1
|
Ksouri N, Moreno MÁ, Contreras-Moreira B, Gogorcena Y. Mapping the genomic landscape of Prunus spp. with PrunusMap. HORTICULTURE RESEARCH 2025; 12:uhae301. [PMID: 39949882 PMCID: PMC11822410 DOI: 10.1093/hr/uhae301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 10/16/2024] [Indexed: 02/16/2025]
Abstract
Next-generation sequencing has fueled significant advancement in plant breeding tools, such as genome-wide association studies and single-nucleotide polymorphism (SNP) analysis. In this dynamic landscape, plant databases housing SNP markers have evolved into hubs facilitating breeding initiatives and genomic research. PrunusMap, accessible at https://prunusmap.eead.csic.es is an open-source Web application tailored for the Prunus community. Featuring a user-friendly interface, PrunusMap empowers users to seamlessly align and locate markers across multiple genome versions of Prunus species and cultivars, supporting different queries and formats. Beyond locating marker positions, it provides a comprehensive list of annotated nearby genes and proteins. This streamlined process, driven by four intuitive features 'Find markers', 'Align sequences', 'Align proteins', and 'Locate by position', significantly reduces workload and boosts efficiency, particularly for users with limited bioinformatics expertise. Moreover, PrunusMap's versatility is underscored by its commitment to incorporate additional Prunus genome sequences, annotations, and markers upon user request.
Collapse
Affiliation(s)
- Najla Ksouri
- Group of Genomics of Fruit Trees and Grapevine, Department of Pomology, Estación Experimental de Aula Dei-Consejo Superior de Investigaciones Científicas, Avenida de Montañana 1005, E50059 Zaragoza, Spain
| | - María Ángeles Moreno
- Group of Fruit Tree Breeding and Fuit Quality, Department of Pomology, Estación Experimental de Aula Dei-Consejo Superior de Investigaciones Científicas, Avenida de Montañana 1005, E50059 Zaragoza, Spain
| | - Bruno Contreras-Moreira
- Laboratory of Computational and Structural Biology, Department of Genetics and Plant Breeding, Estación Experimental de Aula Dei-Consejo Superior de Investigaciones Científicas, Avenida de Montañana 1005, E50059 Zaragoza, Spain
| | - Yolanda Gogorcena
- Group of Genomics of Fruit Trees and Grapevine, Department of Pomology, Estación Experimental de Aula Dei-Consejo Superior de Investigaciones Científicas, Avenida de Montañana 1005, E50059 Zaragoza, Spain
| |
Collapse
|
2
|
Zhang W, Liao L, Wan B, Han Y. Deciphering the genetic mechanisms of chilling requirement for bud endodormancy release in deciduous fruit trees. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:70. [PMID: 39391168 PMCID: PMC11461438 DOI: 10.1007/s11032-024-01510-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024]
Abstract
Bud endodormancy in deciduous fruit trees is an adaptive trait evolved by selection for the capacity to survive unfavorable environmental conditions. Deciduous trees require a certain amount of winter chill named chilling requirement (CR) to promote bud endodormancy release. In recent decades, global warming has endangered the chill accumulation in deciduous fruit trees. Developing low-CR cultivars is a practical way to neutralize the effect of climate changes on the cultivation and distribution of deciduous fruit trees. In this review, we focus on the effect of chilling accumulation on bud endodormancy release and the genetic mechanisms underlying the chilling requirement in deciduous fruit trees. Additionally, we put forth a regulatory model for bud endodormancy and provide prospective directions for future research in deciduous fruit trees.
Collapse
Affiliation(s)
- Weihan Zhang
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, 430074 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Liao Liao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, 430074 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Baoxiong Wan
- Guangxi Key Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guangxi Academy of Specialty Crops, Guilin, 541004 Guangxi China
| | - Yuepeng Han
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, 430074 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074 China
| |
Collapse
|
3
|
da Silva Linge C, Fu W, Calle A, Rawandoozi Z, Cai L, Byrne DH, Worthington M, Gasic K. Ppe.RPT/SSC-1: from QTL mapping to a predictive KASP test for ripening time and soluble solids concentration in peach. Sci Rep 2024; 14:1453. [PMID: 38228692 PMCID: PMC10791670 DOI: 10.1038/s41598-024-51599-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/07/2024] [Indexed: 01/18/2024] Open
Abstract
Genomic regions associated with ripening time (RPT) and soluble solids concentration (SSC) were mapped using a pedigreed population including multiple F1 and F2 families from the Clemson University peach breeding program (CUPBP). RPT and SSC QTLs were consistently identified in two seasons (2011 and 2012) and the average datasets (average of two seasons). A target region spanning 10,981,971-11,298,736 bp on chromosome 4 of peach reference genome used for haplotype analysis revealed four haplotypes with significant differences in trait values among different diplotype combinations. Favorable alleles at the target region for both RPT and SSC were determined and a DNA test for predicting RPT and SSC was developed. Two Kompetitive Allele Specific PCR (KASP) assays were validated on 84 peach cultivars and 163 seedlings from the CUPBP, with only one assay (Ppe.RPT/SSC-1) needed to predict between early and late-season ripening cultivars and low and high SSC. These results advance our understanding of the genetic basis of RPT and SSC and facilitate selection of new peach cultivars with the desired RPT and SSC.
Collapse
Affiliation(s)
- Cassia da Silva Linge
- Department of Plant and Environmental Sciences, College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, SC, 29634, USA
- Department of Agriculture and Environmental Sciences, University of Milan, Milan, Italy
| | - Wanfang Fu
- Department of Plant and Environmental Sciences, College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Alejandro Calle
- Department of Plant and Environmental Sciences, College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, SC, 29634, USA
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Fruitcentre, PCiTAL, Gardeny Park, Fruitcentre Building, 25003, Lleida, Spain
| | - Zena Rawandoozi
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Lichun Cai
- Department of Plant and Environmental Sciences, College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, SC, 29634, USA
| | - David H Byrne
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Margaret Worthington
- Department of Horticulture, University of Arkansas System Division of Agriculture, Fayetteville, AR, 72701, USA
| | - Ksenija Gasic
- Department of Plant and Environmental Sciences, College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, SC, 29634, USA.
| |
Collapse
|
4
|
Schaller A, Vanderzande S, Peace C. Deducing genotypes for loci of interest from SNP array data via haplotype sharing, demonstrated for apple and cherry. PLoS One 2023; 18:e0272888. [PMID: 36749762 PMCID: PMC9904487 DOI: 10.1371/journal.pone.0272888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/24/2023] [Indexed: 02/08/2023] Open
Abstract
Breeders, collection curators, and other germplasm users require genetic information, both genome-wide and locus-specific, to effectively manage their genetically diverse plant material. SNP arrays have become the preferred platform to provide genome-wide genetic profiles for elite germplasm and could also provide locus-specific genotypic information. However, genotypic information for loci of interest such as those within PCR-based DNA fingerprinting panels and trait-predictive DNA tests is not readily extracted from SNP array data, thus creating a disconnect between historic and new data sets. This study aimed to establish a method for deducing genotypes at loci of interest from their associated SNP haplotypes, demonstrated for two fruit crops and three locus types: quantitative trait loci Ma and Ma3 for acidity in apple, apple fingerprinting microsatellite marker GD12, and Mendelian trait locus Rf for sweet cherry fruit color. Using phased data from an apple 8K SNP array and sweet cherry 6K SNP array, unique haplotypes spanning each target locus were associated with alleles of important breeding parents. These haplotypes were compared via identity-by-descent (IBD) or identity-by-state (IBS) to haplotypes present in germplasm important to U.S. apple and cherry breeding programs to deduce target locus alleles in this germplasm. While IBD segments were confidently tracked through pedigrees, confidence in allele identity among IBS segments used a shared length threshold. At least one allele per locus was deduced for 64-93% of the 181 individuals. Successful validation compared deduced Rf and GD12 genotypes with reported and newly obtained genotypes. Our approach can efficiently merge and expand genotypic data sets, deducing missing data and identifying errors, and is appropriate for any crop with SNP array data and historic genotypic data sets, especially where linkage disequilibrium is high. Locus-specific genotypic information extracted from genome-wide SNP data is expected to enhance confidence in management of genetic resources.
Collapse
Affiliation(s)
- Alexander Schaller
- Department of Horticulture, Washington State University, Pullman, WA, United States of America
| | - Stijn Vanderzande
- Department of Horticulture, Washington State University, Pullman, WA, United States of America
| | - Cameron Peace
- Department of Horticulture, Washington State University, Pullman, WA, United States of America
- * E-mail:
| |
Collapse
|
5
|
Wang R, Xing S, Bourke PM, Qi X, Lin M, Esselink D, Arens P, Voorrips RE, Visser RG, Sun L, Zhong Y, Gu H, Li Y, Li S, Maliepaard C, Fang J. Development of a 135K SNP genotyping array for Actinidia arguta and its applications for genetic mapping and QTL analysis in kiwifruit. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:369-380. [PMID: 36333116 PMCID: PMC9884011 DOI: 10.1111/pbi.13958] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/22/2022] [Accepted: 10/31/2022] [Indexed: 05/11/2023]
Abstract
Kiwifruit (Actinidia spp) is a woody, perennial and deciduous vine. In this genus, there are multiple ploidy levels but the main cultivated cultivars are polyploid. Despite the availability of many genomic resources in kiwifruit, SNP genotyping is still a challenge given these different levels of polyploidy. Recent advances in SNP array technologies have offered a high-throughput genotyping platform for genome-wide DNA polymorphisms. In this study, we developed a high-density SNP genotyping array to facilitate genetic studies and breeding applications in kiwifruit. SNP discovery was performed by genome-wide DNA sequencing of 40 kiwifruit genotypes. The identified SNPs were stringently filtered for sequence quality, predicted conversion performance and distribution over the available Actinidia chinensis genome. A total of 134 729 unique SNPs were put on the array. The array was evaluated by genotyping 400 kiwifruit individuals. We performed a multidimensional scaling analysis to assess the diversity of kiwifruit germplasm, showing that the array was effective to distinguish kiwifruit accessions. Using a tetraploid F1 population, we constructed an integrated linkage map covering 3060.9 cM across 29 linkage groups and performed QTL analysis for the sex locus that has been identified on Linkage Group 3 (LG3) in Actinidia arguta. Finally, our dataset presented evidence of tetrasomic inheritance with partial preferential pairing in A. arguta. In conclusion, we developed and evaluated a 135K SNP genotyping array for kiwifruit. It has the advantage of a comprehensive design that can be an effective tool in genetic studies and breeding applications in this high-value crop.
Collapse
Affiliation(s)
- Ran Wang
- Zhengzhou Fruit Research InstituteChinese Academy of Agricultural SciencesZhengzhouChina
- Plant BreedingWageningen University & ResearchWageningenThe Netherlands
| | - Siyuan Xing
- Animal Breeding and GenomicsWageningen University & ResearchWageningenThe Netherlands
| | - Peter M. Bourke
- Plant BreedingWageningen University & ResearchWageningenThe Netherlands
| | - Xiuquan Qi
- Zhengzhou Fruit Research InstituteChinese Academy of Agricultural SciencesZhengzhouChina
| | - Miaomiao Lin
- Zhengzhou Fruit Research InstituteChinese Academy of Agricultural SciencesZhengzhouChina
| | - Danny Esselink
- Plant BreedingWageningen University & ResearchWageningenThe Netherlands
| | - Paul Arens
- Plant BreedingWageningen University & ResearchWageningenThe Netherlands
| | | | | | - Leiming Sun
- Zhengzhou Fruit Research InstituteChinese Academy of Agricultural SciencesZhengzhouChina
| | - Yunpeng Zhong
- Zhengzhou Fruit Research InstituteChinese Academy of Agricultural SciencesZhengzhouChina
| | - Hong Gu
- Zhengzhou Fruit Research InstituteChinese Academy of Agricultural SciencesZhengzhouChina
| | - Yukuo Li
- Zhengzhou Fruit Research InstituteChinese Academy of Agricultural SciencesZhengzhouChina
| | - Sikai Li
- Zhengzhou Fruit Research InstituteChinese Academy of Agricultural SciencesZhengzhouChina
| | - Chris Maliepaard
- Plant BreedingWageningen University & ResearchWageningenThe Netherlands
| | - Jinbao Fang
- Zhengzhou Fruit Research InstituteChinese Academy of Agricultural SciencesZhengzhouChina
| |
Collapse
|
6
|
Ppe.CR.1 DNA test for predicting chilling requirement in peach. Sci Rep 2023; 13:987. [PMID: 36653395 PMCID: PMC9849201 DOI: 10.1038/s41598-023-27475-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/03/2023] [Indexed: 01/19/2023] Open
Abstract
Chilling requirement (CR) is an important agronomic trait controlling the floral bud break for proper flowering in peach. Even though it has been widely researched and several peach CR quantitative trait loci (QTLs) have been identified, no diagnostic DNA tests validated in the U.S. peach breeding germplasm are available for this trait. Breeders and growers need a simple DNA test to predict the CR of peach cultivars for their particular environment. Therefore, we developed a quick and reliable Kompetitive Allele Specific PCR (KASP) DNA test using haplotype information from 9K IPSC genotype data of the U.S. peach germplasm integrating four CR-associated SNP markers from the previously reported CR QTL region on linkage group 1. Four KASP assays (Ppe.CR.1-1 to -4) were developed and validated on 77 peach cultivars, and nine accessions from two F2 populations, with 96 and 74% accuracy in determining expected CR genotype (compared to SNP array) and predicting phenotype, respectively. Furthermore, the Ppe.CR.1 showed 80% accuracy in predicting the precise CR phenotype in the Clemson University peach breeding material. Only one Ppe.CR.1 KASP assay (Ppe.CR.1-1) is needed to distinguish between haplotypes with CR lower and higher than 800 chilling hours, and two Ppe.CR.1 assays (Pp.CR.1-1 and -4), are capable of distinguishing low, moderate, and high CR alleles. Coupled with the crude DNA extraction, the Ppe.CR.1 DNA test provides a low-cost option for breeders and growers to predict CR in peach material with more than 70% accuracy.
Collapse
|
7
|
Vervalle JA, Costantini L, Lorenzi S, Pindo M, Mora R, Bolognesi G, Marini M, Lashbrooke JG, Tobutt KR, Vivier MA, Roodt-Wilding R, Grando MS, Bellin D. A high-density integrated map for grapevine based on three mapping populations genotyped by the Vitis18K SNP chip. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:4371-4390. [PMID: 36271055 PMCID: PMC9734222 DOI: 10.1007/s00122-022-04225-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
We present a high-density integrated map for grapevine, allowing refinement and improved understanding of the grapevine genome, while demonstrating the applicability of the Vitis18K SNP chip for linkage mapping. The improvement of grapevine through biotechnology requires identification of the molecular bases of target traits by studying marker-trait associations. The Vitis18K SNP chip provides a useful genotyping tool for genome-wide marker analysis. Most linkage maps are based on single mapping populations, but an integrated map can increase marker density and show order conservation. Here we present an integrated map based on three mapping populations. The parents consist of the well-known wine cultivars 'Cabernet Sauvignon', 'Corvina' and 'Rhine Riesling', the lesser-known wine variety 'Deckrot', and a table grape selection, G1-7720. Three high-density population maps with an average inter-locus gap ranging from 0.74 to 0.99 cM were developed. These maps show high correlations (0.9965-0.9971) with the reference assembly, containing only 93 markers with large order discrepancies compared to expected physical positions, of which a third is consistent across multiple populations. Moreover, the genetic data aid the further refinement of the grapevine genome assembly, by anchoring 104 yet unanchored scaffolds. From these population maps, an integrated map was constructed which includes 6697 molecular markers and reduces the inter-locus gap distance to 0.60 cM, resulting in the densest integrated map for grapevine thus far. A small number of discrepancies, mainly of short distance, involve 88 markers that remain conflictual across maps. The integrated map shows similar collinearity to the reference assembly (0.9974) as the single maps. This high-density map increases our understanding of the grapevine genome and provides a useful tool for its further characterization and the dissection of complex traits.
