1
|
Chang YH, Tseng YH, Wang JM, Tsai YS, Liu XL, Huang HS. Phosphorylation of TG-interacting factor 1 at carboxyl-terminal sites in response to insulin regulates adipocyte differentiation. FEBS Lett 2024; 598:945-955. [PMID: 38472156 DOI: 10.1002/1873-3468.14849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/17/2024] [Accepted: 01/28/2024] [Indexed: 03/14/2024]
Abstract
TG-interacting factor 1 (TGIF1) contributes to the differentiation of murine white preadipocyte and human adipose tissue-derived stem cells; however, its regulation is not well elucidated. Insulin is a component of the adipogenic cocktail that induces ERK signaling. TGIF1 phosphorylation and sustained stability in response to insulin were reduced through the use of specific MEK inhibitor U0126. Mutagenesis at T235 or T239 residue of TGIF1 in preadipocytes led to dephosphorylation of TGIF1. The reduced TGIF1 stability resulted in an increase in p27kip1 expression, a decrease in phosphorylated Rb expression and cellular proliferation, and a reduced accumulation of lipids compared to the TGIF1-overexpressed cells. These findings highlight that insulin/ERK-driven phosphorylation of the T235 or T239 residue at TGIF1 is crucial for adipocyte differentiation.
Collapse
Affiliation(s)
- Yu-Hao Chang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Ju-Ming Wang
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Yau-Sheng Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Xin-Lei Liu
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Huei-Sheng Huang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
2
|
Lee E, Carreras-Gallo N, Lopez L, Turner L, Lin A, Mendez TL, Went H, Tomusiak A, Verdin E, Corley M, Ndhlovu L, Smith R, Dwaraka VB. Exploring the effects of Dasatinib, Quercetin, and Fisetin on DNA methylation clocks: a longitudinal study on senolytic interventions. Aging (Albany NY) 2024; 16:3088-3106. [PMID: 38393697 PMCID: PMC10929829 DOI: 10.18632/aging.205581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/19/2024] [Indexed: 02/25/2024]
Abstract
Senolytics, small molecules targeting cellular senescence, have emerged as potential therapeutics to enhance health span. However, their impact on epigenetic age remains unstudied. This study aimed to assess the effects of Dasatinib and Quercetin (DQ) senolytic treatment on DNA methylation (DNAm), epigenetic age, and immune cell subsets. In a Phase I pilot study, 19 participants received DQ for 6 months, with DNAm measured at baseline, 3 months, and 6 months. Significant increases in epigenetic age acceleration were observed in first-generation epigenetic clocks and mitotic clocks at 3 and 6 months, along with a notable decrease in telomere length. However, no significant differences were observed in second and third-generation clocks. Building upon these findings, a subsequent investigation evaluated the combination of DQ with Fisetin (DQF), a well-known antioxidant and antiaging senolytic molecule. After one year, 19 participants (including 10 from the initial study) received DQF for 6 months, with DNAm assessed at baseline and 6 months. Remarkably, the addition of Fisetin to the treatment resulted in non-significant increases in epigenetic age acceleration, suggesting a potential mitigating effect of Fisetin on the impact of DQ on epigenetic aging. Furthermore, our analyses unveiled notable differences in immune cell proportions between the DQ and DQF treatment groups, providing a biological basis for the divergent patterns observed in the evolution of epigenetic clocks. These findings warrant further research to validate and comprehensively understand the implications of these combined interventions.
Collapse
Affiliation(s)
- Edwin Lee
- Institute For Hormonal Balance, Orlando, FL 32819, USA
| | | | | | | | - Aaron Lin
- TruDiagnostic, Lexington, KY 40503, USA
| | | | | | - Alan Tomusiak
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Eric Verdin
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | | | | | | | | |
Collapse
|
3
|
Nojima I, Hosoda R, Toda Y, Saito Y, Ueda N, Horimoto K, Iwahara N, Horio Y, Kuno A. Downregulation of IGFBP5 contributes to replicative senescence via ERK2 activation in mouse embryonic fibroblasts. Aging (Albany NY) 2022; 14:2966-2988. [PMID: 35378512 PMCID: PMC9037271 DOI: 10.18632/aging.203999] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 03/23/2022] [Indexed: 11/29/2022]
Abstract
Insulin-like growth factor (IGF)-binding proteins (IGFBPs) are secretory proteins that regulate IGF signaling. In this study, we investigated the role of IGFBP5 in replicative senescence in embryonic mouse fibroblasts (MEFs). During passages according to the 3T3 method, MEFs underwent senescence after the 5th passage (P5) based on cell growth arrest, an increase in the number of cells positive for senescence-associated β-galactosidase (SA-β-GAL) staining, and upregulation of p16 and p19. In P8 MEFs, IGFBP5 mRNA level was markedly reduced compared with that in P2 MEFs. Downregulation of IGFBP5 via siRNA in P2 MEFs increased the number of SA-β-GAL-positive cells, upregulated p16 and p19, and inhibited cell growth. Incubation of MEFs with IGFBP5 during serial passage increased the cumulative population doubling and decreased SA-β-GAL positivity compared with those in vehicle-treated cells. IGFBP5 knockdown in P2 MEFs increased phosphorylation levels of ERK1 and ERK2. Silencing of ERK2, but not that of ERK1, blocked the increase in the number of SA-β-GAL-positive cells in IGFBP5-knockdown cells. The reduction in the cell number and upregulation of p16 and p21 in IGFBP5-knockdown cells were attenuated by ERK2 knockdown. Our results suggest that downregulation of IGFBP5 during serial passage contributes to replicative senescence via ERK2 in MEFs.
