1
|
Premadasa LS, McDew-White M, Romero L, Gondo B, Drawec JA, Ling B, Okeoma CM, Mohan M. Epigenetic modulation of the NLRP6 inflammasome sensor as a therapeutic modality to reduce necroptosis-driven gastrointestinal mucosal dysfunction in HIV/SIV infection. Cell Commun Signal 2025; 23:199. [PMID: 40281523 PMCID: PMC12023470 DOI: 10.1186/s12964-025-02193-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 04/08/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Gastrointestinal (GI) disease/dysfunction persists in people living with HIV (PLWH) receiving suppressive combination anti-retroviral therapy (ART) leading to epithelial barrier breakdown, microbial translocation and systemic inflammation that can drive non-AIDS associated comorbidities. Although epigenetic mechanisms are predicted to drive GI dysfunction, they remain unknown and unaddressed in HIV/SIV infection. The present study investigated genome-wide changes in DNA methylation, and gene expression exclusively in colon epithelial cells (CE) in response to simian immunodeficiency virus infection (SIV) and long-term low-dose delta-9-tetrahydrocannabinol (THC). METHODS Using reduced-representation bisulfite sequencing, we characterized DNA methylation changes in colonic epithelium (CE) of uninfected controls (n=5) and SIV-infected rhesus macaques (RMs) administered vehicle (VEH/SIV; n=7) or THC (THC/SIV; n=6). Intact jejunum resection segments (~5cm) were collected from sixteen ART treated SIV-infected RMs [(VEH/SIV/ART; n=8) and (THC/SIV/ART; n=8)] to confirm protein expression data identified in the colon of ART-naïve SIV-infected RMs. Transcriptomics data was used to confirm expression of differentially methylated genes. Protein expression of differentially methylated genes and their downstream targets was assessed using Immunofluorescence followed by HALO quantification. RESULTS SIV infection in ART-naïve RMs induced marked hypomethylation throughout promoter-associated CpG islands (paCGIs) in genes related to inflammatory response (NLRP6, cGAS), cellular adhesion (PCDH17, CDH7) and proliferation (WIF1, SFRP1, TERT, and HAND2) in CEs. Moreover, low-dose THC reduced NLRP6 protein expression in CE by hypermethylating the NLRP6 paCGI and blocked polyI:C induced NLRP6 upregulation in vitro. In ART suppressed SIV-infected RMs, significant NLRP6 protein upregulation during acute infection was unaffected by long-term ART administration during chronic infection despite successful plasma and tissue viral suppression. In this group, NLRP6 protein upregulation was associated with significantly increased expression of necroptosis-driving proteins; phosphorylated-RIPK3(Ser199), phosphorylated-MLKL(Thr357/Ser358), and HMGB1. Most strikingly, adding ART to THC-treated SIV-infected RMs effectively reduced NLRP6 and necroptosis-driving protein expression to pre-infection levels. CONCLUSIONS We conclude that DNA hypomethylation-assisted NLRP6 upregulation can lead to its constitutively high expression resulting in the activation of necroptosis signaling via the RIPK3/p-MLKL pathway that can eventually drive intestinal epithelial loss/death. From a clinical standpoint, low-dose phytocannabinoids in combination with ART could safely and successfully reduce/reverse persistent GI inflammatory responses via modulating DNA methylation.
Collapse
Affiliation(s)
- Lakmini S Premadasa
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Marina McDew-White
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Luis Romero
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Beverly Gondo
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Jade A Drawec
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Binhua Ling
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Chioma M Okeoma
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY, 10595-1524, USA.
- Lovelace Biomedical Institute, Albuquerque, NM, 87108-5127, USA.
| | - Mahesh Mohan
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA.
| |
Collapse
|
2
|
Premadasa LS, McDew-White M, Romero L, Gondo B, Drawec JA, Ling B, Okeoma CM, Mohan M. Epigenetic modulation of NLRP6 inflammasome sensor as a therapeutic modality to reduce necroptosis-driven gastrointestinal mucosal dysfunction in HIV/SIV infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.13.623322. [PMID: 39605466 PMCID: PMC11601347 DOI: 10.1101/2024.11.13.623322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The epigenetic mechanisms driving persistent gastrointestinal mucosal dysfunction in HIV/SIV infection is an understudied topic. Using reduced-representation bisulfite sequencing, we identified HIV/SIV infection in combination anti-retroviral therapy (cART)-naive rhesus macaques (RMs) to induce marked hypomethylation throughout promoter-associated CpG islands (paCGIs) in genes related to inflammatory response ( NLRP6, cGAS ), cellular adhesion and proliferation in colonic epithelial cells (CEs). Moreover, low-dose delta-9-tetrahydrocannabinol (THC) administration reduced NLRP6 protein expression in CE by hypermethylating the NLRP6 paCGI and blocked polyI:C induced NLRP6 upregulation in vitro. In cART suppressed SIV-infected RMs, NLRP6 protein upregulation associated with significantly increased expression of necroptosis-driving proteins; phosphorylated-RIPK3(Ser199), phosphorylated-MLKL(Thr357/Ser358), and HMGB1. Most strikingly, supplementing cART with THC effectively reduced NLRP6 and necroptosis-driving protein expression to pre-infection levels. These findings for the first time demonstrate that NLRP6 upregulation and ensuing activation of necroptosis promote HIV/SIV-induced gastrointestinal mucosal dysfunction and that epigenetic modulation using phytocannabinoids represents a feasible therapeutic modality for alleviating HIV/SIV-induced gastrointestinal inflammation and associated comorbidities.
Collapse
|
3
|
Dong JG, Chen MR, Rao D, Zhang N, He S, Na L. Genome-wide analysis of long noncoding RNA profiles in pseudorabies-virus-infected PK15 cells. Arch Virol 2023; 168:240. [PMID: 37668724 DOI: 10.1007/s00705-023-05859-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/10/2023] [Indexed: 09/06/2023]
Abstract
Recently, an increasing number of studies have shown that long noncoding RNAs (lncRNAs) are involved in host metabolism after infection with pseudorabies virus (PRV). In our study, via RNA sequencing analysis, a total of 418 mRNAs, 137 annotated lncRNAs, and 312 new lncRNAs were found to be differentially expressed. These lncRNAs were closely associated with metabolic regulation and immunity-related signalling pathways, including the T-cell receptor signalling pathway, chemokine signalling pathway, mitogen-activated protein kinase (MAPK) signalling pathway, TNF signalling pathway, Ras signalling pathway, calcium signalling pathway, and phosphatidylinositol signalling system. Real-time PCR indicated that several mRNAs and lncRNAs involved in the regulation of the immune effector process, T-cell receptor signalling pathway, TNF signalling pathway, MAPK signalling pathway, and chemokine signalling pathways were significantly expressed. These mRNAs and lncRNAs might play a role in PRV infection.