Collapse
Affiliation(s)
- Jessica A Vervalle
- Department of Genetics, Stellenbosch University, Stellenbosch, 7600, South Africa
- ARC Infruitec-Nietvoorbij, Stellenbosch, 7599, South Africa
| | - Laura Costantini
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Silvia Lorenzi
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Massimo Pindo
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Riccardo Mora
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Giada Bolognesi
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Martina Marini
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Justin G Lashbrooke
- South African Grape and Wine Research Institute, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Ken R Tobutt
- ARC Infruitec-Nietvoorbij, Stellenbosch, 7599, South Africa
| | - Melané A Vivier
- South African Grape and Wine Research Institute, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Rouvay Roodt-Wilding
- Department of Genetics, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Maria Stella Grando
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
- Center Agriculture Food and Environment (C3A), University of Trento, San Michele all'Adige, Italy
| | - Diana Bellin
- Department of Biotechnology, University of Verona, Verona, Italy.
| |
Collapse
|
8
|
Pasqualetto G, Palmieri L, Martens S, Bus VGM, Chagné D, Wiedow C, Malnoy MA, Gardiner SE. Molecular characterization of intergeneric hybrids between Malus and Pyrus. HORTICULTURE RESEARCH 2022; 10:uhac239. [PMID: 36643755 PMCID: PMC9832871 DOI: 10.1093/hr/uhac239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/17/2022] [Indexed: 06/17/2023]
Abstract
Apple (Malus) and pear (Pyrus) are economically important fruit crops well known for their unique textures, flavours, and nutritional qualities. Both genera are characterised by a distinct pattern of secondary metabolites, which directly affect not only resistance to certain diseases, but also have significant impacts on the flavour and nutritional value of the fruit. The identical chromosome numbers, similar genome size, and their recent divergence date, together with DNA markers have shown that apple and pear genomes are highly co-linear. This study utilized comparative genomic approaches, including simple sequence repeats, high resolution single nucleotide polymorphism melting analysis, and single nucleotide polymorphism chip analysis to identify genetic differences among hybrids of Malus and Pyrus, and F2 offspring. This research has demonstrated and validated that these three marker types, along with metabolomics analysis are very powerful tools to detect and confirm hybridity of progeny derived from crosses between apple and pear in both cross directions. Furthermore, this work analysed the genus-specific metabolite patterns and the resistance to fire blight (Erwinia amylovora) in progeny. The findings of this work will enhance and accelerate the breeding of novel tree fruit crops that benefit producers and consumers, by enabling marker assisted selection of desired traits introgressed between pear and apple.
Collapse
Affiliation(s)
- Giulia Pasqualetto
- Research and Innovation Centre, Edmund Mach Foundation, San Michele all'Adige, TN 38010, Italy
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, UD 33100, Italy
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Hawke’s Bay Research Centre, Havelock North, New Zealand
| | - Luisa Palmieri
- Research and Innovation Centre, Edmund Mach Foundation, San Michele all'Adige, TN 38010, Italy
| | - Stefan Martens
- Research and Innovation Centre, Edmund Mach Foundation, San Michele all'Adige, TN 38010, Italy
| | - Vincent G M Bus
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Hawke’s Bay Research Centre, Havelock North, New Zealand
| | - David Chagné
- PFR, Fitzherbert Science Centre, Palmerston North, New Zealand
| | - Claudia Wiedow
- PFR, Fitzherbert Science Centre, Palmerston North, New Zealand
| | - Mickael A Malnoy
- Research and Innovation Centre, Edmund Mach Foundation, San Michele all'Adige, TN 38010, Italy
| | | |
Collapse
|
9
|
Baccichet I, Chiozzotto R, Scaglione D, Bassi D, Rossini L, Cirilli M. Genetic dissection of fruit maturity date in apricot (P. armeniaca L.) through a Single Primer Enrichment Technology (SPET) approach. BMC Genomics 2022; 23:712. [PMID: 36258163 PMCID: PMC9580121 DOI: 10.1186/s12864-022-08901-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 09/08/2022] [Indexed: 11/10/2022] Open
Abstract
Background Single primer enrichment technology (SPET) is an emerging and increasingly popular solution for high-throughput targeted genotyping in plants. Although SPET requires a priori identification of polymorphisms for probe design, this technology has potentially higher reproducibility and transferability compared to other reduced representation sequencing (RRS) approaches, also enabling the discovery of closely linked polymorphisms surrounding the target one. Results The potential for SPET application in fruit trees was evaluated by developing a 25K target SNPs assay to genotype a panel of apricot accessions and progenies. A total of 32,492 polymorphic sites were genotyped in 128 accessions (including 8,188 accessory non-target SNPs) with extremely low levels of missing data and a significant correlation of allelic frequencies compared to whole-genome sequencing data used for array design. Assay performance was further validated by estimating genotyping errors in two biparental progenies, resulting in an overall 1.8% rate. SPET genotyping data were used to infer population structure and to dissect the architecture of fruit maturity date (MD), a quantitative reproductive phenological trait of great agronomical interest in apricot species. Depending on the year, GWAS revealed loci associated to MD on several chromosomes. The QTLs on chromosomes 1 and 4 (the latter explaining most of the phenotypic variability in the panel) were the most consistent over years and were further confirmed by linkage mapping in two segregating progenies. Conclusions Besides the utility for marker assisted selection and for paving the way to in-depth studies to clarify the molecular bases of MD trait variation in apricot, the results provide an overview of the performance and reliability of SPET for fruit tree genetics. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08901-1.
Collapse
Affiliation(s)
| | | | | | - Daniele Bassi
- Università degli Studi di Milan - DiSAA, Milano, Italy
| | - Laura Rossini
- Università degli Studi di Milan - DiSAA, Milano, Italy.
| | - Marco Cirilli
- Università degli Studi di Milan - DiSAA, Milano, Italy.
| |
Collapse
|
10
|
Hardner CM, Fikere M, Gasic K, da Silva Linge C, Worthington M, Byrne D, Rawandoozi Z, Peace C. Multi-environment genomic prediction for soluble solids content in peach ( Prunus persica). FRONTIERS IN PLANT SCIENCE 2022; 13:960449. [PMID: 36275520 PMCID: PMC9583944 DOI: 10.3389/fpls.2022.960449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/01/2022] [Indexed: 06/16/2023]
Abstract
Genotype-by-environment interaction (G × E) is a common phenomenon influencing genetic improvement in plants, and a good understanding of this phenomenon is important for breeding and cultivar deployment strategies. However, there is little information on G × E in horticultural tree crops, mostly due to evaluation costs, leading to a focus on the development and deployment of locally adapted germplasm. Using sweetness (measured as soluble solids content, SSC) in peach/nectarine assessed at four trials from three US peach-breeding programs as a case study, we evaluated the hypotheses that (i) complex data from multiple breeding programs can be connected using GBLUP models to improve the knowledge of G × E for breeding and deployment and (ii) accounting for a known large-effect quantitative trait locus (QTL) improves the prediction accuracy. Following a structured strategy using univariate and multivariate models containing additive and dominance genomic effects on SSC, a model that included a previously detected QTL and background genomic effects was a significantly better fit than a genome-wide model with completely anonymous markers. Estimates of an individual's narrow-sense and broad-sense heritability for SSC were high (0.57-0.73 and 0.66-0.80, respectively), with 19-32% of total genomic variance explained by the QTL. Genome-wide dominance effects and QTL effects were stable across environments. Significant G × E was detected for background genome effects, mostly due to the low correlation of these effects across seasons within a particular trial. The expected prediction accuracy, estimated from the linear model, was higher than the realised prediction accuracy estimated by cross-validation, suggesting that these two parameters measure different qualities of the prediction models. While prediction accuracy was improved in some cases by combining data across trials, particularly when phenotypic data for untested individuals were available from other trials, this improvement was not consistent. This study confirms that complex data can be combined into a single analysis using GBLUP methods to improve understanding of G × E and also incorporate known QTL effects. In addition, the study generated baseline information to account for population structure in genomic prediction models in horticultural crop improvement.
Collapse
Affiliation(s)
- Craig M. Hardner
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Mulusew Fikere
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Ksenija Gasic
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| | - Cassia da Silva Linge
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| | - Margaret Worthington
- Faculty Horticulture, University of Arkansas System Division of Agriculture, Fayetteville, AR, United States
| | - David Byrne
- College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, United States
| | - Zena Rawandoozi
- College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, United States
| | - Cameron Peace
- Department of Horticulture, Washington State University, Pullman, WA, United States
| |
Collapse
|
11
|
Guajardo V, Martínez-García PJ, Solís S, Calleja-Satrustegui A, Saski C, Moreno MÁ. QTLs Identification for Iron Chlorosis in a Segregating Peach-Almond Progeny Through Double-Digest Sequence-Based Genotyping (SBG). FRONTIERS IN PLANT SCIENCE 2022; 13:872208. [PMID: 35712560 PMCID: PMC9194768 DOI: 10.3389/fpls.2022.872208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
Linkage maps are highly appreciated tools for cultivar and rootstock breeding programs because they are suitable for genetic and genomic studies. In this study, we report on using sequence-based genotyping (SBG) approach to simultaneously discover and genotype SNPs from two peach-based rootstocks ("Adafuel" and "Flordaguard") and their progeny (n = 118): from a initial mapping population composed of 131 seedlings. The plant material was developed at the EEAD-CSIC Prunus rootstocks breeding program, aiming to obtain a segregating progeny for a range of characters of agronomical interest to rootstock breeding (iron-chlorosis and root-asphyxia tolerance, nematode resistance, vigor traits, and other effects on scion cultivars). Sequence reads obtained from double-digest SBG were aligned to the P. persica reference genome (Peach v2.0). While eight linkage groups were constructed for "Adafuel," only four linkage groups were constructed for "Flordaguard," given the low heterozygosity of this last genotype. High synteny and co-linearity were observed between obtained maps and Peach v2.0. On the other hand, this work aimed to elucidate the genetic basis of leaf chlorosis tolerance using the phenotypic segregation of the progeny to iron-chlorosis tolerance, along with the QTLs responsible for leaf chlorosis. The F1 mapping population, composed initially of 131 seedlings, was growing in four field trials established on calcareous soils at the experimental field of the EEAD-CSIC in Zaragoza, Spain. From the initial mapping population, 131 individuals were selected for their phenotypical characterization with SPAD measurements of plants grown in the field, exhibiting a great variability. Significant QTLs associated with tolerance to iron chlorosis were found in LG1, LG5, LG7, and LG8. The significant QTLs detected in LG5 and LG7 have not been associated with this abiotic stress before in Prunus. Several candidate genes such as Prupe.1G541100, predicted as glutamyl-tRNA reductase 1, Prupe.1G468200, encoding a 2-oxoglutarate (2OG), and Fe(II)-dependent oxygenase superfamily protein or Prupe.1G577000 (ppa011050.m), a NIFU-like protein 2 (NIFU2) were detected. The exact biological function of some of these genes should be verified for the future development of marker-assisted selection for peach iron chlorosis tolerance.
Collapse
Affiliation(s)
| | - Pedro José Martínez-García
- Department of Plant Breeding, Centro de Edafología y Biología Aplicada del Segura - Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), Murcia, Spain
| | - Simón Solís
- Centro de Estudios Avanzados en Fruticultura (CEAF), Rengo, Chile
| | - Aitziber Calleja-Satrustegui
- Department of Pomology, Estación Experimental de Aula Dei - Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Zaragoza, Spain
- Department of Science, Institute for Multidisciplinary Research in Applied Biology-IMAB, Universidad Pública de Navarra, Pamplona, Spain
| | - Christopher Saski
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| | - María Ángeles Moreno
- Department of Pomology, Estación Experimental de Aula Dei - Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Zaragoza, Spain
| |
Collapse
|
12
|
Kalluri N, Serra O, Donoso JM, Picañol R, Howad W, Eduardo I, Arús P. Construction of a collection of introgression lines of "Texas" almond DNA fragments in the "Earlygold" peach genetic background. HORTICULTURE RESEARCH 2022; 9:uhac070. [PMID: 35669708 PMCID: PMC9157678 DOI: 10.1093/hr/uhac070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/09/2022] [Indexed: 06/15/2023]
Abstract
Peach [Prunus persica L. Batsch] is one of the major temperate fruit tree species, the commercial materials of which have a low level of genetic variability. Almond [P. dulcis (Mill) DA Webb], a close relative of peach cultivated for its kernels, has a much higher level of diversity. The species are inter-compatible and often produce fertile hybrids, almond being a possible source of new genes for peach that could provide biotic and abiotic stress tolerance traits. In this paper we describe the development of a collection of peach-almond introgression lines (ILs) having a single fragment of almond (cv. Texas) in the peach background (cv. Earlygold). Lines with few introgressions were selected with markers from successive generations from a "Texas" × "Earlygold" F1 hybrid, initially using a set of SSRs and later with the 18 k peach SNP chip, allowing for the final extraction of 67 lines, 39 with almond heterozygous introgressions covering 99% of the genome, and 28 with homozygous introgressions covering 83% of the genome. As a proof of concept, four major genes and four quantitative characters were examined in the selected ILs giving results generally consistent with previous information on the genetics of these characters. This collection is the first of its kind produced in a woody perennial species and promises to be a valuable tool for genetic analyses, including dissection of quantitative traits, positional cloning, epistasis and as prebreeding material to introgress almond genes of interest into the peach commercial gene pool.
Collapse
Affiliation(s)
- Naveen Kalluri
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Cerdanyola del Vallès (Bellaterra), 08193 Barcelona, Spain
| | - Octávio Serra
- Instituto Nacional de Investigação Agrária e Veterinária, I.P., Banco Português de Germoplasma Vegetal (BPGV), Braga, Portugal
| | - José Manuel Donoso
- Instituto de Investigaciones Agropecuarias (INIA), Centro Regional de Investigación Rayentué, Av. Salamanca s/n Sector Los Choapinos, Rengo 2940000, Chile
| | - Roger Picañol
- Rijk Zwaan Ibérica S.A. Finca La Marina-PJ Lo Contreras 30395, La Puebla|Cartagena (Murcia), Spain
| | - Werner Howad
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Cerdanyola del Vallès (Bellaterra), 08193 Barcelona, Spain
- IRTA, Campus UAB, Edifici CRAG, Cerdanyola del Vallès (Bellaterra), 08193 Barcelona, Spain
| | - Iban Eduardo
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Cerdanyola del Vallès (Bellaterra), 08193 Barcelona, Spain
- IRTA, Campus UAB, Edifici CRAG, Cerdanyola del Vallès (Bellaterra), 08193 Barcelona, Spain
| | - Pere Arús
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Cerdanyola del Vallès (Bellaterra), 08193 Barcelona, Spain
- IRTA, Campus UAB, Edifici CRAG, Cerdanyola del Vallès (Bellaterra), 08193 Barcelona, Spain
| |
Collapse
|
13
|
Mas-Gómez J, Cantín CM, Moreno MÁ, Martínez-García PJ. Genetic Diversity and Genome-Wide Association Study of Morphological and Quality Traits in Peach Using Two Spanish Peach Germplasm Collections. FRONTIERS IN PLANT SCIENCE 2022; 13:854770. [PMID: 35386674 PMCID: PMC8979248 DOI: 10.3389/fpls.2022.854770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Peach [Prunus persica (L.) Batsch] is one of the most important stone fruits species in world production. Spanish peach production is currently the second largest in the world and the available cultivars in Spain includes a great source of genetic diversity with variability in fruit quality traits and postharvest disorders tolerance. In order to explore the genetic diversity and single nucleotide polymorphism (SNP)-trait associations in the Spanish germplasm, the new peach 18K SNP v2 array was used to genotype 287 accessions belonging to the two National Peach Germplasm Collections placed at the Agrifood Research and Technology Centre of Aragon (CITA) and at the Experimental Station of Aula Dei (EEAD)-CSIC. The high density of the new SNP array allowed the identification of 30 groups of synonymies, which had not been identified before using low-density markers. In addition, a possible large-scale molecular event in 'Starcrest', a sport of 'Springcrest', was detected showing a possible chromosome replacement of a 13.5 Mb region. Previous suggestions about Spanish diversification regions agreed with our genetic diversity and linkage disequilibrium (LD) decay results using high-density markers. A genome-wide association study (GWAS) detected 34 significant SNP-trait association with the type of leaf glands (TLG), fruit hairiness (FH), and flesh texture (FT). The impact of the significant SNPs was studied with SnpEff. Candidate genes encode several important family proteins involved in trichome formation and powdery mildew resistance (linked to TLG in peach). The genetic distance among cultivars obtained, together with SNP-trait associations found, provide new knowledge for marker-assisted selection and crossing approaches in peach breeding programmes.
