a fundamental role in health and issues associated with quality of life. Mechanical signals are one of the most potent regulators of muscle mass, with a decrease in mechanical loading leading to a decrease in muscle mass. This concept has been supported by a plethora of human- and animal-based studies over the past 100 years and has resulted in the commonly used term of 'disuse atrophy'. These same studies have also provided a great deal of insight into the structural adaptations that mediate disuse-induced atrophy. For instance, disuse results in radial atrophy of fascicles, and this is driven, at least in part, by radial atrophy of the muscle fibers. However, the ultrastructural adaptations that mediate these changes remain far from defined. Indeed, even the most basic questions, such as whether the radial atrophy of muscle fibers is driven by the radial atrophy of myofibrils and/or myofibril hypoplasia, have yet to be answered. In this review, we thoroughly summarize what is known about the macroscopic, microscopic, and ultrastructural adaptations that mediated disuse-induced atrophy and highlight some of the major gaps in knowledge that need to be filled.
Collapse
Affiliation(s)
- Ramy K. A. Sayed
- Department of Comparative Biosciences, University of Wisconsin—Madison, Madison, WI 53706, USA; (R.K.A.S.); (J.E.H.); (K.W.J.)
- School of Veterinary Medicine, University of Wisconsin—Madison, Madison, WI 53706, USA
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
| | - Jamie E. Hibbert
- Department of Comparative Biosciences, University of Wisconsin—Madison, Madison, WI 53706, USA; (R.K.A.S.); (J.E.H.); (K.W.J.)
- School of Veterinary Medicine, University of Wisconsin—Madison, Madison, WI 53706, USA
| | - Kent W. Jorgenson
- Department of Comparative Biosciences, University of Wisconsin—Madison, Madison, WI 53706, USA; (R.K.A.S.); (J.E.H.); (K.W.J.)
- School of Veterinary Medicine, University of Wisconsin—Madison, Madison, WI 53706, USA
| | - Troy A. Hornberger
- Department of Comparative Biosciences, University of Wisconsin—Madison, Madison, WI 53706, USA; (R.K.A.S.); (J.E.H.); (K.W.J.)
- School of Veterinary Medicine, University of Wisconsin—Madison, Madison, WI 53706, USA
| |
Collapse
|
14
|
Baranowski RW, Braun JL, Hockey BL, Yumol JL, Geromella MS, Watson CJ, Kurgan N, Messner HN, Whitley KC, MacNeil AJ, Gauquelin-Koch G, Bertile F, Gittings W, Vandenboom R, Ward WE, Fajardo VA. Toward countering muscle and bone loss with spaceflight: GSK3 as a potential target. iScience 2023; 26:107047. [PMID: 37360691 PMCID: PMC10285634 DOI: 10.1016/j.isci.2023.107047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/15/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
We examined the effects of ∼30 days of spaceflight on glycogen synthase kinase 3 (GSK3) content and inhibitory serine phosphorylation in murine muscle and bone samples from four separate missions (BION-M1, rodent research [RR]1, RR9, and RR18). Spaceflight reduced GSK3β content across all missions, whereas its serine phosphorylation was elevated with RR18 and BION-M1. The reduction in GSK3β was linked to the reduction in type IIA fibers commonly observed with spaceflight as these fibers are particularly enriched with GSK3. We then tested the effects of inhibiting GSK3 before this fiber type shift, and we demonstrate that muscle-specific Gsk3 knockdown increased muscle mass, preserved muscle strength, and promoted the oxidative fiber type with Earth-based hindlimb unloading. In bone, GSK3 activation was enhanced after spaceflight; and strikingly, muscle-specific Gsk3 deletion increased bone mineral density in response to hindlimb unloading. Thus, future studies should test the effects of GSK3 inhibition during spaceflight.
Collapse
Affiliation(s)
- Ryan W. Baranowski
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Jessica L. Braun
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Briana L. Hockey
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Jenalyn L. Yumol
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Mia S. Geromella
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Colton J.F. Watson
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Nigel Kurgan
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Holt N. Messner
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Kennedy C. Whitley
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Adam J. MacNeil
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada
| | | | - Fabrice Bertile
- Hubert Curien Pluridisciplinary Institute (IPHC), CNRS, Strasbourg University, Strasbourg, France
| | - William Gittings
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Rene Vandenboom
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Wendy E. Ward
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Val A. Fajardo
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
15
|
Kakehi S, Tamura Y, Ikeda SI, Kaga N, Taka H, Nishida Y, Kawamori R, Watada H. Physical inactivity induces insulin resistance in plantaris muscle through protein tyrosine phosphatase 1B activation in mice. Front Physiol 2023; 14:1198390. [PMID: 37389126 PMCID: PMC10300557 DOI: 10.3389/fphys.2023.1198390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/05/2023] [Indexed: 07/01/2023] Open
Abstract
Inactivity causes insulin resistance in skeletal muscle and exacerbates various lifestyle-related diseases. We previously found that 24-h hindlimb cast immobilization (HCI) of the predominantly slow-twitch soleus muscle increased intramyocellular diacylglycerol (IMDG) and insulin resistance by activation of lipin1, and HCI after a high-fat diet (HFD) further aggravated insulin resistance. Here, we investigated the effects of HCI on the fast-twitch-predominant plantaris muscle. HCI reduced the insulin sensitivity of plantaris muscle by approximately 30%, and HCI following HFD dramatically reduced insulin sensitivity by approximately 70% without significant changes in the amount of IMDG. Insulin-stimulated phosphorylation levels of insulin receptor (IR), IR substrate-1, and Akt were reduced in parallel with the decrease in insulin sensitivity. Furthermore, tyrosine phosphatase 1B (PTP1B), a protein known to inhibit insulin action by dephosphorylating IR, was activated, and PTP1B inhibition canceled HCI-induced insulin resistance. In conclusion, HCI causes insulin resistance in the fast-twitch-predominant plantaris muscle as well as in the slow-twitch-predominant soleus muscle, and HFD potentiates these effects in both muscle types. However, the mechanism differed between soleus and plantaris muscles, since insulin resistance was mediated by the PTP1B inhibition at IR in plantaris muscle.
Collapse
Affiliation(s)
- Saori Kakehi
- Department of Metabolism and Endocrinology, Tokyo, Japan
- Sportology Center, Tokyo, Japan
| | - Yoshifumi Tamura
- Department of Metabolism and Endocrinology, Tokyo, Japan
- Sportology Center, Tokyo, Japan
| | - Shin-ichi Ikeda
- Department of Metabolism and Endocrinology, Tokyo, Japan
- Sportology Center, Tokyo, Japan
| | - Naoko Kaga
- Division of Proteomics and Biomolecular Science, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hikari Taka
- Division of Proteomics and Biomolecular Science, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuya Nishida
- Department of Metabolism and Endocrinology, Tokyo, Japan
| | - Ryuzo Kawamori
- Department of Metabolism and Endocrinology, Tokyo, Japan
- Sportology Center, Tokyo, Japan
| | - Hirotaka Watada
- Department of Metabolism and Endocrinology, Tokyo, Japan
- Sportology Center, Tokyo, Japan
| |
Collapse
|
16
|
Rastoldo G, Tighilet B. Thyroid Axis and Vestibular Physiopathology: From Animal Model to Pathology. Int J Mol Sci 2023; 24:9826. [PMID: 37372973 DOI: 10.3390/ijms24129826] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
A recent work of our group has shown the significant effects of thyroxine treatment on the restoration of postural balance function in a rodent model of acute peripheral vestibulopathy. Based on these findings, we attempt to shed light in this review on the interaction between the hypothalamic-pituitary-thyroid axis and the vestibular system in normal and pathological situations. Pubmed database and relevant websites were searched from inception through to 4 February 2023. All studies relevant to each subsection of this review have been included. After describing the role of thyroid hormones in the development of the inner ear, we investigated the possible link between the thyroid axis and the vestibular system in normal and pathological conditions. The mechanisms and cellular sites of action of thyroid hormones on animal models of vestibulopathy are postulated and therapeutic options are proposed. In view of their pleiotropic action, thyroid hormones represent a target of choice to promote vestibular compensation at different levels. However, very few studies have investigated the relationship between thyroid hormones and the vestibular system. It seems then important to more extensively investigate the link between the endocrine system and the vestibule in order to better understand the vestibular physiopathology and to find new therapeutic leads.
Collapse
Affiliation(s)
- Guillaume Rastoldo
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, 13331 Marseille, France
| | - Brahim Tighilet
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, 13331 Marseille, France
- GDR Vertige CNRS Unité GDR2074, 13331 Marseille, France
| |
Collapse
|
17
|
Cahill T, Chan S, Overton IM, Hardiman G. Transcriptome Profiling Reveals Enhanced Mitochondrial Activity as a Cold Adaptive Strategy to Hypothermia in Zebrafish Muscle. Cells 2023; 12:1366. [PMID: 37408201 PMCID: PMC10216211 DOI: 10.3390/cells12101366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/01/2023] [Accepted: 05/07/2023] [Indexed: 07/07/2023] Open
Abstract
The utilisation of synthetic torpor for interplanetary travel once seemed farfetched. However, mounting evidence points to torpor-induced protective benefits from the main hazards of space travel, namely, exposure to radiation and microgravity. To determine the radio-protective effects of an induced torpor-like state we exploited the ectothermic nature of the Danio rerio (zebrafish) in reducing their body temperatures to replicate the hypothermic states seen during natural torpor. We also administered melatonin as a sedative to reduce physical activity. Zebrafish were then exposed to low-dose radiation (0.3 Gy) to simulate radiation exposure on long-term space missions. Transcriptomic analysis found that radiation exposure led to an upregulation of inflammatory and immune signatures and a differentiation and regeneration phenotype driven by STAT3 and MYOD1 transcription factors. In addition, DNA repair processes were downregulated in the muscle two days' post-irradiation. The effects of hypothermia led to an increase in mitochondrial translation including genes involved in oxidative phosphorylation and a downregulation of extracellular matrix and developmental genes. Upon radiation exposure, increases in endoplasmic reticulum stress genes were observed in a torpor+radiation group with downregulation of immune-related and ECM genes. Exposing hypothermic zebrafish to radiation also resulted in a downregulation of ECM and developmental genes however, immune/inflammatory related pathways were downregulated in contrast to that observed in the radiation only group. A cross-species comparison was performed with the muscle of hibernating Ursus arctos horribilis (brown bear) to define shared mechanisms of cold tolerance. Shared responses show an upregulation of protein translation and metabolism of amino acids, as well as a hypoxia response with the shared downregulation of glycolysis, ECM, and developmental genes.
Collapse
Affiliation(s)
- Thomas Cahill
- School of Biological Sciences, Institute for Global Food Security, Queen’s University Belfast, Belfast BT9 5DL, UK;
| | - Sherine Chan
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA;
- JLABS at the Children’s National Research and Innovation Campus, Washington, DC 20012, USA
| | - Ian M. Overton
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK;
| | - Gary Hardiman
- School of Biological Sciences, Institute for Global Food Security, Queen’s University Belfast, Belfast BT9 5DL, UK;
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA;
| |
Collapse
|
18
|
Dickerson BL, Sowinski R, Kreider RB, Wu G. Impacts of microgravity on amino acid metabolism during spaceflight. Exp Biol Med (Maywood) 2023; 248:380-393. [PMID: 36775855 PMCID: PMC10281620 DOI: 10.1177/15353702221139189] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
Spaceflight exerts an extreme and unique influence on human physiology as astronauts are subjected to long-term or short-term exposure to microgravity. During spaceflight, a multitude of physiological changes, including the loss of skeletal muscle mass, bone resorption, oxidative stress, and impaired blood flow, occur, which can affect astronaut health and the likelihood of mission success. In vivo and in vitro metabolite studies suggest that amino acids are among the most affected nutrients and metabolites by microgravity (a weightless condition due to very weak gravitational forces). Moreover, exposure to microgravity alters gut microbial composition, immune function, musculoskeletal health, and consequently amino acid metabolism. Appropriate knowledge of daily protein consumption, with a focus on specific functional amino acids, may offer insight into potential combative and/or therapeutic effects of amino acid consumption in astronauts and space travelers. This will further aid in the successful development of long-term manned space mission and permanent space habitats.
