1
|
Patel TA, Zheng H, Patel KP. Sodium-Glucose Cotransporter 2 Inhibitors as Potential Antioxidant Therapeutic Agents in Cardiovascular and Renal Diseases. Antioxidants (Basel) 2025; 14:336. [PMID: 40227417 PMCID: PMC11939188 DOI: 10.3390/antiox14030336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 04/15/2025] Open
Abstract
Redox (reduction-oxidation) imbalance is a physiological feature regulated by a well-maintained equilibrium between reactive oxygen species (ROS) and oxidative stress (OS), the defense system of the body (antioxidant enzymes). The redox system comprises regulated levels of ROS in the cells, tissues and the overall organ system. The levels of ROS are synchronized by gradients of electrons that are generated due to sequential reduction and oxidation of various biomolecules by various enzymes. Such redox reactions are present in each cell, irrespective of any tissue or organ. Failure in such coordinated regulation of redox reactions leads to the production of excessive ROS and free radicals. Excessively produced free radicals and oxidative stress affect various cellular and molecular processes required for cell survival and growth, leading to pathophysiological conditions and, ultimately, organ failure. Overproduction of free radicals and oxidative stress are the key factors involved in the onset and progression of pathophysiological conditions associated with various cardiovascular and renal diseases. Sodium-glucose cotransporter 2 inhibitors (SGLT2is) are glucose-lowering drugs prescribed to diabetic patients. Interestingly, apart from their glucose-lowering effect, these drugs exhibit beneficial effects in non-diabetic patients suffering from various cardiovascular and chronic kidney diseases, perhaps due to their antioxidant properties. Recently, it has been demonstrated that SGLT2is exhibit strong antioxidant properties by reducing ROS and OS. Hence, in this review, we aim to present the novel antioxidant role of SGLT2is and their consequent beneficial effects in various cardiovascular and renal disease states.
Collapse
Affiliation(s)
- Tapan A. Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA;
| | - Hong Zheng
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD 57069, USA
| | - Kaushik P. Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA;
| |
Collapse
|
2
|
Nowak K, Zabczyk M, Natorska J, Zalewski J, Undas A. Elevated plasma protein carbonylation increases the risk of ischemic cerebrovascular events in patients with atrial fibrillation: association with a prothrombotic state. J Thromb Thrombolysis 2024; 57:1206-1215. [PMID: 38965130 PMCID: PMC11496363 DOI: 10.1007/s11239-024-03003-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/07/2024] [Indexed: 07/06/2024]
Abstract
INTRODUCTION Plasma protein carbonylation that reflects oxidative stress has been demonstrated to be associated with the prothrombotic fibrin clot phenotype. However, the role of protein carbonyls (PC) in predicting ischemic stroke in atrial fibrillation (AF) is largely unknown. This study aimed to investigate whether PC increase the risk of stroke in anticoagulated AF patients during follow-up. METHODS In 243 AF patients on anticoagulation (median age 69 years; median CHA2DS2-VASc of 4), we measured plasma PC using the assay by Becatti, along with plasma clot permeability (Ks), clot lysis time (CLT), thrombin generation, and fibrinolytic proteins, including plasminogen activator inhibitor type 1 (PAI-1) and thrombin activatable fibrinolysis inhibitor (TAFI). Ischemic stroke, major bleeding, and mortality were recorded during a median follow-up of 53 months. RESULTS Plasma PC levels (median, 3.16 [2.54-3.99] nM/mg protein) at baseline showed positive associations with age (P < 0.001), CHA2DS2-VASc (P = 0.003), and N-terminal B-type natriuretic peptide (P = 0.001), but not with type of AF or comorbidities except for heart failure (P = 0.007). PC levels were correlated with CLT (r = 0.342, P < 0.001), endogenous thrombin potential (r = 0.217, P = 0.001) and weakly with Ks (r = -0.145, P = 0.024), but not with fibrinogen, PAI-1, or TAFI levels. Stroke was recorded in 20 patients (1.9%/year), who had at baseline 36% higher PC levels (P < 0.001). Elevated PC (P = 0.003) at baseline were independently associated with stroke risk. CONCLUSION Our findings suggest that in patients with AF enhanced protein carbonylation is associated with increased "residual" risk of stroke despite anticoagulation, which is at least in part due to unfavorably altered fibrin clot phenotype.
Collapse
Affiliation(s)
- Karol Nowak
- Department of Thromboembolic Disorders, Institute of Cardiology, Jagiellonian University Medical College, Pradnicka 80 St, 31-202, Kraków, Poland
- Department of Coronary Artery Disease and Heart Failure, John Paul II Hospital, Pradnicka 80 St, 31-202, Kraków, Poland
| | - Michal Zabczyk
- Department of Thromboembolic Disorders, Institute of Cardiology, Jagiellonian University Medical College, Pradnicka 80 St, 31-202, Kraków, Poland
- Krakow Centre for Medical Research and Technologies, John Paul II Hospital, Pradnicka 80 St, 31-202, Kraków, Poland
| | - Joanna Natorska
- Department of Thromboembolic Disorders, Institute of Cardiology, Jagiellonian University Medical College, Pradnicka 80 St, 31-202, Kraków, Poland
- Krakow Centre for Medical Research and Technologies, John Paul II Hospital, Pradnicka 80 St, 31-202, Kraków, Poland
| | - Jaroslaw Zalewski
- Department of Coronary Artery Disease and Heart Failure, John Paul II Hospital, Pradnicka 80 St, 31-202, Kraków, Poland
- Department of Coronary Artery Disease and Heart Failure, Institute of Cardiology, Jagiellonian University Medical College, Pradnicka 80 St, 31-202, Kraków, Poland
| | - Anetta Undas
- Department of Thromboembolic Disorders, Institute of Cardiology, Jagiellonian University Medical College, Pradnicka 80 St, 31-202, Kraków, Poland.
