1
|
Mansour SG, Bhatraju PK, Coca SG, Obeid W, Wilson FP, Stanaway IB, Jia Y, Thiessen-Philbrook H, Go AS, Ikizler TA, Siew ED, Chinchilli VM, Hsu CY, Garg AX, Reeves WB, Liu KD, Kimmel PL, Kaufman JS, Wurfel MM, Himmelfarb J, Parikh SM, Parikh CR. Angiopoietins as Prognostic Markers for Future Kidney Disease and Heart Failure Events after Acute Kidney Injury. J Am Soc Nephrol 2022; 33:613-627. [PMID: 35017169 PMCID: PMC8975075 DOI: 10.1681/asn.2021060757] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 12/15/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The mechanisms underlying long-term sequelae after AKI remain unclear. Vessel instability, an early response to endothelial injury, may reflect a shared mechanism and early trigger for CKD and heart failure. METHODS To investigate whether plasma angiopoietins, markers of vessel homeostasis, are associated with CKD progression and heart failure admissions after hospitalization in patients with and without AKI, we conducted a prospective cohort study to analyze the balance between angiopoietin-1 (Angpt-1), which maintains vessel stability, and angiopoietin-2 (Angpt-2), which increases vessel destabilization. Three months after discharge, we evaluated the associations between angiopoietins and development of the primary outcomes of CKD progression and heart failure and the secondary outcome of all-cause mortality 3 months after discharge or later. RESULTS Median age for the 1503 participants was 65.8 years; 746 (50%) had AKI. Compared with the lowest quartile, the highest quartile of the Angpt-1:Angpt-2 ratio was associated with 72% lower risk of CKD progression (adjusted hazard ratio [aHR], 0.28; 95% confidence interval [CI], 0.15 to 0.51), 94% lower risk of heart failure (aHR, 0.06; 95% CI, 0.02 to 0.15), and 82% lower risk of mortality (aHR, 0.18; 95% CI, 0.09 to 0.35) for those with AKI. Among those without AKI, the highest quartile of Angpt-1:Angpt-2 ratio was associated with 71% lower risk of heart failure (aHR, 0.29; 95% CI, 0.12 to 0.69) and 68% less mortality (aHR, 0.32; 95% CI, 0.15 to 0.68). There were no associations with CKD progression. CONCLUSIONS A higher Angpt-1:Angpt-2 ratio was strongly associated with less CKD progression, heart failure, and mortality in the setting of AKI.
Collapse
Affiliation(s)
- Sherry G Mansour
- Clinical Translational Research Accelerator, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut.,Section of Nephrology, Yale University School of Medicine, New Haven, Connecticut
| | - Pavan K Bhatraju
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington.,Kidney Research Institute, Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington
| | - Steven G Coca
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Wassim Obeid
- Division of Nephrology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Francis P Wilson
- Clinical Translational Research Accelerator, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut.,Section of Nephrology, Yale University School of Medicine, New Haven, Connecticut
| | - Ian B Stanaway
- Kidney Research Institute, Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington
| | - Yaqi Jia
- Division of Nephrology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | | | - Alan S Go
- Division of Nephrology, Department of Medicine, University of California, San Francisco, San Francisco, California.,Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California.,Division of Nephrology, Department of Medicine, Stanford University, Palo Alto, California.,Department of Health Research and Policy, Stanford University, Palo Alto, California.,Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - T Alp Ikizler
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Edward D Siew
- Division of Nephrology and Hypertension, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Vernon M Chinchilli
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| | - Chi-Yuan Hsu
- Division of Nephrology, Department of Medicine, University of California, San Francisco, San Francisco, California.,Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Amit X Garg
- Division of Nephrology, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,ICES, Ontario, Canada
| | - W Brian Reeves
- Division of Nephrology, Department of Medicine, University of Texas Joe and Teresa Long School of Medicine, San Antonio, Texas
| | - Kathleen D Liu
- Division of Nephrology, Department of Medicine, University of California, San Francisco, San Francisco, California.,Department of Anesthesia, Division of Critical Care Medicine, University of California, San Francisco, San Francisco, California
| | - Paul L Kimmel
- Division of Kidney, Urologic, and Hematologic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - James S Kaufman
- Division of Nephrology, Veterans Affairs New York Harbor Healthcare System and New York University School of Medicine, New York, New York
| | - Mark M Wurfel
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington.,Kidney Research Institute, Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington
| | - Jonathan Himmelfarb
- Kidney Research Institute, Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington
| | - Samir M Parikh
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Chirag R Parikh
- Division of Nephrology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | | |
Collapse
|
2
|
Proteomic Analysis of Estrogen-Mediated Enhancement of Mesenchymal Stem Cell-Induced Angiogenesis In Vivo. Cells 2021; 10:cells10092181. [PMID: 34571830 PMCID: PMC8468955 DOI: 10.3390/cells10092181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 12/21/2022] Open
Abstract
Therapeutic use of mesenchymal stem cells (MSCs) for tissue repair has great potential. MSCs from multiple sources, including those derived from human umbilical matrix, namely Wharton’s jelly, may serve as a resource for obtaining MSCs. However, low in vivo engraftment efficacy of MSCs remains a challenging limitation. To improve clinical outcomes using MSCs, an in-depth understanding of the mechanisms and factors involved in successful engraftment is required. We recently demonstrated that 17β-estradiol (E2) improves MSCs in vitro proliferation, directed migration and engraftment in murine heart slices. Here, using a proteomics approach, we investigated the angiogenic potential of MSCs in vivo and the modulatory actions of E2 on mechanisms involved in tissue repair. Specifically, using a Matrigel® plug assay, we evaluated the effects of E2 on MSCs-induced angiogenesis in ovariectomized (OVX) mice. Moreover, using proteomics we investigated the potential pro-repair processes, pathways, and co-mechanisms possibly modified by the treatment of MSCs with E2. Using RT-qPCR, we evaluated mRNA expression of pro-angiogenic molecules, including endoglin, Tie-2, ANG, and VEGF. Hemoglobin levels, a marker for blood vessel formation, were increased in plugs treated with E2 + MSCs, suggesting increased capillary formation. This conclusion was confirmed by the histological analysis of capillary numbers in the Matrigel® plugs treated with E2 + MSC. The LC-MS screening of proteins obtained from the excised Matrigel® plugs revealed 71 proteins that were significantly altered following E2 exposure, 57 up-regulated proteins and 14 down-regulated proteins. A major result was the association of over 100 microRNA molecules (miRNAs) involved in cellular communication, vesicle transport, and metabolic and energy processes, and the high percentage of approximately 25% of genes involved in unknown biological processes. Together, these data provide evidence for increased angiogenesis by MSCs treated with the sex hormone E2. In conclusion, E2 treatment may increase the engraftment and repair potential of MSCs into tissue, and may promote MSC-induced angiogenesis after tissue injury.
Collapse
|
3
|
CHIR99021 Augmented the Function of Late Endothelial Progenitor Cells by Preventing Replicative Senescence. Int J Mol Sci 2021; 22:ijms22094796. [PMID: 33946516 PMCID: PMC8124445 DOI: 10.3390/ijms22094796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
Endothelial progenitor cells (EPCs) are specialized cells in circulating blood, well known for their ability to form new vascular structures. Aging and various ailments such as diabetes, atherosclerosis and cardiovascular disease make EPCs vulnerable to decreasing in number, which affects their migration, proliferation and angiogenesis. Myocardial ischemia is also linked to a reduced number of EPCs and their endothelial functional role, which hinders proper blood circulation to the myocardium. The current study shows that an aminopyrimidine derivative compound (CHIR99021) induces the inhibition of GSK-3β in cultured late EPCs. GSK-3β inhibition subsequently inhibits mTOR by blocking the phosphorylation of TSC2 and lysosomal localization of mTOR. Furthermore, suppression of GSK-3β activity considerably increased lysosomal activation and autophagy. The activation of lysosomes and autophagy by GSK-3β inhibition not only prevented replicative senescence of the late EPCs but also directed their migration, proliferation and angiogenesis. To conclude, our results demonstrate that lysosome activation and autophagy play a crucial role in blocking the replicative senescence of EPCs and in increasing their endothelial function. Thus, the findings provide an insight towards the treatment of ischemia-associated cardiovascular diseases based on the role of late EPCs.
Collapse
|
4
|
Wang M, Pu D, Zhao Y, Chen J, Zhu S, Lu A, Liao Z, Sun Y, Xiao Q. Sulforaphane protects against skeletal muscle dysfunction in spontaneous type 2 diabetic db/db mice. Life Sci 2020; 255:117823. [PMID: 32445760 DOI: 10.1016/j.lfs.2020.117823] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 05/08/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022]
Abstract
AIMS Skeletal muscle diseases have become to be the most common complication in patients with type 2 diabetic mellitus (T2DM). However, the effective therapies against skeletal muscle diseases are not yet available. Sulforaphane (SFN) is an organic isothiocyanate found in cruciferous plants. Our aim was to explore whether SFN could attenuate the skeletal muscle diseases in spontaneous type 2 diabetic db/db mice. MATERIALS AND METHODS The db/m and littermate db/db mice were treated with SFN or dimethyl sulfoxide. The grip strength of mice was measured by a grasping forcing machine. The electron transmission microscopy was used to perform the skeletal muscle. The western blot was used to detect the nuclear factor E2-related factor 2/heme oxygenase 1 (Nrf2/HO-1) signal pathway related proteins, and inflammatory and apoptotic associated proteins. The mRNA levels of anti-inflammatory and anti-oxidative relative genes were detected by RT-QPCR. KEY FINDINGS We found that SFN could significantly increase the grip strength of the db/db mice. The lean mass and gastrocnemius mass were increased in the db/db mice after administration with SFN. Additionally, the db/db mice restored the skeletal muscle fiber organization after SFN treatment. Mechanistically, SFN could activate the Nrf2/HO-1 signal pathway, and downregulate the expression of inflammatory and apoptotic associated proteins. Furthermore, SFN could also regulate the mRNA levels of anti-inflammatory and anti-oxidative related genes. SIGNIFICANCE Our results demonstrated that SFN can protect against skeletal muscle diseases in db/db type 2 diabetic mice and provide a potential drug to prevent skeletal muscle dysfunction in T2DM patients.