Collapse
Affiliation(s)
- Jian-Guo Dong
- School of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, 464000, China
| | - Ming-Rui Chen
- School of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, 464000, China
| | - Dan Rao
- School of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, 464000, China
| | - Ning Zhang
- Jiangsu Vocational College Agriculture and Forestry, Jurong, 212400, China
- Henan Fengyuan Hepu Agriculture and Animal Husbandry Co. LTD, Zhumadian, 463900, China
| | - Shuhai He
- School of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, 464000, China.
| | - Lei Na
- College of Animal Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China.
| |
Collapse
|
4
|
Premadasa LS, Lee E, McDew-White M, Alvarez X, Jayakumar S, Ling B, Okeoma CM, Byrareddy SN, Kulkarni S, Mohan M. Cannabinoid enhancement of lncRNA MMP25-AS1/MMP25 interaction reduces neutrophil infiltration and intestinal epithelial injury in HIV/SIV infection. JCI Insight 2023; 8:e167903. [PMID: 37036007 PMCID: PMC10132162 DOI: 10.1172/jci.insight.167903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/16/2023] [Indexed: 04/11/2023] Open
Abstract
Intestinal epithelial barrier dysfunction, a hallmark of HIV/SIV infection, persists despite viral suppression by combination antiretroviral therapy (cART). Emerging evidence suggests a critical role for long noncoding RNAs (lncRNAs) in maintaining epithelial homeostasis. We simultaneously profiled lncRNA/mRNA expression exclusively in colonic epithelium (CE) of SIV-infected rhesus macaques (RMs) administered vehicle (VEH) or Δ-9-tetrahydrocannabinol (THC). Relative to controls, fewer lncRNAs were up- or downregulated in CE of THC/SIV compared with VEH/SIV RMs. Importantly, reciprocal expression of the natural antisense lncRNA MMP25-AS1 (up 2.3-fold) and its associated protein-coding gene MMP25 (attracts neutrophils by inactivating alpha-1 anti-trypsin/SERPINA1) (down 2.2-fold) was detected in CE of THC/SIV RMs. Computational analysis verified 2 perfectly matched complementary regions and an energetically stable (normalized binding free energy = -0.2626) MMP25-AS1/MMP25 duplex structure. MMP25-AS1 overexpression blocked IFN-γ-induced MMP25 mRNA and protein expression in vitro. Elevated MMP25 protein expression in CE of VEH/SIV but not THC/SIV RMs was associated with increased infiltration by myeloperoxidase/CD11b++ neutrophils (transendothelial migration) and epithelial CD47 (transepithelial migration) expression. Interestingly, THC administered in combination with cART increased MMP25-AS1 and reduced MMP25 mRNA/protein expression in jejunal epithelium of SIV-infected RMs. Our findings demonstrate that MMP25-AS1 is a potentially unique epigenetic regulator of MMP25 and that low-dose THC can reduce neutrophil infiltration and intestinal epithelial injury potentially by downregulating MMP25 expression through modulation of MMP25-AS1.
Collapse
Affiliation(s)
- Lakmini S. Premadasa
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Eunhee Lee
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Marina McDew-White
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Xavier Alvarez
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Sahana Jayakumar
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Binhua Ling
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Chioma M. Okeoma
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
| | - Siddappa N. Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Smita Kulkarni
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Mahesh Mohan
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| |
Collapse
|
5
|
Abstract
The Janus kinase (JAK), signal transducer of activation (STAT) pathway, discovered by investigating interferon gene induction, is now recognized as an evolutionary conserved signaling pathway employed by diverse cytokines, interferons, growth factors, and related molecules. Since its discovery, this pathway has become a paradigm for membrane-to-nucleus signaling and explains how a broad range of soluble factors such as cytokines and hormones, mediate their diverse functions. The understanding of JAK-STAT signaling in the intestine has not only impacted basic science research, particularly in the understanding of intercellular communication and cell-extrinsic control of gene expression, but it has also become a prototype for transition of bench to bedside research, culminating in the clinical implementation of pathway-specific therapeutics.
Collapse
|
6
|
Increased Plasma Levels of the TH2 chemokine CCL18 associated with low CD4+ T cell counts in HIV-1-infected Patients with a Suppressed Viral Load. Sci Rep 2019; 9:5963. [PMID: 30979916 PMCID: PMC6461658 DOI: 10.1038/s41598-019-41588-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 02/25/2019] [Indexed: 12/15/2022] Open
Abstract
The chemokine (C-C motif) chemokine ligand 18 (CCL18) is a structural homolog of CCL3 primarily produced by monocyte-derived cells with an M2 phenotype. Elevated levels of CCL18 have been observed in several diseases associated with malignancies and chronic inflammation. The role of CCL18 in Human Immunodeficiency Virus (HIV-1) infection remains unknown. We analyzed expression levels of T helper cell-mediated (TH2) chemokines CCL18, CCL17, and CCL22 by ELISA in plasma collected from HIV-1-infected and healthy donors. In HIV-1-infected individuals, plasma viral loads were monitored by NucliSense HIV-1 QT assay and T cell counts and expression of the activation marker CD38 were determined by flow cytometry. Our data showed a significant increase in plasma levels of CCL18 in HIV-1-infected individuals compared to uninfected controls (p < 0.001) and a significant correlation between CCL18 levels and viral load in untreated patients. No significant difference of CCL18 levels was detected among the HIV-1-infected patients treated with combined antiretroviral therapy (cART) and HIV-1-untreated patients.CCL18 values are negatively correlated with CD4+CD38+ cell numbers and total CD4+ T cell counts in patients with a suppressed viral load. Notably, plasma levels of the TH2 chemokines CCL17 and CCL22 are also elevated during HIV-1 infection. However, no correlation of CCL17 and CCL22 production with CD4+ T cell counts was detected. Presented data shows that the chemokines, CCL17, CCL18, and CCL22 are increased during HIV-1 infection. However, only increased levels of CCL18, a marker of M2 macrophages, correlate with low CD4+ T cell counts in patients with suppressed viral load, raising the possibility that CCL18 and/or CCL18-producing cells may interfere with their reconstitution in HIV-1-infected patients on cART.