Collapse
Affiliation(s)
- Broderick L Dickerson
- Department of Kinesiology and Sports
Management, Texas A&M University, College Station, TX 77840, USA
| | - Ryan Sowinski
- Department of Kinesiology and Sports
Management, Texas A&M University, College Station, TX 77840, USA
| | - Richard B Kreider
- Department of Kinesiology and Sports
Management, Texas A&M University, College Station, TX 77840, USA
| | - Guoyao Wu
- Department of Animal Science and
Faculty of Nutrition, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
19
|
Sawano S, Fukushima M, Akasaka T, Nakamura M, Tatsumi R, Ikeuchi Y, Mizunoya W. Up- and Downregulated Genes after Long-Term Muscle Atrophy Induced by Denervation in Mice Detected Using RNA-Seq. Life (Basel) 2023; 13:life13051111. [PMID: 37240756 DOI: 10.3390/life13051111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Skeletal muscle atrophy occurs rapidly as a result of inactivity. Although there are many reports on changes in gene expression during the early phase of muscle atrophy, the patterns of up-and downregulated gene expression after long-term and equilibrated muscle atrophy are poorly understood. In this study, we comprehensively examined the changes in gene expression in long-term denervated mouse muscles using RNA-Seq. The murine right sciatic nerve was denervated, and the mice were housed for five weeks. The cross-sectional areas of the hind limb muscles were measured using an X-ray CT system 35 days after denervation. After 28 d of denervation, the cross-sectional area of the muscle decreased to approximately 65% of that of the intact left muscle and reached a plateau. Gene expression in the soleus and extensor digitorum longus (EDL) muscles on the 36th day was analyzed using RNA-Seq and validated using RT-qPCR. RNA-Seq analysis revealed that three genes-Adora1, E230016M11Rik, and Gm10718-were upregulated and one gene-Gm20515-was downregulated in the soleus muscle; additionally, four genes-Adora1, E230016M11Rik, Pigh, and Gm15557-were upregulated and one gene-Fzd7-was downregulated in the EDL muscle (FDR < 0.05). Among these genes, E230016M11Rik, one of the long non-coding RNAs, was significantly upregulated in both the muscles. These findings indicate that E230016M11Rik could be a candidate gene for the maintenance of atrophied skeletal muscle size and an atrophic state.
Collapse
Affiliation(s)
- Shoko Sawano
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
- Department of Food and Life Science, School of Life and Environmental Science, Azabu University, Sagamihara 252-5201, Japan
| | - Misaki Fukushima
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Taiki Akasaka
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Mako Nakamura
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Ryuichi Tatsumi
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Yoshihide Ikeuchi
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Wataru Mizunoya
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara 252-5201, Japan
| |
Collapse
|
20
|
Capri M, Conte M, Ciurca E, Pirazzini C, Garagnani P, Santoro A, Longo F, Salvioli S, Lau P, Moeller R, Jordan J, Illig T, Villanueva MM, Gruber M, Bürkle A, Franceschi C, Rittweger J. Long-term human spaceflight and inflammaging: Does it promote aging? Ageing Res Rev 2023; 87:101909. [PMID: 36918115 DOI: 10.1016/j.arr.2023.101909] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
Spaceflight and its associated stressors, such as microgravity, radiation exposure, confinement, circadian derailment and disruptive workloads represent an unprecedented type of exposome that is entirely novel from an evolutionary stand point. Within this perspective, we aimed to review the effects of prolonged spaceflight on immune-neuroendocrine systems, brain and brain-gut axis, cardiovascular system and musculoskeletal apparatus, highlighting in particular the similarities with an accelerated aging process. In particular, spaceflight-induced muscle atrophy/sarcopenia and bone loss, vascular and metabolic changes, hyper and hypo reaction of innate and adaptive immune system appear to be modifications shared with the aging process. Most of these modifications are mediated by molecular events that include oxidative and mitochondrial stress, autophagy, DNA damage repair and telomere length alteration, among others, which directly or indirectly converge on the activation of an inflammatory response. According to the inflammaging theory of aging, such an inflammatory response could be a driver of an acceleration of the normal, physiological rate of aging and it is likely that all the systemic modifications in turn lead to an increase of inflammaging in a sort of vicious cycle. The most updated countermeasures to fight these modifications will be also discussed in the light of their possible application not only for astronauts' benefit, but also for older adults on the ground.
Collapse
Affiliation(s)
- Miriam Capri
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy; Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy
| | - Maria Conte
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy; Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy.
| | - Erika Ciurca
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy
| | - Chiara Pirazzini
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy
| | - Paolo Garagnani
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy; Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy; Clinical Chemistry Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden; CNR Institute of Molecular Genetics, Unit of Bologna, Bologna, Italy; Center for Applied Biomedical Research (CRBA), St. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Aurelia Santoro
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy; Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy
| | - Federica Longo
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy
| | - Stefano Salvioli
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Patrick Lau
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Ralf Moeller
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Jens Jordan
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany; Medical Faculty, University of Cologne, Cologne, Germany
| | - Thomas Illig
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Maria-Moreno Villanueva
- Human Performance Research Centre, Department of Sport Science, University of Konstanz, Konstanz, Germany
| | - Markus Gruber
- Human Performance Research Centre, Department of Sport Science, University of Konstanz, Konstanz, Germany
| | - Alexander Bürkle
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Claudio Franceschi
- Department of Applied Mathematics of the Institute of ITMM, National Research Lobachevsky State University of Nizhny Novgorod, the Russian Federation
| | - Jörn Rittweger
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany; Department of Pediatrics and Adolescent Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
21
|
Bagley JR, Denes LT, McCarthy JJ, Wang ET, Murach KA. The myonuclear domain in adult skeletal muscle fibres: past, present and future. J Physiol 2023; 601:723-741. [PMID: 36629254 PMCID: PMC9931674 DOI: 10.1113/jp283658] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
Most cells in the body are mononuclear whereas skeletal muscle fibres are uniquely multinuclear. The nuclei of muscle fibres (myonuclei) are usually situated peripherally which complicates the equitable distribution of gene products. Myonuclear abundance can also change under conditions such as hypertrophy and atrophy. Specialised zones in muscle fibres have different functions and thus distinct synthetic demands from myonuclei. The complex structure and regulatory requirements of multinuclear muscle cells understandably led to the hypothesis that myonuclei govern defined 'domains' to maintain homeostasis and facilitate adaptation. The purpose of this review is to provide historical context for the myonuclear domain and evaluate its veracity with respect to mRNA and protein distribution resulting from myonuclear transcription. We synthesise insights from past and current in vitro and in vivo genetically modified models for studying the myonuclear domain under dynamic conditions. We also cover the most contemporary knowledge on mRNA and protein transport in muscle cells. Insights from emerging technologies such as single myonuclear RNA-sequencing further inform our discussion of the myonuclear domain. We broadly conclude: (1) the myonuclear domain can be flexible during muscle fibre growth and atrophy, (2) the mechanisms and role of myonuclear loss and motility deserve further consideration, (3) mRNA in muscle is actively transported via microtubules and locally restricted, but proteins may travel far from a myonucleus of origin and (4) myonuclear transcriptional specialisation extends beyond the classic neuromuscular and myotendinous populations. A deeper understanding of the myonuclear domain in muscle may promote effective therapies for ageing and disease.
Collapse
Affiliation(s)
- James R. Bagley
- Muscle Physiology Laboratory, Department of Kinesiology, San Francisco State University, San Francisco, California
| | | | - John J. McCarthy
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
- Department of Physiology, College of Medicine, University of Kentucky
| | - Eric T. Wang
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics, University of Florida, Gainesville, Florida
- Myology Institute, University of Florida
- Genetics Institute, University of Florida
| | - Kevin A. Murach
- Exercise Science Research Center, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, Arkansas
- Cell and Molecular Biology Graduate Program, University of Arkansas
| |
Collapse
|
22
|
Sanesi L, Storlino G, Dicarlo M, Oranger A, Zerlotin R, Pignataro P, Suriano C, Guida G, Grano M, Colaianni G, Colucci SC. Time-dependent unloading effects on muscle and bone and involvement of FNDC5/irisin axis. NPJ Microgravity 2023; 9:4. [PMID: 36658231 PMCID: PMC9852594 DOI: 10.1038/s41526-023-00251-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
The identification of biomarkers and countermeasures to prevent the adverse effects on the musculoskeletal system caused by the absence of mechanical loading is the main goal of space biomedical research studies. In this study, we analyzed over 4 weeks of unloading, the modulation in the expression of key proteins in Vastus lateralis, Gastrocnemius and cortical bone in parallel with the modulation of irisin serum levels and its precursor FNDC5 in skeletal muscle of hind limb unloaded (HU) mice. Here we report that Atrogin-1 was up-regulated as early as 1- and 2-week of unloading, whereas Murf-1 at 2- and 3-weeks, along with a marked modulation in the expression of myosin heavy chain isoforms during unloading. Since HU mice showed reduced irisin serum levels at 4-weeks, as well as FNDC5 decrease at 3- and 4-weeks, we treated HU mice with recombinant irisin for 4 weeks, showing that unloading-dependent decline of myosin heavy chain isoforms, MyHCIIα and MyHCIIx, and the anti-apoptotic factor Bcl2, were prevented. In parallel, irisin treatment inhibited the increase of the senescence marker p53, and the pro-apoptotic factor Bax. Overall, these results suggest that the myokine irisin could be a possible therapy to counteract the musculoskeletal impairment caused by unloading.