Collapse
Affiliation(s)
- Meili Wang
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Die Pu
- Department of Geriatrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yuxing Zhao
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jinliang Chen
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shiyu Zhu
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ankang Lu
- Department of Geriatrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zhilin Liao
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yue Sun
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Qian Xiao
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
5
|
Hozzein WN, Badr G, Badr BM, Allam A, Ghamdi AA, Al-Wadaan MA, Al-Waili NS. Bee venom improves diabetic wound healing by protecting functional macrophages from apoptosis and enhancing Nrf2, Ang-1 and Tie-2 signaling. Mol Immunol 2018; 103:322-335. [PMID: 30366166 DOI: 10.1016/j.molimm.2018.10.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 10/06/2018] [Accepted: 10/14/2018] [Indexed: 02/07/2023]
Abstract
Impaired wound healing is a serious complication of diabetes that negatively affects the patient's socioeconomic life. Multiple mechanisms contribute to impaired diabetic wound healing including deficient recruitment of wound macrophages/neutrophils and impaired neovascularization. Bee venom (BV) has been used as an anti-inflammatory agent for the treatment of several diseases. Nevertheless, the impacts of BV on the diabetic wound healing have been poorly studied. In the present study, we investigated the molecular mechanisms underlying BV treatment on diabetic wound healing in a type I diabetic mouse model. Three experimental groups were used: group 1, non-diabetic control mice; group 2, vehicle-diabetic mice; and group 3, BV-treated diabetic mice. We found that the diabetic mice exhibited impaired wound closure characterized by a significant decrease in collagen and β-defensin-2 (BD-2) expression compared to control non-diabetic mice. The impairment of diabetic wound healing is attributed to increased ROS levels and abolished antioxidant enzymes activity in the wounded tissues. Additionally, wounded tissue in diabetic mice revealed aberrantly decreased levels of Ang-1 and Nrf2 (the agonist ligands of Tie-2) followed by a marked reduction in the phosphorylation of Tie2 and downstream signaling eNOS, AKT and ERK. Impaired diabetic wound healing was also characterized by a significant reduction in activities of total antioxidant enzymes followed by a marked reduction in the levels of CCL2, CCL3 and CXCL2; which led to impaired recruitment and functions of wound macrophages/neutrophils; and significant reduction in the expression of CD31, a marker for neovascularization and angiogenesis of the injured tissue. Interestingly, BV treatment significantly enhanced wound closure in diabetic mice by increasing collagen and BD-2 expression and restoring the levels of Ang-1 and Nrf2 and hence enhancing the Tie-2 downstream signaling. Most importantly, treatment of diabetic mice with BV significantly restored the activities of wounded tissue antioxidant enzymes and the levels of chemokines, and subsequently rescued wound macrophages from mitochondrial membrane potential-induced apoptosis. Our findings reveal the immune-enhancing effects of BV for improving healing process of diabetic wounds and provide the first insight concerning the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Wael N Hozzein
- Bioproducts Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia; Botany Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Gamal Badr
- Zoology Department, Faculty of Science, Assiut University, 71516, Assiut, Egypt; Laboratory of Immunology and Molecular Physiology, Zoology Department, Faculty of Science, Assiut University, 71516, Assiut, Egypt.
| | - Badr M Badr
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Cairo, Egypt
| | - Ahmed Allam
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Ahmad Al Ghamdi
- Chair of Engineer Abdullah Baqshan for Bee Research, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed A Al-Wadaan
- Bioproducts Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
6
|
Herraiz S, Buigues A, Díaz-García C, Romeu M, Martínez S, Gómez-Seguí I, Simón C, Hsueh AJ, Pellicer A. Fertility rescue and ovarian follicle growth promotion by bone marrow stem cell infusion. Fertil Steril 2018; 109:908-918.e2. [PMID: 29576341 DOI: 10.1016/j.fertnstert.2018.01.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/20/2017] [Accepted: 01/04/2018] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To assess if infusion of human bone marrow-derived stem cells (BMDSCs) could promote follicle development in patients with impaired ovarian functions. DESIGN Experimental design. SETTING University research laboratories. ANIMAL(S) Immunodeficient NOD/SCID female mice. INTERVENTION(S) Human BMDSCs were injected into mice with chemotherapy-induced ovarian damage and into immunodeficient mice xenografted with human cortex from poor-responder patients (PRs). MAIN OUTCOME MEASURE(S) Follicle development, ovulation, and offspring. Apoptosis, proliferation, and vascularization were evaluated in mouse and human ovarian stroma. RESULT(S) Fertility rescue and spontaneous pregnancies were achieved in mice ovaries mimicking PRs and ovarian insufficiency, induced by chemotherapy, after BMDSC infusion. Furthermore, BMDSC treatment resulted in production of higher numbers of preovulatory follicles, metaphase II oocytes, 2-cell embryos, and healthy pups. Stem cells promoted ovarian vascularization and cell proliferation, along with reduced apoptosis. In xenografted human ovarian tissues from PRs, infusion of BMDSCs and their CD133+ fraction led to their engraftment close to follicles, resulting in promotion of follicular growth, increases in E2 secretion, and enhanced local vascularization. CONCLUSION(S) Our results raised the possibility that promoting ovarian angiogenesis by BMDSC infusion could be an alternative approach to improve follicular development in women with impaired ovarian function. CLINICAL TRIAL REGISTRATION NUMBER NCT02240342.
Collapse
Affiliation(s)
- Sonia Herraiz
- IVI Foundation, Valencia, Spain; Reproductive Medicine Research Group, Valencia, Spain; Department of Pediatrics, Obstetrics, and Gynecology, School of Medicine, Valencia University, Valencia, Spain.
| | - Anna Buigues
- IVI Foundation, Valencia, Spain; Department of Pediatrics, Obstetrics, and Gynecology, School of Medicine, Valencia University, Valencia, Spain
| | - César Díaz-García
- Reproductive Medicine Research Group, Valencia, Spain; Department of Pediatrics, Obstetrics, and Gynecology, School of Medicine, Valencia University, Valencia, Spain; IVI London, London, United Kingdom
| | - Mónica Romeu
- Reproductive Medicine Research Group, Valencia, Spain
| | | | - Inés Gómez-Seguí
- Hematology Department, La Fe University Hospital, Valencia, Spain
| | - Carlos Simón
- Department of Pediatrics, Obstetrics, and Gynecology, School of Medicine, Valencia University, Valencia, Spain; Instituto Universitario IVI/INCLIVA, Valencia, Spain; Igenomix, Paterna, Spain; Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, California
| | - Aaron J Hsueh
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, California
| | - Antonio Pellicer
- IVI Foundation, Valencia, Spain; Reproductive Medicine Research Group, Valencia, Spain
| |
Collapse
|
7
|
Crotty Alexander LE, Drummond CA, Hepokoski M, Mathew D, Moshensky A, Willeford A, Das S, Singh P, Yong Z, Lee JH, Vega K, Du A, Shin J, Javier C, Tian J, Brown JH, Breen EC. Chronic inhalation of e-cigarette vapor containing nicotine disrupts airway barrier function and induces systemic inflammation and multiorgan fibrosis in mice. Am J Physiol Regul Integr Comp Physiol 2018; 314:R834-R847. [PMID: 29384700 DOI: 10.1152/ajpregu.00270.2017] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Electronic (e)-cigarettes theoretically may be safer than conventional tobacco. However, our prior studies demonstrated direct adverse effects of e-cigarette vapor (EV) on airway cells, including decreased viability and function. We hypothesize that repetitive, chronic inhalation of EV will diminish airway barrier function, leading to inflammatory protein release into circulation, creating a systemic inflammatory state, ultimately leading to distant organ injury and dysfunction. C57BL/6 and CD-1 mice underwent nose only EV exposure daily for 3-6 mo, followed by cardiorenal physiological testing. Primary human bronchial epithelial cells were grown at an air-liquid interface and exposed to EV for 15 min daily for 3-5 days before functional testing. Daily inhalation of EV increased circulating proinflammatory and profibrotic proteins in both C57BL/6 and CD-1 mice: the greatest increases observed were in angiopoietin-1 (31-fold) and EGF (25-fold). Proinflammatory responses were recapitulated by daily EV exposures in vitro of human airway epithelium, with EV epithelium secreting higher IL-8 in response to infection (227 vs. 37 pg/ml, respectively; P < 0.05). Chronic EV inhalation in vivo reduced renal filtration by 20% ( P = 0.017). Fibrosis, assessed by Masson's trichrome and Picrosirius red staining, was increased in EV kidneys (1.86-fold, C57BL/6; 3.2-fold, CD-1; P < 0.05), heart (2.75-fold, C57BL/6 mice; P < 0.05), and liver (1.77-fold in CD-1; P < 0.0001). Gene expression changes demonstrated profibrotic pathway activation. EV inhalation altered cardiovascular function, with decreased heart rate ( P < 0.01), and elevated blood pressure ( P = 0.016). These data demonstrate that chronic inhalation of EV may lead to increased inflammation, organ damage, and cardiorenal and hepatic disease.