Collapse
|
7
|
Kumar V, Mansfield J, Fan R, MacLean A, Li J, Mohan M. miR-130a and miR-212 Disrupt the Intestinal Epithelial Barrier through Modulation of PPARγ and Occludin Expression in Chronic Simian Immunodeficiency Virus-Infected Rhesus Macaques. THE JOURNAL OF IMMUNOLOGY 2018. [PMID: 29514950 DOI: 10.4049/jimmunol.1701148] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Intestinal epithelial barrier dysfunction is a well-known sequela of HIV/SIV infection that persists despite antiretroviral therapy. Although inflammation is a triggering factor, the underlying molecular mechanisms remain unknown. Emerging evidence suggests that epithelial barrier function is epigenetically regulated by inflammation-induced microRNAs (miRNAs). Accordingly, we profiled and characterized miRNA/mRNA expression exclusively in colonic epithelium and identified 46 differentially expressed miRNAs (20 upregulated and 26 downregulated) in chronically SIV-infected rhesus macaques (Macaca mulatta). We bioinformatically crossed the predicted miRNA targets to transcriptomic data and characterized miR-130a and miR-212 as both were predicted to interact with critical epithelial barrier-associated genes. Next, we characterized peroxisome proliferator-activated receptor γ (PPARγ) and occludin (OCLN), predicted targets of miR-130a and miR-212, respectively, as their downregulation has been strongly linked to epithelial barrier disruption and dysbiosis. Immunofluorescence, luciferase reporter, and overexpression studies confirmed the ability of miR-130a and miR-212 to decrease protein expression of PPARγ and OCLN, respectively, and reduce transepithelial electrical resistance. Because Δ-9-tetrahydrocannabinol exerted protective effects in the intestine in our previous studies, we successfully used it to reverse miR-130a- and miR-212-mediated reduction in transepithelial electrical resistance. Finally, ex vivo Δ-9-tetrahydrocannabinol treatment of colon tissue from chronically SIV-infected rhesus macaques significantly increased PPARγ expression. Our findings suggest that dysregulated miR-130a and miR-212 expression in colonic epithelium during chronic HIV/SIV infection can facilitate epithelial barrier disruption by downregulating OCLN and PPARγ expression. Most importantly, our results highlight the beneficial effects of cannabinoids on epithelial barrier function in not just HIV/SIV but potentially other chronic intestinal inflammatory diseases.
Collapse
Affiliation(s)
- Vinay Kumar
- Eurofins Bioanalytics USA, Saint Charles, MO 63304
| | - Joshua Mansfield
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433; and
| | - Rong Fan
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433; and
| | - Andrew MacLean
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433; and
| | - Jian Li
- Department of Global Biostatistics and Data Science, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112
| | - Mahesh Mohan
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433; and
| |
Collapse
|
8
|
Hu B, Ding GY, Fu PY, Zhu XD, Ji Y, Shi GM, Shen YH, Cai JB, Yang Z, Zhou J, Fan J, Sun HC, Kuang M, Huang C. NOD-like receptor X1 functions as a tumor suppressor by inhibiting epithelial-mesenchymal transition and inducing aging in hepatocellular carcinoma cells. J Hematol Oncol 2018; 11:28. [PMID: 29482578 PMCID: PMC5828065 DOI: 10.1186/s13045-018-0573-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 02/11/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND This study was performed to investigate the role of nucleotide-binding oligomerization domain (NOD)-like receptor X1 (NLRX1) in regulating hepatocellular carcinoma (HCC) progression. METHODS Expression levels of NLRX1 in clinical specimens and cell lines were determined by reverse transcription-polymerase chain reaction (RT-PCR) and western blot (WB). Transwell assays were conducted to evaluate the effect of NLRX1 on cell invasion, and flow cytometry was used to assess apoptosis. Expression patterns of key molecules in the phosphoinositide 3-kinase (PI3K)-AKT pathways were determined via WB. The effect of NLRX1 on cell senescence was evaluated with β-galactosidase assays. Kaplan-Meier analyses and Cox regression models were used for prognostic evaluation. RESULTS NLRX1 was downregulated in tumor tissue compared with adjacent normal liver tissue. Low tumor NLRX1 expression was identified as an independent indicator for HCC prognosis (recurrence: hazard ratio [HR] 1.87, 95% confidence interval [CI] 1.26-2.76, overall survival [OS] 2.26, 95% CI 1.44-3.56). NLRX1 over-expression (OE) significantly inhibited invasiveness ability and induced apoptosis in HCC cells. In vivo experiments showed that NLRX1 knock-down (KD) significantly promoted HCC growth. Mechanistically, NLRX1 exhibited a suppressor function by decreasing phosphorylation of AKT and thus downregulating Snail1 expression, which inhibited epithelial-mesenchymal-transition (EMT) in HCC cells. Moreover, NLRX1 OE could induce cell senescence via an AKT-P21-dependent manner. CONCLUSIONS NLRX1 acted as a tumor suppressor in HCC by inducing apoptosis, promoting senescence, and decreasing invasiveness by repressing PI3K-AKT signaling pathway. Future investigations will focus on restoring expression of NLRX1 to provide new insights into HCC treatment.