Collapse
Affiliation(s)
- Lorenzo Sanesi
- grid.7644.10000 0001 0120 3326Department of Translational Biomedicine and Neuroscience, University of Bari, Bari, Italy
| | - Giuseppina Storlino
- grid.7644.10000 0001 0120 3326Department of Translational Biomedicine and Neuroscience, University of Bari, Bari, Italy
| | - Manuela Dicarlo
- grid.7644.10000 0001 0120 3326Department of Translational Biomedicine and Neuroscience, University of Bari, Bari, Italy
| | - Angela Oranger
- grid.7644.10000 0001 0120 3326Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, Bari, Italy
| | - Roberta Zerlotin
- grid.7644.10000 0001 0120 3326Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, Bari, Italy
| | - Patrizia Pignataro
- grid.7644.10000 0001 0120 3326Department of Translational Biomedicine and Neuroscience, University of Bari, Bari, Italy ,grid.7644.10000 0001 0120 3326Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, Bari, Italy
| | - Clelia Suriano
- grid.7644.10000 0001 0120 3326Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, Bari, Italy
| | - Gabriella Guida
- grid.7644.10000 0001 0120 3326Department of Translational Biomedicine and Neuroscience, University of Bari, Bari, Italy
| | - Maria Grano
- grid.7644.10000 0001 0120 3326Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, Bari, Italy
| | - Graziana Colaianni
- grid.7644.10000 0001 0120 3326Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, Bari, Italy
| | - Silvia Concetta Colucci
- grid.7644.10000 0001 0120 3326Department of Translational Biomedicine and Neuroscience, University of Bari, Bari, Italy
| |
Collapse
|
23
|
Khairullin AE, Grishin SN, Ziganshin AU. P2 Receptor Signaling in Motor Units in Muscular Dystrophy. Int J Mol Sci 2023; 24:1587. [PMID: 36675094 PMCID: PMC9865441 DOI: 10.3390/ijms24021587] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
The purine signaling system is represented by purine and pyrimidine nucleotides and nucleosides that exert their effects through the adenosine, P2X and P2Y receptor families. It is known that, under physiological conditions, P2 receptors play only a minor role in modulating the functions of cells and systems; however, their role significantly increases under some pathophysiological conditions, such as stress, ischemia or hypothermia, when they can play a dominant role as a signaling molecule. The diversity of P2 receptors and their wide distribution in the body make them very attractive as a target for the pharmacological action of drugs with a new mechanism of action. The review is devoted to the involvement of P2 signaling in the development of pathologies associated with a loss of muscle mass. The contribution of adenosine triphosphate (ATP) as a signal molecule in the pathogenesis of a number of muscular dystrophies (Duchenne, Becker and limb girdle muscular dystrophy 2B) is considered. To understand the processes involving the purinergic system, the role of the ATP and P2 receptors in several models associated with skeletal muscle degradation is also discussed.
Collapse
Affiliation(s)
- Adel E. Khairullin
- Department of Biochemistry, Kazan State Medical University, 420012 Kazan, Russia
- Research Laboratory of Mechanobiology, Kazan Federal University, 420008 Kazan, Russia
| | - Sergey N. Grishin
- Department of Medicinal Physics, Kazan State Medical University, 420012 Kazan, Russia
| | - Ayrat U. Ziganshin
- Department of Pharmacology, Kazan State Medical University, 420012 Kazan, Russia
| |
Collapse
|
24
|
Are Skeletal Muscle Changes during Prolonged Space Flights Similar to Those Experienced by Frail and Sarcopenic Older Adults? LIFE (BASEL, SWITZERLAND) 2022; 12:life12122139. [PMID: 36556504 PMCID: PMC9781047 DOI: 10.3390/life12122139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Microgravity exposure causes several physiological and psychosocial alterations that challenge astronauts' health during space flight. Notably, many of these changes are mostly related to physical inactivity influencing different functional systems and organ biology, in particular the musculoskeletal system, dramatically resulting in aging-like phenotypes, such as those occurring in older persons on Earth. In this sense, sarcopenia, a syndrome characterized by the loss in muscle mass and strength due to skeletal muscle unloading, is undoubtedly one of the most critical aging-like adverse effects of microgravity and a prevalent problem in the geriatric population, still awaiting effective countermeasures. Therefore, there is an urgent demand to identify clinically relevant biological markers and to underline molecular mechanisms behind these effects that are still poorly understood. From this perspective, a lesson from Geroscience may help tailor interventions to counteract the adverse effects of microgravity. For instance, decades of studies in the field have demonstrated that in the older people, the clinical picture of sarcopenia remarkably overlaps (from a clinical and biological point of view) with that of frailty, primarily when referred to the physical function domain. Based on this premise, here we provide a deeper understanding of the biological mechanisms of sarcopenia and frailty, which in aging are often considered together, and how these converge with those observed in astronauts after space flight.
Collapse
|
25
|
Rahmati M, McCarthy JJ, Malakoutinia F. Myonuclear permanence in skeletal muscle memory: a systematic review and meta-analysis of human and animal studies. J Cachexia Sarcopenia Muscle 2022; 13:2276-2297. [PMID: 35961635 PMCID: PMC9530508 DOI: 10.1002/jcsm.13043] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/24/2022] [Accepted: 06/13/2022] [Indexed: 12/09/2022] Open
Abstract
One aspect of skeletal muscle memory is the ability of a previously trained muscle to hypertrophy more rapidly following a period of detraining. Although the molecular basis of muscle memory remains to be fully elucidated, one potential mechanism thought to mediate muscle memory is the permanent retention of myonuclei acquired during the initial phase of hypertrophic growth. However, myonuclear permanence is debated and would benefit from a meta-analysis to clarify the current state of the field for this important aspect of skeletal muscle plasticity. The objective of this study was to perform a meta-analysis to assess the permanence of myonuclei associated with changes in physical activity and ageing. When available, the abundance of satellite cells (SCs) was also considered given their potential influence on changes in myonuclear abundance. One hundred forty-seven peer-reviewed articles were identified for inclusion across five separate meta-analyses; (1-2) human and rodent studies assessed muscle response to hypertrophy; (3-4) human and rodent studies assessed muscle response to atrophy; and (5) human studies assessed muscle response with ageing. Skeletal muscle hypertrophy was associated with higher myonuclear content that was retained in rodents, but not humans, with atrophy (SMD = -0.60, 95% CI -1.71 to 0.51, P = 0.29, and MD = 83.46, 95% CI -649.41 to 816.32, P = 0.82; respectively). Myonuclear and SC content were both lower following atrophy in humans (MD = -11, 95% CI -0.19 to -0.03, P = 0.005, and SMD = -0.49, 95% CI -0.77 to -0.22, P = 0.0005; respectively), although the response in rodents was affected by the type of muscle under consideration and the mode of atrophy. Whereas rodent myonuclei were found to be more permanent regardless of the mode of atrophy, atrophy of ≥30% was associated with a reduction in myonuclear content (SMD = -1.02, 95% CI -1.53 to -0.51, P = 0.0001). In humans, sarcopenia was accompanied by a lower myonuclear and SC content (MD = 0.47, 95% CI 0.09 to 0.85, P = 0.02, and SMD = 0.78, 95% CI 0.37-1.19, P = 0.0002; respectively). The major finding from the present meta-analysis is that myonuclei are not permanent but are lost during periods of atrophy and with ageing. These findings do not support the concept of skeletal muscle memory based on the permanence of myonuclei and suggest other mechanisms, such as epigenetics, may have a more important role in mediating this aspect of skeletal muscle plasticity.
Collapse
Affiliation(s)
- Masoud Rahmati
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human SciencesLorestan UniversityKhorramabadIran
| | - John J. McCarthy
- Department of PhysiologyUniversity of KentuckyLexingtonKYUSA
- Center for Muscle BiologyUniversity of KentuckyLexingtonKYUSA
| | - Fatemeh Malakoutinia
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human SciencesLorestan UniversityKhorramabadIran
| |
Collapse
|
26
|
Swain P, Mortreux M, Laws JM, Kyriacou H, De Martino E, Winnard A, Caplan N. Skeletal muscle deconditioning during partial weight-bearing in rodents - A systematic review and meta-analysis. LIFE SCIENCES IN SPACE RESEARCH 2022; 34:68-86. [PMID: 35940691 DOI: 10.1016/j.lssr.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Space agencies are planning to send humans back to the Lunar surface, in preparation for crewed exploration of Mars. However, the effect of hypogravity on human skeletal muscle is largely unknown. A recently established rodent partial weight-bearing model has been employed to mimic various levels of hypogravity loading and may provide valuable insights to better understanding how human muscle might respond to this environment. The aim of this study was to perform a systematic review regarding the effects of partial weight-bearing on the morphology and function of rodent skeletal muscle. Five online databases were searched with the following inclusion criteria: population (rodents), intervention (partial weight-bearing for ≥1 week), control (full weight-bearing), outcome(s) (skeletal muscle morphology/function), and study design (animal intervention). Of the 2,993 studies identified, eight were included. Partial weight-bearing at 20%, 40%, and 70% of full loading caused rapid deconditioning of skeletal muscle morphology and function within the first one to two weeks of exposure. Calf circumference, hindlimb wet muscle mass, myofiber cross-sectional area, front/rear paw grip force, and nerve-stimulated plantarflexion force were reduced typically by medium to very large effects. Higher levels of partial weight-bearing often attenuated deconditioning but failed to entirely prevent it. Species and sex mediated the deconditioning response. Risk of bias was low/unclear for most studies. These findings suggest that there is insufficient stimulus to mitigate muscular deconditioning in hypogravity settings highlighting the need to develop countermeasures for maintaining astronaut/cosmonaut muscular health on the Moon and Mars.
Collapse
Affiliation(s)
- Patrick Swain
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, United Kingdom.