Collapse
Affiliation(s)
- Laura E Crotty Alexander
- Pulmonary Critical Care Section, Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, California.,Division of Pulmonary Critical Care and Sleep Medicine, Department of Medicine, University of California , San Diego, California
| | | | - Mark Hepokoski
- Pulmonary Critical Care Section, Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, California.,Division of Pulmonary Critical Care and Sleep Medicine, Department of Medicine, University of California , San Diego, California
| | - Denzil Mathew
- Pulmonary Critical Care Section, Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Alex Moshensky
- Pulmonary Critical Care Section, Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, California.,Division of Pulmonary Critical Care and Sleep Medicine, Department of Medicine, University of California , San Diego, California
| | - Andrew Willeford
- Department of Pharmacology, University of California , San Diego, California
| | - Soumita Das
- Department of Pathology, University of California , San Diego, California
| | - Prabhleen Singh
- Division of Nephrology and Hypertension, Department of Medicine, University of California , San Diego, California.,Nephrology Section, Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Zach Yong
- Pulmonary Critical Care Section, Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, California.,Division of Pulmonary Critical Care and Sleep Medicine, Department of Medicine, University of California , San Diego, California
| | - Jasmine H Lee
- Division of Physiology, Department of Medicine, University of California , San Diego, California
| | - Kevin Vega
- Department of Pathology, University of California , San Diego, California
| | - Ashley Du
- Pulmonary Critical Care Section, Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, California.,Division of Pulmonary Critical Care and Sleep Medicine, Department of Medicine, University of California , San Diego, California
| | - John Shin
- Pulmonary Critical Care Section, Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, California.,Division of Pulmonary Critical Care and Sleep Medicine, Department of Medicine, University of California , San Diego, California
| | - Christian Javier
- Pulmonary Critical Care Section, Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, California.,Division of Pulmonary Critical Care and Sleep Medicine, Department of Medicine, University of California , San Diego, California
| | - Jiang Tian
- Division of Cardiovascular Medicine and Center for Hypertension and Personalized Medicine, University of Toledo , Toledo, Ohio.,Department of Medicine, College of Medicine and Life Sciences, University of Toledo , Toledo, Ohio
| | - Joan Heller Brown
- Department of Pharmacology, University of California , San Diego, California
| | - Ellen C Breen
- Division of Physiology, Department of Medicine, University of California , San Diego, California
| |
Collapse
|
8
|
Wang S, Zeng H, Xie XJ, Tao YK, He X, Roman RJ, Aschner JL, Chen JX. Loss of prolyl hydroxylase domain protein 2 in vascular endothelium increases pericyte coverage and promotes pulmonary arterial remodeling. Oncotarget 2018; 7:58848-58861. [PMID: 27613846 PMCID: PMC5312280 DOI: 10.18632/oncotarget.11585] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 08/21/2016] [Indexed: 12/21/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a leading cause of heart failure. Although pulmonary endothelial dysfunction plays a crucial role in the progression of the PAH, the underlying mechanisms are poorly understood. The HIF-α hydroxylase system is a key player in the regulation of vascular remodeling. Knockout of HIF-2α has been reported to cause pulmonary hypertension. The present study examined the role of endothelial cell specific prolyl hydroxylase-2 (PHD2) in the development of PAH and pulmonary vascular remodeling. The PHD2f/f mouse was crossbred with VE-Cadherin-Cre promoter mouse to generate an endothelial specific PHD2 knockout (Cdh5-Cre-PHD2ECKO) mouse. Pulmonary arterial pressure and the size of the right ventricle was significantly elevated in the PHD2ECKO mice relative to the PHD2f/f controls. Knockout of PHD2 in EC was associated with vascular remodeling, as evidenced by an increase in pulmonary arterial media to lumen ratio and number of muscularized arterioles. The pericyte coverage and vascular smooth muscle cells were also significantly increased in the PA. The increase in vascular pericytes was associated with elevated expression of fibroblast specific protein-1 (FSP-1). Moreover, perivascular interstitial fibrosis of pulmonary arteries was significantly increased in the PHD2ECKO mice. Mechanistically, knockout of PHD2 in EC increased the expression of Notch3 and transforming growth factor (TGF-β) in the lung tissue. We conclude that the expression of PHD2 in endothelial cells plays a critical role in preventing pulmonary arterial remodeling in mice. Increased Notch3/TGF-β signaling and excessive pericyte coverage may be contributing to the development of PAH following deletion of endothelial PHD2.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, USA
| | - Heng Zeng
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, USA
| | - Xue-Jiao Xie
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, USA.,School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yong-Kang Tao
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, USA
| | - Xiaochen He
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, USA
| | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, USA
| | - Judy L Aschner
- Department of Pediatrics, Albert Einstein College of Medicine and The Children's Hospital at Montefiore, Bronx, NY, USA
| | - Jian-Xiong Chen
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, USA.,School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
9
|
The mechanism of all- trans retinoic acid in the regulation of apelin expression in vascular endothelial cells. Biosci Rep 2017; 37:BSR20170684. [PMID: 29070519 PMCID: PMC5725614 DOI: 10.1042/bsr20170684] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 10/17/2017] [Accepted: 10/23/2017] [Indexed: 01/02/2023] Open
Abstract
The apelin gene can promote vascular endothelial cell (VEC) proliferation, migration, and angiogenesis. However, the molecular mechanism for regulation of the apelin gene is still unknown. Real-time PCR and Western blotting analysis were employed to detect the effect of all-trans retinoic acid (ATRA) in up-regulating apelin expression in human umbilical vein endothelial cells (HUVECs). Furthermore, the in vivo study also indicated that ATRA could increase apelin expression in balloon-injured arteries of rats, which is consistent with the results from the cultured HUVECs. To ensure whether retinoic acid receptor (RAR) α (RARα) could be induced by ATRA in regulating apelin, the expression of RARα was tested with a siRNA method to knock down RARα or adenovirus vector infection to overexpress RARα. The results showed that ATRA could up-regulate apelin expression time- and dose- dependently in HUVECs. ATRA could induce a RARα increase; however, the expression of RARβ and RARγ were unchanged. The blocking of RARα signaling reduced the response of apelin to ATRA when HUVECs were treated with RARα antagonists (Ro 41-5253) or the use of siRNA against RARα (si-RARα) knockdown RARα expression before using ATRA. In addition, induction of RARα overexpression by infection with pAd-GFP-RARα further increased the induction of apelin by ATRA. These results suggested that ATRA up-regulated apelin expression by promoting RARα signaling.
Collapse
|
10
|
Mayorga ME, Kiedrowski M, McCallinhart P, Forudi F, Ockunzzi J, Weber K, Chilian W, Penn MS, Dong F. Role of SDF-1:CXCR4 in Impaired Post-Myocardial Infarction Cardiac Repair in Diabetes. Stem Cells Transl Med 2017; 7:115-124. [PMID: 29119710 PMCID: PMC5746149 DOI: 10.1002/sctm.17-0172] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/06/2017] [Indexed: 12/13/2022] Open
Abstract
Diabetes is a risk factor for worse outcomes following acute myocardial infarction (AMI). In this study, we tested the hypothesis that SDF‐1:CXCR4 expression is compromised in post‐AMI in diabetes, and that reversal of this defect can reverse the adverse effects of diabetes. Mesenchymal stem cells (MSC) isolated from green fluorescent protein (GFP) transgenic mice (control MSC) were induced to overexpress stromal cell‐derived factor‐1 (SDF‐1). SDF‐1 expression in control MSC and SDF‐1‐overexpressing MSC (SDF‐1:MSC) were quantified using enzyme‐linked immunosorbent assay (ELISA). AMI was induced on db/db and control mice. Mice were randomly selected to receive infusion of control MSC, SDF‐1:MSC, or saline into the border zone after AMI. Serial echocardiography was used to assess cardiac function. SDF‐1 and CXCR4 mRNA expression in the infarct zone of db/db mice and control mice were quantified. Compared to control mice, SDF‐1 levels were decreased 82%, 91%, and 45% at baseline, 1 day and 3 days post‐AMI in db/db mice, respectively. CXCR4 levels are increased 233% at baseline and 54% 5 days post‐AMI in db/db mice. Administration of control MSC led to a significant improvement in ejection fraction (EF) in control mice but not in db/db mice 21 days after AMI. In contrast, administration of SDF‐1:MSC produced a significant improvement in EF in both control mice and db/db mice 21 days after AMI. The SDF‐1:CXCR4 axis is compromised in diabetes, which appears to augment the deleterious consequences of AMI. Over‐express of SDF‐1 expression in diabetes rescues cardiac function post AMI. Our results suggest that modulation of SDF‐1 may improve post‐AMI cardiac repair in diabetes. stemcellstranslationalmedicine2018;7:115–124
Collapse
Affiliation(s)
- Maritza E Mayorga
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Matthew Kiedrowski
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Patricia McCallinhart
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Farhad Forudi
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Jeremiah Ockunzzi
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Kristal Weber
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - William Chilian
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Marc S Penn
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA.,Summa Cardiovascular Institute, Summa Health System, Akron, Ohio, USA
| | - Feng Dong
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| |
Collapse
|
11
|
Wang S, Zeng H, Chen ST, Zhou L, Xie XJ, He X, Tao YK, Tuo QH, Deng C, Liao DF, Chen JX. Ablation of endothelial prolyl hydroxylase domain protein-2 promotes renal vascular remodelling and fibrosis in mice. J Cell Mol Med 2017; 21:1967-1978. [PMID: 28266128 PMCID: PMC5571552 DOI: 10.1111/jcmm.13117] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/02/2017] [Indexed: 02/06/2023] Open
Abstract
Accumulating evidence demonstrates that hypoxia-inducible factor (HIF-α) hydroxylase system has a critical role in vascular remodelling. Using an endothelial-specific prolyl hydroxylase domain protein-2 (PHD2) knockout (PHD2EC KO) mouse model, this study investigates the regulatory role of endothelial HIF-α hydroxylase system in the development of renal fibrosis. Knockout of PHD2 in EC up-regulated the expression of HIF-1α and HIF-2α, resulting in a significant decline of renal function as evidenced by elevated levels of serum creatinine. Deletion of PHD2 increased the expression of Notch3 and transforming growth factor (TGF-β1) in EC, thus further causing glomerular arteriolar remodelling with an increased pericyte and pericyte coverage. This was accompanied by a significant elevation of renal resistive index (RI). Moreover, knockout of PHD2 in EC up-regulated the expression of fibroblast-specific protein-1 (FSP-1) and increased interstitial fibrosis in the kidney. These alterations were strongly associated with up-regulation of Notch3 and TGF-β1. We concluded that the expression of PHD2 in endothelial cells plays a critical role in renal fibrosis and vascular remodelling in adult mice. Furthermore, these changes were strongly associated with up-regulation of Notch3/TGF-β1 signalling and excessive pericyte coverage.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Heng Zeng
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Sean T Chen
- Duke University School of Medicine, Durham, NC, USA
| | - Liying Zhou
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Xue-Jiao Xie
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA.,Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xiaochen He
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Yong-Kang Tao
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Qin-Hui Tuo
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Changqin Deng
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Duan-Fang Liao
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jian-Xiong Chen
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
12
|
Tao YK, Zeng H, Zhang GQ, Chen ST, Xie XJ, He X, Wang S, Wen H, Chen JX. Notch3 deficiency impairs coronary microvascular maturation and reduces cardiac recovery after myocardial ischemia. Int J Cardiol 2017; 236:413-422. [PMID: 28131704 DOI: 10.1016/j.ijcard.2017.01.096] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/13/2017] [Indexed: 12/29/2022]
Abstract
RATIONALE Vascular maturation plays an important role in wound repair post-myocardial infarction (MI). The Notch3 is critical for pericyte recruitment and vascular maturation during embryonic development. OBJECTIVE This study is to test whether Notch3 deficiency impairs vascular maturation and blunts cardiac functional recovery post-MI. APPROACH AND RESULTS Wild type (WT) and Notch3 knockout (Notch3KO) mice were subjected to MI by the ligation of left anterior descending coronary artery (LAD). Cardiac function and coronary blood flow reserve (CFR) were measured by echocardiography. The expression of angiogenic growth factor, pericyte/capillary coverage and arteriolar formation were analyzed. Loss of Notch3 in mice resulted in a significant reduction of pericytes and small arterioles. Notch3 KO mice had impaired pericyte/capillary coverage and CFR compared to WT mice. Notch3 KO mice were more prone to ischemic injury with larger infarcted size and higher rates of mortality. The expression of CXCR-4 and VEGF/Ang-1 was significantly decreased in Notch3 KO mice. Notch3 KO mice also had few NG2+/Sca1+ and NG2+/c-kit+ progenitor cells in the ischemic area and exhibited worse cardiac function recovery at 2weeks after MI. These were accompanied by a significant reduction of pericyte/capillary coverage and arteriolar maturation. Furthermore, Notch3 KO mice subjected to MI had increased intracellular adhesion molecule-2 (ICAM-2) expression and CD11b+ macrophage infiltration into ischemic areas compared to that of WT mice. CONCLUSION Notch3 mutation impairs recovery of cardiac function post-MI by the mechanisms involving the pre-existing coronary microvascular dysfunction conditions, and impairment of pericyte/progenitor cell recruitment and microvascular maturation.