- Krakow Centre for Medical Research and Technologies, John Paul II Hospital, Pradnicka 80 St, 31-202, Kraków, Poland.
| |
Collapse
|
3
|
Miotto MC, Reiken S, Wronska A, Yuan Q, Dridi H, Liu Y, Weninger G, Tchagou C, Marks AR. Structural basis for ryanodine receptor type 2 leak in heart failure and arrhythmogenic disorders. Nat Commun 2024; 15:8080. [PMID: 39278969 PMCID: PMC11402997 DOI: 10.1038/s41467-024-51791-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 08/12/2024] [Indexed: 09/18/2024] Open
Abstract
Heart failure, the leading cause of mortality and morbidity in the developed world, is characterized by cardiac ryanodine receptor 2 channels that are hyperphosphorylated, oxidized, and depleted of the stabilizing subunit calstabin-2. This results in a diastolic sarcoplasmic reticulum Ca2+ leak that impairs cardiac contractility and triggers arrhythmias. Genetic mutations in ryanodine receptor 2 can also cause Ca2+ leak, leading to arrhythmias and sudden cardiac death. Here, we solved the cryogenic electron microscopy structures of ryanodine receptor 2 variants linked either to heart failure or inherited sudden cardiac death. All are in the primed state, part way between closed and open. Binding of Rycal drugs to ryanodine receptor 2 channels reverts the primed state back towards the closed state, decreasing Ca2+ leak, improving cardiac function, and preventing arrhythmias. We propose a structural-physiological mechanism whereby the ryanodine receptor 2 channel primed state underlies the arrhythmias in heart failure and arrhythmogenic disorders.
Collapse
Affiliation(s)
- Marco C Miotto
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA.
| | - Steven Reiken
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| | - Anetta Wronska
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| | - Qi Yuan
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| | - Haikel Dridi
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| | - Yang Liu
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| | - Gunnar Weninger
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| | - Carl Tchagou
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| | - Andrew R Marks
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA.
| |
Collapse
|
4
|
Ng ML, Ang X, Yap KY, Ng JJ, Goh ECH, Khoo BBJ, Richards AM, Drum CL. Novel Oxidative Stress Biomarkers with Risk Prognosis Values in Heart Failure. Biomedicines 2023; 11:917. [PMID: 36979896 PMCID: PMC10046491 DOI: 10.3390/biomedicines11030917] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 02/26/2023] [Indexed: 03/18/2023] Open
Abstract
Oxidative stress (OS) is mediated by reactive oxygen species (ROS), which in cardiovascular and other disease states, damage DNA, lipids, proteins, other cellular and extra-cellular components. OS is both initiated by, and triggers inflammation, cardiomyocyte apoptosis, matrix remodeling, myocardial fibrosis, and neurohumoral activation. These have been linked to the development of heart failure (HF). Circulating biomarkers generated by OS offer potential utility in patient management and therapeutic targeting. Novel OS-related biomarkers such as NADPH oxidases (sNox2-dp, Nrf2), advanced glycation end-products (AGE), and myeloperoxidase (MPO), are signaling molecules reflecting pathobiological changes in HF. This review aims to evaluate current OS-related biomarkers and their associations with clinical outcomes and to highlight those with greatest promise in diagnosis, risk stratification and therapeutic targeting in HF.
Collapse
Affiliation(s)
- Mei Li Ng
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Xu Ang
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Kwan Yi Yap
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Jun Jie Ng
- Vascular Surgery, Department of Cardiac, Thoracic and Vascular Surgery, National University Heart Centre, Singapore 119074, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Eugene Chen Howe Goh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Benjamin Bing Jie Khoo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Arthur Mark Richards
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Cardiovascular Research Institute, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 9, NUHCS, Singapore 119228, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Chester Lee Drum
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Cardiovascular Research Institute, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 9, NUHCS, Singapore 119228, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| |
Collapse
|
5
|
Cosarderelioglu C, Nidadavolu LS, George CJ, Marx-Rattner R, Powell L, Xue QL, Tian J, Oh ES, Ferrucci L, Dincer P, Bennett DA, Walston JD, Abadir PM. Angiotensin receptor blocker use is associated with upregulation of the memory-protective angiotensin type 4 receptor (AT 4R) in the postmortem brains of individuals without cognitive impairment. GeroScience 2023; 45:371-384. [PMID: 35969296 PMCID: PMC9886717 DOI: 10.1007/s11357-022-00639-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/04/2022] [Indexed: 02/03/2023] Open
Abstract
The reported primary dementia-protective benefits of angiotensin II type 1 receptor (AT1R) blockers (ARB) are believed, at least in part, to arise from systemic effects on blood pressure. However, there is a specific and independently regulated brain renin-angiotensin system (RAS). Brain RAS acts mainly through three receptor subtypes; AT1R, AT2R, and AT4R. The AT1R promotes inflammation and mitochondrial reactive oxygen species generation. AT2R increases nitric oxide. AT4R is essential for dopamine and acetylcholine release. It is unknown whether ARB use is associated with changes in the brain RAS. Here, we compared the impact of treatment with ARB on not cognitively impaired individuals and individuals with Alzheimer's dementia using postmortem frontal-cortex samples of age- and sex-matched participants (70-90 years old, n = 30 in each group). We show that ARB use is associated with higher brain AT4R, lower oxidative stress, and amyloid-β burden in NCI participants. In AD, ARB use was associated with lower brain AT1R but had no impact on inflammation, oxidative stress, or amyloid-β burden. Our results may suggest a potential role for AT4R in the salutary effects for ARB on the brains of not cognitively impaired older adults.
Collapse
Affiliation(s)
- Caglar Cosarderelioglu
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
- Department of Internal Medicine, Division of Geriatrics, Ankara University School of Medicine, Ankara, Turkey
- Department of Medical Biology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Lolita S Nidadavolu
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - Claudene J George
- Department of Medicine, Division of Geriatrics, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Ruth Marx-Rattner
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - Laura Powell
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - Qian-Li Xue
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
- Johns Hopkins University Center On Aging and Health, Baltimore, MD, USA
| | - Jing Tian
- Department of Biostatistics, Bloomberg School of Public Health, Baltimore, MD, USA
| | - Esther S Oh
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - Luigi Ferrucci
- National Institute On Aging, National Institutes of Health, Baltimore, MD, USA
| | - Pervin Dincer
- Department of Medical Biology, Hacettepe University School of Medicine, Ankara, Turkey
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Jeremy D Walston
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - Peter M Abadir
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA.