Collapse
Affiliation(s)
- Jorge Mas-Gómez
- Department of Plant Breeding, Centre of Edaphology and Applied Biology of Segura, Spanish National Research Council (CEBAS-CSIC), Murcia, Spain
| | - Celia M. Cantín
- Department of Pomology, Experimental Station of Aula Dei-CSIC, Spanish National Research Council, Zaragoza, Spain
- Department of Horticulture, Agrifood Research and Technology Centre of Aragon, Zaragoza, Spain
| | - María Ángeles Moreno
- Department of Pomology, Experimental Station of Aula Dei-CSIC, Spanish National Research Council, Zaragoza, Spain
| | - Pedro J. Martínez-García
- Department of Plant Breeding, Centre of Edaphology and Applied Biology of Segura, Spanish National Research Council (CEBAS-CSIC), Murcia, Spain
| |
Collapse
|
14
|
Ppe.XapF: High throughput KASP assays to identify fruit response to Xanthomonas arboricola pv. pruni (Xap) in peach. PLoS One 2022; 17:e0264543. [PMID: 35213640 PMCID: PMC8880879 DOI: 10.1371/journal.pone.0264543] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/13/2022] [Indexed: 11/21/2022] Open
Abstract
Bacterial spot, caused by Xanthomonas arboricola pv. pruni (Xap), is a serious peach disease with symptoms that traverse severe defoliation and black surface pitting, cracking or blemishes on peach fruit with global economic impacts. A management option for control and meeting consumer demand for chemical-free, environmentally friendly fruit production is the development of resistant or tolerant cultivars. We developed simple, accurate, and efficient DNA assays (Ppe.XapF) based on SNP genotyping with KASP technology to quickly test for bacterial spot resistance alleles in peach fruit that allows breeders to cull seedlings at the greenhouse stage. The objective of this research was to validate newly developed DNA tests that target the two major QTLs for fruit resistance in peach with diagnostic utility in predicting fruit response to bacterial spot infection. Our study confirms that with only two Ppe.XapF DNA tests, Ppe.XapF1-1 and Ppe.XapF6-2, individuals carrying susceptible alleles can be identified. Use of these efficient and accurate Ppe.XapF KASP tests resulted in 44% reduction in seedling planting rate in the Clemson University peach breeding program.
Collapse
|
15
|
Lambert P, Confolent C, Heurtevin L, Dlalah N, Signoret V, Quilot-Turion B, Pascal T. Insertion of a mMoshan transposable element in PpLMI1, is associated with the absence or globose phenotype of extrafloral nectaries in peach [Prunus persica (L.) Batsch]. HORTICULTURE RESEARCH 2022; 9:uhab044. [PMID: 35039854 PMCID: PMC8829895 DOI: 10.1093/hr/uhab044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 08/14/2021] [Accepted: 09/17/2021] [Indexed: 06/14/2023]
Abstract
Most commercial peach [Prunus persica (L.) Batsch] cultivars have leaves with extrafloral nectaries (EFNs). Breeders have selected this character over time, as they observed that the eglandular phenotype resulted in high susceptibility to peach powdery mildew, a major disease of peach trees. EFNs are controlled by a Mendelian locus (E), mapped on chromosome 7. However, the genetic factor underlying E was unknown. In order to address this point, we developed a mapping population of 833 individuals derived from the selfing of "Malo Konare", a Bulgarian peach cultivar, heterozygous for the trait. This progeny was used to investigate the E-locus region, along with additional resources including peach genomic resequencing data, and 271 individuals from various origins used for validation. High-resolution mapping delimited a 40.6 kbp interval including the E-locus and four genes. Moreover, three double-recombinants allowed identifying Prupe.7G121100, a LMI1-like homeodomain leucine zipper (HD-Zip) transcription factor, as a likely candidate for the trait. By comparing peach genomic resequencing data from individuals with contrasted phenotypes, a MITE-like transposable element of the hAT superfamily (mMoshan) was identified in the third exon of Prupe.7G121100. It was associated with the absence or globose phenotype of EFNs. The insertion of the transposon was positively correlated with enhanced expression of Prupe.7G121100. Furthermore, a PCR marker designed from the sequence-variants, allowed to properly assign the phenotypes of all the individuals studied. These findings provide valuable information on the genetic control of a trait poorly known so far although selected for a long time in peach.
Collapse
Affiliation(s)
| | - Carole Confolent
- INRAE, GAFL, Montfavet, F-84143, FRANCE
- INRAE, UMR GDEC, Clermont-Ferrand, F-63100, FRANCE
| | | | | | | | | | | |
Collapse
|
16
|
Zhou E, Song N, Xiao Q, Farooq Z, Jia Z, Wen J, Dai C, Ma C, Tu J, Shen J, Fu T, Yi B. Construction of transgenic detection system of Brassica napus L. based on single nucleotide polymorphism chip. 3 Biotech 2022; 12:11. [PMID: 34966634 PMCID: PMC8655060 DOI: 10.1007/s13205-021-03062-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 11/09/2021] [Indexed: 01/03/2023] Open
Abstract
Brassica napus L. is a vital oil crop in China. As auxiliary tools for rapeseed breeding, transgenic technologies play a considerable role in heterosis, variety improvement, and pest resistance. Research on transgenic detection technologies is of great significance for the introduction, supervision, and development of transgenic rapeseed in China. However, the transgenic detection methods currently in use are complex and time-consuming, with low output. A single nucleotide polymorphism (SNP) chip can effectively overcome such limitations. In the present study, we collected 40 transgenic elements and designed 291 probes. The probe sequences were submitted to Illumina Company, and the Infinium chip technology was used to prepare SNP chips. In the present Brassica napus transgenic detection experiment, 84 high-quality probes of 17 transgenic elements were preliminarily screened, and genotyping effect was optimised for the probe signal value. Ultimately, a transgenic detection system for B. napus was developed. The developed system has the advantages of simple operation, minimal technical errors, and stable detection outcomes. A transgenic detection sensitivity test revealed that the probe designed could accurately detect 1% of transgenic samples and had high detection sensitivity. In addition, in repeatability tests, the CaMV35S promoter coefficient of variation was approximately 3.58%. Therefore, the SNP chip had suitable repeatability in transgene detection. The SNP chip developed could be used to construct transgenic detection systems for B. napus. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-03062-6.
Collapse
Affiliation(s)
- Enqiang Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430000 China
| | - Nuan Song
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430000 China
| | - Qing Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430000 China
| | - Zunaira Farooq
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430000 China
| | - Zhibo Jia
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430000 China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430000 China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430000 China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430000 China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430000 China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430000 China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430000 China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430000 China
| |
Collapse
|
17
|
Cirilli M, Baccichet I, Chiozzotto R, Silvestri C, Rossini L, Bassi D. Genetic and phenotypic analyses reveal major quantitative loci associated to fruit size and shape traits in a non-flat peach collection (P. persica L. Batsch). HORTICULTURE RESEARCH 2021; 8:232. [PMID: 34719677 PMCID: PMC8558339 DOI: 10.1038/s41438-021-00661-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Fruit size and shape are critical agronomical and pomological attributes and prime targets in peach breeding programs. Apart from the flat peach type, a Mendelian trait well-characterized at the genetic level, ample diversity of fruit size and shapes is present across peach germplasms. Nevertheless, knowledge of the underlying genomic loci remains limited. In this work, fruit size and shape were assessed in a collection of non-flat peach accessions and selections, under controlled fruit load conditions. The architecture of these traits was then dissected by combining association and linkage mapping, revealing a major locus on the proximal end of chromosome 6 (qSHL/Fs6.1) explaining a large proportion of phenotypic variability for longitudinal shape and also affecting fruit size. A second major locus for fruit longitudinal shape (qSHL5.1), probably also affecting fruit size, was found co-localizing at locus G, suggesting pleiotropic effects of peach/nectarine traits. An additional QTL for fruit longitudinal shape (qSHL6.2) was identified in the distal end of chromosome 6 in a cross with an ornamental double-flower peach and co-localized with the Di2 locus, controlling flower morphology. Besides assisting breeding activities, knowledge of loci controlling fruit size and shape paves the way for more in-depth studies aimed at the identification of underlying genetic variant(s).
Collapse
Affiliation(s)
- Marco Cirilli
- Università degli Studi di Milano - DiSAA, Milano, Italy.
| | | | | | | | - Laura Rossini
- Università degli Studi di Milano - DiSAA, Milano, Italy
| | - Daniele Bassi
- Università degli Studi di Milano - DiSAA, Milano, Italy
| |
Collapse
|
18
|
Aballay MM, Aguirre NC, Filippi CV, Valentini GH, Sánchez G. Fine-tuning the performance of ddRAD-seq in the peach genome. Sci Rep 2021; 11:6298. [PMID: 33737671 PMCID: PMC7973760 DOI: 10.1038/s41598-021-85815-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 03/05/2021] [Indexed: 11/14/2022] Open
Abstract
The advance of Next Generation Sequencing (NGS) technologies allows high-throughput genotyping at a reasonable cost, although, in the case of peach, this technology has been scarcely developed. To date, only a standard Genotyping by Sequencing approach (GBS), based on a single restriction with ApeKI to reduce genome complexity, has been applied in peach. In this work, we assessed the performance of the double-digest RADseq approach (ddRADseq), by testing 6 double restrictions with the restriction profile generated with ApeKI. The enzyme pair PstI/MboI retained the highest number of loci in concordance with the in silico analysis. Under this condition, the analysis of a diverse germplasm collection (191 peach genotypes) yielded 200,759,000 paired-end (2 × 250 bp) reads that allowed the identification of 113,411 SNP, 13,661 InDel and 2133 SSR. We take advantage of a wide sample set to describe technical scope of the platform. The novel platform presented here represents a useful tool for genomic-based breeding for peach.
Collapse
Affiliation(s)
- Maximiliano Martín Aballay
- Laboratorio de Biotecnología, Estación Experimental Agropecuaria (EEA) San Pedro, INTA, 2930, San Pedro, Argentina
| | - Natalia Cristina Aguirre
- Instituto de Agrobiotecnología y Biología Molecular-IABiMo-INTA-CONICET, Instituto de Biotecnología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, INTA, 1686, Hurlingham, Argentina
| | - Carla Valeria Filippi
- Instituto de Agrobiotecnología y Biología Molecular-IABiMo-INTA-CONICET, Instituto de Biotecnología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, INTA, 1686, Hurlingham, Argentina
| | - Gabriel Hugo Valentini
- Laboratorio de Biotecnología, Estación Experimental Agropecuaria (EEA) San Pedro, INTA, 2930, San Pedro, Argentina
| | - Gerardo Sánchez
- Laboratorio de Biotecnología, Estación Experimental Agropecuaria (EEA) San Pedro, INTA, 2930, San Pedro, Argentina.
| |
Collapse
|
19
|
Rawandoozi ZJ, Hartmann TP, Carpenedo S, Gasic K, da Silva Linge C, Cai L, Van de Weg E, Byrne DH. Mapping and characterization QTLs for phenological traits in seven pedigree-connected peach families. BMC Genomics 2021; 22:187. [PMID: 33726679 PMCID: PMC7962356 DOI: 10.1186/s12864-021-07483-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 02/25/2021] [Indexed: 12/02/2022] Open
Abstract
Background Environmental adaptation and expanding harvest seasons are primary goals of most peach [Prunus persica (L.) Batsch] breeding programs. Breeding perennial crops is a challenging task due to their long breeding cycles and large tree size. Pedigree-based analysis using pedigreed families followed by haplotype construction creates a platform for QTL and marker identification, validation, and the use of marker-assisted selection in breeding programs. Results Phenotypic data of seven F1 low to medium chill full-sib families were collected over 2 years at two locations and genotyped using the 9 K SNP Illumina array. Three QTLs were discovered for bloom date (BD) and mapped on linkage group 1 (LG1) (172–182 cM), LG4 (48–54 cM), and LG7 (62–70 cM), explaining 17–54%, 11–55%, and 11–18% of the phenotypic variance, respectively. The QTL for ripening date (RD) and fruit development period (FDP) on LG4 was co-localized at the central part of LG4 (40–46 cM) and explained between 40 and 75% of the phenotypic variance. Haplotype analyses revealed SNP haplotypes and predictive SNP marker(s) associated with desired QTL alleles and the presence of multiple functional alleles with different effects for a single locus for RD and FDP. Conclusions A multiple pedigree-linked families approach validated major QTLs for the three key phenological traits which were reported in previous studies across diverse materials, geographical distributions, and QTL mapping methods. Haplotype characterization of these genomic regions differentiates this study from the previous QTL studies. Our results will provide the peach breeder with the haplotypes for three BD QTLs and one RD/FDP QTL to create predictive DNA-based molecular marker tests to select parents and/or seedlings that have desired QTL alleles and cull unwanted genotypes in early seedling stages. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07483-8.
Collapse
Affiliation(s)
- Zena J Rawandoozi
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA.
| | - Timothy P Hartmann
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Silvia Carpenedo
- Embrapa Clima Temperado, BR-392, km 78, Cx. Postal 403, Pelotas, Rio Grande do Sul, 96010-971, Brazil
| | - Ksenija Gasic
- Department of Agricultural and Environmental Sciences, College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Cassia da Silva Linge
- Department of Agricultural and Environmental Sciences, College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Lichun Cai
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | - Eric Van de Weg
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | - David H Byrne
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
20
|
Fu W, da Silva Linge C, Gasic K. Genome-Wide Association Study of Brown Rot ( Monilinia spp.) Tolerance in Peach. FRONTIERS IN PLANT SCIENCE 2021; 12:635914. [PMID: 33790926 PMCID: PMC8006439 DOI: 10.3389/fpls.2021.635914] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Brown rot, caused by Monilinia spp., is one of the most important diseases on stone fruit worldwide. Severe yield loss can be caused by pre- and post-harvest fruit decay. Although some degree of tolerance has been reported in peach and almond, the genetic resistance in peach cultivars is still lacking. To date, only few genomic regions associated with brown rot response in fruit skin and flesh have been detected in peach. Previous studies suggested brown rot tolerance in peach being a polygenic quantitative trait. More information is needed to uncover the genetics behind brown rot tolerance in peach. To identify the genomic regions in peach associated with this trait, 26 cultivars and progeny from 9 crosses with 'Bolinha' sources of tolerance, were phenotyped across two seasons (2015 and 2016) for brown rot disease severity index in wounded and non-wounded fruits and genotyped using a newly developed 9+9K peach SNP array. Genome wide association study using single- and multi-locus methods by GAPIT version 3, mrMLM 4.0, GAPIT and G Model, revealed 14 reliable SNPs significantly associated with brown rot infection responses in peach skin (10) and flesh (4) across whole genome except for chromosome 3. Candidate gene analysis within the haplotype regions of the detected markers identified 25 predicted genes associated with pathogen infection response/resistance. Results presented here facilitate further understanding of genetics behind brown rot tolerance in peach and provide an important foundation for DNA-assisted breeding.
Collapse
Affiliation(s)
| | | | - Ksenija Gasic
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| |
Collapse
|
21
|
da Silva Linge C, Cai L, Fu W, Clark J, Worthington M, Rawandoozi Z, Byrne DH, Gasic K. Multi-Locus Genome-Wide Association Studies Reveal Fruit Quality Hotspots in Peach Genome. FRONTIERS IN PLANT SCIENCE 2021; 12:644799. [PMID: 33732279 PMCID: PMC7959719 DOI: 10.3389/fpls.2021.644799] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/04/2021] [Indexed: 05/23/2023]
Abstract
Peach is one of the most important fruit crops in the world, with the global annual production about 24.6 million tons. The United States is the fourth-largest producer after China, Spain, and Italy. Peach consumption has decreased over the last decade, most likely due to inconsistent quality of the fruit on the market. Thus, marker-assisted selection for fruit quality traits is highly desired in fresh market peach breeding programs and one of the major goals of the RosBREED project. The ability to use DNA information to select for desirable traits would enable peach breeders to efficiently plan crosses and select seedlings with desired quality traits early in the selection process before fruiting. Therefore, we assembled a multi-locus genome wide association study (GWAS) of 620 individuals from three public fresh market peach breeding programs (Arkansas, Texas, and South Carolina). The material was genotyped using 9K SNP array and the traits were phenotyped for three phenological (bloom date, ripening date, and days after bloom) and 11 fruit quality-related traits (blush, fruit diameter, fruit weight, adherence, fruit firmness, redness around pit, fruit texture, pit weight, soluble solid concentration, titratable acidity, and pH) over three seasons (2010, 2011, and 2012). Multi-locus association analyses, carried out using mrMLM 4.0 and FarmCPU R packages, revealed a total of 967 and 180 quantitative trait nucleotides (QTNs), respectively. Among the 88 consistently reliable QTNs detected using multiple multi-locus GWAS methods and/or at least two seasons, 44 were detected for the first time. Fruit quality hotspots were identified on chromosomes 1, 3, 4, 5, 6, and 8. Out of 566 candidate genes detected in the genomic regions harboring the QTN clusters, 435 were functionally annotated. Gene enrichment analyses revealed 68 different gene ontology (GO) terms associated with fruit quality traits. Data reported here advance our understanding of genetic mechanisms underlying important fruit quality traits and further support the development of DNA tools for breeding.