Collapse
Affiliation(s)
- Yong-Kang Tao
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; Emergency Department of China-Japan Friendship Hospital, Beijing 100029, China
| | - Heng Zeng
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Guo-Qiang Zhang
- Emergency Department of China-Japan Friendship Hospital, Beijing 100029, China.
| | - Sean T Chen
- Duke University School of Medicine, Durham, USA
| | - Xue-Jiao Xie
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Xiaochen He
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Shuo Wang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Hongyan Wen
- Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Jian-Xiong Chen
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| |
Collapse
|
13
|
Apelin/APJ system: A novel promising therapy target for pathological angiogenesis. Clin Chim Acta 2016; 466:78-84. [PMID: 28025030 DOI: 10.1016/j.cca.2016.12.023] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 12/19/2016] [Accepted: 12/22/2016] [Indexed: 12/21/2022]
Abstract
Apelin is the endogenous ligand of the G protein-coupled receptor APJ. Both Apelin and APJ receptor are widely distributed in various tissues such as heart, brain, limbs, retina and liver. Recent research indicates that the Apelin/APJ system plays an important role in pathological angiogenesis which is a progress of new blood branches developing from preexisting vessels via sprouting. In this paper, we review the important role of the Apelin/APJ system in pathological angiogenesis. The Apelin/APJ system promotes angiogenesis in myocardial infarction, ischemic stroke, critical limb ischemia, tumor, retinal angiogenesis diseases, cirrhosis, obesity, diabetes and other related diseases. Furthermore, we illustrate the detailed mechanism of pathological angiogenesis induced by the Apelin/APJ system. In conclusion, the Apelin/APJ system would be a promising therapeutic target for angiogenesis-related diseases.
Collapse
|
14
|
Siavashi V, Sariri R, Nassiri SM, Esmaeilivand M, Asadian S, Cheraghi H, Barekati-Mowahed M, Rahbarghazi R. Angiogenic activity of endothelial progenitor cells through angiopoietin-1 and angiopoietin-2. Anim Cells Syst (Seoul) 2016. [DOI: 10.1080/19768354.2016.1189961] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
15
|
Pannella M, Caliceti C, Fortini F, Aquila G, Vieceli Dalla Sega F, Pannuti A, Fortini C, Morelli MB, Fucili A, Francolini G, Voltan R, Secchiero P, Dinelli G, Leoncini E, Ferracin M, Hrelia S, Miele L, Rizzo P. Serum From Advanced Heart Failure Patients Promotes Angiogenic Sprouting and Affects the Notch Pathway in Human Endothelial Cells. J Cell Physiol 2016; 231:2700-10. [PMID: 26987674 DOI: 10.1002/jcp.25373] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/10/2016] [Indexed: 12/21/2022]
Abstract
It is unknown whether components present in heart failure (HF) patients' serum provide an angiogenic stimulus. We sought to determine whether serum from HF patients affects angiogenesis and its major modulator, the Notch pathway, in human umbilical vein endothelial cells (HUVECs). In cells treated with serum from healthy subjects or from patients at different HF stage we determined: (1) Sprouting angiogenesis, by measuring cells network (closed tubes) in collagen gel. (2) Protein levels of Notch receptors 1, 2, 4, and ligands Jagged1, Delta-like4. We found a higher number of closed tubes in HUVECs treated with advanced HF patients serum in comparison with cells treated with serum from mild HF patients or controls. Furthermore, as indicated by the reduction of the active form of Notch4 (N4IC) and of Jagged1, advanced HF patients serum inhibited Notch signalling in HUVECs in comparison with mild HF patients' serum and controls. The circulating levels of NT-proBNP (N-terminal of the pro-hormone brain natriuretic peptide), a marker for the detection and evalutation of HF, were positively correlated with the number of closed tubes (r = 0.485) and negatively with Notch4IC and Jagged1 levels in sera-treated cells (r = -0.526 and r = -0.604, respectively). In conclusion, we found that sera from advanced HF patients promote sprouting angiogenesis and dysregulate Notch signaling in HUVECs. Our study provides in vitro evidence of an angiogenic stimulus arising during HF progression and suggests a role for the Notch pathway in it. J. Cell. Physiol. 231: 2700-2710, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Micaela Pannella
- Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Cristiana Caliceti
- Department of Chemistry "G. Ciamician", University of Bologna, Bologna, Italy
| | - Francesca Fortini
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Giorgio Aquila
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | | | - Antonio Pannuti
- Stanley Scott Cancer Center, Louisiana State University Health Sciences Center and Louisiana Cancer Research Consortium, New Orleans, Louisiana
| | - Cinzia Fortini
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | | | - Alessandro Fucili
- University Hospital of Ferrara, Ferrara, Italy.,Maria Cecilia Hospital, GVM Care & Research, E.S. Health Science Foundation, Cotignola, Italy
| | - Gloria Francolini
- Cardiovascular Research Center, Salvatore Maugeri Foundation IRCCS, Lumezzane, Italy
| | - Rebecca Voltan
- Department of Morphology, Surgery, and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Paola Secchiero
- Department of Morphology, Surgery, and Experimental Medicine, University of Ferrara, Ferrara, Italy.,Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Giovanni Dinelli
- Department of Agricultural Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Emanuela Leoncini
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Manuela Ferracin
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, University of Bologna, Bologna, Italy
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Lucio Miele
- Stanley Scott Cancer Center, Louisiana State University Health Sciences Center and Louisiana Cancer Research Consortium, New Orleans, Louisiana
| | - Paola Rizzo
- Department of Morphology, Surgery, and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
16
|
Chen G, Yue A, Yu H, Ruan Z, Yin Y, Wang R, Ren Y, Zhu L. Mesenchymal Stem Cells and Mononuclear Cells From Cord Blood: Cotransplantation Provides a Better Effect in Treating Myocardial Infarction. Stem Cells Transl Med 2016; 5:350-357. [PMID: 26798061 PMCID: PMC4807668 DOI: 10.5966/sctm.2015-0199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/28/2015] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to evaluate the effect of cotransplanting mononuclear cells from cord blood (CB-MNCs) and mesenchymal stem cells (MSCs) as treatment for myocardial infarction (MI). Transplanting CD34+ cells or MSCs separately has been shown effective in treating MI, but the effect of cotransplanting CB-MNCs and MSCs is not clear. In this study, MSCs were separated by their adherence to the tissue culture. The morphology, immunophenotype, and multilineage potential of MSCs were analyzed. CB-MNCs were separated in lymphocyte separation medium 1.077. CD34+ cell count and viability were analyzed by flow cytometry. Infarcted male Sprague-Dawley rats in a specific-pathogen-free grade were divided into four treatment groups randomly: group I, saline; group II, CB-MNCs; group III, MSCs; and group IV, CB-MNCs plus MSCs. The saline, and CB-MNCs and/or MSCs were injected intramyocardially in infarcted rats. Their cardiac function was evaluated by echocardiography. The myocardial capillary density was analyzed by immunohistochemistry. Both cell types induced an improvement in the left ventricular cardiac function and increased tissue cell proliferation in myocardial tissue and neoangiogenesis. However, CB-MNCs plus MSCs were more effective in reducing the infarct size and preventing ventricular remodeling. Scar tissue was reduced significantly in the CB-MNCs plus MSCs group. MSCs facilitate engraftment of CD34+ cells and immunomodulation after allogeneic CD34+ cell transplantation. Cotransplanting MSCs and CB-MNCs might be more effective than transplanting MSCs or CB-MNCs separately for treating MI. This study contributes knowledge toward effective treatment strategies for MI.