| |
Collapse
|
6
|
Valero-Muñoz M, Saw EL, Hekman RM, Blum BC, Hourani Z, Granzier H, Emili A, Sam F. Proteomic and phosphoproteomic profiling in heart failure with preserved ejection fraction (HFpEF). Front Cardiovasc Med 2022; 9:966968. [PMID: 36093146 PMCID: PMC9452734 DOI: 10.3389/fcvm.2022.966968] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Although the prevalence of heart failure with preserved ejection fraction (HFpEF) is increasing, evidence-based therapies for HFpEF remain limited, likely due to an incomplete understanding of this disease. This study sought to identify the cardiac-specific features of protein and phosphoprotein changes in a murine model of HFpEF using mass spectrometry. HFpEF mice demonstrated moderate hypertension, left ventricle (LV) hypertrophy, lung congestion and diastolic dysfunction. Proteomics analysis of the LV tissue showed that 897 proteins were differentially expressed between HFpEF and Sham mice. We observed abundant changes in sarcomeric proteins, mitochondrial-related proteins, and NAD-dependent protein deacetylase sirtuin-3 (SIRT3). Upregulated pathways by GSEA analysis were related to immune modulation and muscle contraction, while downregulated pathways were predominantly related to mitochondrial metabolism. Western blot analysis validated SIRT3 downregulated cardiac expression in HFpEF vs. Sham (0.8 ± 0.0 vs. 1.0 ± 0.0; P < 0.001). Phosphoproteomics analysis showed that 72 phosphosites were differentially regulated between HFpEF and Sham LV. Aberrant phosphorylation patterns mostly occurred in sarcomere proteins and nuclear-localized proteins associated with contractile dysfunction and cardiac hypertrophy. Seven aberrant phosphosites were observed at the z-disk binding region of titin. Additional agarose gel analysis showed that while total titin cardiac expression remained unaltered, its stiffer N2B isoform was significantly increased in HFpEF vs. Sham (0.144 ± 0.01 vs. 0.127 ± 0.01; P < 0.05). In summary, this study demonstrates marked changes in proteins related to mitochondrial metabolism and the cardiac contractile apparatus in HFpEF. We propose that SIRT3 may play a role in perpetuating these changes and may be a target for drug development in HFpEF.
Collapse
Affiliation(s)
- María Valero-Muñoz
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States
| | - Eng Leng Saw
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States
| | - Ryan M. Hekman
- Department of Biology, Boston University, Boston, MA, United States
- Department of Biochemistry, Cell Biology and Genomics, Boston University, Boston, MA, United States
| | - Benjamin C. Blum
- Department of Biochemistry, Cell Biology and Genomics, Boston University, Boston, MA, United States
- Center for Network Systems Biology, Boston University, Boston, MA, United States
| | - Zaynab Hourani
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ, United States
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ, United States
| | - Andrew Emili
- Department of Biology, Boston University, Boston, MA, United States
- Department of Biochemistry, Cell Biology and Genomics, Boston University, Boston, MA, United States
| | - Flora Sam
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
7
|
Teixeira PC, Ducret A, Langen H, Nogoceke E, Santos RHB, Silva Nunes JP, Benvenuti L, Levy D, Bydlowski SP, Bocchi EA, Kuramoto Takara A, Fiorelli AI, Stolf NA, Pomeranzeff P, Chevillard C, Kalil J, Cunha-Neto E. Impairment of Multiple Mitochondrial Energy Metabolism Pathways in the Heart of Chagas Disease Cardiomyopathy Patients. Front Immunol 2021; 12:755782. [PMID: 34867990 PMCID: PMC8633876 DOI: 10.3389/fimmu.2021.755782] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/26/2021] [Indexed: 12/26/2022] Open
Abstract
Chagas disease cardiomyopathy (CCC) is an inflammatory dilated cardiomyopathy occurring in 30% of the 6 million infected with the protozoan Trypanosoma cruzi in Latin America. Survival is significantly lower in CCC than ischemic (IC) and idiopathic dilated cardiomyopathy (DCM). Previous studies disclosed a selective decrease in mitochondrial ATP synthase alpha expression and creatine kinase activity in CCC myocardium as compared to IDC and IC, as well as decreased in vivo myocardial ATP production. Aiming to identify additional constraints in energy metabolism specific to CCC, we performed a proteomic study in myocardial tissue samples from CCC, IC and DCM obtained at transplantation, in comparison with control myocardial tissue samples from organ donors. Left ventricle free wall myocardial samples were subject to two-dimensional electrophoresis with fluorescent labeling (2D-DIGE) and protein identification by mass spectrometry. We found altered expression of proteins related to mitochondrial energy metabolism, cardiac remodeling, and oxidative stress in the 3 patient groups. Pathways analysis of proteins differentially expressed in CCC disclosed mitochondrial dysfunction, fatty acid metabolism and transmembrane potential of mitochondria. CCC patients’ myocardium displayed reduced expression of 22 mitochondrial proteins belonging to energy metabolism pathways, as compared to 17 in DCM and 3 in IC. Significantly, 6 beta-oxidation enzymes were reduced in CCC, while only 2 of them were down-regulated in DCM and 1 in IC. We also observed that the cytokine IFN-gamma, previously described with increased levels in CCC, reduces mitochondrial membrane potential in cardiomyocytes. Results suggest a major reduction of mitochondrial energy metabolism and mitochondrial dysfunction in CCC myocardium which may be in part linked to IFN-gamma. This may partially explain the worse prognosis of CCC as compared to DCM or IC.
Collapse
Affiliation(s)
- Priscila Camillo Teixeira
- Laboratory of Immunology, Heart Institute (Incor) Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Axel Ducret
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Hanno Langen
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Everson Nogoceke
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | | | - João Paulo Silva Nunes
- Laboratory of Immunology, Heart Institute (Incor) Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,INSERM, UMR_1090, Aix Marseille Université, TAGC Theories and Approaches of Genomic Complexity, Institut MarMaRa, Marseille, France.,Division of Clinical Immunology and Allergy, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Instituto Nacional de Ciência e Tecnologia, INCT, iii- Institute for Investigation in Immunology, São Paulo, Brazil
| | - Luiz Benvenuti
- Anatomical Pathology Division, Heart Institute (Incor) Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Debora Levy
- Laboratory of Immunology, Heart Institute (Incor) Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Sergio Paulo Bydlowski
- Laboratory of Immunology, Heart Institute (Incor) Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Edimar Alcides Bocchi
- Heart Failure Team, Heart Institute (Incor) Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Andréia Kuramoto Takara
- Laboratory of Immunology, Heart Institute (Incor) Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Alfredo Inácio Fiorelli
- Division of Surgery, Heart Institute, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Noedir Antonio Stolf
- Division of Surgery, Heart Institute, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Pablo Pomeranzeff
- Division of Surgery, Heart Institute, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Christophe Chevillard
- INSERM, UMR_1090, Aix Marseille Université, TAGC Theories and Approaches of Genomic Complexity, Institut MarMaRa, Marseille, France
| | - Jorge Kalil
- Laboratory of Immunology, Heart Institute (Incor) Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Division of Clinical Immunology and Allergy, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Instituto Nacional de Ciência e Tecnologia, INCT, iii- Institute for Investigation in Immunology, São Paulo, Brazil
| | - Edecio Cunha-Neto
- Laboratory of Immunology, Heart Institute (Incor) Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Division of Clinical Immunology and Allergy, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Instituto Nacional de Ciência e Tecnologia, INCT, iii- Institute for Investigation in Immunology, São Paulo, Brazil
| |
Collapse
|
8
|
Banfi C, Baetta R, Barbieri SS, Brioschi M, Guarino A, Ghilardi S, Sandrini L, Eligini S, Polvani G, Bergman O, Eriksson P, Tremoli E. Prenylcysteine oxidase 1, an emerging player in atherosclerosis. Commun Biol 2021; 4:1109. [PMID: 34548610 PMCID: PMC8455616 DOI: 10.1038/s42003-021-02630-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 09/02/2021] [Indexed: 02/08/2023] Open
Abstract
The research into the pathophysiology of atherosclerosis has considerably increased our understanding of the disease complexity, but still many questions remain unanswered, both mechanistically and pharmacologically. Here, we provided evidence that the pro-oxidant enzyme Prenylcysteine Oxidase 1 (PCYOX1), in the human atherosclerotic lesions, is both synthesized locally and transported within the subintimal space by proatherogenic lipoproteins accumulating in the arterial wall during atherogenesis. Further, Pcyox1 deficiency in Apoe-/- mice retards atheroprogression, is associated with decreased features of lesion vulnerability and lower levels of lipid peroxidation, reduces plasma lipid levels and inflammation. PCYOX1 silencing in vitro affects the cellular proteome by influencing multiple functions related to inflammation, oxidative stress, and platelet adhesion. Collectively, these findings identify the pro-oxidant enzyme PCYOX1 as an emerging player in atherogenesis and, therefore, understanding the biology and mechanisms of all functions of this unique enzyme is likely to provide additional therapeutic opportunities in addressing atherosclerosis.