Collapse
Affiliation(s)
- Cassia da Silva Linge
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| | - Lichun Cai
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
- Department of Horticulture, Michigan State University, East Lansing, MI, United States
| | - Wanfang Fu
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| | - John Clark
- Department of Horticulture, University of Arkansas, Fayetteville, AR, United States
| | - Margaret Worthington
- Department of Horticulture, University of Arkansas, Fayetteville, AR, United States
| | - Zena Rawandoozi
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - David H. Byrne
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Ksenija Gasic
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| |
Collapse
|
22
|
Recent Large-Scale Genotyping and Phenotyping of Plant Genetic Resources of Vegetatively Propagated Crops. PLANTS 2021; 10:plants10020415. [PMID: 33672381 PMCID: PMC7926561 DOI: 10.3390/plants10020415] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/19/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022]
Abstract
Several recent national and international projects have focused on large-scale genotyping of plant genetic resources in vegetatively propagated crops like fruit and berries, potatoes and woody ornamentals. The primary goal is usually to identify true-to-type plant material, detect possible synonyms, and investigate genetic diversity and relatedness among accessions. A secondary goal may be to create sustainable databases that can be utilized in research and breeding for several years ahead. Commonly applied DNA markers (like microsatellite DNA and SNPs) and next-generation sequencing each have their pros and cons for these purposes. Methods for large-scale phenotyping have lagged behind, which is unfortunate since many commercially important traits (yield, growth habit, storability, and disease resistance) are difficult to score. Nevertheless, the analysis of gene action and development of robust DNA markers depends on environmentally controlled screening of very large sets of plant material. Although more time-consuming, co-operative projects with broad-scale data collection are likely to produce more reliable results. In this review, we will describe some of the approaches taken in genotyping and/or phenotyping projects concerning a wide variety of vegetatively propagated crops.
Collapse
|
23
|
Wang L, Jiang X, Zhao L, Wang F, Liu Y, Zhou H, He H, Han Y. A candidate PpRPH gene of the D locus controlling fruit acidity in peach. PLANT MOLECULAR BIOLOGY 2021; 105:321-332. [PMID: 33128723 DOI: 10.1007/s11103-020-01089-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
A candidate gene, designate PpRPH, in the D locus was identified to control fruit acidity in peach. Fruit acidity has a strong impact on organoleptic quality of fruit. Peach fruit acidity is controlled by a large-effect D locus on chromosome 5. In this study, the D locus was mapped to a 509-kb interval, with two markers, 5dC720 and 5C1019, co-segregating with the non-acid/acid trait of peach fruit. Within this interval, a candidate gene encoding a putative small protein, designated PpRPH, showed a consistency between gene expression and fruit acidity, with up- and down-regulation in non-acidic and acidic fruits, respectively. Transient ectopic expression of PpRPH in tobacco leaves caused an increase of pH by approximately 40% compared to the control transformed with empty vector. Whereas, the concentrations of citrate and malate decreased significantly by 22% and 37%, respectively, with respect to the empty vector control. All these results suggest that PpRPH is a strong candidate gene of the D locus. These findings contribute to our overall understanding of the complex mechanism underlying fruit acidity in peach as well as that in other fruit crops.
Collapse
Affiliation(s)
- Lu Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Xiaohan Jiang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Li Zhao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Furong Wang
- Institute of Fruit Tree and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430209, China
| | - Yudi Liu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Hui Zhou
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Huaping He
- Institute of Fruit Tree and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430209, China
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China.
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China.
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
24
|
Iezzoni AF, McFerson J, Luby J, Gasic K, Whitaker V, Bassil N, Yue C, Gallardo K, McCracken V, Coe M, Hardner C, Zurn JD, Hokanson S, van de Weg E, Jung S, Main D, da Silva Linge C, Vanderzande S, Davis TM, Mahoney LL, Finn C, Peace C. RosBREED: bridging the chasm between discovery and application to enable DNA-informed breeding in rosaceous crops. HORTICULTURE RESEARCH 2020; 7:177. [PMID: 33328430 PMCID: PMC7603521 DOI: 10.1038/s41438-020-00398-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/16/2020] [Accepted: 08/30/2020] [Indexed: 05/05/2023]
Abstract
The Rosaceae crop family (including almond, apple, apricot, blackberry, peach, pear, plum, raspberry, rose, strawberry, sweet cherry, and sour cherry) provides vital contributions to human well-being and is economically significant across the U.S. In 2003, industry stakeholder initiatives prioritized the utilization of genomics, genetics, and breeding to develop new cultivars exhibiting both disease resistance and superior horticultural quality. However, rosaceous crop breeders lacked certain knowledge and tools to fully implement DNA-informed breeding-a "chasm" existed between existing genomics and genetic information and the application of this knowledge in breeding. The RosBREED project ("Ros" signifying a Rosaceae genomics, genetics, and breeding community initiative, and "BREED", indicating the core focus on breeding programs), addressed this challenge through a comprehensive and coordinated 10-year effort funded by the USDA-NIFA Specialty Crop Research Initiative. RosBREED was designed to enable the routine application of modern genomics and genetics technologies in U.S. rosaceous crop breeding programs, thereby enhancing their efficiency and effectiveness in delivering cultivars with producer-required disease resistances and market-essential horticultural quality. This review presents a synopsis of the approach, deliverables, and impacts of RosBREED, highlighting synergistic global collaborations and future needs. Enabling technologies and tools developed are described, including genome-wide scanning platforms and DNA diagnostic tests. Examples of DNA-informed breeding use by project participants are presented for all breeding stages, including pre-breeding for disease resistance, parental and seedling selection, and elite selection advancement. The chasm is now bridged, accelerating rosaceous crop genetic improvement.
Collapse
Affiliation(s)
- Amy F Iezzoni
- Michigan State University, East Lansing, MI, 48824, USA.
| | - Jim McFerson
- Washington State University, Wenatchee, WA, 98801, USA
| | - James Luby
- University of Minnesota, St. Paul, MN, 55108, USA
| | | | | | | | - Chengyan Yue
- University of Minnesota, St. Paul, MN, 55108, USA
| | | | | | - Michael Coe
- Cedar Lake Research Group, Portland, OR, 97215, USA
| | | | | | | | - Eric van de Weg
- Wageningen University and Research, 6700 AA, Wageningen, The Netherlands
| | - Sook Jung
- Washington State University, Pullman, WA, 99164, USA
| | - Dorrie Main
- Washington State University, Pullman, WA, 99164, USA
| | | | | | | | | | | | - Cameron Peace
- Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
25
|
Cirilli M, Micali S, Aranzana MJ, Arús P, Babini A, Barreneche T, Bink M, Cantin CM, Ciacciulli A, Cos-Terrer JE, Drogoudi P, Eduardo I, Foschi S, Giovannini D, Guerra W, Liverani A, Pacheco I, Pascal T, Quilot-Turion B, Verde I, Rossini L, Bassi D. The Multisite PeachRefPop Collection: A True Cultural Heritage and International Scientific Tool for Fruit Trees. PLANT PHYSIOLOGY 2020; 184:632-646. [PMID: 32727910 PMCID: PMC7536698 DOI: 10.1104/pp.19.01412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 07/17/2020] [Indexed: 05/21/2023]
Abstract
Plants have evolved a range of adaptive mechanisms that adjust their development and physiology to variable external conditions, particularly in perennial species subjected to long-term interplay with the environment. Exploiting the allelic diversity within available germplasm and leveraging the knowledge of the mechanisms regulating genotype interaction with the environment are crucial to address climatic challenges and assist the breeding of novel cultivars with improved resilience. The development of multisite collections is of utmost importance for the conservation and utilization of genetic materials and will greatly facilitate the dissection of genotype-by-environment interaction. Such resources are still lacking for perennial trees, especially with the intrinsic difficulties of successful propagation, material exchange, and living collection maintenance. This work describes the concept, design, and realization of the first multisite peach (Prunus persica) reference collection (PeachRefPop) located across different European countries and sharing the same experimental design. Other than an invaluable tool for scientific studies in perennial species, PeachRefPop provides a milestone in an international collaborative project for the conservation and exploitation of European peach germplasm resources and, ultimately, as a true heritage for future generations.
Collapse
Affiliation(s)
- Marco Cirilli
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milan, Italy
| | - Sabrina Micali
- Consiglio Per La Ricerca In Agricoltura E L'analisi Dell'Economia Agraria, Research Centre for Olive, Fruit, and Citrus Crops, 00134 Rome, Italy
| | - Maria José Aranzana
- Institut de Recerca i Tecnologia Agroalimentàries, Centre de Recerca en Agrigenòmica Consejo Superior de Investigaciones Científicas, Institut de Recerca i Tecnologia Agroalimentàries, Universitat Autònoma de Barcelona, Universitat de Barcelona, Campus UAB, 08193 Barcelona, Spain
| | - Pere Arús
- Institut de Recerca i Tecnologia Agroalimentàries, Centre de Recerca en Agrigenòmica Consejo Superior de Investigaciones Científicas, Institut de Recerca i Tecnologia Agroalimentàries, Universitat Autònoma de Barcelona, Universitat de Barcelona, Campus UAB, 08193 Barcelona, Spain
| | - Annarosa Babini
- Phytosanitary Service, Regione Emilia-Romagna, 40128 Bologna, Italy
| | - Teresa Barreneche
- Université de Bordeaux, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France
| | - Marco Bink
- Hendrix Genetics Research, Technology, and Services, 5830 AC Boxmeer, The Netherlands
| | - Celia M Cantin
- Institut de Recerca i Tecnologia Agroalimentàries, Centre de Recerca en Agrigenòmica Consejo Superior de Investigaciones Científicas, Institut de Recerca i Tecnologia Agroalimentàries, Universitat Autònoma de Barcelona, Universitat de Barcelona, Campus UAB, 08193 Barcelona, Spain
| | - Angelo Ciacciulli
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milan, Italy
| | | | - Pavlina Drogoudi
- Hellenic Agricultural Organization 'Demeter', Department of Deciduous Fruit Trees, Institute of Plant Breeding and Genetic Resources, 59200 Naoussa, Greece
| | - Iban Eduardo
- Institut de Recerca i Tecnologia Agroalimentàries, Centre de Recerca en Agrigenòmica Consejo Superior de Investigaciones Científicas, Institut de Recerca i Tecnologia Agroalimentàries, Universitat Autònoma de Barcelona, Universitat de Barcelona, Campus UAB, 08193 Barcelona, Spain
| | - Stefano Foschi
- Centro Ricerche Produzioni Vegetali, 47522 Cesena, Italy
| | - Daniela Giovannini
- Consiglio per la Ricerca in Agricoltura e L'Analisi Del'Economia Agraria, Research Centre for Olive, Fruit, and Citrus Crops, 47121 Forlì, Italy
| | | | - Alessandro Liverani
- Consiglio per la Ricerca in Agricoltura e L'Analisi Del'Economia Agraria, Research Centre for Olive, Fruit, and Citrus Crops, 47121 Forlì, Italy
| | - Igor Pacheco
- Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, 7830490 Macul, Chile
| | - Thierry Pascal
- Institut National de Recherche pour L'Agriculture, L'Alimentation et L'Environnement, Génétique et Amélioration des Fruits et Légumes, F-84143 Montfavet, France
| | - Benedicte Quilot-Turion
- Institut National de Recherche pour L'Agriculture, L'Alimentation et L'Environnement, Génétique et Amélioration des Fruits et Légumes, F-84143 Montfavet, France
| | - Ignazio Verde
- Consiglio Per La Ricerca In Agricoltura E L'analisi Dell'Economia Agraria, Research Centre for Olive, Fruit, and Citrus Crops, 00134 Rome, Italy
| | - Laura Rossini
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milan, Italy
| | - Daniele Bassi
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milan, Italy
| |
Collapse
|
26
|
Shi P, Xu Z, Zhang S, Wang X, Ma X, Zheng J, Xing L, Zhang D, Ma J, Han M, Zhao C. Construction of a high-density SNP-based genetic map and identification of fruit-related QTLs and candidate genes in peach [Prunus persica (L.) Batsch]. BMC PLANT BIOLOGY 2020; 20:438. [PMID: 32967617 PMCID: PMC7510285 DOI: 10.1186/s12870-020-02557-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/19/2020] [Indexed: 05/16/2023]
Abstract
BACKGROUND High-density genetic mapping is a valuable tool for mapping loci that control specific traits for perennial fruit trees. Peach is an economically important fruit tree and a model Rosaceae species for genomic and genetic research. In peach, even though many molecular markers, genetic maps and QTL mappings have been reported, further research on the improvement of marker numbers, map densities, QTL accuracy and candidate gene identification is still warranted. RESULTS A high-density single nucleotide polymorphism (SNP)-based peach linkage map was constructed using specific locus amplified fragment sequencing (SLAF-seq). This genetic map consisted of 7998 SLAF markers, spanning 1098.79 cM with an average distance of 0.17 cM between adjacent markers. A total of 40 QTLs and 885 annotated candidate genes were detected for 10 fruit-related traits, including fruit weight (FW), fruit diameter (FD), percentage of red skin colour (PSC), eating quality (EQ), fruit flavour (FV), red in flesh (RF), red around pit (RP), adherence to pit (AP), fruit development period (FDP) and fruit fibre content (FFC). Eighteen QTLs for soluble solid content (SSC) were identified along LGs 1, 4, 5, and 6 in 2015 and 2016, and 540 genes were annotated in QTL intervals. Thirty-two QTLs for fruit acidity content (FA) were detected on LG1, and 2, 4, 5, 6, and 1232 candidate genes were identified. The expression profiles of 2 candidate genes for SSC and 4 for FA were analysed in parents and their offspring. CONCLUSIONS We constructed a high-density genetic map in peach based on SLAF-seq, which may contribute to the identification of important agronomic trait loci. Ninety QTLs for 12 fruit-related traits were identified, most of which overlapped with previous reports, and some new QTLs were obtained. A large number of candidate genes for fruit-related traits were screened and identified. These results may improve our understanding of the genetic control of fruit quality traits and provide useful information in marker-assisted selection for fruit quality in peach breeding programmes.
Collapse
Affiliation(s)
- Pei Shi
- College of horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Ze Xu
- College of horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Shaoyu Zhang
- College of horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Xianju Wang
- College of horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Xiaofei Ma
- College of horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Jicheng Zheng
- College of horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Libo Xing
- College of horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Dong Zhang
- College of horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Juanjuan Ma
- College of horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Mingyu Han
- College of horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Caiping Zhao
- College of horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| |
Collapse
|
27
|
Rawandoozi ZJ, Hartmann TP, Carpenedo S, Gasic K, da Silva Linge C, Cai L, Van de Weg E, Byrne DH. Identification and characterization of QTLs for fruit quality traits in peach through a multi-family approach. BMC Genomics 2020; 21:522. [PMID: 32727362 PMCID: PMC7392839 DOI: 10.1186/s12864-020-06927-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/20/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Fruit quality traits have a significant effect on consumer acceptance and subsequently on peach (Prunus persica (L.) Batsch) consumption. Determining the genetic bases of key fruit quality traits is essential for the industry to improve fruit quality and increase consumption. Pedigree-based analysis across multiple peach pedigrees can identify the genomic basis of complex traits for direct implementation in marker-assisted selection. This strategy provides breeders with better-informed decisions and improves selection efficiency and, subsequently, saves resources and time. RESULTS Phenotypic data of seven F1 low to medium chill full-sib families were collected over 2 years at two locations and genotyped using the 9 K SNP Illumina array. One major QTL for fruit blush was found on linkage group 4 (LG4) at 40-46 cM that explained from 20 to 32% of the total phenotypic variance and showed three QTL alleles of different effects. For soluble solids concentration (SSC), one QTL was mapped on LG5 at 60-72 cM and explained from 17 to 39% of the phenotypic variance. A major QTL for titratable acidity (TA) co-localized with the major locus for low-acid fruit (D-locus). It was mapped at the proximal end of LG5 and explained 35 to 80% of the phenotypic variance. The new QTL for TA on the distal end of LG5 explained 14 to 22% of the phenotypic variance. This QTL co-localized with the QTL for SSC and affected TA only when the first QTL is homozygous for high acidity (epistasis). Haplotype analyses revealed SNP haplotypes and predictive SNP marker(s) associated with desired QTL alleles. CONCLUSIONS A multi-family-based QTL discovery approach enhanced the ability to discover a new TA QTL at the distal end of LG5 and validated other QTLs which were reported in previous studies. Haplotype characterization of the mapped QTLs distinguishes this work from the previous QTL studies. Identified predictive SNPs and their original sources will facilitate the selection of parents and/or seedlings that have desired QTL alleles. Our findings will help peach breeders develop new predictive, DNA-based molecular marker tests for routine use in marker-assisted breeding.