| | - Marie Mortreux
- Harvard Medical School, Department of Neurology, Beth Israel Deaconess Medical Center Boston, Massachusetts, United States
| | - Jonathan M Laws
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, United Kingdom
| | - Harry Kyriacou
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Enrico De Martino
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, United Kingdom
| | - Andrew Winnard
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, United Kingdom
| | - Nick Caplan
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, United Kingdom
| |
Collapse
|
27
|
Shimizu J, Kawano F. Exercise-induced H3K27me3 facilitates the adaptation of skeletal muscle to exercise in mice. J Physiol 2022; 600:3331-3353. [PMID: 35666835 DOI: 10.1113/jp282917] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/30/2022] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Exercise mediates H3K27me3 at transcriptionally upregulated loci in skeletal muscle, although the role of H3K27me3 in the adaptation of skeletal muscle to exercise training is unclear. Chromatin immunoprecipitation followed by sequencing analysis demonstrated that H3K27me3, as well as H3K4me3 modifications, is the hallmark of sites showing higher responses to acute exercise. GSK343, a selective inhibitor of the enhancer of zeste homologue 2 (EZH2), enhanced the gene responses to a single bout of exercise and accelerated the adaptive changes during exercise training in association with myonuclear H3K27me3 accumulation. Administration of valemetostat, an EZH1/2 dual inhibitor, repressed myonuclear H3K27me3 accumulation during training and caused the failure in adaptive changes. Exercise-induced H3K27me3 may play a key role in inducing exercise-related effects in the skeletal muscle. ABSTRACT Histone H3 trimethylation at lysine 27 (H3K27me3) is known to act as a transcriptionally repressive histone modification via heterochromatin formation. However, in skeletal muscle, it was also reported that H3K27me3 was enriched at the sites transcriptionally activated by exercise, although the role of H3K27me3 in the adaptation to exercise is unknown. In this study, we first determined the genome-wide enrichment of RNA polymerase II and histone H3 trimethylation at lysine 4 (H3K4me3) and H3K27me3 using chromatin immunoprecipitation followed by sequencing analysis in mouse tibialis anterior muscle. The loci that were transcriptionally upregulated by a single bout of running exercise were marked by both H3K27me3 and H3K4me3, which also correlated with the distribution of RNA polymerase II. The genes that were not responsive to exercise exhibited high H3K4me3 occupancy, similar to the upregulated genes but with fewer H3K27me3. Next, we tested the effects of H3K27 methyltransferase, an enhancer of zeste homologue (EZH) 2-specific inhibitor GSK343. GSK343 administration unexpectedly enhanced the H3K27me3 occupancy at the target loci, leading to the upregulation of gene responses to acute exercise. GSK343 administration also facilitated the phenotypic transformation from IIb to IIa fibres and the upregulation of AMPK phosphorylation and HSP70, PDK4, PGC-1α, and MuRF1 levels. Furthermore, in contrast to the accelerated adaptation to exercise by GSK343, EZH1/2 dual inhibitor valemetostat administration caused the failure in the changes of the aforementioned parameters after exercise training. These results indicate that exercise-induced H3K27me3 plays a key role in inducing exercise-related effects in the skeletal muscle. Abstract figure legend The loci upregulated in response to exercise are characterized by a bivalent modification with histone H3 trimethylation at lysine 27 (H3K27me3) and lysine 4 (H3K4me3) in mouse skeletal muscle. Acute exercise further stimulates both H3K27me3 and H3K4me3 at these loci associated with the upregulation of gene transcription. Lysine methyltransferase EZH2-specific inhibitor GSK343 administration increased H3K27me3 and H3K4me3 occupancies at the target loci after a single bout of exercise. Chronic treatment of GSK343 during exercise training more upregulated H3K27me3 in muscle fibres. In addition, it increased the number of muscle fibres expressing type IIa myosin heavy chain (MyHC) and enhanced the adaptive changes in the related protein levels. In contrast, administration of valemetostat, an EZH1/2 dual inhibitor, decreased H3K27me3 and H3K4me3 occupancies after acute exercise and caused the failure in the exercise-induced effects after training. It was also suggested that EZH1 acted as a modifier of exercise-induced H3K27me3 in skeletal muscle. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Junya Shimizu
- Graduate School of Health Sciences, Matsumoto University, 2095-1 Niimura, Matsumoto City, Nagano, 390-1295, Japan
| | - Fuminori Kawano
- Graduate School of Health Sciences, Matsumoto University, 2095-1 Niimura, Matsumoto City, Nagano, 390-1295, Japan
| |
Collapse
|
28
|
Alternative splicing diversifies the skeletal muscle transcriptome during prolonged spaceflight. Skelet Muscle 2022; 12:11. [PMID: 35642060 PMCID: PMC9153194 DOI: 10.1186/s13395-022-00294-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND As the interest in manned spaceflight increases, so does the requirement to understand the transcriptomic mechanisms that underlay the detrimental physiological adaptations of skeletal muscle to microgravity. While microgravity-induced differential gene expression (DGE) has been extensively investigated, the contribution of differential alternative splicing (DAS) to the plasticity and functional status of the skeletal muscle transcriptome has not been studied in an animal model. Therefore, by evaluating both DGE and DAS across spaceflight, we set out to provide the first comprehensive characterization of the transcriptomic landscape of skeletal muscle during exposure to microgravity. METHODS RNA-sequencing, immunohistochemistry, and morphological analyses were conducted utilizing total RNA and tissue sections isolated from the gastrocnemius and quadriceps muscles of 30-week-old female BALB/c mice exposed to microgravity or ground control conditions for 9 weeks. RESULTS In response to microgravity, the skeletal muscle transcriptome was remodeled via both DGE and DAS. Importantly, while DGE showed variable gene network enrichment, DAS was enriched in structural and functional gene networks of skeletal muscle, resulting in the expression of alternatively spliced transcript isoforms that have been associated with the physiological changes to skeletal muscle in microgravity, including muscle atrophy and altered fiber type function. Finally, RNA-binding proteins, which are required for regulation of pre-mRNA splicing, were themselves differentially spliced but not differentially expressed, an upstream event that is speculated to account for the downstream splicing changes identified in target skeletal muscle genes. CONCLUSIONS Our work serves as the first investigation of coordinate changes in DGE and DAS in large limb muscles across spaceflight. It opens up a new opportunity to understand (i) the molecular mechanisms by which splice variants of skeletal muscle genes regulate the physiological adaptations of skeletal muscle to microgravity and (ii) how small molecule splicing regulator therapies might thwart muscle atrophy and alterations to fiber type function during prolonged spaceflight.
Collapse
|
29
|
Responses of neuromuscular properties to unloading and potential countermeasures during space exploration missions. Neurosci Biobehav Rev 2022; 136:104617. [PMID: 35283170 DOI: 10.1016/j.neubiorev.2022.104617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 11/21/2022]
Abstract
We reviewed the responses of the neuromuscular properties of mainly the soleus and possible mechanisms. Sensory nervous activity in response to passive shortening and/or active contraction, associated with plantar-flexion or dorsi-flexion of the ankle joints, may play an essential role in the regulation of muscle properties. Passive shortening of the muscle fibers and sarcomeres inhibits the development of tension, electromyogram (EMG), and afferent neurogram. Remodeling of the sarcomeres, which decreases the total sarcomere number in a single muscle fiber causing recovery of the length in each sarcomere, is induced in the soleus following chronic unloading. Although EMG activity and tension development in each sarcomere are increased, the total tension produced by the whole muscle is still less owing to the lower sarcomere number. Therefore, muscle atrophy continues to progress. Moreover, walking or slow running by rear-foot strike landing with the application of greater ground reaction force, which stimulates soleus mobilization, could be an effective countermeasure. Periodic, but not chronic, passive stretching of the soleus may also be effective.
Collapse
|
30
|
Zhang Y, Du G, Zhan Y, Guo K, Zheng Y, Tang L, Guo J, Liang J. Muscle Atrophy Evaluation via Radiomics Analysis using Ultrasound Images: A Cohort Data Study. IEEE Trans Biomed Eng 2022; 69:3163-3174. [PMID: 35324432 DOI: 10.1109/tbme.2022.3162223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Existing methods for muscle atrophy evaluation based on muscle size measures from ultrasound images are inadequate in precision. Radiomics has been widely used in various medical studies, but its validity for the evaluation of muscle atrophy has not been fully explored. METHODS This study presents a radiomics analysis for muscle atrophy evaluation using ultrasound images. The hindlimb unloading rat model was developed to simulate weightlessness muscle atrophy and ultrasound images of the hind limbs were acquired for both the hindlimb unloaded (HU) and control groups during a 21-day HU period. A total of 368 radiomics features were extracted and the stable and informative features were selected through a two-stage feature selection procedure. The feature change trajectory of the stable features was analyzed using the hierarchical clustering method. Finally, an adaptive longitudinal feature selection and grading network, ALNet, was developed to evaluate muscle atrophy. RESULTS The clustering trajectories of ultrasound image features showed similar trends to the changes in muscle atrophy at the molecular level. The best grading accuracy achieved by the ALNet was 79.5% for the Soleus (Sol) muscle and 82.6% for the Gastrocnemius (Gas) muscle. CONCLUSION The test-retest is essential in performing radiomics analysis on ultrasound images. The longitudinal feature selection is important for muscle atrophy grading. The ultrasound image features of the Gas muscle have better discrimination ability than that of the Sol muscle. This study proves for the first time the capability of ultrasound image features for muscle atrophy evaluation.
Collapse
|
31
|
Lee PHU, Chung M, Ren Z, Mair DB, Kim DH. Factors mediating spaceflight-induced skeletal muscle atrophy. Am J Physiol Cell Physiol 2022; 322:C567-C580. [PMID: 35171699 DOI: 10.1152/ajpcell.00203.2021] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Skeletal muscle atrophy is a well-known consequence of spaceflight. Because of the potential significant impact of muscle atrophy and muscle dysfunction on astronauts and to their mission, a thorough understanding of the mechanisms of this atrophy and the development of effective countermeasures is critical. Spaceflight-induced muscle atrophy is similar to atrophy seen in many terrestrial conditions, and therefore our understanding of this form of atrophy may also contribute to the treatment of atrophy in humans on Earth. The unique environmental features humans encounter in space include the weightlessness of microgravity, space radiation, and the distinctive aspects of living in a spacecraft. The disuse and unloading of muscles in microgravity are likely the most significant factors that mediate spaceflight-induced muscle atrophy, and have been extensively studied and reviewed. However, there are numerous other direct and indirect effects on skeletal muscle that may be contributing factors to the muscle atrophy and dysfunction seen as a result of spaceflight. This review offers a novel perspective on the issue of muscle atrophy in space by providing a comprehensive overview of the unique aspects of the spaceflight environment and the various ways in which they can lead to muscle atrophy. We systematically review the potential contributions of these different mechanisms of spaceflight-induced atrophy and include findings from both actual spaceflight and ground-based models of spaceflight in humans, animals, and in vitro studies.
Collapse
Affiliation(s)
- Peter H U Lee
- Department of Cardiothoracic Surgery, Southcoast Health, Fall River, MA, United States.,Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| | | | - Zhanping Ren
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Devin B Mair
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
32
|
Yang Q, Chan P. Skeletal Muscle Metabolic Alternation Develops Sarcopenia. Aging Dis 2022; 13:801-814. [PMID: 35656108 PMCID: PMC9116905 DOI: 10.14336/ad.2021.1107] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/28/2021] [Indexed: 11/23/2022] Open
Abstract
Sarcopenia is a new type of senile syndrome with progressive skeletal muscle mass loss with age, accompanied by decreased muscle strength and/or muscle function. Sarcopenia poses a serious threat to the health of the elderly and increases the burden of family and society. The underlying pathophysiological mechanisms of sarcopenia are still unclear. Recent studies have shown that changes of skeletal muscle metabolism are the risk factors for sarcopenia. Furthermore, the importance of the skeletal muscle metabolic microenvironment in regulating satellite cells (SCs) is gaining significant attention. Skeletal muscle metabolism has intrinsic relationship with the regulation of skeletal muscle mass and regeneration. This review is to discuss recent findings regarding skeletal muscle metabolic alternation and the development of sarcopenia, hoping to contribute better understanding and treatment of sarcopenia.
Collapse
Affiliation(s)
- Qiumei Yang
- Department of Neurology, Geriatrics and Neurobiology, National Clinical Research Center of Geriatric Disorders, Xuanwu Hospital of Capital Medical University, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| | - Piu Chan
- Department of Neurology, Geriatrics and Neurobiology, National Clinical Research Center of Geriatric Disorders, Xuanwu Hospital of Capital Medical University, Beijing, China.
- Clinical Center for Parkinson’s Disease, Capital Medical University, Beijing Institute of Geriatrics, Beijing, China.
- Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory for Parkinson’s Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
- Correspondence should be addressed to: Dr. Piu Chan, Department of Neurobiology, Xuanwu Hospital of Capital Medical University, 45 Changchun Road, Beijing 100053, China. .
| |
Collapse
|
33
|
Kim H, Shin Y, Kim DH. Mechanobiological Implications of Cancer Progression in Space. Front Cell Dev Biol 2021; 9:740009. [PMID: 34957091 PMCID: PMC8692837 DOI: 10.3389/fcell.2021.740009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/18/2021] [Indexed: 12/11/2022] Open
Abstract
The human body is normally adapted to maintain homeostasis in a terrestrial environment. The novel conditions of a space environment introduce challenges that changes the cellular response to its surroundings. Such an alteration causes physical changes in the extracellular microenvironment, inducing the secretion of cytokines such as interleukin-6 (IL-6) and tumor growth factor-β (TGF-β) from cancer cells to enhance cancer malignancy. Cancer is one of the most prominent cell types to be affected by mechanical cues via active interaction with the tumor microenvironment. However, the mechanism by which cancer cells mechanotransduce in the space environment, as well as the influence of this process on human health, have not been fully elucidated. Due to the growing interest in space biology, this article reviews cancer cell responses to the representative conditions altered in space: microgravity, decompression, and irradiation. Interestingly, cytokine and gene expression that assist in tumor survival, invasive phenotypic transformation, and cancer cell proliferation are upregulated when exposed to both simulated and actual space conditions. The necessity of further research on space mechanobiology such as simulating more complex in vivo experiments or finding other mechanical cues that may be encountered during spaceflight are emphasized.