Collapse
Affiliation(s)
- C. Banfi
- grid.418230.c0000 0004 1760 1750Centro Cardiologico Monzino IRCCS, Milano, Italy
| | - R. Baetta
- grid.418230.c0000 0004 1760 1750Centro Cardiologico Monzino IRCCS, Milano, Italy
| | - S. S. Barbieri
- grid.418230.c0000 0004 1760 1750Centro Cardiologico Monzino IRCCS, Milano, Italy
| | - M. Brioschi
- grid.418230.c0000 0004 1760 1750Centro Cardiologico Monzino IRCCS, Milano, Italy
| | - A. Guarino
- grid.418230.c0000 0004 1760 1750Cardiovascular Tissue Bank of Milan, Centro Cardiologico Monzino IRCCS, Milano, Italy
| | - S. Ghilardi
- grid.418230.c0000 0004 1760 1750Centro Cardiologico Monzino IRCCS, Milano, Italy
| | - L. Sandrini
- grid.418230.c0000 0004 1760 1750Centro Cardiologico Monzino IRCCS, Milano, Italy
| | - S. Eligini
- grid.418230.c0000 0004 1760 1750Centro Cardiologico Monzino IRCCS, Milano, Italy
| | - G. Polvani
- grid.418230.c0000 0004 1760 1750Cardiovascular Tissue Bank of Milan, Centro Cardiologico Monzino IRCCS, Milano, Italy ,grid.4708.b0000 0004 1757 2822Department of Clinical Sciences and Community Health, Cardiovascular Section, University of Milan, Milano, Italy ,grid.418230.c0000 0004 1760 1750Department of Cardiovascular Disease, Development and Innovation Cardiac Surgery Unit, Centro Cardiologico Monzino IRCCS, Milano, Italy
| | - O. Bergman
- grid.4714.60000 0004 1937 0626Department of Medicine Solna, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - P. Eriksson
- grid.4714.60000 0004 1937 0626Department of Medicine Solna, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - E. Tremoli
- grid.418230.c0000 0004 1760 1750Centro Cardiologico Monzino IRCCS, Milano, Italy
| |
Collapse
|
9
|
Gianazza E, Brioschi M, Martinez Fernandez A, Casalnuovo F, Altomare A, Aldini G, Banfi C. Lipid Peroxidation in Atherosclerotic Cardiovascular Diseases. Antioxid Redox Signal 2021; 34:49-98. [PMID: 32640910 DOI: 10.1089/ars.2019.7955] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: Atherosclerotic cardiovascular diseases (ACVDs) continue to be a primary cause of mortality worldwide in adults aged 35-70 years, occurring more often in countries with lower economic development, and they constitute an ever-growing global burden that has a considerable socioeconomic impact on society. The ACVDs encompass diverse pathologies such as coronary artery disease and heart failure (HF), among others. Recent Advances: It is known that oxidative stress plays a relevant role in ACVDs and some of its effects are mediated by lipid oxidation. In particular, lipid peroxidation (LPO) is a process under which oxidants such as reactive oxygen species attack unsaturated lipids, generating a wide array of oxidation products. These molecules can interact with circulating lipoproteins, to diffuse inside the cell and even to cross biological membranes, modifying target nucleophilic sites within biomolecules such as DNA, lipids, and proteins, and resulting in a plethora of biological effects. Critical Issues: This review summarizes the evidence of the effect of LPO in the development and progression of atherosclerosis-based diseases, HF, and other cardiovascular diseases, highlighting the role of protein adduct formation. Moreover, potential therapeutic strategies targeted at lipoxidation in ACVDs are also discussed. Future Directions: The identification of valid biomarkers for the detection of lipoxidation products and adducts may provide insights into the improvement of the cardiovascular risk stratification of patients and the development of therapeutic strategies against the oxidative effects that can then be applied within a clinical setting.