Collapse
Affiliation(s)
- Zena J. Rawandoozi
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843 USA
| | - Timothy P. Hartmann
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843 USA
| | - Silvia Carpenedo
- Embrapa Clima Temperado, BR-392, km 78, Cx. Postal 403, Pelotas, Rio Grande do Sul 96010-971 Brazil
| | - Ksenija Gasic
- Department of Agricultural and Environmental Sciences, College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, SC 29634 USA
| | - Cassia da Silva Linge
- Department of Agricultural and Environmental Sciences, College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, SC 29634 USA
| | - Lichun Cai
- Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Eric Van de Weg
- Department of Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | - David H. Byrne
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843 USA
| |
Collapse
|
28
|
Pavan S, Delvento C, Ricciardi L, Lotti C, Ciani E, D'Agostino N. Recommendations for Choosing the Genotyping Method and Best Practices for Quality Control in Crop Genome-Wide Association Studies. Front Genet 2020; 11:447. [PMID: 32587600 PMCID: PMC7299185 DOI: 10.3389/fgene.2020.00447] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 04/14/2020] [Indexed: 12/19/2022] Open
Abstract
High-throughput genotyping boosts genome-wide association studies (GWAS) in crop species, leading to the identification of single-nucleotide polymorphisms (SNPs) associated with economically important traits. Choosing a cost-effective genotyping method for crop GWAS requires careful examination of several aspects, namely, the purpose and the scale of the study, crop-specific genomic features, and technical and economic matters associated with each genotyping option. Once genotypic data have been obtained, quality control (QC) procedures must be applied to avoid bias and false signals in genotype–phenotype association tests. QC for human GWAS has been extensively reviewed; however, QC for crop GWAS may require different actions, depending on the GWAS population type. Here, we review most popular genotyping methods based on next-generation sequencing (NGS) and array hybridization, and report observations that should guide the investigator in the choice of the genotyping method for crop GWAS. We provide recommendations to perform QC in crop species, and deliver an overview of bioinformatics tools that can be used to accomplish all needed tasks. Overall, this work aims to provide guidelines to harmonize those procedures leading to SNP datasets ready for crop GWAS.
Collapse
Affiliation(s)
- Stefano Pavan
- Department of Soil, Plant and Food Science, Section of Genetics and Plant Breeding, University of Bari Aldo Moro, Bari, Italy.,Institute of Biomedical Technologies, National Research Council (CNR), Bari, Italy
| | - Chiara Delvento
- Department of Soil, Plant and Food Science, Section of Genetics and Plant Breeding, University of Bari Aldo Moro, Bari, Italy
| | - Luigi Ricciardi
- Department of Soil, Plant and Food Science, Section of Genetics and Plant Breeding, University of Bari Aldo Moro, Bari, Italy
| | - Concetta Lotti
- Department of Agricultural, Food and Environmental Sciences, University of Foggia, Foggia, Italy
| | - Elena Ciani
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Nunzio D'Agostino
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
29
|
Vanderzande S, Zheng P, Cai L, Barac G, Gasic K, Main D, Iezzoni A, Peace C. The cherry 6+9K SNP array: a cost-effective improvement to the cherry 6K SNP array for genetic studies. Sci Rep 2020; 10:7613. [PMID: 32376836 PMCID: PMC7203174 DOI: 10.1038/s41598-020-64438-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/14/2020] [Indexed: 11/09/2022] Open
Abstract
Cherry breeding and genetic studies can benefit from genome-wide genetic marker assays. Currently, a 6K SNP array enables genome scans in cherry; however, only a third of these SNPs are informative, with low coverage in many genomic regions. Adding previously detected SNPs to this array could provide a cost-efficient upgrade with increased genomic coverage across the 670 cM/352.9 Mb cherry whole genome sequence. For sweet cherry, new SNPs were chosen following a focal point strategy, grouping six to eight SNPs within 10-kb windows with an average of 0.6 cM (627 kb) between focal points. Additional SNPs were chosen to represent important regions. Sweet cherry, the fruticosa subgenome of sour cherry, and cherry organellar genomes were targeted with 6942, 2020, and 38 new SNPs, respectively. The +9K add-on provided 2128, 1091, and 70 new reliable, polymorphic SNPs for sweet cherry and the avium and the fruticosa subgenomes of sour cherry, respectively. For sweet cherry, 1241 reliable polymorphic SNPs formed 237 informative focal points, with another 2504 SNPs in-between. The +9K SNPs increased genetic resolution and genome coverage of the original cherry SNP array and will help increase understanding of the genetic control of key traits and relationships among individuals in cherry.
Collapse
Affiliation(s)
- Stijn Vanderzande
- Department of Horticulture, Washington State University, Pullman, WA, USA.
| | - Ping Zheng
- Department of Horticulture, Washington State University, Pullman, WA, USA
| | - Lichun Cai
- Department of Horticulture, Michigan State University, East Lansing, MI, USA
| | - Goran Barac
- Department of Fruit Growing, Viticulture, Horticulture and Landscape Architecture, University of Novi Sad, Novi Sad, Serbia
| | - Ksenija Gasic
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, USA
| | - Dorrie Main
- Department of Horticulture, Washington State University, Pullman, WA, USA
| | - Amy Iezzoni
- Department of Horticulture, Michigan State University, East Lansing, MI, USA
| | - Cameron Peace
- Department of Horticulture, Washington State University, Pullman, WA, USA
| |
Collapse
|
30
|
Chou L, Huang SJ, Hsieh C, Lu MT, Song CW, Hsu FC. A High Resolution Melting Analysis-Based Genotyping Toolkit for the Peach ( Prunus persica) Chilling Requirement. Int J Mol Sci 2020; 21:ijms21041543. [PMID: 32102419 PMCID: PMC7073168 DOI: 10.3390/ijms21041543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/16/2020] [Accepted: 02/22/2020] [Indexed: 11/18/2022] Open
Abstract
The chilling requirement (CR) is the main factor controlling the peach floral bud break and subsequent reproductive growth. To date, several peach CR quantitative trait loci (QTLs) have been identified. To improve the accessibility and convenience of this genetic information for peach breeders, the aim of this study was to establish an easy-to-use genotype screening system using peach CR molecular markers as a toolkit for marker-assisted selection. Here, we integrated 22 CR-associated markers from three published QTLs and positioned them on the Prunus persica physical map. Then, we built a PCR-based genotyping platform by using high-resolution melting (HRM) analysis with specific primers and trained this platform with 27 peach cultivars. Due to ambiguous variant calls from a commercial HRM software, we developed an R-based pipeline using principal component analysis (PCA) to accurately differentiate genotypes. Based on the PCA results, this toolkit was able to determine the genotypes at the CR-related single nucleotide polymorphisms (SNPs) in all tested peach cultivars. In this study, we showed that this HRM-PCA pipeline served as a low-cost, high-throughput, and non-gel genotyping solution. This system has great potential to accelerate CR-focused peach breeding.
Collapse
Affiliation(s)
- Lin Chou
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei 10617, Taiwan; (L.C.); (S.-J.H.); (C.H.)
| | - Shih-Jie Huang
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei 10617, Taiwan; (L.C.); (S.-J.H.); (C.H.)
| | - Chen Hsieh
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei 10617, Taiwan; (L.C.); (S.-J.H.); (C.H.)
| | - Ming-Te Lu
- Crop Science Division and Guansi Experiment Station, Taiwan Agricultural Research Institute, Council of Agriculture, Taichung 41301, Taiwan; (M.-T.L.); (C.-W.S.)
| | - Chia-Wei Song
- Crop Science Division and Guansi Experiment Station, Taiwan Agricultural Research Institute, Council of Agriculture, Taichung 41301, Taiwan; (M.-T.L.); (C.-W.S.)
| | - Fu-Chiun Hsu
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei 10617, Taiwan; (L.C.); (S.-J.H.); (C.H.)
- Correspondence: ; Tel.: +886-2-3366-4833
| |
Collapse
|
31
|
Guajardo V, Solís S, Almada R, Saski C, Gasic K, Moreno MÁ. Genome-wide SNP identification in Prunus rootstocks germplasm collections using Genotyping-by-Sequencing: phylogenetic analysis, distribution of SNPs and prediction of their effect on gene function. Sci Rep 2020; 10:1467. [PMID: 32001784 PMCID: PMC6992769 DOI: 10.1038/s41598-020-58271-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/15/2019] [Indexed: 01/09/2023] Open
Abstract
Genotyping-by-Sequencing (GBS) was applied in a set of 53 diploid Prunus rootstocks and five scion cultivars from three subgenera (Amygdalus, Prunus and Cerasus) for genome-wide SNP identification and to assess genetic diversity of both Chilean and Spanish germplasm collections. A group of 45,382 high quality SNPs (MAF >0.05; missing data <5%) were selected for analysis of this group of 58 accessions. These SNPs were distributed in genic and intergenic regions in the eight pseudomolecules of the peach genome (Peach v2.0), with an average of 53% located in exonic regions. The genetic diversity detected among the studied accessions divided them in three groups, which are in agreement with their current taxonomic classification. SNPs were classified based on their putative effect on annotated genes and KOG analysis was carried out to provide a deeper understanding of the function of 119 genes affected by high-impact SNPs. Results demonstrate the high utility for Prunus rootstocks identification and studies of diversity in Prunus species. Also, given the high number of SNPs identified in exonic regions, this strategy represents an important tool for finding candidate genes underlying traits of interest and potential functional markers for use in marker-assisted selection.
Collapse
Affiliation(s)
| | - Simón Solís
- Centro de Estudios Avanzados en Fruticultura (CEAF), Rengo, Chile
| | - Rubén Almada
- Centro de Estudios Avanzados en Fruticultura (CEAF), Rengo, Chile
| | - Christopher Saski
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Ksenija Gasic
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, 29634, USA
| | - María Ángeles Moreno
- Department of Pomology, Estación Experimental de Aula Dei-CSIC, 50059, Zaragoza, Spain.
| |
Collapse
|
32
|
Ballesta P, Maldonado C, Pérez-Rodríguez P, Mora F. SNP and Haplotype-Based Genomic Selection of Quantitative Traits in Eucalyptus globulus. PLANTS 2019; 8:plants8090331. [PMID: 31492041 PMCID: PMC6783840 DOI: 10.3390/plants8090331] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 01/02/2023]
Abstract
Eucalyptus globulus (Labill.) is one of the most important cultivated eucalypts in temperate and subtropical regions and has been successfully subjected to intensive breeding. In this study, Bayesian genomic models that include the effects of haplotype and single nucleotide polymorphisms (SNP) were assessed to predict quantitative traits related to wood quality and tree growth in a 6-year-old breeding population. To this end, the following markers were considered: (a) ~14 K SNP markers (SNP), (b) ~3 K haplotypes (HAP), and (c) haplotypes and SNPs that were not assigned to a haplotype (HAP-SNP). Predictive ability values (PA) were dependent on the genomic prediction models and markers. On average, Bayesian ridge regression (BRR) and Bayes C had the highest PA for the majority of traits. Notably, genomic models that included the haplotype effect (either HAP or HAP-SNP) significantly increased the PA of low-heritability traits. For instance, BRR based on HAP had the highest PA (0.58) for stem straightness. Consistently, the heritability estimates from genomic models were higher than the pedigree-based estimates for these traits. The results provide additional perspectives for the implementation of genomic selection in Eucalyptus breeding programs, which could be especially beneficial for improving traits with low heritability.
Collapse
Affiliation(s)
- Paulina Ballesta
- Institute of Biological Sciences, University of Talca, 2 Norte 685, Talca 3460000, Chile.
| | - Carlos Maldonado
- Institute of Biological Sciences, University of Talca, 2 Norte 685, Talca 3460000, Chile.
| | - Paulino Pérez-Rodríguez
- Colegio de Postgraduados, Statistics and Computer Sciences, Montecillos, Edo. de México 56230, Mexico.
| | - Freddy Mora
- Institute of Biological Sciences, University of Talca, 2 Norte 685, Talca 3460000, Chile.
| |
Collapse
|
33
|
Li X, Singh J, Qin M, Li S, Zhang X, Zhang M, Khan A, Zhang S, Wu J. Development of an integrated 200K SNP genotyping array and application for genetic mapping, genome assembly improvement and genome wide association studies in pear (Pyrus). PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1582-1594. [PMID: 30690857 PMCID: PMC6662108 DOI: 10.1111/pbi.13085] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 05/06/2023]
Abstract
Pear (Pyrus; 2n = 34), the third most important temperate fruit crop, has great nutritional and economic value. Despite the availability of many genomic resources in pear, it is challenging to genotype novel germplasm resources and breeding progeny in a timely and cost-effective manner. Genotyping arrays can provide fast, efficient and high-throughput genetic characterization of diverse germplasm, genetic mapping and breeding populations. We present here 200K AXIOM® PyrSNP, a large-scale single nucleotide polymorphism (SNP) genotyping array to facilitate genotyping of Pyrus species. A diverse panel of 113 re-sequenced pear genotypes was used to discover SNPs to promote increased adoption of the array. A set of 188 diverse accessions and an F1 population of 98 individuals from 'Cuiguan' × 'Starkrimson' was genotyped with the array to assess its effectiveness. A large majority of SNPs (166 335 or 83%) are of high quality. The high density and uniform distribution of the array SNPs facilitated prediction of centromeric regions on 17 pear chromosomes, and significantly improved the genome assembly from 75.5% to 81.4% based on genetic mapping. Identification of a gene associated with flowering time and candidate genes linked to size of fruit core via genome wide association studies showed the usefulness of the array in pear genetic research. The newly developed high-density SNP array presents an important tool for rapid and high-throughput genotyping in pear for genetic map construction, QTL identification and genomic selection.
Collapse
Affiliation(s)
- Xiaolong Li
- Centre of Pear Engineering Technology ResearchState Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
| | - Jugpreet Singh
- Plant Pathology and Plant‐Microbe Biology SectionCornell UniversityGenevaNYUSA
| | - Mengfan Qin
- Centre of Pear Engineering Technology ResearchState Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
| | - Siwei Li
- Centre of Pear Engineering Technology ResearchState Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
| | - Xun Zhang
- Centre of Pear Engineering Technology ResearchState Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
| | - Mingyue Zhang
- Centre of Pear Engineering Technology ResearchState Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
| | - Awais Khan
- Plant Pathology and Plant‐Microbe Biology SectionCornell UniversityGenevaNYUSA
| | - Shaoling Zhang
- Centre of Pear Engineering Technology ResearchState Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
| | - Jun Wu
- Centre of Pear Engineering Technology ResearchState Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
34
|
High-quality, genome-wide SNP genotypic data for pedigreed germplasm of the diploid outbreeding species apple, peach, and sweet cherry through a common workflow. PLoS One 2019; 14:e0210928. [PMID: 31246947 PMCID: PMC6597046 DOI: 10.1371/journal.pone.0210928] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/19/2019] [Indexed: 12/14/2022] Open
Abstract
High-quality genotypic data is a requirement for many genetic analyses. For any crop, errors in genotype calls, phasing of markers, linkage maps, pedigree records, and unnoticed variation in ploidy levels can lead to spurious marker-locus-trait associations and incorrect origin assignment of alleles to individuals. High-throughput genotyping requires automated scoring, as manual inspection of thousands of scored loci is too time-consuming. However, automated SNP scoring can result in errors that should be corrected to ensure recorded genotypic data are accurate and thereby ensure confidence in downstream genetic analyses. To enable quick identification of errors in a large genotypic data set, we have developed a comprehensive workflow. This multiple-step workflow is based on inheritance principles and on removal of markers and individuals that do not follow these principles, as demonstrated here for apple, peach, and sweet cherry. Genotypic data was obtained on pedigreed germplasm using 6-9K SNP arrays for each crop and a subset of well-performing SNPs was created using ASSIsT. Use of correct (and corrected) pedigree records readily identified violations of simple inheritance principles in the genotypic data, streamlined with FlexQTL software. Retained SNPs were grouped into haploblocks to increase the information content of single alleles and reduce computational power needed in downstream genetic analyses. Haploblock borders were defined by recombination locations detected in ancestral generations of cultivars and selections. Another round of inheritance-checking was conducted, for haploblock alleles (i.e., haplotypes). High-quality genotypic data sets were created using this workflow for pedigreed collections representing the U.S. breeding germplasm of apple, peach, and sweet cherry evaluated within the RosBREED project. These data sets contain 3855, 4005, and 1617 SNPs spread over 932, 103, and 196 haploblocks in apple, peach, and sweet cherry, respectively. The highly curated phased SNP and haplotype data sets, as well as the raw iScan data, of germplasm in the apple, peach, and sweet cherry Crop Reference Sets is available through the Genome Database for Rosaceae.