Collapse
Affiliation(s)
- Hyondeog Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea
| | - Yun Shin
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea.,Department of Integrative Energy Engineering, College of Engineering, Korea University, Seoul, South Korea
| |
Collapse
|
34
|
Molecular and Metabolic Mechanism of Low-Intensity Pulsed Ultrasound Improving Muscle Atrophy in Hindlimb Unloading Rats. Int J Mol Sci 2021; 22:ijms222212112. [PMID: 34829990 PMCID: PMC8625684 DOI: 10.3390/ijms222212112] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 12/16/2022] Open
Abstract
Low-intensity pulsed ultrasound (LIPUS) has been proved to promote the proliferation of myoblast C2C12. However, whether LIPUS can effectively prevent muscle atrophy has not been clarified, and if so, what is the possible mechanism. The aim of this study is to evaluate the effects of LIPUS on muscle atrophy in hindlimb unloading rats, and explore the mechanisms. The rats were randomly divided into four groups: normal control group (NC), hindlimb unloading group (UL), hindlimb unloading plus 30 mW/cm2 LIPUS irradiation group (UL + 30 mW/cm2), hindlimb unloading plus 80 mW/cm2 LIPUS irradiation group (UL + 80 mW/cm2). The tails of rats in hindlimb unloading group were suspended for 28 days. The rats in the LIPUS treated group were simultaneously irradiated with LIPUS on gastrocnemius muscle in both lower legs at the sound intensity of 30 mW/cm2 or 80 mW/cm2 for 20 min/d for 28 days. C2C12 cells were exposed to LIPUS at 30 or 80 mW/cm2 for 5 days. The results showed that LIPUS significantly promoted the proliferation and differentiation of myoblast C2C12, and prevented the decrease of cross-sectional area of muscle fiber and gastrocnemius mass in hindlimb unloading rats. LIPUS also significantly down regulated the expression of MSTN and its receptors ActRIIB, and up-regulated the expression of Akt and mTOR in gastrocnemius muscle of hindlimb unloading rats. In addition, three metabolic pathways (phenylalanine, tyrosine and tryptophan biosynthesis; alanine, aspartate and glutamate metabolism; glycine, serine and threonine metabolism) were selected as important metabolic pathways for hindlimb unloading effect. However, LIPUS promoted the stability of alanine, aspartate and glutamate metabolism pathway. These results suggest that the key mechanism of LIPUS in preventing muscle atrophy induced by hindlimb unloading may be related to promoting protein synthesis through MSTN/Akt/mTOR signaling pathway and stabilizing alanine, aspartate and glutamate metabolism.
Collapse
|
35
|
Early Deconditioning of Human Skeletal Muscles and the Effects of a Thigh Cuff Countermeasure. Int J Mol Sci 2021; 22:ijms222112064. [PMID: 34769492 PMCID: PMC8584355 DOI: 10.3390/ijms222112064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 01/12/2023] Open
Abstract
Muscle deconditioning is a major consequence of a wide range of conditions from spaceflight to a sedentary lifestyle, and occurs as a result of muscle inactivity, leading to a rapid decrease in muscle strength, mass, and oxidative capacity. The early changes that appear in the first days of inactivity must be studied to determine effective methods for the prevention of muscle deconditioning. To evaluate the mechanisms of muscle early changes and the vascular effect of a thigh cuff, a five-day dry immersion (DI) experiment was conducted by the French Space Agency at the MEDES Space Clinic (Rangueil, Toulouse). Eighteen healthy males were recruited and divided into a control group and a thigh cuff group, who wore a thigh cuff at 30 mmHg. All participants underwent five days of DI. Prior to and at the end of the DI, the lower limb maximal strength was measured and muscle biopsies were collected from the vastus lateralis muscle. Five days of DI resulted in muscle deconditioning in both groups. The maximal voluntary isometric contraction of knee extension decreased significantly. The muscle fiber cross-sectional area decreased significantly by 21.8%, and the protein balance seems to be impaired, as shown by the reduced activation of the mTOR pathway. Measurements of skinned muscle fibers supported these results and potential changes in oxidative capacity were highlighted by a decrease in PGC1-α levels. The use of the thigh cuff did not prevent muscle deconditioning or impact muscle function. These results suggest that the major effects of muscle deconditioning occur during the first few days of inactivity, and countermeasures against muscle deconditioning should target this time period. These results are also relevant for the understanding of muscle weakness induced by muscle diseases, aging, and patients in intensive care.
Collapse
|
36
|
Characterizing SERCA Function in Murine Skeletal Muscles after 35-37 Days of Spaceflight. Int J Mol Sci 2021; 22:ijms222111764. [PMID: 34769190 PMCID: PMC8584217 DOI: 10.3390/ijms222111764] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 12/17/2022] Open
Abstract
It is well established that microgravity exposure causes significant muscle weakness and atrophy via muscle unloading. On Earth, muscle unloading leads to a disproportionate loss in muscle force and size with the loss in muscle force occurring at a faster rate. Although the exact mechanisms are unknown, a role for Ca2+ dysregulation has been suggested. The sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) pump actively brings cytosolic Ca2+ into the SR, eliciting muscle relaxation and maintaining low intracellular Ca2+ ([Ca2+]i). SERCA dysfunction contributes to elevations in [Ca2+]i, leading to cellular damage, and may contribute to the muscle weakness and atrophy observed with spaceflight. Here, we investigated SERCA function, SERCA regulatory protein content, and reactive oxygen/nitrogen species (RONS) protein adduction in murine skeletal muscle after 35–37 days of spaceflight. In male and female soleus muscles, spaceflight led to drastic impairments in Ca2+ uptake despite significant increases in SERCA1a protein content. We attribute this impairment to an increase in RONS production and elevated total protein tyrosine (T) nitration and cysteine (S) nitrosylation. Contrarily, in the tibialis anterior (TA), we observed an enhancement in Ca2+ uptake, which we attribute to a shift towards a faster muscle fiber type (i.e., increased myosin heavy chain IIb and SERCA1a) without elevated total protein T-nitration and S-nitrosylation. Thus, spaceflight affects SERCA function differently between the soleus and TA.
Collapse
|
37
|
Ohira T, Ino Y, Kimura Y, Nakai Y, Kimura A, Kurata Y, Kagawa H, Kimura M, Egashira K, Matsuda C, Ohira Y, Furukawa S, Hirano H. Effects of microgravity exposure and fructo-oligosaccharide ingestion on the proteome of soleus and extensor digitorum longus muscles in developing mice. NPJ Microgravity 2021; 7:34. [PMID: 34535681 PMCID: PMC8448765 DOI: 10.1038/s41526-021-00164-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 08/26/2021] [Indexed: 12/22/2022] Open
Abstract
Short-chain fatty acids produced by the gut bacterial fermentation of non-digestible carbohydrates, e.g., fructo-oligosaccharide (FOS), contribute to the maintenance of skeletal muscle mass and oxidative metabolic capacity. We evaluated the effect of FOS ingestion on protein expression of soleus (Sol) and extensor digitorum longus muscles in mice exposed to microgravity (μ-g). Twelve 9-week-old male C57BL/6J mice were raised individually on the International Space Station under μ-g or artificial 1-g and fed a diet with or without FOS (n = 3/group). Regardless of FOS ingestion, the absolute wet weights of both muscles tended to decrease, and the fiber phenotype in Sol muscles shifted toward fast-twitch type following μ-g exposure. However, FOS ingestion tended to mitigate the μ-g-exposure-related decrease in oxidative metabolism and enhance glutathione redox detoxification in Sol muscles. These results indicate that FOS ingestion mildly suppresses metabolic changes and oxidative stress in antigravity Sol muscles during spaceflight.
Collapse
Affiliation(s)
- Takashi Ohira
- Research Center for Space and Medical Sciences and Organization for Research Initiatives and Development, Doshisha University, Kyoto, Japan. .,Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi Osaka-Sayama, Osaka, Japan. .,Advanced Medical Research Center, Yokohama City University, Kanagawa, Japan. .,Space Biomedical Research Group, Japan Aerospace Exploration Agency, Ibaraki, Japan.
| | - Yoko Ino
- Advanced Medical Research Center, Yokohama City University, Kanagawa, Japan
| | - Yayoi Kimura
- Advanced Medical Research Center, Yokohama City University, Kanagawa, Japan
| | - Yusuke Nakai
- Advanced Medical Research Center, Yokohama City University, Kanagawa, Japan
| | - Ayuko Kimura
- Advanced Medical Research Center, Yokohama City University, Kanagawa, Japan
| | - Yoichi Kurata
- Advanced Medical Research Center, Yokohama City University, Kanagawa, Japan
| | - Hiroyuki Kagawa
- Advanced Medical Research Center, Yokohama City University, Kanagawa, Japan
| | - Mitsuo Kimura
- Advanced Medical Research Center, Yokohama City University, Kanagawa, Japan
| | - Kenji Egashira
- Advanced Medical Research Center, Yokohama City University, Kanagawa, Japan
| | - Chie Matsuda
- Space Biomedical Research Group, Japan Aerospace Exploration Agency, Ibaraki, Japan
| | - Yoshinobu Ohira
- Research Center for Space and Medical Sciences and Organization for Research Initiatives and Development, Doshisha University, Kyoto, Japan
| | - Satoshi Furukawa
- Space Biomedical Research Group, Japan Aerospace Exploration Agency, Ibaraki, Japan
| | - Hisashi Hirano
- Advanced Medical Research Center, Yokohama City University, Kanagawa, Japan
| |
Collapse
|
38
|
Cahill T, Cope H, Bass JJ, Overbey EG, Gilbert R, da Silveira WA, Paul AM, Mishra T, Herranz R, Reinsch SS, Costes SV, Hardiman G, Szewczyk NJ, Tahimic CGT. Mammalian and Invertebrate Models as Complementary Tools for Gaining Mechanistic Insight on Muscle Responses to Spaceflight. Int J Mol Sci 2021; 22:ijms22179470. [PMID: 34502375 PMCID: PMC8430797 DOI: 10.3390/ijms22179470] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023] Open
Abstract
Bioinformatics approaches have proven useful in understanding biological responses to spaceflight. Spaceflight experiments remain resource intensive and rare. One outstanding issue is how to maximize scientific output from a limited number of omics datasets from traditional animal models including nematodes, fruitfly, and rodents. The utility of omics data from invertebrate models in anticipating mammalian responses to spaceflight has not been fully explored. Hence, we performed comparative analyses of transcriptomes of soleus and extensor digitorum longus (EDL) in mice that underwent 37 days of spaceflight. Results indicate shared stress responses and altered circadian rhythm. EDL showed more robust growth signals and Pde2a downregulation, possibly underlying its resistance to atrophy versus soleus. Spaceflight and hindlimb unloading mice shared differential regulation of proliferation, circadian, and neuronal signaling. Shared gene regulation in muscles of humans on bedrest and space flown rodents suggest targets for mitigating muscle atrophy in space and on Earth. Spaceflight responses of C. elegans were more similar to EDL. Discrete life stages of D. melanogaster have distinct utility in anticipating EDL and soleus responses. In summary, spaceflight leads to shared and discrete molecular responses between muscle types and invertebrate models may augment mechanistic knowledge gained from rodent spaceflight and ground-based studies.