Collapse
Affiliation(s)
- Iyori Nojima
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ryusuke Hosoda
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuki Toda
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yoshiki Saito
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Naohiro Ueda
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kouhei Horimoto
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Naotoshi Iwahara
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yoshiyuki Horio
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Atsushi Kuno
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
4
|
Candesartan Neuroprotection in Rat Primary Neurons Negatively Correlates with Aging and Senescence: a Transcriptomic Analysis. Mol Neurobiol 2019; 57:1656-1673. [PMID: 31811565 DOI: 10.1007/s12035-019-01800-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/22/2019] [Indexed: 12/11/2022]
Abstract
Preclinical experiments and clinical trials demonstrated that angiotensin II AT1 receptor overactivity associates with aging and cellular senescence and that AT1 receptor blockers (ARBs) protect from age-related brain disorders. In a primary neuronal culture submitted to glutamate excitotoxicity, gene set enrichment analysis (GSEA) revealed expression of several hundred genes altered by glutamate and normalized by candesartan correlated with changes in expression in Alzheimer's patient's hippocampus. To further establish whether our data correlated with gene expression alterations associated with aging and senescence, we compared our global transcriptional data with additional published datasets, including alterations in gene expression in the neocortex and cerebellum of old mice, human frontal cortex after age of 40, gene alterations in the Werner syndrome, rodent caloric restriction, Ras and oncogene-induced senescence in fibroblasts, and to tissues besides the brain such as the muscle and kidney. The most significant and enriched pathways associated with aging and senescence were positively correlated with alterations in gene expression in glutamate-injured neurons and, conversely, negatively correlated when the injured neurons were treated with candesartan. Our results involve multiple genes and pathways, including CAV1, CCND1, CDKN1A, CHEK1, ICAM1, IL-1B, IL-6, MAPK14, PTGS2, SERPINE1, and TP53, encoding proteins associated with aging and senescence hallmarks, such as inflammation, oxidative stress, cell cycle and mitochondrial function alterations, insulin resistance, genomic instability including telomere shortening and DNA damage, and the senescent-associated secretory phenotype. Our results demonstrate that AT1 receptor blockade ameliorates central mechanisms of aging and senescence. Using ARBs for prevention and treatment of age-related disorders has important translational value.
Collapse
|
5
|
Shah A, Melhuish TA, Fox TE, Frierson HF, Wotton D. TGIF transcription factors repress acetyl CoA metabolic gene expression and promote intestinal tumor growth. Genes Dev 2019; 33:388-402. [PMID: 30808659 PMCID: PMC6446543 DOI: 10.1101/gad.320127.118] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 01/24/2019] [Indexed: 02/06/2023]
Abstract
In this study, Shah et al. show that Tgifs, which repress gene expression by binding directly to DNA or interacting with transforming growth factor β (TGFβ)-responsive SMADs, promote adenoma growth in the context of mutant Apc (adenomatous polyposis coli). Their findings suggest that Tgifs play an important role in regulating basic energy metabolism in normal cells and that this function of Tgifs is amplified in some cancers. Tgif1 (thymine–guanine-interacting factor 1) and Tgif2 repress gene expression by binding directly to DNA or interacting with transforming growth factor (TGF) β-responsive SMADs. Tgifs are essential for embryogenesis and may function in tumor progression. By analyzing both gain and loss of Tgif function in a well-established mouse model of intestinal cancer, we show that Tgifs promote adenoma growth in the context of mutant Apc (adenomatous polyposis coli). Despite the tumor-suppressive role of TGFβ signaling, transcriptome profiling of colon tumors suggests minimal effect of Tgifs on the TGFβ pathway. Instead, it appears that Tgifs, which are up-regulated in Apc mutant colon tumors, contribute to reprogramming metabolic gene expression. Integrating gene expression data from colon tumors with other gene expression and chromatin-binding data identifies a set of direct Tgif target genes encoding proteins involved in acetyl CoA and pyruvate metabolism. Analysis of both tumor and nontumor tissues indicates that these genes are targets of Tgif repression in multiple settings, suggesting that this is a core Tgif function. We propose that Tgifs play an important role in regulating basic energy metabolism in normal cells, and that this function of Tgifs is amplified in some cancers.