Collapse
Affiliation(s)
- Erica Gianazza
- Proteomics Unit, Monzino Cardiology Center IRCCS, Milan, Italy
| | - Maura Brioschi
- Proteomics Unit, Monzino Cardiology Center IRCCS, Milan, Italy
| | | | | | | | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Cristina Banfi
- Proteomics Unit, Monzino Cardiology Center IRCCS, Milan, Italy
| |
Collapse
|
10
|
Main A, Fuller W, Baillie GS. Post-translational regulation of cardiac myosin binding protein-C: A graphical review. Cell Signal 2020; 76:109788. [DOI: 10.1016/j.cellsig.2020.109788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 01/01/2023]
|
11
|
Martinez Fernandez A, Regazzoni L, Brioschi M, Gianazza E, Agostoni P, Aldini G, Banfi C. Pro-oxidant and pro-inflammatory effects of glycated albumin on cardiomyocytes. Free Radic Biol Med 2019; 144:245-255. [PMID: 31260731 DOI: 10.1016/j.freeradbiomed.2019.06.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 06/13/2019] [Accepted: 06/19/2019] [Indexed: 12/14/2022]
Abstract
Human serum albumin (HSA) is the most abundant circulating protein in the body and presents an extensive range of biological functions. As such, it is prone to undergo post-translational modifications (PTMs). The non-enzymatic early glycation of HSA, one of the several PTMs undergone by HSA, arises from the addition of reducing sugars to amine group residues, thus modifying the structure of HSA. These changes may affect HSA functions impairing its biological activity, finally leading to cell damage. The aim of this study was to quantitate glycated-HSA (GA) levels in the plasma of heart failure (HF) patients and to evaluate the biological effects of GA on HL-1 cardiomyocytes. Plasma GA content from HF patients and healthy subjects was measured by direct infusion electrospray ionization mass spectrometry (ESI-MS). Results pointed out a significant increase of GA in HF patients with respect to the control group (p < 0.05). Additionally, after stimulation with GA, proteomic analysis of HL-1 secreted proteins showed the modulation of several proteins involved, among other processes, in the response to stress. Further, stimulated cells showed a rapid increase in ROS generation, higher mRNA levels of the inflammatory cytokine interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α), and higher levels of the oxidative 4-HNE-protein adducts and carbonylated proteins. Our findings show that plasma GA is increased in HF patients. Further, GA exerts pro-inflammatory and pro-oxidant effects on cardiomyocytes, which suggest a causal role in the etiopathogenesis of HF.
Collapse
MESH Headings
- Aged
- Case-Control Studies
- Cell Death
- Cell Line
- Dyslipidemias/blood
- Dyslipidemias/genetics
- Dyslipidemias/pathology
- Female
- Gene Expression Profiling
- Gene Ontology
- Glycation End Products, Advanced
- Glycosylation
- HSP90 Heat-Shock Proteins/genetics
- HSP90 Heat-Shock Proteins/metabolism
- Heart Failure/blood
- Heart Failure/genetics
- Heart Failure/pathology
- Humans
- Hypertension/blood
- Hypertension/genetics
- Hypertension/pathology
- Interleukin-6/genetics
- Interleukin-6/metabolism
- Lysine/analogs & derivatives
- Lysine/blood
- Male
- Middle Aged
- Molecular Sequence Annotation
- Myocardium/metabolism
- Myocardium/pathology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Natriuretic Peptide, Brain/blood
- Natriuretic Peptide, Brain/genetics
- Protein Carbonylation
- Protein Processing, Post-Translational
- Reactive Oxygen Species/agonists
- Reactive Oxygen Species/metabolism
- Serum Albumin/pharmacology
- Serum Albumin, Human/chemistry
- Serum Albumin, Human/genetics
- Serum Albumin, Human/metabolism
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/metabolism
- Glycated Serum Albumin
Collapse
Affiliation(s)
| | - Luca Regazzoni
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | | | | | - Piergiuseppe Agostoni
- Centro Cardiologico Monzino, IRCCS, Milan, Italy; Department of Clinical Sciences and Community Health, Cardiovascular Section, University of Milan, Milan, Italy
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | | |
Collapse
|
12
|
Tomin T, Schittmayer M, Honeder S, Heininger C, Birner-Gruenberger R. Irreversible oxidative post-translational modifications in heart disease. Expert Rev Proteomics 2019; 16:681-693. [PMID: 31361162 PMCID: PMC6816499 DOI: 10.1080/14789450.2019.1645602] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/16/2019] [Indexed: 12/11/2022]
Abstract
Introduction: Development of specific biomarkers aiding early diagnosis of heart failure is an ongoing challenge. Biomarkers commonly used in clinical routine usually act as readouts of an already existing acute condition rather than disease initiation. Functional decline of cardiac muscle is greatly aggravated by increased oxidative stress and damage of proteins. Oxidative post-translational modifications occur already at early stages of tissue damage and are thus regarded as potential up-coming disease markers. Areas covered: Clinical practice regarding commonly used biomarkers for heart disease is briefly summarized. The types of oxidative post-translational modification in cardiac pathologies are discussed with a special focus on available quantitative techniques and characteristics of individual modifications with regard to their stability and analytical accessibility. As irreversible oxidative modifications trigger protein degradation pathways or cause protein aggregation, both influencing biomarker abundance, a chapter is dedicated to their regulation in the heart.
Collapse
Affiliation(s)
- Tamara Tomin
- Institute of Pathology, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Graz, Austria
- Omics Center Graz, BioTechMed-Graz, Graz, Austria
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Vienna, Austria
| | - Matthias Schittmayer
- Institute of Pathology, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Graz, Austria
- Omics Center Graz, BioTechMed-Graz, Graz, Austria
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Vienna, Austria
| | - Sophie Honeder
- Institute of Pathology, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Graz, Austria
- Omics Center Graz, BioTechMed-Graz, Graz, Austria
| | - Christoph Heininger
- Institute of Pathology, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Graz, Austria
- Omics Center Graz, BioTechMed-Graz, Graz, Austria
| | - Ruth Birner-Gruenberger
- Institute of Pathology, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Graz, Austria
- Omics Center Graz, BioTechMed-Graz, Graz, Austria
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Vienna, Austria
| |
Collapse
|
13
|
Gianazza E, Banfi C. Post-translational quantitation by SRM/MRM: applications in cardiology. Expert Rev Proteomics 2018; 15:477-502. [DOI: 10.1080/14789450.2018.1484283] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Erica Gianazza
- Unit of Proteomics, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Cristina Banfi
- Unit of Proteomics, Centro Cardiologico Monzino IRCCS, Milan, Italy
| |
Collapse
|
14
|
Farmakis D, Papingiotis G, Parissis J, Filippatos G. Ups and downs in heart failure: the case of proteomics. Eur J Heart Fail 2017; 20:63-66. [DOI: 10.1002/ejhf.1065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 12/28/2022] Open
Affiliation(s)
- Dimitrios Farmakis
- Heart Failure Unit, Department of Cardiology, Athens University Hospital Attikon; National and Kapodistrian University of Athens; Athens Greece