Collapse
Affiliation(s)
- Bo Hu
- Department of Liver Surgery and Transplant, Liver Cancer Institute and Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Rd, Shanghai, 200032 China
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Shanghai, China
| | - Guang-Yu Ding
- Department of Liver Surgery and Transplant, Liver Cancer Institute and Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Rd, Shanghai, 200032 China
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Shanghai, China
| | - Pei-Yao Fu
- Department of Liver Surgery and Transplant, Liver Cancer Institute and Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Rd, Shanghai, 200032 China
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Shanghai, China
| | - Xiao-Dong Zhu
- Department of Liver Surgery and Transplant, Liver Cancer Institute and Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Rd, Shanghai, 200032 China
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Shanghai, China
| | - Yuan Ji
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guo-Ming Shi
- Department of Liver Surgery and Transplant, Liver Cancer Institute and Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Rd, Shanghai, 200032 China
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Shanghai, China
| | - Ying-Hao Shen
- Department of Liver Surgery and Transplant, Liver Cancer Institute and Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Rd, Shanghai, 200032 China
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Shanghai, China
| | - Jia-Bin Cai
- Department of Liver Surgery and Transplant, Liver Cancer Institute and Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Rd, Shanghai, 200032 China
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Shanghai, China
| | - Zhen Yang
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, 320 Yue Yang Road, Shanghai, 200031 China
| | - Jian Zhou
- Department of Liver Surgery and Transplant, Liver Cancer Institute and Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Rd, Shanghai, 200032 China
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Shanghai, China
| | - Jia Fan
- Department of Liver Surgery and Transplant, Liver Cancer Institute and Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Rd, Shanghai, 200032 China
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Shanghai, China
| | - Hui-Chuan Sun
- Department of Liver Surgery and Transplant, Liver Cancer Institute and Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Rd, Shanghai, 200032 China
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Shanghai, China
| | - Ming Kuang
- Department of Liver Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhong Shan Rd 2, Guangzhou, 510080 China
| | - Cheng Huang
- Department of Liver Surgery and Transplant, Liver Cancer Institute and Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Rd, Shanghai, 200032 China
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Shanghai, China
| |
Collapse
|
9
|
Schott K, Riess M, König R. Role of Innate Genes in HIV Replication. Curr Top Microbiol Immunol 2017; 419:69-111. [PMID: 28685292 DOI: 10.1007/82_2017_29] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cells use an elaborate innate immune surveillance and defense system against virus infections. Here, we discuss recent studies that reveal how HIV-1 is sensed by the innate immune system. Furthermore, we present mechanisms on the counteraction of HIV-1. We will provide an overview how HIV-1 actively utilizes host cellular factors to avoid sensing. Additionally, we will summarize effectors of the innate response that provide an antiviral cellular state. HIV-1 has evolved passive mechanism to avoid restriction and to regulate the innate response. We review in detail two prominent examples of these cellular factors: (i) NLRX1, a negative regulator of the innate response that HIV-1 actively usurps to block cytosolic innate sensing; (ii) SAMHD1, a restriction factor blocking the virus at the reverse transcription step that HIV-1 passively avoids to escape sensing.
Collapse
Affiliation(s)
- Kerstin Schott
- Host-Pathogen Interactions, Paul-Ehrlich-Institute, 63225, Langen, Germany
| | - Maximilian Riess
- Host-Pathogen Interactions, Paul-Ehrlich-Institute, 63225, Langen, Germany
| | - Renate König
- Host-Pathogen Interactions, Paul-Ehrlich-Institute, 63225, Langen, Germany. .,Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA. .,German Center for Infection Research (DZIF), 63225, Langen, Germany.
| |
Collapse
|
10
|
Longitudinal Examination of the Intestinal Lamina Propria Cellular Compartment of Simian Immunodeficiency Virus-Infected Rhesus Macaques Provides Broader and Deeper Insights into the Link between Aberrant MicroRNA Expression and Persistent Immune Activation. J Virol 2016; 90:5003-5019. [PMID: 26937033 DOI: 10.1128/jvi.00189-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/02/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Chronic immune activation/inflammation driven by factors like microbial translocation is a key determinant of human immunodeficiency virus/simian immunodeficiency virus (HIV/SIV) disease progression. Although extensive research on inflammation has focused on studying protein regulators, increasing evidence suggests a critical role for microRNAs (miRNAs) in regulating several aspects of the immune/inflammatory response and immune cell proliferation, differentiation, and activation. To understand their immunoregulatory role, we profiled miRNA expression sequentially in intestinal lamina propria leukocytes (LPLs) of eight macaques before and at 21, 90, and 180 days postinfection (dpi). At 21 dpi, ∼20 and 9 miRNAs were up- and downregulated, respectively. However, at 90 dpi (n = 60) and 180 dpi (n = 44), ≥75% of miRNAs showed decreased expression. Notably, the T-cell activation-associated miR-15b, miR-142-3p, miR-142-5p, and miR-150 expression was significantly downregulated at 90 and 180 dpi. Out of ∼10 downregulated miRNAs predicted to regulate CD69, we confirmed miR-92a to directly target CD69. Interestingly, the SIV-induced miR-190b expression was elevated at all time points. Additionally, elevated lipopolysaccharide (LPS)-responsive miR-146b-5p expression at 180 dpi was confirmed in primary intestinal macrophages following LPS treatment in vitro Further, reporter and overexpression assays validated IRAK1 (interleukin-1 receptor 1 kinase) as a direct miR-150 target. Furthermore, IRAK1 protein levels were markedly elevated in intestinal LPLs and epithelium. Finally, blockade of CD8(+) T-cell activation/proliferation with delta-9 tetrahydrocannabinol (Δ(9)-THC) significantly prevented miR-150 downregulation and IRAK1 upregulation. Our findings suggest that miR-150 downregulation during T-cell activation disrupts the translational control of IRAK1, facilitating persistent gastrointestinal (GI) inflammation. Finally, the ability of Δ(9)-THC to block the miR-150-IRAK1 regulatory cascade highlights the potential of cannabinoids to inhibit persistent inflammation/immune activation in HIV/SIV infection. IMPORTANCE Persistent GI tract disease/inflammation is a cardinal feature of HIV/SIV infection. Increasing evidence points to a critical role for miRNAs in controlling several aspects of the immune/inflammatory response. Here, we show significant dysregulation of miRNA expression exclusively in the intestinal lamina propria cellular compartment through the course of SIV infection. Specifically, the study identified miRNA signatures associated with key pathogenic events, such as viral replication, T-cell activation, and microbial translocation. The T-cell-enriched miR-150 showed significant downregulation throughout SIV infection and was confirmed to target IRAK1, a critical signal-transducing component of the IL-1 receptor and TLR signaling pathways. Reduced miR-150 expression was associated with markedly elevated IRAK1 expression in the intestines of chronically SIV-infected macaques. Finally, Δ(9)-THC-mediated blockade of CD8(+) T-cell activation in vitro significantly inhibited miR-150 downregulation and IRAK1 upregulation, suggesting its potential for targeted immune modulation in HIV infection.