Collapse
|
35
|
Marrano A, Martínez‐García PJ, Bianco L, Sideli GM, Di Pierro EA, Leslie CA, Stevens KA, Crepeau MW, Troggio M, Langley CH, Neale DB. A new genomic tool for walnut (Juglans regia L.): development and validation of the high-density Axiom™ J. regia 700K SNP genotyping array. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1027-1036. [PMID: 30515952 PMCID: PMC6523593 DOI: 10.1111/pbi.13034] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/22/2018] [Accepted: 10/28/2018] [Indexed: 05/02/2023]
Abstract
Over the last 20 years, global production of Persian walnut (Juglans regia L.) has grown enormously, likely reflecting increased consumption due to its numerous benefits to human health. However, advances in genome-wide association (GWA) studies and genomic selection (GS) for agronomically important traits in walnut remain limited due to the lack of powerful genomic tools. Here, we present the development and validation of a high-density 700K single nucleotide polymorphism (SNP) array in Persian walnut. Over 609K high-quality SNPs have been thoroughly selected from a set of 9.6 m genome-wide variants, previously identified from the high-depth re-sequencing of 27 founders of the Walnut Improvement Program (WIP) of University of California, Davis. To validate the effectiveness of the array, we genotyped a collection of 1284 walnut trees, including 1167 progeny of 48 WIP families and 26 walnut cultivars. More than half of the SNPs (55.7%) fell in the highest quality class of 'Poly High Resolution' (PHR) polymorphisms, which were used to assess the WIP pedigree integrity. We identified 151 new parent-offspring relationships, all confirmed with the Mendelian inheritance test. In addition, we explored the genetic variability among cultivars of different origin, revealing how the varieties from Europe and California were differentiated from Asian accessions. Both the reconstruction of the WIP pedigree and population structure analysis confirmed the effectiveness of the Applied Biosystems™ Axiom™ J. regia 700K SNP array, which initiates a novel genomic and advanced phase in walnut genetics and breeding.
Collapse
Affiliation(s)
| | | | - Luca Bianco
- Research and Innovation CentreFondazione Edmund MachSan Michele all'AdigeTNItaly
| | - Gina M. Sideli
- Department of Plant SciencesUniversity of CaliforniaDavisCAUSA
| | - Erica A. Di Pierro
- Research and Innovation CentreFondazione Edmund MachSan Michele all'AdigeTNItaly
| | | | | | - Marc W. Crepeau
- Department of Evolution and EcologyUniversity of CaliforniaDavisCAUSA
| | - Michela Troggio
- Research and Innovation CentreFondazione Edmund MachSan Michele all'AdigeTNItaly
| | | | - David B. Neale
- Department of Plant SciencesUniversity of CaliforniaDavisCAUSA
| |
Collapse
|
36
|
Aranzana MJ, Decroocq V, Dirlewanger E, Eduardo I, Gao ZS, Gasic K, Iezzoni A, Jung S, Peace C, Prieto H, Tao R, Verde I, Abbott AG, Arús P. Prunus genetics and applications after de novo genome sequencing: achievements and prospects. HORTICULTURE RESEARCH 2019; 6:58. [PMID: 30962943 PMCID: PMC6450939 DOI: 10.1038/s41438-019-0140-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/10/2019] [Accepted: 03/13/2019] [Indexed: 05/04/2023]
Abstract
Prior to the availability of whole-genome sequences, our understanding of the structural and functional aspects of Prunus tree genomes was limited mostly to molecular genetic mapping of important traits and development of EST resources. With public release of the peach genome and others that followed, significant advances in our knowledge of Prunus genomes and the genetic underpinnings of important traits ensued. In this review, we highlight key achievements in Prunus genetics and breeding driven by the availability of these whole-genome sequences. Within the structural and evolutionary contexts, we summarize: (1) the current status of Prunus whole-genome sequences; (2) preliminary and ongoing work on the sequence structure and diversity of the genomes; (3) the analyses of Prunus genome evolution driven by natural and man-made selection; and (4) provide insight into haploblocking genomes as a means to define genome-scale patterns of evolution that can be leveraged for trait selection in pedigree-based Prunus tree breeding programs worldwide. Functionally, we summarize recent and ongoing work that leverages whole-genome sequences to identify and characterize genes controlling 22 agronomically important Prunus traits. These include phenology, fruit quality, allergens, disease resistance, tree architecture, and self-incompatibility. Translationally, we explore the application of sequence-based marker-assisted breeding technologies and other sequence-guided biotechnological approaches for Prunus crop improvement. Finally, we present the current status of publically available Prunus genomics and genetics data housed mainly in the Genome Database for Rosaceae (GDR) and its updated functionalities for future bioinformatics-based Prunus genetics and genomics inquiry.
Collapse
Affiliation(s)
- Maria José Aranzana
- IRTA, Centre de Recerca en Agrigenòmica CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Cerdanyola del Vallès (Bellaterra), 08193 Barcelona, Spain
| | - Véronique Decroocq
- UMR 1332 BFP, INRA, University of Bordeaux, A3C and Virology Teams, 33882 Villenave-d’Ornon Cedex, France
| | - Elisabeth Dirlewanger
- UMR 1332 BFP, INRA, University of Bordeaux, A3C and Virology Teams, 33882 Villenave-d’Ornon Cedex, France
| | - Iban Eduardo
- IRTA, Centre de Recerca en Agrigenòmica CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Cerdanyola del Vallès (Bellaterra), 08193 Barcelona, Spain
| | - Zhong Shan Gao
- Allergy Research Center, Zhejiang University, 310058 Hangzhou, China
| | | | - Amy Iezzoni
- Department of Horticulture, Michigan State University, 1066 Bogue Street, East Lansing, MI 48824-1325 USA
| | - Sook Jung
- Department of Horticulture, Washington State University, Pullman, WA 99164-6414 USA
| | - Cameron Peace
- Department of Horticulture, Washington State University, Pullman, WA 99164-6414 USA
| | - Humberto Prieto
- Biotechnology Laboratory, La Platina Research Station, Instituto de Investigaciones Agropecuarias, Santa Rosa, 11610 La Pintana, Santiago Chile
| | - Ryutaro Tao
- Laboratory of Pomology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502 Japan
| | - Ignazio Verde
- Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria (CREA) – Centro di ricerca Olivicoltura, Frutticoltura e Agrumicoltura (CREA-OFA), Rome, Italy
| | - Albert G. Abbott
- University of Kentucky, 106 T. P. Cooper Hall, Lexington, KY 40546-0073 USA
| | - Pere Arús
- IRTA, Centre de Recerca en Agrigenòmica CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Cerdanyola del Vallès (Bellaterra), 08193 Barcelona, Spain
| |
Collapse
|
37
|
Senthilvel S, Ghosh A, Shaik M, Shaw RK, Bagali PG. Development and validation of an SNP genotyping array and construction of a high-density linkage map in castor. Sci Rep 2019; 9:3003. [PMID: 30816245 PMCID: PMC6395776 DOI: 10.1038/s41598-019-39967-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/06/2019] [Indexed: 02/01/2023] Open
Abstract
Castor is a commercially important oilseed crop that provides raw materials for several industries. Currently, the availability of genomic resources for castor is very limited. In this study, genome-wide SNPs were discovered in castor via whole-genome sequencing of 14 diverse lines to an average of 34X coverage. A total of 2,179,759 putative SNPs were detected, and a genotyping array was designed with 6,000 high-quality SNPs representing 2,492 scaffolds of the draft castor genome (87.5% genome coverage). The array was validated by genotyping a panel of 314 inbred castor lines, which resulted in 5,025 scorable SNPs with a high call rate (98%) and reproducibility (100%). Using this array, a consensus linkage map consisting of 1,978 SNP loci was constructed with an average inter-marker distance of 0.55 cM. The genome-wide SNP data, the genotyping array and the dense linkage map are valuable genomic tools for promoting high-throughput genomic research and molecular breeding in castor.
Collapse
Affiliation(s)
- S Senthilvel
- ICAR-Indian Institute of Oilseeds Research, Rajendranagar, Hyderabad, 500030, India.
| | - Arpita Ghosh
- Xcelris Labs Ltd., Xcellon building, Navrangpura, Ahmedabad, 380009, India
| | - Mobeen Shaik
- ICAR-Indian Institute of Oilseeds Research, Rajendranagar, Hyderabad, 500030, India
| | - Ranjan K Shaw
- ICAR-Indian Institute of Oilseeds Research, Rajendranagar, Hyderabad, 500030, India
| | - Prashanth G Bagali
- Xcelris Labs Ltd., Xcellon building, Navrangpura, Ahmedabad, 380009, India
| |
Collapse
|
38
|
Font i Forcada C, Guajardo V, Chin-Wo SR, Moreno MÁ. Association Mapping Analysis for Fruit Quality Traits in Prunus persica Using SNP Markers. FRONTIERS IN PLANT SCIENCE 2019; 9:2005. [PMID: 30705685 PMCID: PMC6344403 DOI: 10.3389/fpls.2018.02005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 12/28/2018] [Indexed: 05/24/2023]
Abstract
The identification of genes involved in variation of peach fruit quality would assist breeders to create new cultivars with improved fruit quality. Peach is a genetic and genomic model within the Rosaceae. A large quantity of useful data suitable for fine mapping using Single Nucleotide Polymorphisms (SNPs) from the peach genome sequence was used in this study. A set of 94 individuals from a peach germplasm collection was phenotyped and genotyped, including local Spanish and modern cultivars maintained at the Experimental Station of Aula Dei, Spain. Phenotypic evaluation based on agronomical, pomological and fruit quality traits was performed at least 3 years. A set of 4,558 out of a total of 8,144 SNPs markers developed by the Illumina Infinium BeadArray (v1.0) technology platform, covering the peach genome, were analyzed for population structure analysis and genome-wide association studies (GWAS). Population structure analysis identified two subpopulations, with admixture within them. While one subpopulation contains only modern cultivars, the other one is formed by local Spanish and several modern cultivars from international breeding programs. To test the marker trait associations between markers and phenotypic traits, four models comprising both general linear model (GLM) and mixed linear model (MLM) were selected. The MLM approach using co-ancestry values from population structure and kinship estimates (K model) identified a maximum of 347 significant associations between markers and traits. The associations found appeared to map within the interval where many candidate genes involved in different pathways are predicted in the peach genome. These results represent a promising situation for GWAS in the identification of SNP variants associated to fruit quality traits, potentially applicable in peach breeding programs.
Collapse
|
39
|
Jung S, Lee T, Cheng CH, Buble K, Zheng P, Yu J, Humann J, Ficklin SP, Gasic K, Scott K, Frank M, Ru S, Hough H, Evans K, Peace C, Olmstead M, DeVetter LW, McFerson J, Coe M, Wegrzyn JL, Staton ME, Abbott AG, Main D. 15 years of GDR: New data and functionality in the Genome Database for Rosaceae. Nucleic Acids Res 2019; 47:D1137-D1145. [PMID: 30357347 PMCID: PMC6324069 DOI: 10.1093/nar/gky1000] [Citation(s) in RCA: 222] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 10/09/2018] [Indexed: 12/13/2022] Open
Abstract
The Genome Database for Rosaceae (GDR, https://www.rosaceae.org) is an integrated web-based community database resource providing access to publicly available genomics, genetics and breeding data and data-mining tools to facilitate basic, translational and applied research in Rosaceae. The volume of data in GDR has increased greatly over the last 5 years. The GDR now houses multiple versions of whole genome assembly and annotation data from 14 species, made available by recent advances in sequencing technology. Annotated and searchable reference transcriptomes, RefTrans, combining peer-reviewed published RNA-Seq as well as EST datasets, are newly available for major crop species. Significantly more quantitative trait loci, genetic maps and markers are available in MapViewer, a new visualization tool that better integrates with other pages in GDR. Pathways can be accessed through the new GDR Cyc Pathways databases, and synteny among the newest genome assemblies from eight species can be viewed through the new synteny browser, SynView. Collated single-nucleotide polymorphism diversity data and phenotypic data from publicly available breeding datasets are integrated with other relevant data. Also, the new Breeding Information Management System allows breeders to upload, manage and analyze their private breeding data within the secure GDR server with an option to release data publicly.
Collapse
Affiliation(s)
- Sook Jung
- Department of Horticulture, Washington State University, Pullman, WA 99164-6414, USA
| | - Taein Lee
- Department of Horticulture, Washington State University, Pullman, WA 99164-6414, USA
| | - Chun-Huai Cheng
- Department of Horticulture, Washington State University, Pullman, WA 99164-6414, USA
| | - Katheryn Buble
- Department of Horticulture, Washington State University, Pullman, WA 99164-6414, USA
| | - Ping Zheng
- Department of Horticulture, Washington State University, Pullman, WA 99164-6414, USA
| | - Jing Yu
- Department of Horticulture, Washington State University, Pullman, WA 99164-6414, USA
| | - Jodi Humann
- Department of Horticulture, Washington State University, Pullman, WA 99164-6414, USA
| | - Stephen P Ficklin
- Department of Horticulture, Washington State University, Pullman, WA 99164-6414, USA
| | - Ksenija Gasic
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634-0310, USA
| | - Kristin Scott
- Department of Horticulture, Washington State University, Pullman, WA 99164-6414, USA
| | - Morgan Frank
- Department of Horticulture, Washington State University, Pullman, WA 99164-6414, USA
| | - Sushan Ru
- Department of Agronomy and Plant Genetics, University of Minnesota, St Paul, MN 55108, USA
| | - Heidi Hough
- Department of Horticulture, Washington State University, Pullman, WA 99164-6414, USA
| | - Kate Evans
- Department of Horticulture, Washington State University Tree Fruit Research and Extension Center, Wenatchee, WA 98801, USA
| | - Cameron Peace
- Department of Horticulture, Washington State University, Pullman, WA 99164-6414, USA
| | - Mercy Olmstead
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Lisa W DeVetter
- Department of Horticulture, Washington State University, Northwestern Washington Research and Extension Center, Mount Vernon, WA 98273, USA
| | - James McFerson
- Department of Horticulture, Washington State University Tree Fruit Research and Extension Center, Wenatchee, WA 98801, USA
| | - Michael Coe
- Cedar Lake Research Group, LLC, Portland, OR 97293, USA
| | - Jill L Wegrzyn
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Margaret E Staton
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
| | - Albert G Abbott
- Forest Health Research and Extension Center, University of Kentucky, Lexington, KY 40546-0091, USA
| | - Dorrie Main
- Department of Horticulture, Washington State University, Pullman, WA 99164-6414, USA
| |
Collapse
|
40
|
da Silva Linge C, Antanaviciute L, Abdelghafar A, Arús P, Bassi D, Rossini L, Ficklin S, Gasic K. High-density multi-population consensus genetic linkage map for peach. PLoS One 2018; 13:e0207724. [PMID: 30462743 PMCID: PMC6248993 DOI: 10.1371/journal.pone.0207724] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/04/2018] [Indexed: 11/19/2022] Open
Abstract
Highly saturated genetic linkage maps are extremely helpful to breeders and are an essential prerequisite for many biological applications such as the identification of marker-trait associations, mapping quantitative trait loci (QTL), candidate gene identification, development of molecular markers for marker-assisted selection (MAS) and comparative genetic studies. Several high-density genetic maps, constructed using the 9K SNP peach array, are available for peach. However, each of these maps is based on a single mapping population and has limited use for QTL discovery and comparative studies. A consensus genetic linkage map developed from multiple populations provides not only a higher marker density and a greater genome coverage when compared to the individual maps, but also serves as a valuable tool for estimating genetic positions of unmapped markers. In this study, a previously developed linkage map from the cross between two peach cultivars 'Zin Dai' and 'Crimson Lady' (ZC2) was improved by genotyping additional progenies. In addition, a peach consensus map was developed based on the combination of the improved ZC2 genetic linkage map with three existing high-density genetic maps of peach and a reference map of Prunus. A total of 1,476 SNPs representing 351 unique marker positions were mapped across eight linkage groups on the ZC2 genetic map. The ZC2 linkage map spans 483.3 cM with an average distance between markers of 1.38 cM/marker. The MergeMap and LPmerge tools were used for the construction of a consensus map based on markers shared across five genetic linkage maps. The consensus linkage map contains a total of 3,092 molecular markers, consisting of 2,975 SNPs, 116 SSRs and 1 morphological marker associated with slow ripening in peach (SR). The consensus map provides valuable information on marker order and genetic position for QTL identification in peach and other genetic studies within Prunus and Rosaceae.