| | - Georgios Papingiotis
- Heart Failure Unit, Department of Cardiology, Athens University Hospital Attikon; National and Kapodistrian University of Athens; Athens Greece
| | - John Parissis
- Heart Failure Unit, Department of Cardiology, Athens University Hospital Attikon; National and Kapodistrian University of Athens; Athens Greece
| | - Gerasimos Filippatos
- Heart Failure Unit, Department of Cardiology, Athens University Hospital Attikon; National and Kapodistrian University of Athens; Athens Greece
| |
Collapse
|
15
|
Mallet RT, Olivencia-Yurvati AH, Bünger R. Pyruvate enhancement of cardiac performance: Cellular mechanisms and clinical application. Exp Biol Med (Maywood) 2017; 243:198-210. [PMID: 29154687 DOI: 10.1177/1535370217743919] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cardiac contractile function is adenosine-5'-triphosphate (ATP)-intensive, and the myocardium's high demand for oxygen and energy substrates leaves it acutely vulnerable to interruptions in its blood supply. The myriad cardioprotective properties of the natural intermediary metabolite pyruvate make it a potentially powerful intervention against the complex injury cascade ignited by myocardial ischemia-reperfusion. A readily oxidized metabolic substrate, pyruvate augments myocardial free energy of ATP hydrolysis to a greater extent than the physiological fuels glucose, lactate and fatty acids, particularly when it is provided at supra-physiological plasma concentrations. Pyruvate also exerts antioxidant effects by detoxifying reactive oxygen and nitrogen intermediates, and by increasing nicotinamide adenine dinucleotide phosphate reduced form (NADPH) production to maintain glutathione redox state. These enhancements of free energy and antioxidant defenses combine to augment sarcoplasmic reticular Ca2+ release and re-uptake central to cardiac mechanical performance and to restore β-adrenergic signaling of ischemically stunned myocardium. By minimizing Ca2+ mismanagement and oxidative stress, pyruvate suppresses inflammation in post-ischemic myocardium. Thus, pyruvate administration stabilized cardiac performance, augmented free energy of ATP hydrolysis and glutathione redox systems, and/or quelled inflammation in a porcine model of cardiopulmonary bypass, a canine model of cardiac arrest-resuscitation, and a caprine model of hypovolemia and hindlimb ischemia-reperfusion. Pyruvate's myriad benefits in preclinical models provide the mechanistic framework for its clinical application as metabolic support for myocardium at risk. Phase one trials have demonstrated pyruvate's safety and efficacy for intravenous resuscitation for septic shock, intracoronary infusion for heart failure and as a component of cardioplegia for cardiopulmonary bypass. The favorable outcomes of these trials, which argue for expanded, phase three investigations of pyruvate therapy, mirror findings in isolated, perfused hearts, underscoring the pivotal role of preclinical research in identifying clinical interventions for cardiovascular diseases. Impact statement This article reviews pyruvate's cardioprotective properties as an energy-yielding metabolic fuel, antioxidant and anti-inflammatory agent in mammalian myocardium. Preclinical research has shown these properties make pyruvate a powerful intervention to curb the complex injury cascade ignited by ischemia and reperfusion. In ischemically stunned isolated hearts and in large mammal models of cardiopulmonary bypass, cardiac arrest-resuscitation and hypovolemia, intracoronary pyruvate supports recovery of myocardial contractile function, intracellular Ca2+ homeostasis and free energy of ATP hydrolysis, and its antioxidant actions restore β-adrenergic signaling and suppress inflammation. The first clinical trials of pyruvate for cardiopulmonary bypass, fluid resuscitation and intracoronary intervention for congestive heart failure have been reported. Receiver operating characteristic analyses show remarkable concordance between pyruvate's beneficial functional and metabolic effects in isolated, perfused hearts and in patients recovering from cardiopulmonary bypass in which they received pyruvate- vs. L-lactate-fortified cardioplegia. This research exemplifies the translation of mechanism-oriented preclinical studies to clinical application and outcomes.
Collapse
Affiliation(s)
- Robert T Mallet
- 1 Department of Integrative Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107-2699, USA
| | - Albert H Olivencia-Yurvati
- 1 Department of Integrative Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107-2699, USA.,2 Department of Medical Education, University of North Texas Health Science Center, Fort Worth, TX 76107-2699, USA
| | - Rolf Bünger
- 3 Emeritus Member of the American Physiological Society, McLean, VA 22101, USA
| |
Collapse
|
16
|
Datta K, Basak T, Varshney S, Sengupta S, Sarkar S. Quantitative proteomic changes during post myocardial infarction remodeling reveals altered cardiac metabolism and Desmin aggregation in the infarct region. J Proteomics 2017; 152:283-299. [DOI: 10.1016/j.jprot.2016.11.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/11/2016] [Accepted: 11/23/2016] [Indexed: 12/14/2022]
|
17
|
Su YR, Chiusa M, Brittain E, Hemnes AR, Absi TS, Lim CC, Di Salvo TG. Right ventricular protein expression profile in end-stage heart failure. Pulm Circ 2015; 5:481-97. [PMID: 26401249 DOI: 10.1086/682219] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 12/30/2014] [Indexed: 11/03/2022] Open
Abstract
Little is known about the right ventricular (RV) proteome in human heart failure (HF), including possible differences compared to the left ventricular (LV) proteome. We used 2-dimensional differential in-gel electrophoresis (pH: 4-7, 10-150 kDa), followed by liquid chromatography tandem mass spectrometry, to compare the RV and LV proteomes in 12 explanted human hearts. We used Western blotting and multiple-reaction monitoring for protein verification and RNA sequencing for messenger RNA and protein expression correlation. In all 12 hearts, the right ventricles (RVs) demonstrated differential expression of 11 proteins relative to the left ventricles (LVs), including lesser expression of CRYM, TPM1, CLU, TXNL1, and COQ9 and greater expression of TNNI3, SAAI, ERP29, ACTN2, HSPB2, and NDUFS3. Principal-components analysis did not suggest RV-versus-LV proteome partitioning. In the nonischemic RVs (n = 6), 7 proteins were differentially expressed relative to the ischemic RVs (n = 6), including increased expression of CRYM, B7Z964, desmin, ANXA5, and MIME and decreased expression of SERPINA1 and ANT3. Principal-components analysis demonstrated partitioning of the nonischemic and ischemic RV proteomes, and gene ontology analysis identified differences in hemostasis and atherosclerosis-associated networks. There were no proteomic differences between RVs with echocardiographic dysfunction (n = 8) and those with normal function (n = 4). Messenger RNA and protein expression did not correlate consistently, suggesting a major role for RV posttranscriptional protein expression regulation. Differences in contractile, cytoskeletal, metabolic, signaling, and survival pathways exist between the RV and the LV in HF and may be related to the underlying HF etiology and differential posttranscriptional regulation.