Collapse
|
11
|
Garg A, Rawat P, Spector SA. Interleukin 23 produced by myeloid dendritic cells contributes to T-cell dysfunction in HIV type 1 infection by inducing SOCS1 expression. J Infect Dis 2015; 211:755-68. [PMID: 25234720 PMCID: PMC4402373 DOI: 10.1093/infdis/jiu523] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 09/09/2014] [Indexed: 12/18/2022] Open
Abstract
The mechanism of myeloid dendritic cell (mDC)-mediated impaired T-cell function was investigated during human immunodeficiency virus type 1 (HIV-1) infection. HIV or gp120 were found to inhibit lipopolysaccharide-induced mDC maturation and cause defects in allogeneic T-cell proliferation, interleukin 2 and interferon γ (IFN-γ) production, and phosphorylated STAT1 expression. gp120-treated mDCs downregulated autologous T-cell proliferation and IFN-γ production against a peptide pool consisting of cytomegalovirus, Epstein-Barr virus, and influenza virus (CEF). These T-cell defects were associated with a decrease in production of the T-helper type 1-polarizing cytokine interleukin 12p70 and an increase in interleukin 23 (IL-23) production by gp120-treated mDCs. gp120-induced IL-23 upregulated suppressor of cytokine signaling 1 (SOCS1) protein in T cells, which inhibited IFN-γ production and killing of CEF-pulsed monocytes. These effector functions were recovered by silencing SOCS1 in T cells. Furthermore, we observed IL-23-induced SOCS1 binding to the IFN-γ transcription complex. These results identify SOCS1 as a novel target to improve the immune function in HIV-infected persons.
Collapse
Affiliation(s)
- Ankita Garg
- Department of Pediatrics, Division of Infectious Diseases, University of California–San Diego, La Jolla
| | - Pratima Rawat
- Department of Pediatrics, Division of Infectious Diseases, University of California–San Diego, La Jolla
| | - Stephen A. Spector
- Department of Pediatrics, Division of Infectious Diseases, University of California–San Diego, La Jolla
- Rady Children's Hospital, San Diego, California
| |
Collapse
|
12
|
HIV enteropathy and aging: gastrointestinal immunity, mucosal epithelial barrier, and microbial translocation. Curr Opin HIV AIDS 2015; 9:309-16. [PMID: 24871087 DOI: 10.1097/coh.0000000000000066] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Despite decreases in morbidity and mortality as a result of antiretroviral therapy, gastrointestinal dysfunction remains common in HIV infection. Treated patients are at risk for complications of 'premature' aging, such as cardiovascular disease, osteopenia, neurocognitive decline, malignancies, and frailty. This review summarizes recent observations in this field. RECENT FINDINGS Mucosal CD4 lymphocytes, especially Th17 cells, are depleted in acute HIV and simian immune deficiency virus (SIV) infections, although other cell types also are affected. Reconstitution during therapy often is incomplete, especially in mucosa. Mucosal barrier function is affected by both HIV infection and aging and includes paracellular transport via tight junctions and uptake through areas of apoptosis; other factors may affect systemic antigen exposure. The resultant microbial translocation is associated with systemic immune activation in HIV and SIV infections. There is evidence of immune activation and microbial translocation in the elderly. The immune phenotypes of immunosenescence in HIV infection and aging appear similar. There are several targets for intervention; blockage of residual mucosal virus replication, preventing antigen uptake, modulating the microbiome, improving T cell recovery, combining therapies aimed at mucosal integrity, augmenting mucosal immunity, and managing traditional risk factors for premature aging in the general population. SUMMARY Aging may interact with HIV enteropathy to enhance microbial translocation and immune activation.
Collapse
|
13
|
Abstract
The gastrointestinal (GI) tract presents a major site of immune modulation by HIV, resulting in significant morbidity. Most GI processes affected during HIV infection are regulated by the enteric nervous system. HIV has been identified in GI histologic specimens in up to 40% of patients, and the presence of viral proteins, including the trans-activator of transcription (Tat), has been reported in the gut indicating that HIV itself may be an indirect gut pathogen. Little is known of how Tat affects the enteric nervous system. Here we investigated the effects of the Tat protein on enteric neuronal excitability, proinflammatory cytokine release, and its overall effect on GI motility. Direct application of Tat (100 nm) increased the number of action potentials and reduced the threshold for action potential initiation in isolated myenteric neurons. This effect persisted in neurons pretreated with Tat for 3 d (19 of 20) and in neurons isolated from Tat(+) (Tat-expressing) transgenic mice. Tat increased sodium channel isoforms Nav1.7 and Nav1.8 levels. This increase was accompanied by an increase in sodium current density and a leftward shift in the sodium channel activation voltage. RANTES, IL-6, and IL-1β, but not TNF-α, were enhanced by Tat. Intestinal transit and cecal water content were also significantly higher in Tat(+) transgenic mice than Tat(-) littermates (controls). Together, these findings show that Tat has a direct and persistent effect on enteric neuronal excitability, and together with its effect on proinflammatory cytokines, regulates gut motility, thereby contributing to GI dysmotilities reported in HIV patients.