Collapse
Affiliation(s)
- Gecai Chen
- Department of Cardiology, Taizhou People Hospital, Taizhou, Jiangsu Province, People's Republic of China
| | - Aihuan Yue
- Jiangsu Province Stem Cell Bank, Taizhou, Jiangsu Province, People's Republic of China
| | - Hong Yu
- Department of Pathology, Taizhou People Hospital, Taizhou, Jiangsu Province, People's Republic of China
| | - Zhongbao Ruan
- Department of Cardiology, Taizhou People Hospital, Taizhou, Jiangsu Province, People's Republic of China
| | - Yigang Yin
- Department of Cardiology, Taizhou People Hospital, Taizhou, Jiangsu Province, People's Republic of China
| | - Ruzhu Wang
- Department of Cardiology, Taizhou People Hospital, Taizhou, Jiangsu Province, People's Republic of China
| | - Yin Ren
- Department of Cardiology, Taizhou People Hospital, Taizhou, Jiangsu Province, People's Republic of China
| | - Li Zhu
- Department of Cardiology, Taizhou People Hospital, Taizhou, Jiangsu Province, People's Republic of China
| |
Collapse
|
17
|
Li H, Li Y, Cai L, Bai B, Wang Y. Effects of CASP5 gene overexpression on angiogenesis of HMEC-1 cells. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:15794-15800. [PMID: 26884849 PMCID: PMC4730062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/28/2015] [Indexed: 06/05/2023]
Abstract
OBJECTIVES The efficacy of gene overexpression of CASP5, a caspase family member, in angiogenesis in vitro and its mechanisms were clarified. METHODS Human full-length CASP5 gene was delivered into human microvascular endothelial HMEC-1 cells by recombinant lentivirus. The infection was estimated by green fluorescent protein. MTT method was used to analyze the efficacy of gene overexpression in cell proliferation ability, and Matrigel was used to estimate its effects in angiogenesis ability of cells. Meanwhile, Western blot was used to analyze the effects of CASP5 gene overexpression on the expression levels of angpt-1, angpt-2, Tie2 and VEGF-1 in the cells, which were signaling pathway factors related to angiogenesis. RESULTS Recombinant lentivirus containing human full-length CASP5 gene was packed and purified successfully, with virus titer of 1×10(8) TU/ml. The recombinant lentivirus was used to infect HMEC-1 cells with MOI of 1, leading to a cell infection rate of 100%. There were no significant effects of CASP5 gene overexpression on both cell proliferation ability and the expression level of angpt-1. Meanwhile, expressions of angpt-2 and VEGF-1 were both enhanced, while Tie2 expression was inhibited. Results indicated that CASP5 gene overexpression promoted angiogenesis of HMEC-1 cells. CONCLUSION CASP5 gene overexpression significantly promoted angiogenesis ability of HMEC-1 cells, which was probably achieved by inhibiting angpt-1/Tie2 and promoting VEGF-1 signal pathway.
Collapse
Affiliation(s)
- Haiyan Li
- Department of Dermatology, Harbin Medical University Cancer HospitalHarbin 150040, China
| | - Yuzhen Li
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical UniversityHarbin 150010, China
| | - Limin Cai
- Department of Dermatology, The First Affiliated Hospital of Harbin Medical UniversityHarbin 150010, China
| | - Bingxue Bai
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical UniversityHarbin 150010, China
| | - Yanhua Wang
- Department of Dermatology, The First Affiliated Hospital of Harbin Medical UniversityHarbin 150010, China
| |
Collapse
|
18
|
Balaji S, Han N, Moles C, Shaaban AF, Bollyky PL, Crombleholme TM, Keswani SG. Angiopoietin-1 improves endothelial progenitor cell-dependent neovascularization in diabetic wounds. Surgery 2015; 158:846-56. [PMID: 26266763 DOI: 10.1016/j.surg.2015.06.034] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 06/22/2015] [Accepted: 06/27/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND The diabetic phenotype of wound healing is in part characterized by impaired neovascularization and deficient endothelial progenitor cell (EPC) recruitment. Angiopoietin-1 (Ang-1) is a potent mobilizer of EPCs from the bone marrow (BM). A suggested mechanism for EPC mobilization from the BM is mediated by matrix metalloproteinase 9 (MMP-9) and stem cell factor (SCF). Taken together, we hypothesized that overexpression of Ang-1 in diabetic wounds will recruit EPCs and improve neovascularization and wound healing. METHODS An endothelial lineage BM-labeled murine model of diabetes was developed to track BM-derived EPCs. FVBN mice were lethally irradiated and then reconstituted with BM from syngeneic Tie2/LacZ donor mice. Diabetes was induced with streptozotocin. Dorsal wounds in BM-transplanted mice were treated with Ad-Ang-1, Ad-GFP, or phosphate-buffered saline. At day 7 after injury, wounds were harvested and analyzed. A similar experiment was conducted in EPC mobilization deficient MMP-9 -/- mice to determine whether the effects of Ang-1 were EPC-dependent. RESULTS Overexpression of Ang-1 resulted in greatly improved re-epithelialization, neovascularization, and EPC recruitment in diabetic BM-transplanted wounds at day 7. Ang-1 treatment resulted in increased serum levels of proMMP-9 and SCF but had no effect on vascular endothelial growth factor levels. According to our FACS results, peripheral blood EPC (CD34(+)/Cd133(+)/Flk1(+)) counts at day 3 after wounding showed impaired EPC mobilization in MMP-9 -/- mice compared with those of wild-type controls. EPC mobilization was rescued by SCF administration, validating this model for EPC-mobilization-deficient mechanistic studies. In MMP-9 -/- mice, Ad-Ang-1 accelerated re-epithelialization in a similar manner, but had no effect on neovascularization. CONCLUSION Our results show that Ang-1 administration results in improved neovascularization which is dependent on EPC recruitment and has direct effects on wound re-epithelialization. These data may represent a novel strategy to correct the phenotype of impaired diabetic neovascularization and may improve diabetic wound healing.
Collapse
Affiliation(s)
- Swathi Balaji
- Laboratory for Regenerative Wound Healing, Division of Pediatric, General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Nate Han
- Laboratory for Regenerative Wound Healing, Division of Pediatric, General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Chad Moles
- Laboratory for Regenerative Wound Healing, Division of Pediatric, General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Aimen F Shaaban
- Laboratory for Regenerative Wound Healing, Division of Pediatric, General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Paul L Bollyky
- Division of Infectious Diseases, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Timothy M Crombleholme
- Laboratory for Regenerative Wound Healing, Division of Pediatric, General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Center for Children's Surgery, Children's Hospital Colorado and the University of Colorado School of Medicine, Aurora, CO
| | - Sundeep G Keswani
- Laboratory for Regenerative Wound Healing, Division of Pediatric, General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH.
| |
Collapse
|
19
|
Azizi Y, Faghihi M, Imani A, Roghani M, Zekri A, Mobasheri MB, Rastgar T, Moghimian M. Post-infarct treatment with [Pyr1]apelin-13 improves myocardial function by increasing neovascularization and overexpression of angiogenic growth factors in rats. Eur J Pharmacol 2015; 761:101-8. [DOI: 10.1016/j.ejphar.2015.04.034] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 12/22/2022]
|
20
|
Conditional knockout of prolyl hydroxylase domain protein 2 attenuates high fat-diet-induced cardiac dysfunction in mice. PLoS One 2014; 9:e115974. [PMID: 25546437 PMCID: PMC4278833 DOI: 10.1371/journal.pone.0115974] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/28/2014] [Indexed: 01/22/2023] Open
Abstract
Oxygen sensor prolyl hydroxylases (PHDs) play important roles in the regulation of HIF-α and cell metabolisms. This study was designed to investigate the direct role of PHD2 in high fat-diet (HFD)-induced cardiac dysfunction. In HFD fed mice, PHD2 expression was increased without significant changes in PHD1 and PHD3 levels in the heart. This was accompanied by a significant upregulation of myeloid differentiation factor 88 (MYD88) and NF-κB. To explore the role of PHD2 in HFD-induced cardiac dysfunction, PHD2 conditional knockout mice were fed a HFD for 16 weeks. Intriguingly, knockout of PHD2 significantly reduced MYD88 and NF-κb expression in HFD mouse hearts. Moreover, knockout of PHD2 inhibited TNFα and ICAM-1 expression, and reduced cell apoptosis and macrophage infiltration in HFD mice. This was accompanied by a significant improvement of cardiac function. Most importantly, conditional knockout of PHD2 at late stage in HFD mice significantly improved glucose tolerance and reversed cardiac dysfunction. Our studies demonstrate that PHD2 activity is a critical contributor to the HFD-induced cardiac dysfunction. Inhibition of PHD2 attenuates HFD-induced cardiac dysfunction by a mechanism involving suppression of MYD88/NF-κb pathway and inflammation.
Collapse
|
21
|
Abstract
The prevalence of diabetes continues to increase world-wide and is a leading cause of morbidity, mortality, and rapidly rising health care costs. Although strict glucose control combined with good pharmacological and non-pharmacologic interventions can increase diabetic patient life span, the frequency and mortality of myocardial ischemia and infarction remain drastically increased in diabetic patients. Therefore, more effective therapeutic approaches are urgently needed. Over the past 15 years, cellular repair of the injured adult heart has become the focus of a rapidly expanding broad spectrum of pre-clinical and clinical research. Recent clinical trials have achieved favorable initial endpoints with improvements in cardiac function and clinical symptoms following cellular therapy. Due to the increased risk of cardiac disease, cardiac regeneration may be one strategy to treat patients with diabetic cardiomyopathy and/or myocardial infarction. However, pre-clinical studies suggest that the diabetic myocardium may not be a favorable environment for the transplantation and survival of stem cells due to altered kinetics in cellular homing, survival, and in situ remodeling. Therefore, unique conditions in the diabetic myocardium will require novel solutions in order to increase the efficiency of cellular repair following ischemia and/or infarction. This review briefly summarizes some of the recent advances in cardiac regeneration in non-diabetic conditions and then provides an overview of some of the issues related to diabetes that must be addressed in the coming years.