Collapse
Affiliation(s)
- Thomas Cahill
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK; (T.C.); (W.A.d.S.); (G.H.)
| | - Henry Cope
- Nottingham Biomedical Research Centre (BRC), School of Computer Science, University of Nottingham, Nottingham NG7 2QL, UK;
| | - Joseph J. Bass
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), University of Nottingham, Nottingham NG7 2QL, UK; (J.J.B.); (N.J.S.)
| | - Eliah G. Overbey
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA;
| | - Rachel Gilbert
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA; (R.G.); (A.M.P.); (S.S.R.); (S.V.C.)
- Universities Space Research Association, Columbia, MD 21046, USA
| | - Willian Abraham da Silveira
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK; (T.C.); (W.A.d.S.); (G.H.)
- Department of Biological Sciences, School of Life Sciences and Education, Staffordshire University, Stoke-on-Trent ST4 2DF, UK
| | - Amber M. Paul
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA; (R.G.); (A.M.P.); (S.S.R.); (S.V.C.)
- Department of Human Factors and Behavioral Neurobiology, Embry-Riddle Aeronautical University, Daytona Beach, FL 32114, USA
- Blue Marble Space Institute of Science, Seattle, WA 98104, USA
| | - Tejaswini Mishra
- Department of Genetics, Stanford University School of Medicine, Palo Alto, CA 94305, USA;
| | - Raúl Herranz
- Centro de Investigaciones Biológicas Margarita Salas–CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain;
| | - Sigrid S. Reinsch
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA; (R.G.); (A.M.P.); (S.S.R.); (S.V.C.)
| | - Sylvain V. Costes
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA; (R.G.); (A.M.P.); (S.S.R.); (S.V.C.)
| | - Gary Hardiman
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK; (T.C.); (W.A.d.S.); (G.H.)
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Nathaniel J. Szewczyk
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), University of Nottingham, Nottingham NG7 2QL, UK; (J.J.B.); (N.J.S.)
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Candice G. T. Tahimic
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA; (R.G.); (A.M.P.); (S.S.R.); (S.V.C.)
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
- Correspondence:
| |
Collapse
|
39
|
Kawashima T, Ji RC, Itoh Y, Agata N, Sasai N, Murakami T, Sokabe M, Hamada F, Kawakami K. Morphological and biochemical changes of lymphatic vessels in the soleus muscle of mice after hindlimb unloading. Muscle Nerve 2021; 64:620-628. [PMID: 34409627 DOI: 10.1002/mus.27402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 08/11/2021] [Accepted: 08/15/2021] [Indexed: 11/07/2022]
Abstract
INTRODUCTION/AIMS Lymphatic vessels are responsible for the removal of metabolic waste from body tissues. They also play a crucial role in skeletal muscle functioning thorough their high-energy metabolism. In this study we investigated whether disuse muscle atrophy induced by hindlimb unloading is associated with an alteration in the number of lymphatic vessels and differential expression of lymphangiogenic factors in the soleus muscle. METHODS Male C57BL/6 mice were subjected to tail suspension (TS) for 2 or 4 weeks to induce soleus muscle atrophy. After TS, lymphatic and blood capillaries in the soleus muscle were visualized and counted by double staining with LYVE-1 and CD31. The protein and mRNA levels of vascular endothelial growth factor (VEGF)-C, VEGF-D, and vascular endothelial growth factor receptor-3 were measured by Western blotting and real-time reverse transcript polymerase chain reaction, respectively. RESULTS TS for 2 weeks resulted in a significant decrease in the number of blood capillaries compared with controls. However, there was no significant change in the number of lymphatic capillaries. By contrast, TS for 4 weeks resulted in a significant decrease in the number of lymphatic and blood capillaries. We observed a significant decrease in the mRNA levels of VEGF-C and VEGF-D in mice subjected to TS for 4 weeks. DISCUSSION The decrease of intramuscular lymphatic vessels may a crucial role in the process of muscle atrophy.
Collapse
Affiliation(s)
- Takafumi Kawashima
- Department of Human Anatomy, Graduate School of Medicine, Oita University, Yufu, Japan
| | - Rui-Cheng Ji
- Department of Physical Therapy, Graduate School of Medicine, Oita University, Oita, Japan
| | - Yuta Itoh
- Faculty of Rehabilitation Science, Nagoya Gakuin University, Nagoya, Japan
| | - Nobuhide Agata
- Faculty of Health and Medical Sciences, Tokoha University, Hamamatsu, Japan
| | - Nobuaki Sasai
- Department of Physical Therapy, Graduate School of Medical Science & Faculty of Health Science, Suzuka University of Medical Science, Suzuka, Japan
| | - Taro Murakami
- Faculty of Wellness, Shigakkan University, Ohbu, Japan
| | - Masahiro Sokabe
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Fumihiko Hamada
- Department of Human Anatomy, Graduate School of Medicine, Oita University, Yufu, Japan
| | - Keisuke Kawakami
- Department of Physical Therapy, Graduate School of Medicine, Oita University, Oita, Japan
| |
Collapse
|
40
|
Juhl OJ, Buettmann EG, Friedman MA, DeNapoli RC, Hoppock GA, Donahue HJ. Update on the effects of microgravity on the musculoskeletal system. NPJ Microgravity 2021; 7:28. [PMID: 34301942 PMCID: PMC8302614 DOI: 10.1038/s41526-021-00158-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
With the reignited push for manned spaceflight and the development of companies focused on commercializing spaceflight, increased human ventures into space are inevitable. However, this venture would not be without risk. The lower gravitational force, known as microgravity, that would be experienced during spaceflight significantly disrupts many physiological systems. One of the most notably affected systems is the musculoskeletal system, where exposure to microgravity causes both bone and skeletal muscle loss, both of which have significant clinical implications. In this review, we focus on recent advancements in our understanding of how exposure to microgravity affects the musculoskeletal system. We will focus on the catabolic effects microgravity exposure has on both bone and skeletal muscle cells, as well as their respective progenitor stem cells. Additionally, we report on the mechanisms that underlie bone and muscle tissue loss resulting from exposure to microgravity and then discuss current countermeasures being evaluated. We reveal the gaps in the current knowledge and expound upon how current research is filling these gaps while also identifying new avenues of study as we continue to pursue manned spaceflight.
Collapse
Affiliation(s)
- Otto J Juhl
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Evan G Buettmann
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Michael A Friedman
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Rachel C DeNapoli
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Gabriel A Hoppock
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Henry J Donahue
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
41
|
Mytidou C, Koutsoulidou A, Katsioloudi A, Prokopi M, Kapnisis K, Michailidou K, Anayiotos A, Phylactou LA. Muscle-derived exosomes encapsulate myomiRs and are involved in local skeletal muscle tissue communication. FASEB J 2021; 35:e21279. [PMID: 33484211 DOI: 10.1096/fj.201902468rr] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/02/2020] [Accepted: 12/01/2020] [Indexed: 12/23/2022]
Abstract
Exosomes are extracellular vesicles that are released from most cell types encapsulating specific molecular cargo. Exosomes serve as mediators of cell-to-cell and tissue-to-tissue communications under normal and pathological conditions. It has been shown that exosomes carrying muscle-specific miRNAs, myomiRs, are secreted from skeletal muscle cells in vitro and are elevated in the blood of muscle disease patients. The aim of this study was to investigate the secretion of exosomes encapsulating the four myomiRs from skeletal muscle tissues and to assess their role in inter-tissue communication between neighboring skeletal muscles in vivo. We demonstrate, for the first time, that isolated, intact skeletal muscle tissues secrete exosomes encapsulating the four myomiRs, miR-1, miR-133a, miR-133b, and miR-206. Notably, we show that the sorting of the four myomiRs within exosomes varies between skeletal muscles of different muscle fiber-type composition. miR-133a and miR-133b downregulation in TA muscles caused a reduction of their levels in neighboring skeletal muscles and in serum exosomes. In conclusion, our results reveal that skeletal muscle-derived exosomes encapsulate the four myomiRs, some of which enter the blood, while a portion is used for the local communication between proximal muscle tissues. These findings provide important evidence regarding novel pathways implicated in skeletal muscle function.
Collapse
Affiliation(s)
- Chrystalla Mytidou
- Department of Molecular Genetics, Function & Therapy, Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus.,The Cyprus School of Molecular Medicine, Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Andrie Koutsoulidou
- Department of Molecular Genetics, Function & Therapy, Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus.,The Cyprus School of Molecular Medicine, Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | | | - Marianna Prokopi
- Theramir Ltd, Limassol, Cyprus.,Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Lemesos, Cyprus.,Department of Research and Development, German Oncology Center, Limassol, Cyprus
| | - Konstantinos Kapnisis
- Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Lemesos, Cyprus
| | - Kyriaki Michailidou
- The Cyprus School of Molecular Medicine, Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus.,Biostatistics Unit, Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Andreas Anayiotos
- Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Lemesos, Cyprus
| | - Leonidas A Phylactou
- Department of Molecular Genetics, Function & Therapy, Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus.,The Cyprus School of Molecular Medicine, Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| |
Collapse
|
42
|
Hayashi T, Kudo T, Fujita R, Fujita SI, Tsubouchi H, Fuseya S, Suzuki R, Hamada M, Okada R, Muratani M, Shiba D, Suzuki T, Warabi E, Yamamoto M, Takahashi S. Nuclear factor E2-related factor 2 (NRF2) deficiency accelerates fast fibre type transition in soleus muscle during space flight. Commun Biol 2021; 4:787. [PMID: 34168270 PMCID: PMC8225765 DOI: 10.1038/s42003-021-02334-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/20/2021] [Indexed: 12/20/2022] Open
Abstract
Microgravity induces skeletal muscle atrophy, particularly in the soleus muscle, which is predominantly composed of slow-twitch myofibre (type I) and is sensitive to disuse. Muscle atrophy is commonly known to be associated with increased production of reactive oxygen species. However, the role of NRF2, a master regulator of antioxidative response, in skeletal muscle plasticity during microgravity-induced atrophy, is not known. To investigate the role of NRF2 in skeletal muscle within a microgravity environment, wild-type and Nrf2-knockout (KO) mice were housed in the International Space Station for 31 days. Gene expression and histological analyses demonstrated that, under microgravity conditions, the transition of type I (oxidative) muscle fibres to type IIa (glycolytic) was accelerated in Nrf2-KO mice without affecting skeletal muscle mass. Therefore, our results suggest that NRF2 affects myofibre type transition during space flight.
Collapse
Affiliation(s)
- Takuto Hayashi
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.,Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - Takashi Kudo
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.
| | - Ryo Fujita
- Divsion of Regenerative Medicine, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Shin-Ichiro Fujita
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan.,Department of Genome Biology, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Hirona Tsubouchi
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Sayaka Fuseya
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.,Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - Riku Suzuki
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.,Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Ibaraki, Japan
| | - Michito Hamada
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Risa Okada
- JEM Utilization Center, Human Spaceflight Technology Directorate, JAXA, Ibaraki, Japan
| | - Masafumi Muratani
- Department of Genome Biology, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Dai Shiba
- JEM Utilization Center, Human Spaceflight Technology Directorate, JAXA, Ibaraki, Japan
| | - Takafumi Suzuki
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Eiji Warabi
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.
| |
Collapse
|
43
|
Furukawa S, Chatani M, Higashitani A, Higashibata A, Kawano F, Nikawa T, Numaga-Tomita T, Ogura T, Sato F, Sehara-Fujisawa A, Shinohara M, Shimazu T, Takahashi S, Watanabe-Takano H. Findings from recent studies by the Japan Aerospace Exploration Agency examining musculoskeletal atrophy in space and on Earth. NPJ Microgravity 2021; 7:18. [PMID: 34039989 PMCID: PMC8155041 DOI: 10.1038/s41526-021-00145-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/25/2021] [Indexed: 11/09/2022] Open
Abstract
The musculoskeletal system provides the body with correct posture, support, stability, and mobility. It is composed of the bones, muscles, cartilage, tendons, ligaments, joints, and other connective tissues. Without effective countermeasures, prolonged spaceflight under microgravity results in marked muscle and bone atrophy. The molecular and physiological mechanisms of this atrophy under unloaded conditions are gradually being revealed through spaceflight experiments conducted by the Japan Aerospace Exploration Agency using a variety of model organisms, including both aquatic and terrestrial animals, and terrestrial experiments conducted under the Living in Space project of the Japan Ministry of Education, Culture, Sports, Science, and Technology. Increasing our knowledge in this field will lead not only to an understanding of how to prevent muscle and bone atrophy in humans undergoing long-term space voyages but also to an understanding of countermeasures against age-related locomotive syndrome in the elderly.