Collapse
Affiliation(s)
- Cassia da Silva Linge
- Clemson University, Department of Plant and Environmental Sciences, Clemson, SC, United States of America
| | - Laima Antanaviciute
- Clemson University, Department of Plant and Environmental Sciences, Clemson, SC, United States of America
| | - Asma Abdelghafar
- Clemson University, Department of Plant and Environmental Sciences, Clemson, SC, United States of America
| | - Pere Arús
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Agrigenòmica Consejo Superior de Investigaciones Científicas (CSIC)-IRTA–Universitat Autònoma de Barcelona (UAB)–University of Barcelona (UB), Campus UAB, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Daniele Bassi
- Università degli Studi di Milano, Department of Agricultural and Environmental Sciences–Production, Landscape, Agroenergy, Milan, Italy
| | - Laura Rossini
- Università degli Studi di Milano, Department of Agricultural and Environmental Sciences–Production, Landscape, Agroenergy, Milan, Italy
| | - Stephen Ficklin
- Washington State University, Department of Horticulture, Pullman, WA, United States of America
| | - Ksenija Gasic
- Clemson University, Department of Plant and Environmental Sciences, Clemson, SC, United States of America
- * E-mail:
| |
Collapse
|
41
|
Gattolin S, Cirilli M, Pacheco I, Ciacciulli A, Da Silva Linge C, Mauroux JB, Lambert P, Cammarata E, Bassi D, Pascal T, Rossini L. Deletion of the miR172 target site in a TOE-type gene is a strong candidate variant for dominant double-flower trait in Rosaceae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:358-371. [PMID: 30047177 DOI: 10.1111/tpj.14036] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/26/2018] [Accepted: 07/03/2018] [Indexed: 05/21/2023]
Abstract
Double flowers with supernumerary petals have been selected by humans for their attractive appearance and commercial value in several ornamental plants, including Prunus persica (peach), a recognized model for Rosaceae genetics and genomics. Despite the relevance of this trait, knowledge of the underlying genes is limited. Of two distinct loci controlling the double-flower phenotype in peach, we focused on the dominant Di2 locus. High-resolution linkage mapping in five segregating progenies delimited Di2 to an interval spanning 150 858 bp and 22 genes, including Prupe.6G242400 encoding an euAP2 transcription factor. Analyzing genomic resequencing data from single- and double-flower accessions, we identified a deletion spanning the binding site for miR172 in Prupe.6G242400 as a candidate variant for the double-flower trait, and we showed transcript expression for both wild-type and deleted alleles. Consistent with the proposed role in controlling petal number, Prupe.6G242400 is expressed in buds at critical times for floral development. The indelDi2 molecular marker designed on this sequence variant co-segregated with the phenotype in 621 progenies, accounting for the dominant inheritance of the Di2 locus. Further corroborating the results in peach, we identified a distinct but similar mutation in the ortholog of Prupe.6G242400 in double-flower roses. Phylogenetic analysis showed that these two genes belong to a TARGET OF EAT (TOE)-type clade not represented in Arabidopsis, indicating a divergence of gene functions between AP2-type and TOE-type factors in Arabidopsis and other species. The identification of orthologous candidate genes for the double-flower phenotype in two important Rosaceae species provides valuable information to understand the genetic control of this trait in other major ornamental plants.
Collapse
Affiliation(s)
- Stefano Gattolin
- PTP Science Park Lodi, Via Einstein, Loc. Cascina Codazza, 26900, Lodi, Italy
- CNR-IBBA, Via Bassini 15, 20133, Milano, Italy
| | - Marco Cirilli
- Università degli Studi di Milano - DiSAA, Via Celoria 2, 20133, Milano, Italy
| | - Igor Pacheco
- Università degli Studi di Milano - DiSAA, Via Celoria 2, 20133, Milano, Italy
- Instituto de Nutrición y Tecnología de los Alimentos - Universidad de Chile, El Libano 5524, Santiago, Chile
| | - Angelo Ciacciulli
- Università degli Studi di Milano - DiSAA, Via Celoria 2, 20133, Milano, Italy
| | - Cássia Da Silva Linge
- Università degli Studi di Milano - DiSAA, Via Celoria 2, 20133, Milano, Italy
- Department of Plant and Environmental Sciences, Clemson University, 105 Collins St., Clemson, SC, USA
| | - Jehan-Baptiste Mauroux
- GAFL, INRA, 84140, Montfavet, France
- AGRO SELECTIONS FRUITS, La Prade de Mosseillous - CS70001, 66201, Elne, Cedex, France
| | | | - Elia Cammarata
- Università degli Studi di Milano - DiSAA, Via Celoria 2, 20133, Milano, Italy
| | - Daniele Bassi
- Università degli Studi di Milano - DiSAA, Via Celoria 2, 20133, Milano, Italy
| | | | - Laura Rossini
- Università degli Studi di Milano - DiSAA, Via Celoria 2, 20133, Milano, Italy
| |
Collapse
|
42
|
Cirilli M, Giovannini D, Ciacciulli A, Chiozzotto R, Gattolin S, Rossini L, Liverani A, Bassi D. Integrative genomics approaches validate PpYUC11-like as candidate gene for the stony hard trait in peach (P. persica L. Batsch). BMC PLANT BIOLOGY 2018; 18:88. [PMID: 29776387 PMCID: PMC5960097 DOI: 10.1186/s12870-018-1293-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 04/24/2018] [Indexed: 05/12/2023]
Abstract
BACKGROUND Texture is one of the most important fruit quality attributes. In peach, stony hard (SH) is a recessive monogenic trait (hd/hd) that confers exceptionally prolonged firm flesh to fully ripe fruit. Previous studies have shown that the SH mutation affects the fruit ability to synthesize appropriate amounts of indol-3-acetic acid (IAA), which orchestrates the ripening processes through the activation of system 2 ethylene pathway. Allelic variation in a TC microsatellite located within the first intron of PpYUC11-like (a YUCCA-like auxin-biosynthesis gene) has been recently proposed as the causal mutation of the SH phenotype. RESULTS The simple genetic determinism of the SH trait has been clarified through genome-wide association and LD analyses in a diverse set of accessions, restricting the hd locus to an interval of about 1.8 Mbp in chromosome 6. The comparison of fruit transcriptome data from non-SH (melting flesh) and SH accessions provided an expression patterns overview of the annotated transcripts within the hd locus, confirming the absence of PpYUC11-like expression in SH fruits. To explore further possible associations between genomic variants at the hd locus and the SH phenotype, re-sequencing data of the SH accession 'D41-62' were compared with several SH and non-SH accessions with different genetic backgrounds. A further step of validation was provided through the evaluation of variant-trait association in two bi-parental F2 populations issued from the SH accession 'D41-62' and a panel of advanced breeding selections, showing perfect co-segregation of the PpYUC11-like intron TC20 allele and the SH phenotype. CONCLUSIONS In this study, we provide a multi-level validation of the genetic control of the SH trait through the integration of genome-wide association mapping, transcriptome analysis and whole-genome resequencing data for SH and non-SH accessions, and marker-trait association in a panel of advanced breeding selections and segregating progenies. Collectively, our data confirm with high confidence the role of allelic variation at PpYUC11-like locus as the genetic determinant of the SH trait, opening interesting perspectives at both biological and applied research level.
Collapse
Affiliation(s)
- Marco Cirilli
- Department of Agricultural and Environmental Sciences (DISAA), University of Milan, Via Celoria 2, Milan, Italy
| | - Daniela Giovannini
- CREA Research Centre for Olive, Citrus and Tree Fruit, via La Canapona 1bis, Forlì, Italy
| | - Angelo Ciacciulli
- Department of Agricultural and Environmental Sciences (DISAA), University of Milan, Via Celoria 2, Milan, Italy
| | - Remo Chiozzotto
- Department of Agricultural and Environmental Sciences (DISAA), University of Milan, Via Celoria 2, Milan, Italy
| | - Stefano Gattolin
- Parco Tecnologico Padano, Via Einstein, Loc. C.na Codazza, Lodi, Italy
| | - Laura Rossini
- Department of Agricultural and Environmental Sciences (DISAA), University of Milan, Via Celoria 2, Milan, Italy
| | - Alessandro Liverani
- CREA Research Centre for Olive, Citrus and Tree Fruit, via La Canapona 1bis, Forlì, Italy
| | - Daniele Bassi
- Department of Agricultural and Environmental Sciences (DISAA), University of Milan, Via Celoria 2, Milan, Italy.
| |
Collapse
|
43
|
Hollender CA, Pascal T, Tabb A, Hadiarto T, Srinivasan C, Wang W, Liu Z, Scorza R, Dardick C. Loss of a highly conserved sterile alpha motif domain gene ( WEEP) results in pendulous branch growth in peach trees. Proc Natl Acad Sci U S A 2018; 115:E4690-E4699. [PMID: 29712856 PMCID: PMC5960274 DOI: 10.1073/pnas.1704515115] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plant shoots typically grow upward in opposition to the pull of gravity. However, exceptions exist throughout the plant kingdom. Most conspicuous are trees with weeping or pendulous branches. While such trees have long been cultivated and appreciated for their ornamental value, the molecular basis behind the weeping habit is not known. Here, we characterized a weeping tree phenotype in Prunus persica (peach) and identified the underlying genetic mutation using a genomic sequencing approach. Weeping peach tree shoots exhibited a downward elliptical growth pattern and did not exhibit an upward bending in response to 90° reorientation. The causative allele was found to be an uncharacterized gene, Ppa013325, having a 1.8-Kb deletion spanning the 5' end. This gene, dubbed WEEP, was predominantly expressed in phloem tissues and encodes a highly conserved 129-amino acid protein containing a sterile alpha motif (SAM) domain. Silencing WEEP in the related tree species Prunus domestica (plum) resulted in more outward, downward, and wandering shoot orientations compared to standard trees, supporting a role for WEEP in directing lateral shoot growth in trees. This previously unknown regulator of branch orientation, which may also be a regulator of gravity perception or response, provides insights into our understanding of how tree branches grow in opposition to gravity and could serve as a critical target for manipulating tree architecture for improved tree shape in agricultural and horticulture applications.
Collapse
Affiliation(s)
- Courtney A Hollender
- Appalachian Fruit Research Station, Agricultural Research Service, US Department of Agriculture, Kearneysville, WV 25430
- Department of Horticulture, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI 48824
| | - Thierry Pascal
- Unité Génétique et Amélioration de Fruits et Légumes, Institut National de la Recherche Agronomique, 84140 Montfavet, France
| | - Amy Tabb
- Appalachian Fruit Research Station, Agricultural Research Service, US Department of Agriculture, Kearneysville, WV 25430
| | - Toto Hadiarto
- Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and Development (BB Biogen), Bogor, Indonesia
| | - Chinnathambi Srinivasan
- Appalachian Fruit Research Station, Agricultural Research Service, US Department of Agriculture, Kearneysville, WV 25430
| | - Wanpeng Wang
- Department of Cell Biology and Molecular Genetics, College of Mathematics and Natural Sciences, University of Maryland, College Park, MD 20742
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, College of Mathematics and Natural Sciences, University of Maryland, College Park, MD 20742
| | - Ralph Scorza
- Appalachian Fruit Research Station, Agricultural Research Service, US Department of Agriculture, Kearneysville, WV 25430
| | - Chris Dardick
- Appalachian Fruit Research Station, Agricultural Research Service, US Department of Agriculture, Kearneysville, WV 25430;
| |
Collapse
|
44
|
Laurens F, Aranzana MJ, Arus P, Bassi D, Bink M, Bonany J, Caprera A, Corelli-Grappadelli L, Costes E, Durel CE, Mauroux JB, Muranty H, Nazzicari N, Pascal T, Patocchi A, Peil A, Quilot-Turion B, Rossini L, Stella A, Troggio M, Velasco R, van de Weg E. An integrated approach for increasing breeding efficiency in apple and peach in Europe. HORTICULTURE RESEARCH 2018; 5:11. [PMID: 29507735 PMCID: PMC5830435 DOI: 10.1038/s41438-018-0016-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 12/23/2017] [Indexed: 05/02/2023]
Abstract
Despite the availability of whole genome sequences of apple and peach, there has been a considerable gap between genomics and breeding. To bridge the gap, the European Union funded the FruitBreedomics project (March 2011 to August 2015) involving 28 research institutes and private companies. Three complementary approaches were pursued: (i) tool and software development, (ii) deciphering genetic control of main horticultural traits taking into account allelic diversity and (iii) developing plant materials, tools and methodologies for breeders. Decisive breakthroughs were made including the making available of ready-to-go DNA diagnostic tests for Marker Assisted Breeding, development of new, dense SNP arrays in apple and peach, new phenotypic methods for some complex traits, software for gene/QTL discovery on breeding germplasm via Pedigree Based Analysis (PBA). This resulted in the discovery of highly predictive molecular markers for traits of horticultural interest via PBA and via Genome Wide Association Studies (GWAS) on several European genebank collections. FruitBreedomics also developed pre-breeding plant materials in which multiple sources of resistance were pyramided and software that can support breeders in their selection activities. Through FruitBreedomics, significant progresses were made in the field of apple and peach breeding, genetics, genomics and bioinformatics of which advantage will be made by breeders, germplasm curators and scientists. A major part of the data collected during the project has been stored in the FruitBreedomics database and has been made available to the public. This review covers the scientific discoveries made in this major endeavour, and perspective in the apple and peach breeding and genomics in Europe and beyond.
Collapse
Affiliation(s)
- Francois Laurens
- IRHS, INRA, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, Université Bretagne Loire, 42 rue Georges Morel, Beaucouzé, 49071 France
| | - Maria José Aranzana
- IRTA (Institut de Recerca i Tecnologia Agroalimentàries), Barcelona, Spain
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona Spain
| | - Pere Arus
- IRTA (Institut de Recerca i Tecnologia Agroalimentàries), Barcelona, Spain
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona Spain
| | - Daniele Bassi
- Università degli Studi di Milano - DiSAA, Via Celoria 2, Milan, 20133 Italy
| | - Marco Bink
- Biometris, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708PB The Netherlands
- Present Address: Hendrix Genetics Research, Technology & Services, Boxmeer, 5830 AC The Netherlands
| | - Joan Bonany
- IRTA-Mas Badia, Mas Badia, La Tallada, 17134 Spain
| | - Andrea Caprera
- Parco Tecnologico Padano, Via Einstein, Loc. Cascina Codazza, Lodi, 26900 Italy
| | | | | | - Charles-Eric Durel
- IRHS, INRA, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, Université Bretagne Loire, 42 rue Georges Morel, Beaucouzé, 49071 France
| | | | - Hélène Muranty
- IRHS, INRA, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, Université Bretagne Loire, 42 rue Georges Morel, Beaucouzé, 49071 France
| | - Nelson Nazzicari
- Parco Tecnologico Padano, Via Einstein, Loc. Cascina Codazza, Lodi, 26900 Italy
| | | | - Andrea Patocchi
- Agroscope, Research Division Plant Breeding, Schloss 1, Wädenswil, 8820 Switzerland
| | - Andreas Peil
- Julius Kühn-Institute (JKI); Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Pillnitzer Platz 3a, Dresden, 01326 Germany
| | | | - Laura Rossini
- Università degli Studi di Milano - DiSAA, Via Celoria 2, Milan, 20133 Italy
- Parco Tecnologico Padano, Via Einstein, Loc. Cascina Codazza, Lodi, 26900 Italy
| | - Alessandra Stella
- Parco Tecnologico Padano, Via Einstein, Loc. Cascina Codazza, Lodi, 26900 Italy
| | - Michela Troggio
- Research and Innovation Center, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Riccardo Velasco
- Research and Innovation Center, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
- CREA-VE, Center of Viticulture and Enology, via XXVIII Aprile 26, Conegliano (TV), 31015 Italy
| | - Eric van de Weg
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, P.O.Box 386, Wageningen, 6700AJ The Netherlands
| |
Collapse
|
45
|
Kumar S, Knox RE, Singh AK, DePauw RM, Campbell HL, Isidro-Sanchez J, Clarke FR, Pozniak CJ, N’Daye A, Meyer B, Sharpe A, Ruan Y, Cuthbert RD, Somers D, Fedak G. High-density genetic mapping of a major QTL for resistance to multiple races of loose smut in a tetraploid wheat cross. PLoS One 2018; 13:e0192261. [PMID: 29485999 PMCID: PMC5828438 DOI: 10.1371/journal.pone.0192261] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 01/19/2018] [Indexed: 11/28/2022] Open
Abstract
Loose smut, caused by Ustilago tritici (Pers.) Rostr., is a systemic disease of tetraploid durum wheat (Triticum turgidum L.). Loose smut can be economically controlled by growing resistant varieties, making it important to find and deploy new sources of resistance. Blackbird, a variety of T. turgidum L. subsp. carthlicum (Nevski) A. Love & D. Love, carries a high level of resistance to loose smut. Blackbird was crossed with the loose smut susceptible durum cultivar Strongfield to produce a doubled haploid (DH) mapping population. The parents and progenies were inoculated with U. tritici races T26, T32 and T33 individually and as a mixture at Swift Current, Canada in 2011 and 2012 and loose smut incidence (LSI) was assessed. Genotyping of the DH population and parents using an Infinium iSelect 90K single nucleotide polymorphism (SNP) array identified 12,952 polymorphic SNPs. The SNPs and 426 SSRs (previously genotyped in the same population) were mapped to 16 linkage groups spanning 3008.4 cM at an average inter-marker space of 0.2 cM in a high-density genetic map. Composite interval mapping analysis revealed three significant quantitative trait loci (QTL) for loose smut resistance on chromosomes 3A, 6B and 7A. The loose smut resistance QTL on 6B (QUt.spa-6B.2) and 7A (QUt.spa-7A.2) were derived from Blackbird. Strongfield contributed the minor QTL on 3A (QUt.spa-3A.2). The resistance on 6B was a stable major QTL effective against all individual races and the mixture of the three races; it explained up to 74% of the phenotypic variation. This study is the first attempt in durum wheat to identify and map loose smut resistance QTL using a high-density genetic map. The QTL QUt.spa-6B.2 would be an effective source for breeding resistance to multiple races of the loose smut pathogen because it provides near-complete broad resistance to the predominant virulence on the Canadian prairies.