Collapse
Affiliation(s)
- Lu Cai
- />Kosair Children’s Hospital Research Institute, Louisville, KY USA
- />Department of Pediatrics, University of Louisville, Louisville, KY USA
| | - Bradley B Keller
- />Department of Pediatrics, University of Louisville, Louisville, KY USA
- />Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky USA
| |
Collapse
|
22
|
The angiopoietin/TIE receptor system: Focusing its role for ischemia-reperfusion injury. Cytokine Growth Factor Rev 2014; 26:281-91. [PMID: 25466648 DOI: 10.1016/j.cytogfr.2014.10.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 10/23/2014] [Accepted: 10/30/2014] [Indexed: 02/07/2023]
Abstract
Ischemia and reperfusion (I/R) are of fatal consequence for the affected organs, as they provoke a profound inflammatory reaction. This thoroughly destroys cells and tissues, inducing functional failure or even complete loss of organ function. Since I/R is primarily a vascular problem, the interaction between the endothelium and the surrounding environment is of great significance. The angiopoietins (ANG) and the TIE receptors are key players for the vascular homeostasis. This review summarizes biochemical and cellular mechanisms leading to I/R injury. After a brief introduction to the ANG/TIE system, a comprehensive overview of its role for the development of I/R syndrome is given. Finally, current therapeutic approaches to mitigate the consequences of I/R by modulating ANG/TIE signaling are reviewed in detail.
Collapse
|
23
|
Zhang H, Wang H, Li N, Duan CE, Yang YJ. Cardiac progenitor/stem cells on myocardial infarction or ischemic heart disease: what we have known from current research. Heart Fail Rev 2014; 19:247-58. [PMID: 23381197 DOI: 10.1007/s10741-013-9372-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stem cell therapy has become a promising method for many diseases, including ischemic heart disease and heart failure. Several kinds of stem cells have been studied for heart diseases. Of them, bone marrow stem cells (BMSCs), which have been used in many clinical trials, are the most understood one. But the effect of BMSCs is mediated by paracrine factors instead of direct turning into cardiomyocytes. On the other hand, a lot of evidences have shown that resident cardiac stem cells could turn into cardiomyocytes directly in vivo. Currently, seven kinds of resident cardiac stem cells have been discovered. However, their mechanisms, development origins, and relationships have yet to be fully understood. Moreover, two Phase I clinical trials have been performed recently. They show promising results. In this review, we will summarize the current research on these cardiac stem cells and the methods to enhance their effects in clinical applications.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Translational Cardiovascular Medicine, Fuwai Hospital and Cardiovascular Institute, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China
| | | | | | | | | |
Collapse
|
24
|
Hou X, Zeng H, He X, Chen JX. Sirt3 is essential for apelin-induced angiogenesis in post-myocardial infarction of diabetes. J Cell Mol Med 2014; 19:53-61. [PMID: 25311234 PMCID: PMC4288349 DOI: 10.1111/jcmm.12453] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/05/2014] [Indexed: 12/28/2022] Open
Abstract
Heart failure following myocardial infarction (MI) is the leading cause of death in diabetic patients. Angiogenesis contributes to cardiac repair and functional recovery in post-MI. Our previous study shows that apelin (APLN) increases Sirtuin 3 (Sirt3) expression and ameliorates diabetic cardiomyopathy. In this study, we further investigated the direct role of Sirt3 in APLN-induced angiogenesis in post-MI model of diabetes. Wild-type (WT) and Sirt3 knockout (Sirt3KO) mice were induced into diabetes by i.p. streptozotocin (STZ). STZ mice were then subjected to MI followed by immediate intramyocardial injection with adenovirus-apelin (Ad-APLN). Our studies showed that Sirt3 expression was significantly reduced in the hearts of STZ mice. Ad-APLN treatment resulted in up-regulation of Sirt3, angiopoietins/Tie-2 and VEGF/VEGFR2 expression together with increased myocardial vascular densities in WT-STZ+MI mice, but these alterations were not observed in Sirt3KO-STZ+MI mice. In vitro, overexpression of APLN increased Sirt3 expression and angiogenesis in endothelial progenitor cells (EPC) from WT mice, but not in EPC from Sirt3KO mice. APLN gene therapy increases angiogenesis and improves cardiac functional recovery in diabetic hearts via up-regulation of Sirt3 pathway.
Collapse
Affiliation(s)
- Xuwei Hou
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | | | | | | |
Collapse
|
25
|
Loss of Sirt3 limits bone marrow cell-mediated angiogenesis and cardiac repair in post-myocardial infarction. PLoS One 2014; 9:e107011. [PMID: 25192254 PMCID: PMC4156371 DOI: 10.1371/journal.pone.0107011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 07/07/2014] [Indexed: 12/22/2022] Open
Abstract
Sirtuin-3 (Sirt3) has a critical role in the regulation of human aging and reactive oxygen species (ROS) formation. A recent study has identified Sirt3 as an essential regulator of stem cell aging. This study investigated whether Sirt3 is necessary for bone marrow cell (BMC)-mediated cardiac repair in post-myocardial infarction (MI). In vitro, BMC-derived endothelial progenitor cells (EPCs) from wild type (WT) and Sirt3KO mice were cultured. EPC angiogenesis, ROS formation and apoptosis were assessed. In vivo, WT and Sirt3 KO mice were subjected to MI and BMCs from WT and Sirt3 KO mice were injected into ischemic area immediately. The expression of VEGF and VEGFR2 was reduced in Sirt3KO-EPCs. Angiogenic capacities and colony formation were significantly impaired in Sirt3KO-EPCs compared to WT-EPCs. Loss of Sirt3 further enhanced ROS formation and apoptosis in EPCs. Overexpression of Sirt3 or treatment with NADPH oxidase inhibitor apocynin (Apo, 200 and 400 microM) rescued these abnormalities. In post-MI mice, BMC treatment increased number of Sca1+/c-kit+ cells; enhanced VEGF expression and angiogenesis whereas Sirt3KO-BMC treatment had little effects. BMC treatment also attenuated NADPH oxidase subunits p47phox and gp91phox expression, and significantly reduced ROS formation, apoptosis, fibrosis and hypertrophy in post-MI mice. Sirt3KO-BMC treatment did not display these beneficial effects. In contrast, Sirt3KO mice treated with BMCs from WT mice attenuated myocardial apoptosis, fibrosis and improved cardiac function. Our data demonstrate that Sirt3 is essential for BMC therapy; and loss of Sirt3 limits BMC-mediated angiogenesis and cardiac repair in post-MI.
Collapse
|
26
|
Jeon JS, Bersini S, Whisler JA, Chen MB, Dubini G, Charest JL, Moretti M, Kamm RD. Generation of 3D functional microvascular networks with human mesenchymal stem cells in microfluidic systems. Integr Biol (Camb) 2014; 6:555-63. [PMID: 24676392 PMCID: PMC4307755 DOI: 10.1039/c3ib40267c] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The generation of functional microvascular networks is critical for the development of advanced in vitro models to replicate pathophysiological conditions. Mural cells provide structural support to blood vessels and secrete biomolecules contributing to vessel stability and functionality. We investigated the role played by two endothelium-related molecules, angiopoietin (Ang-1) and transforming growth factor (TGF-β1), on bone marrow-derived human mesenchymal stem cell (BM-hMSC) phenotypic transition toward a mural cell lineage, both in monoculture and in direct contact with human endothelial cells (ECs), within 3D fibrin gels in microfluidic devices. We demonstrated that the effect of these molecules is dependent on direct heterotypic cell-cell contact. Moreover, we found a significant increase in the amount of α-smooth muscle actin in microvascular networks with added VEGF and TGF-β1 or VEGF and Ang-1 compared to networks with added VEGF alone. However, the addition of TGF-β1 generated a non-interconnected microvasculature, while Ang-1 promoted functional networks, confirmed by microsphere perfusion and permeability measurements. The presence of mural cell-like BM-hMSCs coupled with the addition of Ang-1 increased the number of network branches and reduced mean vessel diameter compared to EC only vasculature. This system has promising applications in the development of advanced in vitro models to study complex biological phenomena involving functional and perfusable microvascular networks.
Collapse
Affiliation(s)
- Jessie S Jeon
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA 02139.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Jeon JS, Bersini S, Whisler JA, Chen MB, Dubini G, Charest JL, Moretti M, Kamm RD. Generation of 3D functional microvascular networks with human mesenchymal stem cells in microfluidic systems. Integr Biol (Camb) 2014. [PMID: 24676392 DOI: 10.1039/b000000x/nih-pa] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
The generation of functional microvascular networks is critical for the development of advanced in vitro models to replicate pathophysiological conditions. Mural cells provide structural support to blood vessels and secrete biomolecules contributing to vessel stability and functionality. We investigated the role played by two endothelium-related molecules, angiopoietin (Ang-1) and transforming growth factor (TGF-β1), on bone marrow-derived human mesenchymal stem cell (BM-hMSC) phenotypic transition toward a mural cell lineage, both in monoculture and in direct contact with human endothelial cells (ECs), within 3D fibrin gels in microfluidic devices. We demonstrated that the effect of these molecules is dependent on direct heterotypic cell-cell contact. Moreover, we found a significant increase in the amount of α-smooth muscle actin in microvascular networks with added VEGF and TGF-β1 or VEGF and Ang-1 compared to networks with added VEGF alone. However, the addition of TGF-β1 generated a non-interconnected microvasculature, while Ang-1 promoted functional networks, confirmed by microsphere perfusion and permeability measurements. The presence of mural cell-like BM-hMSCs coupled with the addition of Ang-1 increased the number of network branches and reduced mean vessel diameter compared to EC only vasculature. This system has promising applications in the development of advanced in vitro models to study complex biological phenomena involving functional and perfusable microvascular networks.