Collapse
Affiliation(s)
- Satoshi Furukawa
- Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency, Tsukuba, Ibaraki, Japan.
| | - Masahiro Chatani
- Department of Pharmacology, Showa University School of Dentistry, Tokyo, Japan. .,Pharmacological Research Center, Showa University, Tokyo, Japan.
| | | | - Akira Higashibata
- Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency, Tsukuba, Ibaraki, Japan
| | - Fuminori Kawano
- Graduate School of Health Sciences, Matsumoto University, Matsumoto, Nagano, Japan
| | - Takeshi Nikawa
- Department of Nutritional Physiology, Institute of Medical Nutrition, Tokushima University Graduate School, Tokushima, Japan
| | - Takuro Numaga-Tomita
- Department of Molecular Pharmacology, School of Medicine, Shinshu University, Matsumoto, Nagano, Japan
| | - Toshihiko Ogura
- Department of Developmental Neurobiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Fuminori Sato
- Department of Growth Regulation, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Atsuko Sehara-Fujisawa
- Department of Growth Regulation, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Masahiro Shinohara
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Saitama, Japan
| | | | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Haruko Watanabe-Takano
- Department of Cell Biology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| |
Collapse
|
44
|
Tyganov SA, Mochalova E, Belova S, Sharlo K, Rozhkov S, Kalashnikov V, Turtikova O, Mirzoev T, Shenkman B. Plantar mechanical stimulation attenuates protein synthesis decline in disused skeletal muscle via modulation of nitric oxide level. Sci Rep 2021; 11:9806. [PMID: 33963253 PMCID: PMC8105341 DOI: 10.1038/s41598-021-89362-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 04/19/2021] [Indexed: 01/04/2023] Open
Abstract
Both research conducted under microgravity conditions and ground-based space analog studies have shown that air pump-based plantar mechanical stimulation (PMS) of cutaneous mechanoreceptors of the sole of the foot is able to increase neuromuscular activity in the musculature of the lower limbs. This type of stimulation is able to attenuate unloading-induced skeletal muscle atrophy and impaired muscle function. The aim of the present study was to evaluate the effects of PMS on anabolic signaling pathways in rat soleus muscle following 7-day hindlimb suspension (HS) and to elucidate if the effects of PMS on anabolic processes would be NO-dependent. The soles of the feet were stimulated with a frequency of 1-s inflation/1-s deflation with a total of 20 min followed by 10 min rest. This cycle was repeated for 4 h each day. We observed a decrease in the soleus muscle mass after 7-day HS, which was not prevented by PMS. We also observed a decrease in slow-type fiber cross-sectional area (CSA) by 56%, which significantly exceeded a decrease (-22%) in fast-type fiber CSA. PMS prevented a reduction in slow-twitch fiber CSA, but had no effect on fast-twitch fiber CSA. PMS prevented a 63% decrease in protein synthesis after 7-day HS as well as changes in several key anabolic signaling regulators, such as p70S6k, 4E-BP1, GSK3β, eEF-2, p90RSK. PMS also prevented a decrease in the markers of translational capacity (18S and 28S rRNA, c-myc, 45S pre-rRNA). Some effects of PMS on anabolic signaling were altered due to NO-synthase inhibitor (L-NAME) administration. Thus, PMS is able to partially prevent atrophic processes in rat soleus muscle during 7-day HS, affecting slow-type muscle fibers. This effect is mediated by alterations in anabolic signaling pathways and may depend on NO-synthase activity.
Collapse
Affiliation(s)
- Sergey A Tyganov
- Myology Laboratory, Institute of Biomedical Problems RAS, Khoroshevskoe shosse 76a, Moscow, Russian Federation, 123007.
| | - Ekaterina Mochalova
- Myology Laboratory, Institute of Biomedical Problems RAS, Khoroshevskoe shosse 76a, Moscow, Russian Federation, 123007
| | - Svetlana Belova
- Myology Laboratory, Institute of Biomedical Problems RAS, Khoroshevskoe shosse 76a, Moscow, Russian Federation, 123007
| | - Kristina Sharlo
- Myology Laboratory, Institute of Biomedical Problems RAS, Khoroshevskoe shosse 76a, Moscow, Russian Federation, 123007
| | - Sergey Rozhkov
- Myology Laboratory, Institute of Biomedical Problems RAS, Khoroshevskoe shosse 76a, Moscow, Russian Federation, 123007
| | - Vitaliy Kalashnikov
- Myology Laboratory, Institute of Biomedical Problems RAS, Khoroshevskoe shosse 76a, Moscow, Russian Federation, 123007
| | - Olga Turtikova
- Myology Laboratory, Institute of Biomedical Problems RAS, Khoroshevskoe shosse 76a, Moscow, Russian Federation, 123007
| | - Timur Mirzoev
- Myology Laboratory, Institute of Biomedical Problems RAS, Khoroshevskoe shosse 76a, Moscow, Russian Federation, 123007
| | - Boris Shenkman
- Myology Laboratory, Institute of Biomedical Problems RAS, Khoroshevskoe shosse 76a, Moscow, Russian Federation, 123007
| |
Collapse
|
45
|
Moosavi D, Wolovsky D, Depompeis A, Uher D, Lennington D, Bodden R, Garber CE. The effects of spaceflight microgravity on the musculoskeletal system of humans and animals, with an emphasis on exercise as a countermeasure: a systematic scoping review. Physiol Res 2021; 70:119-151. [PMID: 33992043 PMCID: PMC8820585 DOI: 10.33549/physiolres.934550] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 02/18/2021] [Indexed: 12/28/2022] Open
Abstract
The purpose of this systematic review is twofold: 1) to identify, evaluate, and synthesize the heretofore disparate scientific literatures regarding the effects of direct exposure to microgravity on the musculoskeletal system, taking into account for the first time both bone and muscle systems of both humans and animals; and 2) to investigate the efficacy and limitations of exercise countermeasures on the musculoskeletal system under microgravity in humans.The Framework for Scoping Studies (Arksey and O'Malley 2005) and the Cochrane Handbook for Systematic Reviews of Interventions (Higgins JPT 2011) were used to guide this review. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist was utilized in obtaining the combined results (Moher, Liberati et al. 2009). Data sources, PubMed, Embase, Scopus, and Web of Science were searched for published articles through October 2019 using the Mesh terms of microgravity, musculoskeletal system, and exercise countermeasures. A total of 84 references were selected, including 40 animal studies and 44 studies with human participants. The heterogeneity in the study designs, methodologies, and outcomes deemed this review unsuitable for a meta-analysis. Thus, we present a narrative synthesis of the results for the key domains under five categories: 1) Skeletal muscle responses to microgravity in humans 2) Skeletal muscle responses to microgravity in animals 3) Adaptation of the skeletal system to microgravity in humans 4) Adaptation of the skeletal system to microgravity in animals 5) Effectiveness of exercise countermeasures on the human musculoskeletal system in microgravity. Existing studies have produced only limited data on the combined effects on bone and muscle of human spaceflight, despite the likelihood that the effects on these two systems are complicated due to the components of the musculoskeletal system being anatomically and functionally interconnected. Bone is directly affected by muscle atrophy as well as by changes in muscle strength, notably at muscle attachments. Given this interplay, the most effective exercise countermeasure is likely to be robust, individualized, resistive exercise, primarily targeting muscle mass and strength.
Collapse
Affiliation(s)
- D Moosavi
- Department of Biobehavioral Sciences, Teachers College, Columbia University. New York City, NY, United States.
| | | | | | | | | | | | | |
Collapse
|
46
|
Okada R, Fujita SI, Suzuki R, Hayashi T, Tsubouchi H, Kato C, Sadaki S, Kanai M, Fuseya S, Inoue Y, Jeon H, Hamada M, Kuno A, Ishii A, Tamaoka A, Tanihata J, Ito N, Shiba D, Shirakawa M, Muratani M, Kudo T, Takahashi S. Transcriptome analysis of gravitational effects on mouse skeletal muscles under microgravity and artificial 1 g onboard environment. Sci Rep 2021; 11:9168. [PMID: 33911096 PMCID: PMC8080648 DOI: 10.1038/s41598-021-88392-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
Spaceflight causes a decrease in skeletal muscle mass and strength. We set two murine experimental groups in orbit for 35 days aboard the International Space Station, under artificial earth-gravity (artificial 1 g; AG) and microgravity (μg; MG), to investigate whether artificial 1 g exposure prevents muscle atrophy at the molecular level. Our main findings indicated that AG onboard environment prevented changes under microgravity in soleus muscle not only in muscle mass and fiber type composition but also in the alteration of gene expression profiles. In particular, transcriptome analysis suggested that AG condition could prevent the alterations of some atrophy-related genes. We further screened novel candidate genes to reveal the muscle atrophy mechanism from these gene expression profiles. We suggest the potential role of Cacng1 in the atrophy of myotubes using in vitro and in vivo gene transductions. This critical project may accelerate the elucidation of muscle atrophy mechanisms.
Collapse
Affiliation(s)
- Risa Okada
- Mouse Epigenetics Project, ISS/Kibo Experiment, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan
- JEM Utilization Center, Human Spaceflight Technology Directorate, JAXA, Ibaraki, 305-8505, Japan
| | - Shin-Ichiro Fujita
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, 305-8575, Japan
- Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Riku Suzuki
- Laboratory Animal Resource Center in Transborder Medical Research Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Takuto Hayashi
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, 305-8575, Japan
- Laboratory Animal Resource Center in Transborder Medical Research Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Hirona Tsubouchi
- Laboratory Animal Resource Center in Transborder Medical Research Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Chihiro Kato
- Laboratory Animal Resource Center in Transborder Medical Research Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- Master's Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Shunya Sadaki
- Laboratory Animal Resource Center in Transborder Medical Research Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Maho Kanai
- Laboratory Animal Resource Center in Transborder Medical Research Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Sayaka Fuseya
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, 305-8575, Japan
- Laboratory Animal Resource Center in Transborder Medical Research Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Yuri Inoue
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, 305-8575, Japan
- Laboratory Animal Resource Center in Transborder Medical Research Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Hyojung Jeon
- Laboratory Animal Resource Center in Transborder Medical Research Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Michito Hamada
- Laboratory Animal Resource Center in Transborder Medical Research Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Akihiro Kuno
- Laboratory Animal Resource Center in Transborder Medical Research Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Akiko Ishii
- Department of Neurology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Akira Tamaoka
- Department of Neurology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Jun Tanihata
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Naoki Ito
- Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe (FBRI), Kobe, 650-0047, Japan
| | - Dai Shiba
- Mouse Epigenetics Project, ISS/Kibo Experiment, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan
- JEM Utilization Center, Human Spaceflight Technology Directorate, JAXA, Ibaraki, 305-8505, Japan
| | - Masaki Shirakawa
- Mouse Epigenetics Project, ISS/Kibo Experiment, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan
- JEM Utilization Center, Human Spaceflight Technology Directorate, JAXA, Ibaraki, 305-8505, Japan
| | - Masafumi Muratani
- Mouse Epigenetics Project, ISS/Kibo Experiment, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan
- Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Takashi Kudo
- Mouse Epigenetics Project, ISS/Kibo Experiment, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan.