Collapse
Affiliation(s)
- Anant Shah
- Department of Biochemistry and Molecular Genetics, Center for Cell Signaling, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Tiffany A Melhuish
- Department of Biochemistry and Molecular Genetics, Center for Cell Signaling, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Todd E Fox
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Henry F Frierson
- Department of Pathology, University of Virginia, Charlottesville, Virginia 22908, USA
| | - David Wotton
- Department of Biochemistry and Molecular Genetics, Center for Cell Signaling, University of Virginia, Charlottesville, Virginia 22908, USA
| |
Collapse
|
6
|
Melhuish TA, Kowalczyk I, Manukyan A, Zhang Y, Shah A, Abounader R, Wotton D. Myt1 and Myt1l transcription factors limit proliferation in GBM cells by repressing YAP1 expression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:983-995. [PMID: 30312684 DOI: 10.1016/j.bbagrm.2018.10.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/05/2018] [Accepted: 10/06/2018] [Indexed: 12/19/2022]
Abstract
Myelin transcription factor 1 (Myt1) and Myt1l (Myt1-like) are zinc finger transcription factors that regulate neuronal differentiation. Reduced Myt1l expression has been implicated in glioblastoma (GBM), and the related St18 was originally identified as a potential tumor suppressor for breast cancer. We previously analyzed changes in gene expression in a human GBM cell line with re-expression of either Myt1 or Myt1l. This revealed largely overlapping gene expression changes, suggesting similar function in these cells. Here we show that re-expression of Myt1 or Myt1l reduces proliferation in two different GBM cell lines, activates gene expression programs associated with neuronal differentiation, and limits expression of proliferative and epithelial to mesenchymal transition gene-sets. Consistent with this, expression of both MYT1 and MYT1L is lower in more aggressive glioma sub-types. Examination of the gene expression changes in cells expressing Myt1 or Myt1l suggests that both repress expression of the YAP1 transcriptional coactivator, which functions primarily in the Hippo signaling pathway. Expression of YAP1 and its target genes is reduced in Myt-expressing cells, and there is an inverse correlation between YAP1 and MYT1/MYT1L expression in human brain cancer datasets. Proliferation of GBM cell lines is reduced by lowering YAP1 expression and increased with YAP1 over-expression, which overcomes the anti-proliferative effect of Myt1/Myt1l expression. Finally we show that reducing YAP1 expression in a GBM cell line slows the growth of orthotopic tumor xenografts. Together, our data suggest that Myt1 and Myt1l directly repress expression of YAP1, a protein which promotes proliferation and GBM growth.
Collapse
Affiliation(s)
- Tiffany A Melhuish
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, USA; Center for Cell Signaling, University of Virginia, Charlottesville, USA
| | - Izabela Kowalczyk
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, USA; Center for Cell Signaling, University of Virginia, Charlottesville, USA
| | - Arkadi Manukyan
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, USA; Center for Cell Signaling, University of Virginia, Charlottesville, USA
| | - Ying Zhang
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, USA
| | - Anant Shah
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, USA; Center for Cell Signaling, University of Virginia, Charlottesville, USA
| | - Roger Abounader
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, USA
| | - David Wotton
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, USA; Center for Cell Signaling, University of Virginia, Charlottesville, USA.
| |
Collapse
|
7
|
Wu N, Meng F, Zhou T, Venter J, Giang TK, Kyritsi K, Wu C, Alvaro D, Onori P, Mancinelli R, Gaudio E, Francis H, Alpini G, Glaser S, Franchitto A. The Secretin/Secretin Receptor Axis Modulates Ductular Reaction and Liver Fibrosis through Changes in Transforming Growth Factor-β1-Mediated Biliary Senescence. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2264-2280. [PMID: 30036520 PMCID: PMC6168967 DOI: 10.1016/j.ajpath.2018.06.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/26/2018] [Accepted: 06/19/2018] [Indexed: 12/12/2022]
Abstract
Activation of the secretin (Sct)/secretin receptor (SR) axis stimulates ductular reaction and liver fibrosis, which are hallmarks of cholangiopathies. Our aim was to define the role of Sct-regulated cellular senescence, and we demonstrated that both ductular reaction and liver fibrosis are significantly reduced in Sct-/-, SR-/-, and Sct-/-/SR-/- bile duct ligated (BDL) mice compared with BDL wild-type mice. The reduction in hepatic fibrosis in Sct-/-, SR-/-, and Sct-/-/SR-/- BDL mice was accompanied by reduced transforming growth factor-β1 levels in serum and cholangiocyte supernatant, as well as decreased expression of markers of cellular senescence in cholangiocytes in contrast to enhanced cellular senescence in hepatic stellate cells compared with BDL wild-type mice. Secretin directly stimulated the senescence of cholangiocytes and regulated, by a paracrine mechanism, the senescence of hepatic stellate cells and liver fibrosis via modulation of transforming growth factor-β1 biliary secretion. Targeting senescent cholangiocytes may represent a novel therapeutic approach for ameliorating hepatic fibrosis during cholestatic liver injury.