Collapse
|
14
|
Chandra LC, Kumar V, Torben W, Vande Stouwe C, Winsauer P, Amedee A, Molina PE, Mohan M. Chronic administration of Δ9-tetrahydrocannabinol induces intestinal anti-inflammatory microRNA expression during acute simian immunodeficiency virus infection of rhesus macaques. J Virol 2015; 89:1168-81. [PMID: 25378491 PMCID: PMC4300675 DOI: 10.1128/jvi.01754-14] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 10/30/2014] [Indexed: 01/16/2023] Open
Abstract
UNLABELLED Recreational and medical use of cannabis among human immunodeficiency virus (HIV)-infected individuals has increased in recent years. In simian immunodeficiency virus (SIV)-infected macaques, chronic administration of Δ9-tetrahydrocannabinol (Δ9-THC) inhibited viral replication and intestinal inflammation and slowed disease progression. Persistent gastrointestinal disease/inflammation has been proposed to facilitate microbial translocation and systemic immune activation and promote disease progression. Cannabinoids including Δ9-THC attenuated intestinal inflammation in mouse colitis models and SIV-infected rhesus macaques. To determine if the anti-inflammatory effects of Δ9-THC involved differential microRNA (miRNA) modulation, we profiled miRNA expression at 14, 30, and 60 days postinfection (days p.i.) in the intestine of uninfected macaques receiving Δ9-THC (n=3) and SIV-infected macaques administered either vehicle (VEH/SIV; n=4) or THC (THC/SIV; n=4). Chronic Δ9-THC administration to uninfected macaques significantly and positively modulated intestinal miRNA expression by increasing the total number of differentially expressed miRNAs from 14 to 60 days p.i. At 60 days p.i., ∼28% of miRNAs showed decreased expression in the VEH/SIV group compared to none showing decrease in the THC/SIV group. Furthermore, compared to the VEH/SIV group, THC selectively upregulated the expression of miR-10a, miR-24, miR-99b, miR-145, miR-149, and miR-187, previously been shown to target proinflammatory molecules. NOX4, a potent reactive oxygen species generator, was confirmed as a direct miR-99b target. A significant increase in NOX4+ crypt epithelial cells was detected in VEH/SIV macaques compared to the THC/SIV group. We speculate that miR-99b-mediated NOX4 downregulation may protect the intestinal epithelium from oxidative stress-induced damage. These results support a role for differential miRNA induction in THC-mediated suppression of intestinal inflammation. Whether similar miRNA modulation occurs in other tissues requires further investigation. IMPORTANCE Gastrointestinal (GI) tract disease/inflammation is a hallmark of HIV/SIV infection. Previously, we showed that chronic treatment of SIV-infected macaques with Δ9-tetrahydrocannabinol (Δ9-THC) increased survival and decreased viral replication and infection-induced gastrointestinal inflammation. Here, we show that chronic THC administration to SIV-infected macaques induced an anti-inflammatory microRNA expression profile in the intestine at 60 days p.i. These included several miRNAs bioinformatically predicted to directly target CXCL12, a chemokine known to regulate lymphocyte and macrophage trafficking into the intestine. Specifically, miR-99b was significantly upregulated in THC-treated SIV-infected macaques and confirmed to directly target NADPH oxidase 4 (NOX4), a reactive oxygen species generator known to damage intestinal epithelial cells. Elevated miR-99b expression was associated with a significantly decreased number of NOX4+ epithelial cells in the intestines of THC-treated SIV-infected macaques. Overall, our results show that selective upregulation of anti-inflammatory miRNA expression contributes to THC-mediated suppression of gastrointestinal inflammation and maintenance of intestinal homeostasis.
Collapse
Affiliation(s)
- Lawrance C Chandra
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Vinay Kumar
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Workineh Torben
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Curtis Vande Stouwe
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Peter Winsauer
- LSUHSC Alcohol and Drug Abuse Center, New Orleans, Louisiana, USA Department of Pharmacology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Angela Amedee
- LSUHSC Alcohol and Drug Abuse Center, New Orleans, Louisiana, USA Department of Microbiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Patricia E Molina
- LSUHSC Alcohol and Drug Abuse Center, New Orleans, Louisiana, USA Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Mahesh Mohan
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, USA
| |
Collapse
|
15
|
Mohan M, Kumar V, Lackner AA, Alvarez X. Dysregulated miR-34a-SIRT1-acetyl p65 axis is a potential mediator of immune activation in the colon during chronic simian immunodeficiency virus infection of rhesus macaques. THE JOURNAL OF IMMUNOLOGY 2014; 194:291-306. [PMID: 25452565 DOI: 10.4049/jimmunol.1401447] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Persistent gastrointestinal inflammation, a hallmark of progressive HIV/SIV infection, causes disruption of the gastrointestinal epithelial barrier, microbial translocation, and generalized immune activation/inflammation driving AIDS progression. Apart from protein regulators, recent studies strongly suggest critical roles for microRNAs (miRNAs) in regulating and managing certain aspects of the inflammatory process. To examine their immunoregulatory role, we profiled miRNA expression in the colon from 12 chronic SIV-infected and 4 control macaques. After applying multiple comparisons correction, 10 (3 upregulated and 7 downregulated) miRNAs showed differential expression. Most notably, miR-34a showed significant upregulation in both epithelial and lamina propria leukocyte (LPL) compartments. Intense γH2A.X expression in colonic epithelium and LPLs confirmed the contribution of DNA damage response in driving miR-34a upregulation. SIRT1 mRNA and protein decreased significantly in both colonic epithelium and LPLs. Luciferase reporter assays validated rhesus macaque SIRT1 as a direct miR-34a target. Decreased SIRT1 expression was associated with constitutively enhanced expression of the transcriptionally active form of the p65 (acetylated on lysine 310) subunit of NF-κB exclusively in the LPL compartment. The intensity and number of acetylated p65(+) cells was markedly elevated in LPLs of chronically SIV-infected macaques compared with uninfected controls and localized to increased numbers of IgA(+) and IgG(+) plasma cells. These findings provide new insights into the potential role of the miR-34a-SIRT1-p65 axis in causing hyperactivation of the intestinal B cell system. Our results point to a possible mechanism where the normal immunosuppressive function of SIRT1 is inhibited by elevated miR-34a expression resulting in constitutive activation of acetylated p65 (lysine 310).
Collapse
Affiliation(s)
- Mahesh Mohan
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433
| | - Vinay Kumar
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433
| | - Andrew A Lackner
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433
| | - Xavier Alvarez
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433
| |
Collapse
|
16
|
Lu W, Ma F, Churbanov A, Wan Y, Li Y, Kang G, Yuan Z, Wang D, Zhang C, Xu J, Lewis M, Li Q. Virus-host mucosal interactions during early SIV rectal transmission. Virology 2014; 464-465:406-414. [PMID: 25128762 PMCID: PMC4808581 DOI: 10.1016/j.virol.2014.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/07/2014] [Accepted: 07/08/2014] [Indexed: 02/03/2023]
Abstract
To deepen our understanding of early rectal transmission of HIV-1, we studied virus-host interactions in the rectal mucosa using simian immunodeficiency virus (SIV)-Indian rhesus macaque model and mRNA deep sequencing. We found that rectal mucosa actively responded to SIV as early as 3 days post-rectal inoculation (dpi) and mobilized more robust responses at 6 and 10 dpi. Our results suggest that the failure of the host to contain virus replication at the portal of entry is attributable to both a high-level expression of lymphocyte chemoattractant, proinflammatory and immune activation genes, which can recruit and activate viral susceptible target cells into mucosa; and a high-level expression of SIV accessory genes, which are known to be able to counter and evade host restriction factors and innate immune responses. This study provides new insights into the mechanism of rectal transmission.