Collapse
Affiliation(s)
- Sachin Kumar
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, India
- * E-mail: (RK); (SK)
| | - Ron E. Knox
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, Saskatchewan, Canada
- * E-mail: (RK); (SK)
| | - Asheesh K. Singh
- 1501 Agronomy Hall, Iowa State University, Ames, Iowa, United States of America
| | - Ron M. DePauw
- Advancing Wheat Technology, Swift Current, Saskatchewan, Canada
| | - Heather L. Campbell
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, Saskatchewan, Canada
| | - Julio Isidro-Sanchez
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Fran R. Clarke
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, Saskatchewan, Canada
| | - Curtis J. Pozniak
- Department of Plant Sciences and Crop Development Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Amidou N’Daye
- Department of Plant Sciences and Crop Development Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Brad Meyer
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, Saskatchewan, Canada
| | - Andrew Sharpe
- Global Institute of Food Security, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yuefeng Ruan
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, Saskatchewan, Canada
| | - Richard D. Cuthbert
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, Saskatchewan, Canada
| | - Daryl Somers
- Vineland Research and Innovation Centre, Vineland Station, Ontario, Canada
| | - George Fedak
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| |
Collapse
|
46
|
Scheben A, Batley J, Edwards D. Revolution in Genotyping Platforms for Crop Improvement. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 164:37-52. [PMID: 29356847 DOI: 10.1007/10_2017_47] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the past decade, the application of high-throughput sequencing to crop genotyping has given rise to novel platforms capable of genotyping tens of thousands of genome-wide DNA markers. Coupled with the decreasing costs of sequencing, this rapid increase in markers allows accelerated and highly accurate genotyping of entire crop populations and diversity sets using single nucleotide polymorphisms (SNPs). These revolutionary advances accelerate crop improvement by facilitating a more precise connection of phenotype to genotype through association studies, linkage mapping and diversity analysis. The platforms driving the advances in genotyping are array technologies and genotyping by sequencing (GBS) methods, which include both low-coverage whole genome resequencing (skim sequencing) and reduced representation sequencing (RRS) approaches. Here, we outline and compare these genotyping platforms and provide a perspective on the promising future of crop genotyping. While SNP arrays provide high quality, simple handling, and unchallenging analysis, the lower cost of RRS and the greater data volume produced by skim sequencing suggest that use of GBS will become more prevalent in crop genomics as sequencing costs decrease and data analysis becomes more streamlined. Graphical Abstract.
Collapse
Affiliation(s)
- Armin Scheben
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia.,Institute of Agriculture, University of Western Australia, Crawley, WA, Australia
| | - David Edwards
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia. .,Institute of Agriculture, University of Western Australia, Crawley, WA, Australia.
| |
Collapse
|
47
|
Cirilli M, Rossini L, Geuna F, Palmisano F, Minafra A, Castrignanò T, Gattolin S, Ciacciulli A, Babini AR, Liverani A, Bassi D. Genetic dissection of Sharka disease tolerance in peach (P. persica L. Batsch). BMC PLANT BIOLOGY 2017; 17:192. [PMID: 29100531 PMCID: PMC5670703 DOI: 10.1186/s12870-017-1117-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 10/09/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND Plum pox virus (PPV), agent of Sharka disease, is the most important quarantine pathogen of peach (P. persica L. Batsch). Extensive evaluation of peach germplasm has highlighted the lack of resistant sources, while suggesting the presence of a quantitative disease resistance, expressed as reduction in the intensity of symptoms. Unravelling the genetic architecture of peach response to PPV infection is essential for pyramiding resistant genes and for developing more tolerant varieties. For this purpose, a genome-wide association (GWA) approach was applied in a panel of accessions phenotyped for virus susceptibility and genotyped with the IPSC peach 9 K SNP Array, and coupled with an high-coverage resequencing of the tolerant accession 'Kamarat'. RESULTS Genome-wide association identified three highly significant associated loci on chromosome 2 and 3, accounting for most of the reduction in PPV-M susceptibility within the analysed peach population. The exploration of associated intervals through whole-genome comparison of the tolerant accession 'Kamarat' and other susceptible accessions, including the PPV-resistant wild-related species P. davidiana, allow the identification of allelic variants in promising candidate genes, including an RTM2-like gene already characterized in A. thaliana. CONCLUSIONS The present study is the first effort to identify genetic factors involved in Sharka disease in peach germplasm through a GWA approach. We provide evidence of the presence of quantitative resistant loci in a collection of peach accessions, identifying major loci and highly informative SNPs that could be useful for marker assisted selection. These results could serve as reference bases for future research aimed at the comprehension of genetic mechanism regulating the complex peach-PPV interaction.
Collapse
Affiliation(s)
- Marco Cirilli
- Department of Agricultural and Environmental Sciences (DISAA), University of Milan, via Celoria 2, Milan, Italy
| | - Laura Rossini
- Department of Agricultural and Environmental Sciences (DISAA), University of Milan, via Celoria 2, Milan, Italy
- Parco Tecnologico Padano, via Einstein, Loc. C.na Codazza, Lodi, Italy
| | - Filippo Geuna
- Department of Agricultural and Environmental Sciences (DISAA), University of Milan, via Celoria 2, Milan, Italy
| | - Francesco Palmisano
- Centro di Ricerca, Sperimentazione e Formazione in Agricoltura Basile-Caramia (CRSFA), via Cisternino, 281 Locorotondo, Bari, Italy
| | - Angelantonio Minafra
- Istituto per la Protezione Sostenibile delle Piante (CNR-IPSP), via Amendola 122/D, Bari, Italy
| | - Tiziana Castrignanò
- CINECA, SCAI Super Computing Applications and Innovation, via dei Tizii 6, Rome, Italy
| | - Stefano Gattolin
- Parco Tecnologico Padano, via Einstein, Loc. C.na Codazza, Lodi, Italy
| | - Angelo Ciacciulli
- Department of Agricultural and Environmental Sciences (DISAA), University of Milan, via Celoria 2, Milan, Italy
| | | | - Alessandro Liverani
- CREA, Research Centre for Olive, Citrus and Tree Fruit, via La Canapona 1 bis, Forlì, Italy
| | - Daniele Bassi
- Department of Agricultural and Environmental Sciences (DISAA), University of Milan, via Celoria 2, Milan, Italy
| |
Collapse
|
48
|
Rasheed A, Hao Y, Xia X, Khan A, Xu Y, Varshney RK, He Z. Crop Breeding Chips and Genotyping Platforms: Progress, Challenges, and Perspectives. MOLECULAR PLANT 2017; 10:1047-1064. [PMID: 28669791 DOI: 10.1016/j.molp.2017.06.008] [Citation(s) in RCA: 252] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 05/29/2017] [Accepted: 06/19/2017] [Indexed: 05/18/2023]
Abstract
There is a rapidly rising trend in the development and application of molecular marker assays for gene mapping and discovery in field crops and trees. Thus far, more than 50 SNP arrays and 15 different types of genotyping-by-sequencing (GBS) platforms have been developed in over 25 crop species and perennial trees. However, much less effort has been made on developing ultra-high-throughput and cost-effective genotyping platforms for applied breeding programs. In this review, we discuss the scientific bottlenecks in existing SNP arrays and GBS technologies and the strategies to develop targeted platforms for crop molecular breeding. We propose that future practical breeding platforms should adopt automated genotyping technologies, either array or sequencing based, target functional polymorphisms underpinning economic traits, and provide desirable prediction accuracy for quantitative traits, with universal applications under wide genetic backgrounds in crops. The development of such platforms faces serious challenges at both the technological level due to cost ineffectiveness, and the knowledge level due to large genotype-phenotype gaps in crop plants. It is expected that such genotyping platforms will be achieved in the next ten years in major crops in consideration of (a) rapid development in gene discovery of important traits, (b) deepened understanding of quantitative traits through new analytical models and population designs, (c) integration of multi-layer -omics data leading to identification of genes and pathways responsible for important breeding traits, and (d) improvement in cost effectiveness of large-scale genotyping. Crop breeding chips and genotyping platforms will provide unprecedented opportunities to accelerate the development of cultivars with desired yield potential, quality, and enhanced adaptation to mitigate the effects of climate change.
Collapse
Affiliation(s)
- Awais Rasheed
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China; International Maize and Wheat Improvement Center (CIMMYT), c/o CAAS, Beijing 100081, China
| | - Yuanfeng Hao
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Xianchun Xia
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Awais Khan
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva, NY, USA
| | - Yunbi Xu
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China; International Maize and Wheat Improvement Center (CIMMYT), c/o CAAS, Beijing 100081, China
| | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, India
| | - Zhonghu He
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China; International Maize and Wheat Improvement Center (CIMMYT), c/o CAAS, Beijing 100081, China.
| |
Collapse
|
49
|
López-Girona E, Zhang Y, Eduardo I, Mora JRH, Alexiou KG, Arús P, Aranzana MJ. A deletion affecting an LRR-RLK gene co-segregates with the fruit flat shape trait in peach. Sci Rep 2017; 7:6714. [PMID: 28751691 PMCID: PMC5532255 DOI: 10.1038/s41598-017-07022-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/20/2017] [Indexed: 01/01/2023] Open
Abstract
In peach, the flat phenotype is caused by a partially dominant allele in heterozygosis (Ss), fruits from homozygous trees (SS) abort a few weeks after fruit setting. Previous research has identified a SSR marker (UDP98-412) highly associated with the trait, found suitable for marker assisted selection (MAS). Here we report a ∼10 Kb deletion affecting the gene PRUPE.6G281100, 400 Kb upstream of UDP98-412, co-segregating with the trait. This gene is a leucine-rich repeat receptor-like kinase (LRR-RLK) orthologous to the Brassinosteroid insensitive 1-associated receptor kinase 1 (BAK1) group. PCR markers suitable for MAS confirmed its strong association with the trait in a collection of 246 cultivars. They were used to evaluate the DNA from a round fruit derived from a somatic mutation of the flat variety 'UFO-4', revealing that the mutation affected the flat associated allele (S). Protein BLAST alignment identified significant hits with genes involved in different biological processes. Best protein hit occurred with AtRLP12, which may functionally complement CLAVATA2, a key regulator that controls the stem cell population size. RT-PCR analysis revealed the absence of transcription of the partially deleted allele. The data support PRUPE.6G281100 as a candidate gene for flat shape in peach.
Collapse
Affiliation(s)
- Elena López-Girona
- IRTA (Institut de Recerca i Tecnologia Agroalimentàries), Barcelona, Spain
| | - Yu Zhang
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, Spain
| | - Iban Eduardo
- IRTA (Institut de Recerca i Tecnologia Agroalimentàries), Barcelona, Spain
| | | | | | - Pere Arús
- IRTA (Institut de Recerca i Tecnologia Agroalimentàries), Barcelona, Spain
| | | |
Collapse
|
50
|
Hernández Mora JR, Micheletti D, Bink M, Van de Weg E, Cantín C, Nazzicari N, Caprera A, Dettori MT, Micali S, Banchi E, Campoy JA, Dirlewanger E, Lambert P, Pascal T, Troggio M, Bassi D, Rossini L, Verde I, Quilot-Turion B, Laurens F, Arús P, Aranzana MJ. Integrated QTL detection for key breeding traits in multiple peach progenies. BMC Genomics 2017; 18:404. [PMID: 28583082 PMCID: PMC5460339 DOI: 10.1186/s12864-017-3783-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/10/2017] [Indexed: 01/23/2023] Open
Abstract
Background Peach (Prunus persica (L.) Batsch) is a major temperate fruit crop with an intense breeding activity. Breeding is facilitated by knowledge of the inheritance of the key traits that are often of a quantitative nature. QTLs have traditionally been studied using the phenotype of a single progeny (usually a full-sib progeny) and the correlation with a set of markers covering its genome. This approach has allowed the identification of various genes and QTLs but is limited by the small numbers of individuals used and by the narrow transect of the variability analyzed. In this article we propose the use of a multi-progeny mapping strategy that used pedigree information and Bayesian approaches that supports a more precise and complete survey of the available genetic variability. Results Seven key agronomic characters (data from 1 to 3 years) were analyzed in 18 progenies from crosses between occidental commercial genotypes and various exotic lines including accessions of other Prunus species. A total of 1467 plants from these progenies were genotyped with a 9 k SNP array. Forty-seven QTLs were identified, 22 coinciding with major genes and QTLs that have been consistently found in the same populations when studied individually and 25 were new. A substantial part of the QTLs observed (47%) would not have been detected in crosses between only commercial materials, showing the high value of exotic lines as a source of novel alleles for the commercial gene pool. Our strategy also provided estimations on the narrow sense heritability of each character, and the estimation of the QTL genotypes of each parent for the different QTLs and their breeding value. Conclusions The integrated strategy used provides a broader and more accurate picture of the variability available for peach breeding with the identification of many new QTLs, information on the sources of the alleles of interest and the breeding values of the potential donors of such valuable alleles. These results are first-hand information for breeders and a step forward towards the implementation of DNA-informed strategies to facilitate selection of new cultivars with improved productivity and quality. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3783-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- José R Hernández Mora
- IRTA, Centre de Recerca en Agrigenòmica CSIC-IRTA-UAB-UB; Campus UAB, Bellaterra (Cerdanyola del Vallès), 08193, Barcelona, Spain
| | - Diego Micheletti
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via Mach 1, 38010, San Michele all'Adige, TN, Italy
| | - Marco Bink
- Hendrix Genetics Research, Technology & Services B.V., P.O. Box 114, 5830AC, Boxmeer, The Netherlands
| | - Eric Van de Weg
- Plant Breeding, Wageningen University and Research Droevendaalsesteeg 1, P.O. Box 386, 6700AJ, Wageningen, The Netherlands
| | - Celia Cantín
- IRTA, FruitCentreParc Cientific i Tecnològic Agroalimentari de Lleida (PCiTAL), Lleida, Spain
| | - Nelson Nazzicari
- PTP Science Park, Via Einstein, 26900, Lodi, Italy.,Council for Agricultural Research and Economics (CREA) Research Centre for Fodder Crops and Dairy Productions, Lodi, Italy
| | | | - Maria Teresa Dettori
- Consiglio per la Ricerca in Agricoltura e L'analisi Dell'economia Agraria (CREA) - Centro di Ricerca per la Frutticoltura, 00134, Roma, Italy
| | - Sabrina Micali
- Consiglio per la Ricerca in Agricoltura e L'analisi Dell'economia Agraria (CREA) - Centro di Ricerca per la Frutticoltura, 00134, Roma, Italy
| | - Elisa Banchi
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via Mach 1, 38010, San Michele all'Adige, TN, Italy
| | | | | | | | | | - Michela Troggio
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via Mach 1, 38010, San Michele all'Adige, TN, Italy
| | - Daniele Bassi
- Università degli Studi di Milano, DiSAA, Via Celoria 2, 20133, Milan, Italy
| | - Laura Rossini
- PTP Science Park, Via Einstein, 26900, Lodi, Italy.,Università degli Studi di Milano, DiSAA, Via Celoria 2, 20133, Milan, Italy
| | - Ignazio Verde
- Consiglio per la Ricerca in Agricoltura e L'analisi Dell'economia Agraria (CREA) - Centro di Ricerca per la Frutticoltura, 00134, Roma, Italy
| | | | | | - Pere Arús
- IRTA, Centre de Recerca en Agrigenòmica CSIC-IRTA-UAB-UB; Campus UAB, Bellaterra (Cerdanyola del Vallès), 08193, Barcelona, Spain
| | - Maria José Aranzana
- IRTA, Centre de Recerca en Agrigenòmica CSIC-IRTA-UAB-UB; Campus UAB, Bellaterra (Cerdanyola del Vallès), 08193, Barcelona, Spain.
| |
Collapse
|