Collapse
Affiliation(s)
- Nan Wu
- Department of Medical Physiology, Department of Research, Texas A&M University College of Medicine, Temple, Texas
| | - Fanyin Meng
- Central Texas Veterans Health Care System, Temple, Texas; Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Health Care, Temple, Texas
| | - Tianhao Zhou
- Department of Medical Physiology, Department of Research, Texas A&M University College of Medicine, Temple, Texas
| | - Julie Venter
- Department of Medical Physiology, Department of Research, Texas A&M University College of Medicine, Temple, Texas
| | - Thao K Giang
- Department of Medical Physiology, Department of Research, Texas A&M University College of Medicine, Temple, Texas
| | - Konstantina Kyritsi
- Department of Medical Physiology, Department of Research, Texas A&M University College of Medicine, Temple, Texas
| | - Chaodong Wu
- Department of Nutrition and Food Science, Texas A&M University, College Station, Texas
| | | | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedics Sciences, Sapienza, Rome, Italy
| | - Romina Mancinelli
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedics Sciences, Sapienza, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedics Sciences, Sapienza, Rome, Italy
| | - Heather Francis
- Department of Medical Physiology, Department of Research, Texas A&M University College of Medicine, Temple, Texas; Central Texas Veterans Health Care System, Temple, Texas; Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Health Care, Temple, Texas
| | - Gianfranco Alpini
- Department of Medical Physiology, Department of Research, Texas A&M University College of Medicine, Temple, Texas; Central Texas Veterans Health Care System, Temple, Texas; Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Health Care, Temple, Texas.
| | - Shannon Glaser
- Department of Medical Physiology, Department of Research, Texas A&M University College of Medicine, Temple, Texas; Central Texas Veterans Health Care System, Temple, Texas; Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Health Care, Temple, Texas
| | - Antonio Franchitto
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedics Sciences, Sapienza, Rome, Italy; Department of Medicine, Sapienza, Rome, Italy; Eleonora Lorillard Spencer Cenci Foundation, Rome, Italy
| |
Collapse
|
8
|
Wotton D, Taniguchi K. Functions of TGIF homeodomain proteins and their roles in normal brain development and holoprosencephaly. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2018; 178:128-139. [PMID: 29749689 DOI: 10.1002/ajmg.c.31612] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 03/30/2018] [Accepted: 04/02/2018] [Indexed: 01/08/2023]
Abstract
Holoprosencephaly (HPE) is a frequent human forebrain developmental disorder with both genetic and environmental causes. Multiple loci have been associated with HPE in humans, and potential causative genes at 14 of these loci have been identified. Although TGIF1 (originally TGIF, for Thymine Guanine-Interacting Factor) is among the most frequently screened genes in HPE patients, an understanding of how mutations in this gene contribute to the pathogenesis of HPE has remained elusive. However, mouse models based on loss of function of Tgif1, and the related Tgif2 gene, have shed some light on how human TGIF1 variants might cause HPE. Functional analyses of TGIF proteins and of TGIF1 single nucleotide variants from HPE patients, combined with analysis of forebrain development in mouse embryos lacking both Tgif1 and Tgif2, suggest that TGIFs regulate the transforming growth factor ß/Nodal signaling pathway and sonic hedgehog (SHH) signaling independently. Although, some developmental processes that are regulated by TGIFs may be Nodal-dependent, it appears that the forebrain patterning defects and HPE in Tgif mutant mouse embryos is primarily due to altered signaling via the Shh pathway.
Collapse
Affiliation(s)
- David Wotton
- Department of Biochemistry and Molecular Genetics, Center for Cell Signaling, University of Virginia, Charlottesville, Virginia
| | - Kenichiro Taniguchi
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
9
|
Carlton AL, Illendula A, Gao Y, Llaneza DC, Boulton A, Shah A, Rajewski RA, Landen CN, Wotton D, Bushweller JH. Small molecule inhibition of the CBFβ/RUNX interaction decreases ovarian cancer growth and migration through alterations in genes related to epithelial-to-mesenchymal transition. Gynecol Oncol 2018; 149:350-360. [PMID: 29551565 DOI: 10.1016/j.ygyno.2018.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/27/2018] [Accepted: 03/05/2018] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Ovarian cancer survival and treatment have improved minimally in the past 20years. Novel treatment strategies are needed to combat this disease. This study investigates the effects of chemical inhibition of the CBFβ/RUNX protein-protein interaction on ovarian cancer cell lines. METHODS Ovarian cancer cell lines were treated with CBFβ/RUNX inhibitors, and the effects on proliferation, DNA replication, wound healing, and anchorage-independent growth were measured. RNA-Seq was performed on compound-treated cells to identify differentially expressed genes. Genes altered by compound treatment were targeted with siRNAs, and effects on DNA replication and wound healing were measured. RESULTS Chemical inhibition of the CBFβ/RUNX interaction decreases ovarian cancer cell proliferation. Inhibitor treatment leads to an S-phase cell cycle delay, as indicated by an increased percentage of cells in S-phase, and a decreased DNA replication rate. Inhibitor treatment also reduces wound healing and anchorage-independent growth. RNA-Seq on compound-treated cells revealed changes in a small number of genes related to proliferation and epithelial-to-mesenchymal transition. siRNA-mediated knockdown of INHBA and MMP1 - two genes whose expression decreases with compound treatment - slowed DNA replication and impaired wound healing. CONCLUSIONS Chemical inhibition of the CBFβ/RUNX interaction is a viable strategy for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Anne L Carlton