Collapse
Affiliation(s)
- Wuxun Lu
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Fangrui Ma
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Alexander Churbanov
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Yanmin Wan
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai, China
| | - Yue Li
- College of Life Sciences, Nankai University, Tianjin, China; Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Guobin Kang
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Zhe Yuan
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Dong Wang
- Department of Statistics, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Chi Zhang
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Jianqing Xu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai, China; State Key Laboratory for Infectious Disease Prevention and Control, China CDC, Beijing, China
| | | | - Qingsheng Li
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| |
Collapse
|
17
|
Mohan M, Chandra LC, Torben W, Aye PP, Alvarez X, Lackner AA. miR-190b is markedly upregulated in the intestine in response to simian immunodeficiency virus replication and partly regulates myotubularin-related protein-6 expression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 193:1301-13. [PMID: 24981450 PMCID: PMC4108538 DOI: 10.4049/jimmunol.1303479] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
HIV replication and the cellular micro-RNA (miRNA) machinery interconnect at several posttranscriptional levels. To understand their regulatory role in the intestine, a major site of HIV/SIV replication, dissemination, and CD4(+) T cell depletion, we profiled miRNA expression in colon following SIV infection (10 acute SIV, 5 uninfected). Nine (four up and five down) miRNAs showed statistically significant differential expression. Most notably, miR-190b expression showed high statistical significance (adjusted p = 0.0032), the greatest fold change, and was markedly elevated in colon and jejunum throughout SIV infection. In addition, miR-190b upregulation was detected before peak viral replication and the nadir of CD4(+) T cell depletion predominantly in lamina propria leukocytes. Interestingly non-SIV-infected macaques with diarrhea and colitis failed to upregulate miR-190b, suggesting that its upregulation was neither inflammation nor immune-activation driven. SIV infection of in vitro-cultured CD4(+) T cells and primary intestinal macrophages conclusively identified miR-190b upregulation to be driven in response to viral replication. Further miR-190b expression levels in colon and jejunum positively correlated with tissue viral loads. In contrast, mRNA expression of myotubularin-related protein 6 (MTMR6), a negative regulator of CD4(+) T cell activation/proliferation, significantly decreased in SIV-infected macrophages. Luciferase reporter assays confirmed MTMR6 as a direct miR-190b target. To our knowledge, this is the first report, which describes dysregulated miRNA expression in the intestine, that identifies a potentially significant role for miR-190b in HIV/SIV pathogenesis. More importantly, miR-190b-mediated MTMR6 downregulation suggests an important mechanism that could keep infected cells in an activated state, thereby promoting viral replication. In the future, the mechanisms driving miR-190b upregulation including other cellular processes it regulates in SIV-infected cells need determination.
Collapse
Affiliation(s)
- Mahesh Mohan
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433
| | - Lawrance C Chandra
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433
| | - Workineh Torben
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433
| | - Pyone P Aye
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433
| | - Xavier Alvarez
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433
| | - Andrew A Lackner
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433
| |
Collapse
|
18
|
Zhong Y, Kinio A, Saleh M. Functions of NOD-Like Receptors in Human Diseases. Front Immunol 2013; 4:333. [PMID: 24137163 PMCID: PMC3797414 DOI: 10.3389/fimmu.2013.00333] [Citation(s) in RCA: 219] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 10/02/2013] [Indexed: 12/26/2022] Open
Abstract
Nucleotide-binding and oligomerization domain NOD-like receptors (NLRs) are highly conserved cytosolic pattern recognition receptors that perform critical functions in surveying the intracellular environment for the presence of infection, noxious substances, and metabolic perturbations. Sensing of these danger signals by NLRs leads to their oligomerization into large macromolecular scaffolds and the rapid deployment of effector signaling cascades to restore homeostasis. While some NLRs operate by recruiting and activating inflammatory caspases into inflammasomes, others trigger inflammation via alternative routes including the nuclear factor-κB, mitogen-activated protein kinase, and regulatory factor pathways. The critical role of NLRs in development and physiology is demonstrated by their clear implications in human diseases. Mutations in the genes encoding NLRP3 or NLRP12 lead to hereditary periodic fever syndromes, while mutations in CARD15 that encodes NOD2 are linked to Crohn’s disease or Blau’s syndrome. Genome-wide association studies (GWASs) have identified a number of risk alleles encompassing NLR genes in a host of diseases including allergic rhinitis, multiple sclerosis, inflammatory bowel disease, asthma, multi-bacillary leprosy, vitiligo, early-onset menopause, and bone density loss in elderly women. Animal models have allowed the characterization of underlying effector mechanisms in a number of cases. In this review, we highlight the functions of NLRs in health and disease and discuss how the characterization of their molecular mechanisms provides new insights into therapeutic strategies for the management of inflammatory pathologies.
Collapse
Affiliation(s)
- Yifei Zhong
- Department of Microbiology and Immunology, McGill University , Montreal, QC , Canada
| | | | | |
Collapse
|
19
|
Mohan M, Kaushal D, Aye PP, Alvarez X, Veazey RS, Lackner AA. Focused examination of the intestinal epithelium reveals transcriptional signatures consistent with disturbances in enterocyte maturation and differentiation during the course of SIV infection. PLoS One 2013; 8:e60122. [PMID: 23593167 PMCID: PMC3621888 DOI: 10.1371/journal.pone.0060122] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 02/21/2013] [Indexed: 12/29/2022] Open
Abstract
The Gastrointestinal (GI) tract plays a pivotal role in AIDS pathogenesis as it is the primary site for viral transmission, replication and CD4+ T cell destruction. Accordingly, GI disease (enteropathy) has become a well-known complication and a driver of AIDS progression. To better understand the molecular mechanisms underlying GI disease we analyzed global gene expression profiles sequentially in the intestinal epithelium of the same animals before SIV infection and at 21 and 90 days post infection (DPI). More importantly we obtained sequential excisional intestinal biopsies and examined distinct mucosal components (epithelium. intraepithelial lymphocytes, lamina propria lymphocytes, fibrovascular stroma) separately. Here we report data pertaining to the epithelium. Overall genes associated with epithelial cell renewal/proliferation/differentiation, permeability and adhesion were significantly down regulated (<1.5–7 fold) at 21 and 90DPI. Genes regulating focal adhesions (n = 6), gap junctions (n = 3), ErbB (n = 3) and Wnt signaling (n = 4) were markedly down at 21DPI and the number of genes in each of these groups that were down regulated doubled between 21 and 90DPI. Notable genes included FAK, ITGA6, PDGF, TGFβ3, Ezrin, FZD6, WNT10A, and TCF7L2. In addition, at 90DPI genes regulating ECM-receptor interactions (laminins and ITGB1), epithelial cell gene expression (PDX1, KLF6), polarity/tight junction formation (PARD3B&6B) and histone demethylase (JMJD3) were also down regulated. In contrast, expression of NOTCH3, notch target genes (HES4, HES7) and EZH2 (histone methyltransferase) were significantly increased at 90DPI. The altered expression of genes linked to Wnt signaling together with decreased expression of PDX1, PARD3B, PARD6B and SDK1 suggests marked perturbations in intestinal epithelial function and homeostasis leading to breakdown of the mucosal barrier. More importantly, the divergent expression patterns of EZH2 and JMJD3 suggests that an epigenetic mechanism involving histone modifications may contribute to the massive decrease in gene expression at 90DPI leading to defects in enterocyte maturation and differentiation.