Collapse
Affiliation(s)
- Yan Ru Su
- Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Manuel Chiusa
- Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Evan Brittain
- Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Anna R Hemnes
- Division of Pulmonary Medicine and Critical Care, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Tarek S Absi
- Department of Surgical Science, Division of Cardiac Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Chee Chew Lim
- Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Thomas G Di Salvo
- Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
18
|
Novel prognostic tissue markers in congestive heart failure. Cardiovasc Pathol 2015; 24:65-70. [DOI: 10.1016/j.carpath.2014.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/03/2014] [Accepted: 07/05/2014] [Indexed: 01/04/2023] Open
|
19
|
Swartzlander MD, Barnes CA, Blakney AK, Kaar JL, Kyriakides TR, Bryant SJ. Linking the foreign body response and protein adsorption to PEG-based hydrogels using proteomics. Biomaterials 2015; 41:26-36. [PMID: 25522962 PMCID: PMC4629245 DOI: 10.1016/j.biomaterials.2014.11.026] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/27/2014] [Accepted: 11/08/2014] [Indexed: 12/31/2022]
Abstract
Poly(ethylene glycol) (PEG) hydrogels with their highly tunable properties are promising implantable materials, but as with all non-biological materials, they elicit a foreign body response (FBR). Recent studies, however, have shown that incorporating the oligopeptide RGD into PEG hydrogels reduces the FBR. To better understand the mechanisms involved and the role of RGD in mediating the FBR, PEG, PEG-RGD and PEG-RDG hydrogels were investigated. After a 28-day subcutaneous implantation in mice, a thinner and less dense fibrous capsule formed around PEG-RGD hydrogels, while PEG and PEG-RDG hydrogels exhibited stronger, but similar FBRs. Protein adsorption to the hydrogels, which is considered the first step in the FBR, was also characterized. In vitro experiments confirmed that serum proteins adsorbed to PEG-based hydrogels and were necessary to promote macrophage adhesion to PEG and PEG-RDG, but not PEG-RGD hydrogels. Proteins adsorbed to the hydrogels in vivo were identified using liquid chromatography-tandem mass spectrometry. The majority (245) of the total proteins (≥300) that were identified was present on all hydrogels with many proteins being associated with wounding and acute inflammation. These findings suggest that the FBR to PEG hydrogels may be mediated by the presence of inflammatory-related proteins adsorbed to the surface, but that macrophages appear to sense the underlying chemistry, which for RGD improves the FBR.
Collapse
Affiliation(s)
- Mark D Swartzlander
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, USA; Biofrontiers Institute, University of Colorado, Boulder, CO 80309, USA.
| | | | - Anna K Blakney
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, USA.
| | - Joel L Kaar
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, USA.
| | - Themis R Kyriakides
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Stephanie J Bryant
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, USA; Biofrontiers Institute, University of Colorado, Boulder, CO 80309, USA; Material Science and Engineering Program, University of Colorado, Boulder, CO 80309, USA.
| |
Collapse
|
20
|
Methyl donor deficiency in H9c2 cardiomyoblasts induces ER stress as an important part of the proteome response. Int J Biochem Cell Biol 2015; 59:62-72. [DOI: 10.1016/j.biocel.2014.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 11/13/2014] [Accepted: 11/28/2014] [Indexed: 12/15/2022]
|
21
|
Roselló-Lletí E, Tarazón E, Barderas MG, Ortega A, Otero M, Molina-Navarro MM, Lago F, González-Juanatey JR, Salvador A, Portolés M, Rivera M. Heart mitochondrial proteome study elucidates changes in cardiac energy metabolism and antioxidant PRDX3 in human dilated cardiomyopathy. PLoS One 2014; 9:e112971. [PMID: 25397948 PMCID: PMC4232587 DOI: 10.1371/journal.pone.0112971] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 10/17/2014] [Indexed: 12/16/2022] Open
Abstract
Background Dilated cardiomyopathy (DCM) is a public health problem with no available curative treatment, and mitochondrial dysfunction plays a critical role in its development. The present study is the first to analyze the mitochondrial proteome in cardiac tissue of patients with DCM to identify potential molecular targets for its therapeutic intervention. Methods and Results 16 left ventricular (LV) samples obtained from explanted human hearts with DCM (n = 8) and control donors (n = 8) were extracted to perform a proteomic approach to investigate the variations in mitochondrial protein expression. The proteome of the samples was analyzed by quantitative differential electrophoresis and Mass Spectrometry. These changes were validated by classical techniques and by novel and precise selected reaction monitoring analysis and RNA sequencing approach increasing the total heart samples up to 25. We found significant alterations in energy metabolism, especially in molecules involved in substrate utilization (ODPA, ETFD, DLDH), energy production (ATPA), other metabolic pathways (AL4A1) and protein synthesis (EFTU), obtaining considerable and specific relationships between the alterations detected in these processes. Importantly, we observed that the antioxidant PRDX3 overexpression is associated with impaired ventricular function. PRDX3 is significantly related to LV end systolic and diastolic diameter (r = 0.73, p value<0.01; r = 0.71, p value<0.01), fractional shortening, and ejection fraction (r = −0.61, p value<0.05; and r = −0.62, p value<0.05, respectively). Conclusion This work could be a pivotal study to gain more knowledge on the cellular mechanisms related to the pathophysiology of this disease and may lead to the development of etiology-specific heart failure therapies. We suggest new molecular targets for therapeutic interventions, something that up to now has been lacking.
Collapse
Affiliation(s)
- Esther Roselló-Lletí
- Cardiocirculatory Unit, Health Research Institute Hospital La Fe, Valencia, Spain
| | - Estefanía Tarazón
- Cardiocirculatory Unit, Health Research Institute Hospital La Fe, Valencia, Spain
| | - María G. Barderas
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Ana Ortega
- Cardiocirculatory Unit, Health Research Institute Hospital La Fe, Valencia, Spain
| | - Manuel Otero
- Cellular and Molecular Cardiology Research Unit, Department of Cardiology and Institute of Biomedical Research, University Clinical Hospital, Santiago de Compostela, Spain
| | | | - Francisca Lago
- Cellular and Molecular Cardiology Research Unit, Department of Cardiology and Institute of Biomedical Research, University Clinical Hospital, Santiago de Compostela, Spain
| | - Jose Ramón González-Juanatey
- Cellular and Molecular Cardiology Research Unit, Department of Cardiology and Institute of Biomedical Research, University Clinical Hospital, Santiago de Compostela, Spain
| | | | - Manuel Portolés
- Cell Biology and Pathology Unit, Health Research Institute Hospital La Fe, Valencia, Spain
| | - Miguel Rivera
- Cardiocirculatory Unit, Health Research Institute Hospital La Fe, Valencia, Spain
- * E-mail:
| |
Collapse
|
22
|
Butterfield DA, Gu L, Di Domenico F, Robinson RAS. Mass spectrometry and redox proteomics: applications in disease. MASS SPECTROMETRY REVIEWS 2014; 33:277-301. [PMID: 24930952 DOI: 10.1002/mas.21374] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 02/07/2013] [Accepted: 02/07/2013] [Indexed: 06/03/2023]
Abstract
Proteomics techniques are continuously being developed to further understanding of biology and disease. Many of the pathways that are relevant to disease mechanisms rely on the identification of post-translational modifications (PTMs) such as phosphorylation, acetylation, and glycosylation. Much attention has also been focused on oxidative PTMs which include protein carbonyls, protein nitration, and the incorporation of fatty acids and advanced glycation products to amino acid side chains, amongst others. The introduction of these PTMs in the cell can occur due to the attack of reactive oxygen and nitrogen species (ROS and RNS, respectively) on proteins. ROS and RNS can be present as a result of normal metabolic processes as well as external factors such as UV radiation, disease, and environmental toxins. The imbalance of ROS and RNS with antioxidant cellular defenses leads to a state of oxidative stress, which has been implicated in many diseases. Redox proteomics techniques have been used to characterize oxidative PTMs that result as a part of normal cell signaling processes as well as oxidative stress conditions. This review highlights many of the redox proteomics techniques which are currently available for several oxidative PTMs and brings to the reader's attention the application of redox proteomics for understanding disease pathogenesis in neurodegenerative disorders and others such as cancer, kidney, and heart diseases.