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA; Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Anuradha Illendula
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Yan Gao
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Danielle C Llaneza
- Department of Obstetrics and Gynecology, University of Virginia, Charlottesville, VA 22908, USA
| | - Adam Boulton
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Anant Shah
- Department of Biochemistry and Molecular Genetics and Center for Cell Signaling, University of Virginia, Charlottesville, VA 22908, USA
| | - Roger A Rajewski
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | - Charles N Landen
- Department of Obstetrics and Gynecology, University of Virginia, Charlottesville, VA 22908, USA
| | - David Wotton
- Department of Biochemistry and Molecular Genetics and Center for Cell Signaling, University of Virginia, Charlottesville, VA 22908, USA
| | - John H Bushweller
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
10
|
Pan T, Mao T, Yang H, Wang H, Wang Y. Silencing of TGIF sensitizes MDA-MB-231 human breast cancer cells to cisplatin-induced apoptosis. Exp Ther Med 2018; 15:2978-2984. [PMID: 29456703 PMCID: PMC5795508 DOI: 10.3892/etm.2018.5780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 01/16/2018] [Indexed: 12/20/2022] Open
Abstract
The present study was designed to explore the sensitivity of MDA-MB-231 cells to cisplatin after silencing the expression of TG-interacting factor (TGIF) protein. Cell viability was measured using an MTT assay. Cell apoptosis was detected by the annexin V and dead cell assay and the Hoechst staining assay. Protein expression was analyzed using western blot analysis. A colony formation assay was also performed. It was observed that cisplatin reduced the expression of TGIF protein in a dose- and time-dependent manner. Silencing TGIF significantly suppressed the cell proliferation and colony formation in MDA-MB-231 cells with the treatment of cisplatin. Results indicated that silencing TGIF could dramatically increase the cisplatin-induced apoptosis rate in MDA-MB-231 cells. The expression of PARP and caspase-3 proteins was correlated with the effect that silencing TGIF enhanced cisplatin sensitivity in MDA-MB-231 cells. The present data showed that silencing TGIF promoted apoptotic sensitivity that was induced by cisplatin in MDA-MB-231 human breast cancer cells and suggested that TGIF might be a therapeutic target for improving the chemotherapy response in triple-negative breast cancer.
Collapse
Affiliation(s)
- Teng Pan
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Tingting Mao
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Haiyan Yang
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Haiyu Wang
- Department of Toxicology, Henan Center for Disease Control and Prevention, Zhengzhou, Henan 450016, P.R. China
| | - Yadong Wang
- Department of Toxicology, Henan Center for Disease Control and Prevention, Zhengzhou, Henan 450016, P.R. China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| |
Collapse
|
11
|
Gadd45b deficiency promotes premature senescence and skin aging. Oncotarget 2017; 7:26935-48. [PMID: 27105496 PMCID: PMC5053623 DOI: 10.18632/oncotarget.8854] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 04/12/2016] [Indexed: 12/14/2022] Open
Abstract
The GADD45 family of proteins functions as stress sensors in response to various physiological and environmental stressors. Here we show that primary mouse embryo fibroblasts (MEFs) from Gadd45b null mice proliferate slowly, accumulate increased levels of DNA damage, and senesce prematurely. The impaired proliferation and increased senescence in Gadd45b null MEFs is partially reversed by culturing at physiological oxygen levels, indicating that Gadd45b deficiency leads to decreased ability to cope with oxidative stress. Interestingly, Gadd45b null MEFs arrest at the G2/M phase of cell cycle, in contrast to other senescent MEFs, which arrest at G1. FACS analysis of phospho-histone H3 staining showed that Gadd45b null MEFs are arrested in G2 phase rather than M phase. H2O2 and UV irradiation, known to increase oxidative stress, also triggered increased senescence in Gadd45b null MEFs compared to wild type MEFs. In vivo evidence for increased senescence in Gadd45b null mice includes the observation that embryos from Gadd45b null mice exhibit increased senescence staining compared to wild type embryos. Furthermore, it is shown that Gadd45b deficiency promotes senescence and aging phenotypes in mouse skin. Together, these results highlight a novel role for Gadd45b in stress-induced senescence and in tissue aging.