Collapse
Affiliation(s)
- Mahesh Mohan
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Deepak Kaushal
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Pyone P. Aye
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Xavier Alvarez
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Ronald S. Veazey
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Andrew A. Lackner
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
20
|
Canary LA, Vinton CL, Morcock DR, Pierce JB, Estes JD, Brenchley JM, Klatt NR. Rate of AIDS progression is associated with gastrointestinal dysfunction in simian immunodeficiency virus-infected pigtail macaques. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 190:2959-65. [PMID: 23401593 PMCID: PMC3665608 DOI: 10.4049/jimmunol.1202319] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
During HIV/SIV infection, mucosal immune system dysfunction and systemic immune activation are associated with progression to AIDS; however, it is unclear to what extent pre-existing gastrointestinal damage relates to disease progression postinfection. Pigtail macaques (PTM) are an excellent model in which to assess mucosal dysfunction in relation to HIV/SIV pathogenesis, as the majority of these animals have high levels of gastrointestinal damage, immune activation, and microbial translocation prior to infection, and rapidly progress to AIDS upon SIV infection. In this study, we characterized the mucosal immune environment prior to and throughout SIV infection in 13 uninfected PTM and 9 SIV-infected PTM, of which 3 were slow progressors. This small subset of slow progressors had limited innate immune activation in mucosal tissues in the periphery, which was associated with a more intact colonic epithelial barrier. Furthermore, we found that preinfection levels of microbial translocation, as measured by LPS-binding protein, in PTM correlated with the rate of progression to AIDS. These data suggest that pre-existing levels of microbial translocation and gastrointestinal tract dysfunction may influence the rate of HIV disease progression.
Collapse
Affiliation(s)
- Lauren A. Canary
- Laboratory of Molecular Microbiology, Program in Barrier Immunity and Repair, NIAID, NIH, Bethesda, MD, USA
| | - Carol L. Vinton
- Laboratory of Molecular Microbiology, Program in Barrier Immunity and Repair, NIAID, NIH, Bethesda, MD, USA
| | - David R. Morcock
- AIDS and Cancer and Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Jordan B. Pierce
- Laboratory of Molecular Microbiology, Program in Barrier Immunity and Repair, NIAID, NIH, Bethesda, MD, USA
| | - Jacob D. Estes
- AIDS and Cancer and Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Jason M. Brenchley
- Laboratory of Molecular Microbiology, Program in Barrier Immunity and Repair, NIAID, NIH, Bethesda, MD, USA
| | - Nichole R. Klatt
- Laboratory of Molecular Microbiology, Program in Barrier Immunity and Repair, NIAID, NIH, Bethesda, MD, USA
- Department of Pharmaceutics, Washington National Primate Research Center, University of Washington, Seattle, WA, USA
| |
Collapse
|
21
|
Semaphorin7A and its receptors: pleiotropic regulators of immune cell function, bone homeostasis, and neural development. Semin Cell Dev Biol 2013; 24:129-38. [PMID: 23333497 DOI: 10.1016/j.semcdb.2013.01.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 01/07/2013] [Indexed: 11/24/2022]
Abstract
Semaphorins form a large, evolutionary conserved family of cellular guidance signals. The semaphorin family contains several secreted and transmembrane proteins, but only one GPI-anchored member, Semaphorin7A (Sema7A). Although originally identified in immune cells, as CDw108, Sema7A displays widespread expression outside the immune system. It is therefore not surprising that accumulating evidence supports roles for this protein in a wide variety of biological processes in different organ systems and in disease. Well-characterized biological effects of Sema7A include those during bone and immune cell regulation, neuron migration and neurite growth. These effects are mediated by two receptors, plexinC1 and integrins. However, most of what is known today about Sema7A signaling concerns Sema7A-integrin interactions. Here, we review our current knowledge of Sema7A function and signaling in different organ systems, highlighting commonalities between the cellular effects and signaling pathways activated by Sema7A in different cell types. Furthermore, we discuss a potential role for Sema7A in disease and provide directions for further research.
Collapse
|
22
|
Klatt NR, Funderburg NT, Brenchley JM. Microbial translocation, immune activation, and HIV disease. Trends Microbiol 2013; 21:6-13. [PMID: 23062765 PMCID: PMC3534808 DOI: 10.1016/j.tim.2012.09.001] [Citation(s) in RCA: 287] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 08/29/2012] [Accepted: 09/10/2012] [Indexed: 02/07/2023]
Abstract
The advent of combination antiretroviral therapy (cART) has significantly improved the prognosis of human immunodeficiency virus (HIV)-infected individuals. However, individuals treated long-term with cART still manifest increased mortality compared to HIV-uninfected individuals. This increased mortality is closely associated with inflammation, which persists in cART-treated HIV-infected individuals despite levels of plasma viremia below detection limits. Chronic, pathological immune activation is a key factor in progression to acquired immunodeficiency syndrome (AIDS) in untreated HIV-infected individuals. One contributor to immune activation is microbial translocation, which occurs when microbial products traverse the tight epithelial barrier of the gastrointestinal tract. Here we review the mechanisms underlying microbial translocation and its role in contributing to immune activation and disease progression in HIV infection.
Collapse
Affiliation(s)
- Nichole R. Klatt
- Laboratory of Molecular Microbiology, Program in Program in Barrier Immunity and Repair, NIAID, NIH, Bethesda, MD, USA
| | - Nicholas T. Funderburg
- Division of Infectious Diseases, Center for AIDS Research, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, OH
| | - Jason M. Brenchley
- Laboratory of Molecular Microbiology, Program in Program in Barrier Immunity and Repair, NIAID, NIH, Bethesda, MD, USA
| |
Collapse
|