Collapse
Affiliation(s)
- Jessie S Jeon
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA 02139.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Howangyin KY, Silvestre JS. Diabetes mellitus and ischemic diseases: molecular mechanisms of vascular repair dysfunction. Arterioscler Thromb Vasc Biol 2014; 34:1126-35. [PMID: 24675660 DOI: 10.1161/atvbaha.114.303090] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In patients with diabetes mellitus, the ability of ischemic tissue to synchronize the molecular and cellular events leading to restoration of tissue perfusion in response to the atherosclerotic occlusion of a patent artery is markedly impaired. As a consequence, adverse tissue remodeling and the extent of ischemic injury are intensified, leading to increased morbidity and mortality. Growing evidence from preclinical and clinical studies has implicated alterations in hypoxia-inducible factor 1 levels in the abrogation of proangiogenic pathways, including vascular endothelial growth factor A/phosphoinositide 3' kinase/AKT/endothelial nitric oxide synthase and in the activation of antiangiogenic signals characterized by accumulation of advanced glycation end products, reactive oxygen species overproduction, and endoplasmic reticulum stress. In addition, the diabetic milieu shows a switch toward proinflammatory antiregenerative pathways. Finally, the mobilization, subsequent recruitment, and the proangiogenic potential of the different subsets of angiogenesis-promoting bone marrow-derived cells are markedly impaired in the diabetic environment. In this review, we will give an overview of the current understanding on the signaling molecules contributing to the diabetes mellitus-induced impairment of postischemic revascularization mainly in the setting of myocardial infarction or critical limb ischemia.
Collapse
Affiliation(s)
- Kiave Yune Howangyin
- From the INSERM UMRS 970, Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | | |
Collapse
|
29
|
Yu XH, Tang ZB, Liu LJ, Qian H, Tang SL, Zhang DW, Tian GP, Tang CK. Apelin and its receptor APJ in cardiovascular diseases. Clin Chim Acta 2014; 428:1-8. [DOI: 10.1016/j.cca.2013.09.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 08/31/2013] [Accepted: 09/01/2013] [Indexed: 12/29/2022]
|
30
|
Synthetic retinoid Am80 up-regulates apelin expression by promoting interaction of RARα with KLF5 and Sp1 in vascular smooth muscle cells. Biochem J 2013; 456:35-46. [PMID: 23992409 DOI: 10.1042/bj20130418] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Previous studies have demonstrated that both retinoids and apelin possess potent cardiovascular properties and that retinoids can mediate the expression of many genes in the cardiovascular system. However, it is not clear whether and how retinoids regulate apelin expression in rat VSMCs (vascular smooth muscle cells). In the present study, we investigated the molecular mechanism of apelin expression regulation by the synthetic retinoid Am80 in VSMCs. The results showed that Am80 markedly up-regulated apelin mRNA and protein levels in VSMCs. Furthermore, KLF5 (Krüppel-like factor 5) and Sp1 (stimulating protein-1) co-operatively mediated Am80-induced apelin expression through their direct binding to the TCE (transforming growth factor-β control element) on the apelin promoter. Interestingly, upon Am80 stimulation, the RARα (retinoic acid receptor α) was recruited to the apelin promoter by interacting with KLF5 and Sp1 prebound to the TCE site of the apelin promoter to form a transcriptional activation complex, subsequently leading to the up-regulation of apelin expression in VSMCs. An in vivo study indicated that Am80 increased apelin expression in balloon-injured arteries of rats, consistent with the results from the cultured VSMCs. Thus the results of the present study describe a novel mechanism of apelin regulation by Am80 and further expand the network of RARα in the retinoid pathway.
Collapse
|
31
|
Zeng H, He X, Hou X, Li L, Chen JX. Apelin gene therapy increases myocardial vascular density and ameliorates diabetic cardiomyopathy via upregulation of sirtuin 3. Am J Physiol Heart Circ Physiol 2013; 306:H585-97. [PMID: 24363305 DOI: 10.1152/ajpheart.00821.2013] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Microvascular insufficiency contributes to cardiac hypertrophy and worsens heart dysfunction in diabetic cardiomyopathy. Our recent study shows that apelin may protect ischemic heart failure via upregulation of sirtuin 3 (Sirt3) and angiogenesis. This study investigated whether apelin promotes angiogenesis and ameliorates diabetic cardiomyopathy via activation of Sirt3. Wild-type (WT) and diabetic db/db mice were administrated with adenovirus-apelin to overexpressing apelin. In WT mice, overexpression of apelin increased Sirt3, VEGF/VEGFR2, and angiopoietin-1 (Ang-1)/Tie-2 expression in the heart. In vitro, treatment of endothelial cells (EC) with apelin increased VEGF and Ang-1 expression. In EC isolated from Sirt3KO mice, however, apelin treatment did not upregulate VEGF and Ang-1 expression. Moreover, apelin-induced angiogenesis was diminished in Sirt3KO mice. In db/db mice, the basal levels of apelin and Sirt3 expression were significantly reduced in the heart. This was accompanied by a significant reduction of capillary and arteriole densities in the heart. Overexpression of apelin increased Sirt3, VEGF/VEGFR2, and Ang-1/Tie-2 expression together with improved vascular density in db/db mice. Overexpression of apelin further improved cardiac function in db/db mice. Treatment with apelin significantly attenuated high glucose (HG)-induced reactive oxygen species (ROS) formation and EC apoptosis. The protection of apelin against HG-induced ROS formation and EC apoptosis was diminished in Sirt3KO-EC. We conclude that apelin gene therapy increases vascular density and alleviates diabetic cardiomyopathy by a mechanism involving activation of Sirt3 and upregulation of VEGF/VEGFR2 and Ang-1/Tie-2 expression.
Collapse
Affiliation(s)
- Heng Zeng
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | | | | | | | | |
Collapse
|
32
|
Matyal R, Sakamuri S, Wang A, Mahmood E, Robich MP, Khabbaz K, Hess PE, Sellke FW, Mahmood F. Local infiltration of neuropeptide Y as a potential therapeutic agent against apoptosis and fibrosis in a swine model of hypercholesterolemia and chronic myocardial ischemia. Eur J Pharmacol 2013; 718:261-70. [PMID: 24051270 DOI: 10.1016/j.ejphar.2013.08.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/23/2013] [Accepted: 08/26/2013] [Indexed: 01/12/2023]
Abstract
While the angiogenic effects of Neuropeptide Y (NPY) in myocardial ischemia and hypercholesterolemia have been studied, its effects on altering oxidative stress, fibrosis and cell death are not known. We hypothesized that local infiltration of NPY in a swine model of chronic myocardial ischemia and hypercholesterolemia will induce nerve growth and cell survival, while reducing oxidative stress and fibrosis. Yorkshire mini-swine (n=15) were fed a high cholesterol diet for 5 weeks. Three weeks after surgical induction of focal myocardial ischemia, an osmotic pump was implanted, which delivered NPY (n=8, high cholesterol treated, HCT) or the vehicle (n=7, high cholesterol control, HCC) for 5 weeks. Then myocardium was harvested for analysis. Assessment of myocardial function and perfusion was made the last intervention. Immunoblotting demonstrated significantly decreased levels of MMP-9 (p=0.001) and TGF-β (p=0.05) and significantly increased levels of Ang-1 (p=0.002), MnSOD (p=0.006) and NGF (p=0.01) in HCT. Immunohistochemistry results revealed significantly decreased TUNEL staining (p=0.005) and GLUT4 translocation (p=0.004) in HCT. The functional data showed significantly improved blood flow reserve (p=0.02) and improved diastolic function -dP/dt (p=0.009) in the treated animals. Local infiltration of NPY results in positive remodeling in ischemic myocardium in the setting of hypercholesterolemia. By initiating angio and neurogenesis, NPY infiltration improves blood flow reserve and restoration of fatty acid metabolism. The associated increased cell survival and decreased fibrosis result in improved myocardial diastolic function. NPY may have a potential therapeutic role in patients with hypercholesterolemia associated coronary artery disease.
Collapse
Affiliation(s)
- Robina Matyal
- Beth Israel Deaconess Medical Center, Department of Anesthesia and Critical Care, CC-454, 1 Deaconess Road, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02215, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Myocardial injection of apelin-overexpressing bone marrow cells improves cardiac repair via upregulation of Sirt3 after myocardial infarction. PLoS One 2013; 8:e71041. [PMID: 24039710 PMCID: PMC3765164 DOI: 10.1371/journal.pone.0071041] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 06/26/2013] [Indexed: 12/29/2022] Open
Abstract
Our previous study shows that treatment with apelin increases bone marrow cells (BMCs) recruitment and promotes cardiac repair after myocardial infarction (MI). The objective of this study was to investigate whether overexpression of apelin in BMCs improved cell therapy and accelerated cardiac repair and functional recovery in post-MI mice. Mouse myocardial infarction was achieved by coronary artery ligation and BMCs overexpressing apelin (apelin-BMCs) or GFP (GFP-BMCs) were injected into ischemic area immediately after surgery. In vitro, exposure of cultured BMCs to apelin led to a gradual increase in SDF-1á and CXCR4 expression. Intramyocardial delivery of apelin-BMCs in post-MI mice resulted in a significant increase number of APJ+/c-kit+/Sca1+ cells in the injected area compared to GFP-BMCs treated post-MI mice. Treatment with apelin-BMCs increased expression of VEGF, Ang-1 and Tie-2 in post-MI mice. Apelin-BMCs treatment also significantly increased angiogenesis and attenuated cardiac fibrosis formation in post-MI mice. Most importantly, treatment with apelin-BMCs significantly improved left ventricular (LV) systolic function in post-MI mice. Mechanistically, Apelin-BMCs treatment led to a significant increase in Sirtuin3 (Sirt3) expression and reduction of reactive oxygen species (ROS) formation. Treatment of cultured BMCs with apelin also increased Notch3 expression and Akt phosphorylation. Apelin treatment further attenuated stress-induced apoptosis whereas knockout of Sirt3 abolished anti-apoptotic effect of apelin in cultured BMCs. Moreover, knockout of Sirt3 significantly attenuated apelin-BMCs-induced VEGF expression and angiogenesis in post-MI mice. Knockout of Sirt3 further blunted apelin-BMCs-mediated improvement of cardiac repair and systolic functional recovery in post-MI mice. These data suggest that apelin improves BMCs therapy on cardiac repair and systolic function in post-MI mice. Upregulation of Sirt3 may contribute to the protective effect of apelin-BMCs therapy.