Collapse
Affiliation(s)
- D Allan Butterfield
- Department of Chemistry, Center of Membrane Sciences, Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, 40506
| | | | | | | |
Collapse
|
23
|
Aryal B, Jeong J, Rao VA. Doxorubicin-induced carbonylation and degradation of cardiac myosin binding protein C promote cardiotoxicity. Proc Natl Acad Sci U S A 2014; 111:2011-6. [PMID: 24449919 PMCID: PMC3918758 DOI: 10.1073/pnas.1321783111] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Dose-dependent oxidative stress by the anthracycline doxorubicin (Dox) and other chemotherapeutic agents causes irreversible cardiac damage, restricting their clinical effectiveness. We hypothesized that the resultant protein oxidation could be monitored and correlated with physiological functional impairment. We focused on protein carbonylation as an indicator of severe oxidative damage because it is irreversible and results in proteasomal degradation. We identified and investigated a specific high-molecular weight cardiac protein that showed a significant increase in carbonylation under Dox-induced cardiotoxic conditions in a spontaneously hypertensive rat model. We confirmed carbonylation and degradation of this protein under oxidative stress and prevention of such effect in the presence of the iron chelator dexrazoxane. Using MS, the Dox-induced carbonylated protein was identified as the 140-kDa cardiac myosin binding protein C (MyBPC). We confirmed the carbonylation and degradation of MyBPC using HL-1 cardiomyocytes and a purified recombinant untagged cardiac MyBPC under metal-catalyzed oxidative stress conditions. The carbonylation and degradation of MyBPC were time- and drug concentration-dependent. We demonstrated that carbonylated MyBPC undergoes proteasome-mediated degradation under Dox-induced oxidative stress. Cosedimentation, immunoprecipitation, and actin binding assays were used to study the functional consequences of carbonylated MyBPC. Carbonylation of MyBPC showed significant functional impairment associated with its actin binding properties. The dissociation constant of carbonylated recombinant MyBPC for actin was 7.35 ± 1.9 μM compared with 2.7 ± 0.6 μM for native MyBPC. Overall, our findings indicate that MyBPC carbonylation serves as a critical determinant of cardiotoxicity and could serve as a mechanistic indicator for Dox-induced cardiotoxicity.
Collapse
Affiliation(s)
- Baikuntha Aryal
- Laboratory of Chemistry, Division of Therapeutic Proteins, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892
| | - Jinsook Jeong
- Laboratory of Chemistry, Division of Therapeutic Proteins, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892
| | - V. Ashutosh Rao
- Laboratory of Chemistry, Division of Therapeutic Proteins, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892
| |
Collapse
|
24
|
Campos JC, Gomes KMS, Ferreira JCB. Impact of exercise training on redox signaling in cardiovascular diseases. Food Chem Toxicol 2013; 62:107-19. [PMID: 23978413 DOI: 10.1016/j.fct.2013.08.035] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/05/2013] [Accepted: 08/18/2013] [Indexed: 02/07/2023]
Abstract
Reactive oxygen and nitrogen species regulate a wide array of signaling pathways that governs cardiovascular physiology. However, oxidant stress resulting from disrupted redox signaling has an adverse impact on the pathogenesis and progression of cardiovascular diseases. In this review, we address how redox signaling and oxidant stress affect the pathophysiology of cardiovascular diseases such as ischemia-reperfusion injury, hypertension and heart failure. We also summarize the benefits of exercise training in tackling the hyperactivation of cellular oxidases and mitochondrial dysfunction seen in cardiovascular diseases.
Collapse
Affiliation(s)
- Juliane C Campos
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | | |
Collapse
|
25
|
Corcoran A, Cotter TG. Redox regulation of protein kinases. FEBS J 2013; 280:1944-65. [PMID: 23461806 DOI: 10.1111/febs.12224] [Citation(s) in RCA: 226] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 02/24/2013] [Accepted: 02/27/2013] [Indexed: 12/30/2022]
Abstract
Reactive oxygen species (ROS) have been long regarded as by-products of a cascade of reactions stemming from cellular oxygen metabolism, which, if they accumulate to toxic levels, can have detrimental effects on cellular biomolecules. However, more recently, the recognition of ROS as mediators of cellular communications has led to their classification as signalling mediators in their own right. The prototypic redox-regulated targets downstream of ROS are the protein tyrosine phosphatases, and the wealth of research that has focused on this area has come to shape our understanding of how redox-signalling contributes to and facilitates protein tyrosine phosphorylation signalling cascades. However, it is becoming increasingly apparent that there is more to this system than simply the negative regulation of protein tyrosine phosphatases. Identification of redox-sensitive kinases such as Src led to the slow emergence of a role for redox regulation of tyrosine kinases. A flow of evidence, which has increased exponentially in recent times as a result of the development of new methods for the detection of oxidative modifications, demonstrates that, by concurrent oxidative activation of tyrosine kinases, ROS fine tune the duration and amplification of the phosphorylation signal. A more thorough understanding of the complex regulatory mechanism of redox-modification will allow targeting of both the production of ROS and their downstream effectors for therapeutic purposes. The present review assesses the most relevant recent literature that demonstrates a role for kinase regulation by oxidation, highlights the most significant findings and proposes future directions for this crucial area of redox biology.
Collapse
Affiliation(s)
- Aoife Corcoran
- Tumour Biology Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Ireland
| | | |
Collapse
|