Collapse
|
12
|
Tsai CW, Chiang IN, Wang JH, Young TH. Chitosan delaying human fibroblast senescence through downregulation of TGF-β signaling pathway. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1852-1863. [DOI: 10.1080/21691401.2017.1394873] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ching-Wen Tsai
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - I-Ni Chiang
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Department of Urology, National Taiwan University Hospital, Taipei, Taiwan
| | - Jyh-Horng Wang
- Department of Orthopedic Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Tai-Horng Young
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
13
|
Kumar R, Gont A, Perkins TJ, Hanson JEL, Lorimer IAJ. Induction of senescence in primary glioblastoma cells by serum and TGFβ. Sci Rep 2017; 7:2156. [PMID: 28526854 PMCID: PMC5438350 DOI: 10.1038/s41598-017-02380-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 04/18/2017] [Indexed: 12/26/2022] Open
Abstract
Glioblastoma is the most common type of adult brain tumour and has a median survival after diagnosis of a little more than a year. Glioblastomas have a high frequency of mutations in the TERT promoter and CDKN2A locus that are expected to render them resistant to both replicative and oncogene-induced senescence. However, exposure of PriGO8A primary glioblastoma cells to media with 10% serum induced a senescence-like phenotype characterized by increased senescence-associated β galactosidase activity, PML bodies and p21 and morphological changes typical of senescence. Microarray expression analysis showed that 24 h serum exposure increased the expression of genes associated with the TGFβ pathway. Treatment of PriGO8A cells with TGFβ was sufficient to induce senescence in these cells. The response of PriGO8A cells to serum was dependent on basal expression of the TGFβ activator protein thrombospondin. Primary glioblastoma cells from three additional patients showed a variable ability to undergo senescence in response to serum. However all were able to undergo senescence in response to TGFβ, although for cells from one patient this required concomitant inhibition of Ras pathway signalling. Primary glioblastoma cells therefore retain a functional senescence program that is inducible by acute activation of the TGFβ signalling pathway.
Collapse
Affiliation(s)
- Ritesh Kumar
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.,Department of Surgery, University of Ottawa, Ottawa, Ontario, Canada
| | - Alexander Gont
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Theodore J Perkins
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.,Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6, Canada
| | - Jennifer E L Hanson
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6, Canada
| | - Ian A J Lorimer
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6, Canada. .,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada. .,Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
14
|
Tgif1 and Tgif2 Repress Expression of the RabGAP Evi5l. Mol Cell Biol 2017; 37:MCB.00527-16. [PMID: 27956704 DOI: 10.1128/mcb.00527-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/02/2016] [Indexed: 11/20/2022] Open
Abstract
Mouse embryos conditionally lacking Tgif1 and Tgif2 have holoprosencephaly and defects in left-right asymmetry. To identify pathways affected by loss of Tgif function during embryogenesis, we performed transcriptome profiling on whole mouse embryos. Among the genes with altered expression in embryos lacking Tgifs were a number with links to cilium function. One of these, Evi5l, encodes a RabGAP that is known to block the formation of cilia when overexpressed. Evi5l expression is increased in Tgif1; Tgif2-null embryos and in double-null mouse embryo fibroblasts (MEFs). Knockdown of Tgifs in a human retinal pigment epithelial cell line also increased EVI5L expression. We show that TGIF1 binds to a conserved consensus TGIF site 5' of the human and mouse Evi5l genes and represses Evi5l expression. In primary MEFs lacking both Tgifs, the number of cells with primary cilia was significantly decreased, and we observed a reduction in the transcriptional response to Shh pathway activation. Reducing Evi5l expression in MEFs lacking Tgifs resulted in a partial restoration of cilium numbers and in the transcriptional response to activation of the Shh pathway. In summary, this work shows that Tgifs regulate ciliogenesis and suggests that Evi5l mediates at least part of this effect.
Collapse
|
15
|
Taniguchi K, Anderson AE, Melhuish TA, Carlton AL, Manukyan A, Sutherland AE, Wotton D. Genetic and Molecular Analyses indicate independent effects of TGIFs on Nodal and Gli3 in neural tube patterning. Eur J Hum Genet 2016; 25:208-215. [PMID: 27924807 DOI: 10.1038/ejhg.2016.164] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 10/14/2016] [Accepted: 10/25/2016] [Indexed: 01/11/2023] Open
Abstract
Holoprosencephaly (HPE) is a prevalent craniofacial developmental disorder that has both genetic and environmental causes. The gene encoding TG-interacting factor 1 (TGIF1) is among those that are routinely screened in HPE patients. However, the mechanisms by which TGIF1 variants cause HPE are not fully understood. TGIF1 is a transcriptional repressor that limits the output of the Transforming Growth Factor ß (TGFß)/Nodal signaling pathway, and HPE in patients with TGIF1 variants has been suggested to be due to increased Nodal signaling. Mice lacking both Tgif1 and its paralog, Tgif2, have HPE, and embryos lacking Tgif function do not survive past mid-gestation. Here, we show that in the presence of a Nodal heterozygous mutation, proliferation defects are rescued and a proportion of embryos lacking all Tgif function survive to late gestation. However, these embryos have a classic HPE phenotype, suggesting that this is a Nodal-independent effect of Tgif loss of function. Further, we show that the Gli3 gene is a direct target for repression by Tgifs, independent of TGFß/Nodal signaling, consistent with Tgif mutations causing HPE via Nodal-independent effects on the Sonic Hedgehog (Shh) pathway. Based on this work, we propose a model for distinct functions of Tgifs in the Nodal and Shh/Gli3 pathways during forebrain development.