Collapse
|
34
|
Acosta SA, Franzese N, Staples M, Weinbren NL, Babilonia M, Patel J, Merchant N, Simancas AJ, Slakter A, Caputo M, Patel M, Franyuti G, Franzblau MH, Suarez L, Gonzales-Portillo C, Diamandis T, Shinozuka K, Tajiri N, Sanberg PR, Kaneko Y, Miller LW, Borlongan CV. Human Umbilical Cord Blood for Transplantation Therapy in Myocardial Infarction. JOURNAL OF STEM CELL RESEARCH & THERAPY 2013:S4-005. [PMID: 24307973 PMCID: PMC3845524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Cell-based therapy is a promising therapy for myocardial infarction. Endogenous repair of the heart muscle after myocardial infarction is a challenge because adult cardiomyocytes have a limited capacity to proliferate and replace damaged cells. Pre-clinical and clinical evidence has shown that cell based therapy may promote revascularization and replacement of damaged myocytes after myocardial infarction. Adult stem cells can be harvested from different sources including bone marrow, skeletal myoblast, and human umbilical cord blood cells. The use of these cells for the repair of myocardial infarction presents various advantages over other sources of stem cells. Among these are easy harvesting, unlimited differentiation capability, and robust angiogenic potential. In this review, we discuss the milestone findings and the most recent evidence demonstrating the therapeutic efficacy and safety of the transplantation of human umbilical cord blood cells as a stand-alone therapy or in combination with gene therapy, highlighting the importance of optimizing the timing, dose and delivery methods, and a better understanding of the mechanisms of action that will guide the clinical entry of this innovative treatment for ischemic disorders, specifically myocardial infarction.
Collapse
Affiliation(s)
- Sandra A Acosta
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Nick Franzese
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Meaghan Staples
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Nathan L. Weinbren
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Monica Babilonia
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Jason Patel
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Neil Merchant
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Alejandra Jacotte Simancas
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Adam Slakter
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Mathew Caputo
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Milan Patel
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Giorgio Franyuti
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Max H. Franzblau
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Lyanne Suarez
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Chiara Gonzales-Portillo
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Theo Diamandis
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Kazutaka Shinozuka
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Naoki Tajiri
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Paul R. Sanberg
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Yuji Kaneko
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Leslie W. Miller
- USF Heart Institute, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Cesar V. Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| |
Collapse
|
35
|
Liu XB, Chen H, Chen HQ, Zhu MF, Hu XY, Wang YP, Jiang Z, Xu YC, Xiang MX, Wang JA. Angiopoietin-1 preconditioning enhances survival and functional recovery of mesenchymal stem cell transplantation. J Zhejiang Univ Sci B 2012; 13:616-23. [PMID: 22843181 DOI: 10.1631/jzus.b1201004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Mesenchymal stem cell (MSC) transplantation is a promising therapy for ischemic heart diseases. However, poor cell survival after transplantation greatly limits the therapeutic efficacy of MSCs. The purpose of this study was to investigate the protective effect of angiopoietin-1 (Ang1) preconditioning on MSC survival and subsequent heart function improvement after transplantation. METHODS MSCs were cultured with or without 50 ng/ml Ang1 in complete medium for 24 h prior to experiments on cell survival and transplantation. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and Hoechst staining were applied to evaluate MSC survival after serum deprivation in vitro, while cell survival in vivo was detected by terminal deoxynucleotidyl transferase biotin-dUPT nick end labeling (TUNEL) assay 24 and 72 h after transplantation. Heart function and infarct size were measured four weeks later by small animal echocardiography and Masson's trichrome staining, respectively. RESULTS Ang1 preconditioning induced Akt phosphorylation and increased expression of Bcl-2 and the ratio of Bcl-2/Bax. In comparison with non-preconditioned MSCs, Ang1-preconditioned cell survival was significantly increased while the apoptotic rate decreased in vitro. However, the PI3K/Akt pathway inhibitor, LY294002, abrogated the protective effect of Ang1 preconditioning. After transplantation, the Ang1-preconditioned-MSC group showed a lower death rate, smaller infarct size, and better heart functional recovery compared to the non-preconditioned-MSC group. CONCLUSIONS Ang1 preconditioning enhances MSC survival, contributing to further improvement of heart function.
Collapse
Affiliation(s)
- Xian-bao Liu
- Cardiovascular Key Lab of Zhejiang Province, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Zhu S, Deng S, Ma Q, Zhang T, Jia C, Zhuo D, Yang F, Wei J, Wang L, Dykxhoorn DM, Hare JM, Goldschmidt-Clermont PJ, Dong C. MicroRNA-10A* and MicroRNA-21 modulate endothelial progenitor cell senescence via suppressing high-mobility group A2. Circ Res 2012; 112:152-64. [PMID: 23072816 DOI: 10.1161/circresaha.112.280016] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Endothelial progenitor cells (EPCs) contribute to the regeneration of endothelium. Aging-associated senescence results in reduced number and function of EPCs, potentially contributing to increased cardiac risk, reduced angiogenic capacity, and impaired cardiac repair effectiveness. The mechanisms underlying EPC senescence are unknown. Increasing evidence supports the role of microRNAs in regulating cellular senescence. OBJECTIVE We aimed to determine whether microRNAs regulated EPC senescence and, if so, what the underlying mechanisms are. METHODS AND RESULTS To map the microRNA/gene expression signatures of EPC senescence, we performed microRNA profiling and microarray analysis in lineage-negative bone marrow cells from young and aged wild-type and apolipoprotein E-deficient mice. We identified 2 microRNAs, microRNA-10A* (miR-10A*), and miR-21, and their common target gene Hmga2 as critical regulators for EPC senescence. Overexpression of miR-10A* and miR-21 in young EPCs suppressed Hmga2 expression, caused EPC senescence, as evidenced by senescence-associated β-galactosidase upregulation, decreased self-renewal potential, increased p16(Ink4a)/p19(Arf) expression, and resulted in impaired EPC angiogenesis in vitro and in vivo, resembling EPCs derived from aged mice. In contrast, suppression of miR-10A* and miR-21 in aged EPCs increased Hmga2 expression, rejuvenated EPCs, resulting in decreased senescence-associated β-galactosidase expression, increased self-renewal potential, decreased p16(Ink4a)/p19(Arf) expression, and improved EPC angiogenesis in vitro and in vivo. Importantly, these phenotypic changes were rescued by miRNA-resistant Hmga2 cDNA overexpression. CONCLUSIONS miR-10A* and miR-21 regulate EPC senescence via suppressing Hmga2 expression and modulation of microRNAs may represent a potential therapeutic intervention in improving EPC-mediated angiogenesis and vascular repair.
Collapse
Affiliation(s)
- Shoukang Zhu
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Hiesinger W, Goldstone AB, Woo YJ. Re-engineered stromal cell-derived factor-1α and the future of translatable angiogenic polypeptide design. Trends Cardiovasc Med 2012; 22:139-44. [PMID: 22902182 DOI: 10.1016/j.tcm.2012.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 07/12/2012] [Accepted: 07/12/2012] [Indexed: 10/28/2022]
Abstract
Smaller engineered analogs of angiogenic cytokines may provide translational advantages, including enhanced stability and function, ease of synthesis, lower cost, and, most important, the potential for modulated delivery via engineered biomaterials. In order to create such a peptide, computational molecular modeling and design was employed to engineer a minimized, highly efficient polypeptide analog of the stromal cell-derived factor-1α (SDF) molecule. After removal of the large, central β-sheet region, a designed diproline linker connected the native N-terminus (responsible for receptor activation and binding) and C-terminus (responsible for extracellular stabilization). This yielded energetic and conformational advantages resulting in a small, low-molecular-weight engineered SDF polypeptide analog (ESA) that was shown to have angiogenic activity comparable to or better than that of recombinant human SDF both in vitro and in a murine model of ischemic heart failure.
Collapse
Affiliation(s)
- William Hiesinger
- Division of Cardiovascular Surgery, Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
38
|
Li L, Zeng H, Chen JX. Apelin-13 increases myocardial progenitor cells and improves repair postmyocardial infarction. Am J Physiol Heart Circ Physiol 2012; 303:H605-18. [PMID: 22752632 DOI: 10.1152/ajpheart.00366.2012] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Apelin is an endogenous ligand for the angiotensin-like 1 receptor (APJ) and has beneficial effects against myocardial ischemia-reperfusion injury. Little is known about the role of apelin in the homing of vascular progenitor cells (PCs) and cardiac functional recovery postmyocardial infarction (post-MI). The present study investigated whether apelin affects PC homing to the infarcted myocardium, thereby mediating repair and functional recovery post-MI. Mice were infarcted by coronary artery ligation, and apelin-13 (1 mg·kg(-1)·day(-1)) was injected for 3 days before MI and for 14 days post-MI. Homing of vascular PCs [CD133(+)/c-Kit(+)/Sca1(+), CD133(+)/stromal cell-derived factor (SDF)-1α(+), and CD133(+)/CXC chemokine receptor (CXCR)-4(+)] into the ischemic area was examined. Myocardial Akt, endothelial nitric oxide synthase (eNOS), VEGF, jagged1, notch3, SDF-1α, and CXCR-4 expression were assessed at 24 h and 14 days post-MI. Functional analyses were performed on day 14 post-MI. Mice that received apelin-13 treatment demonstrated upregulation of SDF-1α/CXCR-4 expression and dramatically increased the number of CD133(+)/c-Kit(+)/Sca1(+), CD133(+)/SDF-1α(+), and c-Kit(+)/CXCR-4(+) cells in infarcted hearts. Apelin-13 also significantly increased Akt and eNOS phosphorylation and upregulated VEGF, jagged1, and notch3 expression in ischemic hearts. This was accompanied by a significant reduction of myocardial apoptosis. Furthermore, treatment with apelin-13 promoted myocardial angiogenesis and attenuated cardiac fibrosis and hypertrophy together with a significant improvement of cardiac function at 14 days post-MI. Apelin-13 increases angiogenesis and improves cardiac repair post-MI by a mechanism involving the upregulation of SDF-1α/CXCR-4 and homing of vascular PCs.
Collapse
Affiliation(s)
- Lanfang Li
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA
| | | | | |
Collapse
|
39
|
Kaneda Y. Tissue regeneration by recruitment of stem cells to injured tissues. ACTA ACUST UNITED AC 2012. [DOI: 10.2745/dds.27.246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|