- Laboratory Animal Resource Center in Transborder Medical Research Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan.
| | - Satoru Takahashi
- Mouse Epigenetics Project, ISS/Kibo Experiment, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan.
- Laboratory Animal Resource Center in Transborder Medical Research Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan.
| |
Collapse
|
47
|
Yumoto A, Kokubo T, Izumi R, Shimomura M, Funatsu O, Tada MN, Ota-Murakami N, Iino K, Shirakawa M, Mizuno H, Kudo T, Takahashi S, Suzuki T, Uruno A, Yamamoto M, Shiba D. Novel method for evaluating the health condition of mice in space through a video downlink. Exp Anim 2021; 70:236-244. [PMID: 33487610 PMCID: PMC8150242 DOI: 10.1538/expanim.20-0102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Clarification of the criteria for managing animal health is essential to increase the reliability of experiments and ensure transparency in animal welfare. For
experiments performed in space, there is no consensus on how to care for animals owing to technical issues, launch mass limitation, and human resources. Some
biological processes in mammals, such as musculoskeletal or immune processes, are altered in the space environment, and mice in space can be used to simulate
morbid states, such as senescence acceleration. Thus, there is a need to establish a novel evaluation method and evaluation criteria to monitor animal health.
Here, we report a novel method to evaluate the health of mice in space through a video downlink in a series of space experiments using the Multiple
Artificial-gravity Research System (MARS). This method was found to be more useful in evaluating animal health in space than observations and body weight
changes of the same live mice following their return to Earth. We also developed criteria to evaluate health status via a video downlink. These criteria, with
“Fur condition” and “Respiratory” as key items, provided information on the daily changes in the health status of mice and helped to identify malfunctions at an
early stage. Our method and criteria led to the success of our missions, and they will help establish appropriate rules for space experiments in the future.
Collapse
Affiliation(s)
- Akane Yumoto
- Mouse Epigenetics Project, ISS/Kibo Experiment, JAXA, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan.,JEM Utilization Center, Human Spaceflight Technology Directorate, JAXA, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan
| | - Toshiaki Kokubo
- JEM Utilization Center, Human Spaceflight Technology Directorate, JAXA, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan.,Laboratory Animal and Genome Sciences Section, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Ryutaro Izumi
- JEM Utilization Center, Human Spaceflight Technology Directorate, JAXA, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan.,Graduate School of Social and Cultural Studies, Nihon University, 12-5 Gobancho, Chiyoda-ku, Tokyo 102-8251, Japan
| | - Michihiko Shimomura
- Mouse Epigenetics Project, ISS/Kibo Experiment, JAXA, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan.,JEM Utilization Center, Human Spaceflight Technology Directorate, JAXA, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan
| | - Osamu Funatsu
- Mouse Epigenetics Project, ISS/Kibo Experiment, JAXA, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan.,JEM Utilization Center, Human Spaceflight Technology Directorate, JAXA, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan
| | - Motoki N Tada
- Japan Manned Space Systems Corporation, 2-1-6 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Naoko Ota-Murakami
- Advanced Engineering Service, Tsukuba Mitsui Bldg., 1-6-1 Takezono, Tsukuba, Ibaraki 305-0032, Japan
| | - Kayoko Iino
- I-NET Corp., 13F, Nissay Aroma Square, 5-37-1 Kamata, Ota-ku, Tokyo 144-8721, Japan
| | - Masaki Shirakawa
- Mouse Epigenetics Project, ISS/Kibo Experiment, JAXA, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan.,JEM Utilization Center, Human Spaceflight Technology Directorate, JAXA, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan
| | - Hiroyasu Mizuno
- Mouse Epigenetics Project, ISS/Kibo Experiment, JAXA, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan.,JEM Utilization Center, Human Spaceflight Technology Directorate, JAXA, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan
| | - Takashi Kudo
- Mouse Epigenetics Project, ISS/Kibo Experiment, JAXA, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan.,Laboratory Animal Resource Center in Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Satoru Takahashi
- Mouse Epigenetics Project, ISS/Kibo Experiment, JAXA, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan.,Laboratory Animal Resource Center in Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Takafumi Suzuki
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi 980-8573, Japan.,Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Akira Uruno
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi 980-8573, Japan.,Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Masayuki Yamamoto
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi 980-8573, Japan.,Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Dai Shiba
- Mouse Epigenetics Project, ISS/Kibo Experiment, JAXA, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan.,JEM Utilization Center, Human Spaceflight Technology Directorate, JAXA, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan
| |
Collapse
|
48
|
Hord JM, Garcia MM, Farris KR, Guzzoni V, Lee Y, Lawler MS, Lawler JM. Nox2 signaling and muscle fiber remodeling are attenuated by losartan administration during skeletal muscle unloading. Physiol Rep 2021; 9:e14606. [PMID: 33400850 PMCID: PMC7785102 DOI: 10.14814/phy2.14606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 09/20/2020] [Indexed: 12/21/2022] Open
Abstract
Reduced mechanical loading results in atrophy of skeletal muscle fibers. Increased reactive oxygen species (ROS) are causal in sarcolemmal dislocation of nNOS and FoxO3a activation. The Nox2 isoform of NADPH oxidase and mitochondria release ROS during disuse in skeletal muscle. Activation of the angiotensin II type 1 receptor (AT1R) can elicit Nox2 complex formation. The AT1R blocker losartan was used to test the hypothesis that AT1R activation drives Nox2 assembly, nNOS dislocation, FoxO3a activation, and thus alterations in morphology in the unloaded rat soleus. Male Fischer 344 rats were divided into four groups: ambulatory control (CON), ambulatory + losartan (40 mg kg-1 day-1 ) (CONL), 7 days of tail-traction hindlimb unloading (HU), and HU + losartan (HUL). Losartan attenuated unloading-induced loss of muscle fiber cross-sectional area (CSA) and fiber-type shift. Losartan mitigated unloading-induced elevation of ROS levels and upregulation of Nox2. Furthermore, AT1R blockade abrogated nNOS dislocation away from the sarcolemma and elevation of nuclear FoxO3a. We conclude that AT1R blockade attenuates disuse remodeling by inhibiting Nox2, thereby lessening nNOS dislocation and activation of FoxO3a.
Collapse
Affiliation(s)
- Jeffrey M Hord
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition, Texas A&M University, College Station, TX, USA
| | - Marcela M Garcia
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition, Texas A&M University, College Station, TX, USA
| | - Katherine R Farris
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition, Texas A&M University, College Station, TX, USA
| | - Vinicius Guzzoni
- Department of Cellular and Molecular Biology, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Yang Lee
- Department of Systems Biology and Translational Medicine, Texas A&M Health Science Center College of Medicine, College Station/Temple, TX, USA
| | - Matthew S Lawler
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition, Texas A&M University, College Station, TX, USA.,Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - John M Lawler
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition, Texas A&M University, College Station, TX, USA
| |
Collapse
|
49
|
Maroni CR, Friedman MA, Zhang Y, McClure MJ, Fulle S, Farber CR, Donahue HJ. Genetic variability affects the response of skeletal muscle to disuse. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2021; 21:387-396. [PMID: 34465678 PMCID: PMC8426660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
OBJECTIVE To examine whether genetic variability plays a role in skeletal muscle response to disuse. METHODS We examined skeletal muscle response to disuse in five different strains of mice: CAST/EiJ, NOD/ShiLtJ, NZO/HILtJ, 129S1/SvImJ and A/J. Mice had one limb immobilized by a cast for three weeks. RESULTS Response to immobilization was dependent on the strain of mice. Skeletal muscle mass/body weight was decreased by immobilization in all strains except 1291/SvImJ. Immobilization decreased absolute skeletal muscle mass in quadriceps and gastrocnemius in NOD/ShiltJ and NZO/HILtJ mice. Three weeks of immobilization resulted in an increase in quadriceps levels of atrogenes in CAST/EiJ. Immobilization resulted in an increase in quadriceps and gastrocnemius levels of Myh4 in CAST/EiJ. A similar trend was observed for Myh7 in gastrocnemius muscle. Immobilization resulted in a decrease of the p-p70S6K1/total p706SK1 ratio in quadriceps of NOD/ShiLtJ mice and the gastrocnemius of A/J mice. Immobilization did not affect the p-4EBP1/total 4EBP1 ratio in quadriceps of any of the strains examined. However, the p-4EBP1/total 4EBP1 ratio in gastrocnemius was greater in immobilized, relative to control, limbs in CAST/EiJ mice. CONCLUSION Genetic variability affects the response of skeletal muscle to disuse.
Collapse
Affiliation(s)
- Camilla Reina Maroni
- Department of Neuroscience, Imaging, and Clinical Sciences, University “G. d’Annunzio” Chieti- Pescara, Chieti, Italy,Institute for Engineering and Medicine and Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Michael A. Friedman
- Institute for Engineering and Medicine and Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Yue Zhang
- Institute for Engineering and Medicine and Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Michael J. McClure
- Institute for Engineering and Medicine and Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Stefania Fulle
- Department of Neuroscience, Imaging, and Clinical Sciences, University “G. d’Annunzio” Chieti- Pescara, Chieti, Italy
| | - Charles R. Farber
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Henry J. Donahue
- Institute for Engineering and Medicine and Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA,Corresponding author: Henry J. Donahue, Ph.D., Institute for Engineering and Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America E-mail:
| |
Collapse
|
50
|
Johnson IRD, Nguyen CT, Wise P, Grimm D. Implications of Altered Endosome and Lysosome Biology in Space Environments. Int J Mol Sci 2020; 21:ijms21218205. [PMID: 33147843 PMCID: PMC7663135 DOI: 10.3390/ijms21218205] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 12/17/2022] Open
Abstract
Space exploration poses multiple challenges for mankind, not only on a technical level but also to the entire physiology of the space traveller. The human system must adapt to several environmental stressors, microgravity being one of them. Lysosomes are ubiquitous to every cell and essential for their homeostasis, playing significant roles in the regulation of autophagy, immunity, and adaptation of the organism to changes in their environment, to name a few. Dysfunction of the lysosomal system leads to age-related diseases, for example bone loss, reduced immune response or cancer. As these conditions have been shown to be accelerated following exposure to microgravity, this review elucidates the lysosomal response to real and simulated microgravity. Microgravity activates the endo-lysosomal system, with resulting impacts on bone loss, muscle atrophy and stem cell differentiation. The investigation of lysosomal adaptation to microgravity can be beneficial in the search for new biomarkers or therapeutic approaches to several disease pathologies on earth as well as the potential to mitigate pathophysiology during spaceflight.
Collapse
Affiliation(s)
- Ian R. D. Johnson
- Research in Space Environments Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia;
- Correspondence:
| | - Catherine T. Nguyen
- Research in Space Environments Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia;
| | - Petra Wise
- Department of Hematology and Oncology, Children’s Hospital of Los Angeles, Los Angeles, CA 90027, USA;
| | - Daniela Grimm
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, 39106 Magdeburg, Germany;
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|