Collapse
Affiliation(s)
- Kenichiro Taniguchi
- Department of Biochemistry and Molecular Genetics, and Center for Cell Signaling, University of Virginia, Charlottesville, VA, USA
| | - Anoush E Anderson
- Department of Biochemistry and Molecular Genetics, and Center for Cell Signaling, University of Virginia, Charlottesville, VA, USA
| | - Tiffany A Melhuish
- Department of Biochemistry and Molecular Genetics, and Center for Cell Signaling, University of Virginia, Charlottesville, VA, USA
| | - Anne L Carlton
- Department of Biochemistry and Molecular Genetics, and Center for Cell Signaling, University of Virginia, Charlottesville, VA, USA
| | - Arkadi Manukyan
- Department of Biochemistry and Molecular Genetics, and Center for Cell Signaling, University of Virginia, Charlottesville, VA, USA
| | - Ann E Sutherland
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - David Wotton
- Department of Biochemistry and Molecular Genetics, and Center for Cell Signaling, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
16
|
Sun Z, Schriewer J, Tang M, Marlin J, Taylor F, Shohet RV, Konorev EA. The TGF-β pathway mediates doxorubicin effects on cardiac endothelial cells. J Mol Cell Cardiol 2015; 90:129-38. [PMID: 26686989 DOI: 10.1016/j.yjmcc.2015.12.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 12/05/2015] [Accepted: 12/09/2015] [Indexed: 12/19/2022]
Abstract
Elevated ALK4/5 ligands including TGF-β and activins have been linked to cardiovascular remodeling and heart failure. Doxorubicin (Dox) is commonly used as a model of cardiomyopathy, a condition that often precedes cardiovascular remodeling and heart failure. In 7-8-week-old C57Bl/6 male mice treated with Dox we found decreased capillary density, increased levels of ALK4/5 ligand and Smad2/3 transcripts, and increased expression of Smad2/3 transcriptional targets. Human cardiac microvascular endothelial cells (HCMVEC) treated with Dox also showed increased levels of ALK4/5 ligands, Smad2/3 transcriptional targets, a decrease in proliferation and suppression of vascular network formation in a HCMVEC and human cardiac fibroblasts co-culture assay. Our hypothesis is that the deleterious effects of Dox on endothelial cells are mediated in part by the activation of the TGF-β pathway. We used the inhibitor of ALK4/5 kinases SB431542 (SB) in concert with Dox to ascertain the role of TGF-β pathway activation in doxorubicin induced endothelial cell defects. SB prevented the suppression of HCMVEC proliferation in the presence of TGF-β2 and activin A, and alleviated the inhibition of HCMVEC proliferation by Dox. SB also prevented the suppression of vascular network formation in co-cultures of HCMVEC and human cardiac fibroblasts treated with Dox. Our results show that the inhibition of the TGF-β pathway alleviates the detrimental effects of Dox on endothelial cells in vitro.
Collapse
Affiliation(s)
- Zuyue Sun
- College of Pharmacy, University of Hawaii-Hilo, USA
| | | | - Mingxin Tang
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii-Manoa, USA
| | - Jerry Marlin
- Division of Basic Sciences, Kansas City University, USA
| | | | - Ralph V Shohet
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii-Manoa, USA
| | | |
Collapse
|
17
|
Wang Y, Wang H, Gao H, Xu B, Zhai W, Li J, Zhang C. Elevated expression of TGIF is involved in lung carcinogenesis. Tumour Biol 2015; 36:9223-31. [PMID: 26091794 DOI: 10.1007/s13277-015-3615-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/26/2015] [Indexed: 02/06/2023] Open
Abstract
The purpose of this study was to explore the expression of TG-interacting factor (TGIF) in lung carcinogenesis. Malignant transformation of human bronchial epithelial (16HBE) cell was established by benzo(a)pyrene (BaP) treatment. Soft agar assay and tumor formation assay in nude mice were applied. Tumorigenesis experiment in vivo was done by BaP treatment. Western blotting, immunohistochemistry, and quantitative polymerase chain reaction were used to detect TGIF expression. We observed a higher level of TGIF messenger RNA (mRNA) in lung cancer tissues than that in paracancerous tissues. We observed significantly higher levels of TGIF mRNA and protein in A549 and H1299 cell lines than that in 16HBE cell. Increased expressions of TGIF protein and mRNA were observed in 16HBE cells induced by BaP treatment as compared to those in solvent control group. We observed significantly higher levels of TGIF mRNA and protein in 16HBE-BaP cells than that in 16HBE-control cells. We observed significantly higher levels of TGIF mRNA and protein in mice lung tissues treated with BaP than that in control group. Our results suggested that elevated expression of TGIF was involved in lung carcinogenesis.
Collapse
Affiliation(s)
- Yadong Wang
- Department of Toxicology, Henan Center for Disease Control and Prevention, Zhengzhou, 450016, China.
| | - Haiyu Wang
- Department of Toxicology, Henan Center for Disease Control and Prevention, Zhengzhou, 450016, China
| | - Huiyan Gao
- Department of Toxicology, Henan Center for Disease Control and Prevention, Zhengzhou, 450016, China
| | - Bing Xu
- Department of Toxicology, Henan Center for Disease Control and Prevention, Zhengzhou, 450016, China
| | - Wenlong Zhai
- Department of General Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jiangmin Li
- Department of Toxicology, Henan Center for Disease Control and Prevention, Zhengzhou, 450016, China
| | - Congke Zhang
- Department of Toxicology, Henan Center for Disease Control and Prevention, Zhengzhou, 450016, China
| |
Collapse
|
18
|
Cerdá-Esteban N, Spagnoli FM. Glimpse into Hox and tale regulation of cell differentiation and reprogramming. Dev Dyn 2013; 243:76-87. [PMID: 24123411 DOI: 10.1002/dvdy.24075] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 09/15/2013] [Accepted: 10/04/2013] [Indexed: 12/20/2022] Open
Abstract
During embryonic development, cells become gradually restricted in their developmental potential and start elaborating lineage-specific transcriptional networks to ultimately acquire a unique differentiated state. Hox genes play a central role in specifying regional identities, thereby providing the cell with critical information on positional value along its differentiation path. The exquisite DNA-binding specificity of the Hox proteins is frequently dependent upon their interaction with members of the TALE family of homeodomain proteins. In addition to their function as Hox-cofactors, TALE homeoproteins control multiple crucial developmental processes through Hox-independent mechanisms. Here, we will review recent findings on the function of both Hox and TALE proteins in cell differentiation, referring mostly to vertebrate species. In addition, we will discuss the direct implications of this knowledge on cell plasticity and cell reprogramming.
Collapse
Affiliation(s)
- Nuria Cerdá-Esteban
- Laboratory of Molecular and Cellular Basis of Embryonic Development, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | |
Collapse
|
19
|
Transforming growth factor β regulates P-body formation through induction of the mRNA decay factor tristetraprolin. Mol Cell Biol 2013; 34:180-95. [PMID: 24190969 DOI: 10.1128/mcb.01020-13] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Transforming growth factor β (TGF-β) is a potent growth regulator and tumor suppressor in normal intestinal epithelium. Likewise, epithelial cell growth is controlled by rapid decay of growth-related mRNAs mediated through 3' untranslated region (UTR) AU-rich element (ARE) motifs. We demonstrate that treatment of nontransformed intestinal epithelial cells with TGF-β inhibited ARE-mRNA expression. This effect of TGF-β was promoted through increased assembly of cytoplasmic RNA processing (P) bodies where ARE-mRNA localization was observed. P-body formation was dependent on TGF-β/Smad signaling, as Smad3 deletion abrogated P-body formation. In concert with increased P-body formation, TGF-β induced expression of the ARE-binding protein tristetraprolin (TTP), which colocalized to P bodies. TTP expression was necessary for TGF-β-dependent P-body formation and promoted growth inhibition by TGF-β. The significance of this was observed in vivo, where colonic epithelium deficient in TGF-β/Smad signaling or TTP expression showed attenuated P-body levels. These results provide new insight into TGF-β's antiproliferative properties and identify TGF-β as a novel mRNA stability regulator in intestinal epithelium through its ability to promote TTP expression and subsequent P-body formation.
Collapse
|
20
|
Abstract
TG-interacting factor 1 (TGIF1) is a transcriptional repressor that can modulate retinoic acid and transforming growth factor β signaling pathways. It is required for myeloid progenitor cell differentiation and survival, and mutations in the TGIF1 gene cause holoprosencephaly. Furthermore, we have previously observed that acute myelogenous leukemia (AML) patients with low TGIF1 levels had worse prognoses. Here, we explored the role of Tgif1 in murine hematopoietic stem cell (HSC) function. CFU assays showed that Tgif1(-/-) bone marrow cells produced more total colonies and had higher serial CFU potential. These effects were also observed in vivo, where Tgif1(-/-) bone marrow cells had higher repopulation potential in short- and long-term competitive repopulation assays than wild-type cells. Serial transplantation and replating studies showed that Tgif1(-/-) HSCs exhibited greater self-renewal and were less proliferative and more quiescent than wild-type cells, suggesting that Tgif1 is required for stem cells to enter the cell cycle. Furthermore, HSCs from Tgif1(+/-) mice had a phenotype similar to that of HSCs from Tgif1(-/-) mice, while bone marrow cells with overexpressing Tgif1 showed increased proliferation and lower survival in long-term transplant studies. Taken together, our data suggest that Tgif1 suppresses stem cell self-renewal and provide clues as to how reduced expression of TGIF1 may contribute to poor long-term survival in patients with AML.
Collapse
|
21
|
Fetal Reprogramming and Senescence in Hypoplastic Left Heart Syndrome and in Human Pluripotent Stem Cells during Cardiac Differentiation. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:720-34. [DOI: 10.1016/j.ajpath.2013.05.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 04/23/2013] [Accepted: 05/11/2013] [Indexed: 11/17/2022]
|
22
|
Abstract
The basic elements of the transforming growth factor-β (TGFβ) pathway were revealed more than a decade ago. Since then, the concept of how the TGFβ signal travels from the membrane to the nucleus has been enriched with additional findings, and its multifunctional nature and medical relevance have relentlessly come to light. However, an old mystery has endured: how does the context determine the cellular response to TGFβ? Solving this question is key to understanding TGFβ biology and its many malfunctions. Recent progress is pointing at answers.
Collapse
Affiliation(s)
- Joan Massagué
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA.
| |
Collapse
|