1
|
Zeng DD, Cai YR, Zhang S, Yan F, Jiang T, Li J. Machine learning methods for predicting human-adaptive influenza A virus reassortment based on intersegment constraint. Front Microbiol 2025; 16:1546536. [PMID: 40190733 PMCID: PMC11970406 DOI: 10.3389/fmicb.2025.1546536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/20/2025] [Indexed: 04/09/2025] Open
Abstract
Introduction It is not clear about mechanisms underlining the inter-segment reassortment of Influenza A viruses (IAVs).We analyzed the viral nucleotide composition (NC) in coding sequences,examined the intersegment NC correlation, and predicted the IAV reassortment using machine learning (ML) approaches based on viral NC features. Methods Unsupervised ML methods were used to examine the NC difference between human-adapted and zoonotic IAVs. Supervised ML models of random forest classifier (rfc) and multiple-layer preceptor (mlp) were developed to predict the human adaption to IAVs. Results Our results demonstrated that the frequencies of thymine, cytosine, adenine,and guanine (t, c, a, and g), as well as the content of gc/at were consistently high or low for the segments of PB2, PB1, PA, NP, M1, and NS1 (ribonucleoprotein plus [RNPplus]), between mammalian and avian IAVs or between influenza B viruses (IBVs) and IAVs.RNPplus NC negatively correlated with the NC for HA, NA, and M1 (envelope protein plus [EPplus]). The human-adapted NC accurately discriminated between human IAVs and avian IAVs. A total of 221,184 simulated IAVs with pd09H1N1 EPplus and with RNPplus from other IAV subtypes indicated a high adaption of the RNPplus, from H6N6, H13N2, and H13N8 and other IAVs. Discussion In summary, there is a distinct human adaption-specific genomic NC between human IAVs and avian IAVs. The intersegment NC correlation constrains segment reassortment. This study presents a novel strategy for predicting IAV reassortment based on viral genetic compatibility.
Collapse
Affiliation(s)
- Dan-Dan Zeng
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Yu-Rong Cai
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Sen Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Fang Yan
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Tao Jiang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Jing Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Rigby CV, Sabsay KR, Bisht K, Eggink D, Jalal H, te Velthuis AJW. Evolution of transient RNA structure-RNA polymerase interactions in respiratory RNA virus genomes. Virus Evol 2023; 9:vead056. [PMID: 37692892 PMCID: PMC10492445 DOI: 10.1093/ve/vead056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/02/2023] [Accepted: 08/24/2023] [Indexed: 09/12/2023] Open
Abstract
RNA viruses are important human pathogens that cause seasonal epidemics and occasional pandemics. Examples are influenza A viruses (IAV) and coronaviruses (CoV). When emerging IAV and CoV spill over to humans, they adapt to evade immune responses and optimize their replication and spread in human cells. In IAV, adaptation occurs in all viral proteins, including the viral ribonucleoprotein (RNP) complex. RNPs consist of a copy of the viral RNA polymerase, a double-helical coil of nucleoprotein, and one of the eight segments of the IAV RNA genome. The RNA segments and their transcripts are partially structured to coordinate the packaging of the viral genome and modulate viral mRNA translation. In addition, RNA structures can affect the efficiency of viral RNA synthesis and the activation of host innate immune response. Here, we investigated if RNA structures that modulate IAV replication processivity, so-called template loops (t-loops), vary during the adaptation of pandemic and emerging IAV to humans. Using cell culture-based replication assays and in silico sequence analyses, we find that the sensitivity of the IAV H3N2 RNA polymerase to t-loops increased between isolates from 1968 and 2017, whereas the total free energy of t-loops in the IAV H3N2 genome was reduced. This reduction is particularly prominent in the PB1 gene. In H1N1 IAV, we find two separate reductions in t-loop free energy, one following the 1918 pandemic and one following the 2009 pandemic. No destabilization of t-loops is observed in the influenza B virus genome, whereas analysis of SARS-CoV-2 isolates reveals destabilization of viral RNA structures. Overall, we propose that a loss of free energy in the RNA genome of emerging respiratory RNA viruses may contribute to the adaption of these viruses to the human population.
Collapse
Affiliation(s)
- Charlotte V Rigby
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
- Department of Pathology, Addenbrooke’s Hospital, University of Cambridge, Hills Road, Cambridge CB2 2QQ, UK
- Addenbrooke’s Hospital, Public Health England, Hills Road, Cambridge CB2 2QQ, UK
| | - Kimberly R Sabsay
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
- Carl Icahn Laboratory, Lewis-Sigler Institute, Princeton University, South Drive, Princeton, NJ 08544, USA
| | - Karishma Bisht
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Dirk Eggink
- Department of Medical Microbiology, Amsterdam UMC, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands
| | - Hamid Jalal
- Addenbrooke’s Hospital, Public Health England, Hills Road, Cambridge CB2 2QQ, UK
| | - Aartjan J W te Velthuis
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
- Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, Bilthoven 3721 MA, the Netherlands
| |
Collapse
|
3
|
Rigby C, Sabsay K, Bisht K, Eggink D, Jalal H, te Velthuis AJ. Evolution of transient RNA structure-RNA polymerase interactions in respiratory RNA virus genomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.25.542331. [PMID: 37292879 PMCID: PMC10245964 DOI: 10.1101/2023.05.25.542331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
RNA viruses are important human pathogens that cause seasonal epidemics and occasional pandemics. Examples are influenza A viruses (IAV) and coronaviruses (CoV). When emerging IAV and CoV spill over to humans, they adapt to evade immune responses and optimize their replication and spread in human cells. In IAV, adaptation occurs in all viral proteins, including the viral ribonucleoprotein (RNP) complex. RNPs consists of a copy of the viral RNA polymerase, a double-helical coil of nucleoprotein, and one of the eight segments of the IAV RNA genome. The RNA segments and their transcripts are partially structured to coordinate the packaging of the viral genome and modulate viral mRNA translation. In addition, RNA structures can affect the efficiency of viral RNA synthesis and the activation of host innate immune response. Here, we investigated if RNA structures that modulate IAV replication processivity, so called template loops (t-loops), vary during the adaptation of pandemic and emerging IAV to humans. Using cell culture-based replication assays and in silico sequence analyses, we find that the sensitivity of the IAV H3N2 RNA polymerase to t-loops increased between isolates from 1968 and 2017, whereas the total free energy of t-loops in the IAV H3N2 genome was reduced. This reduction is particularly prominent in the PB1 gene. In H1N1 IAV, we find two separate reductions in t-loop free energy, one following the 1918 pandemic and one following the 2009 pandemic. No destabilization of t-loops is observed in the IBV genome, whereas analysis of SARS-CoV-2 isolates reveals destabilization of viral RNA structures. Overall, we propose that a loss of free energy in the RNA genome of emerging respiratory RNA viruses may contribute to the adaption of these viruses to the human population.
Collapse
Affiliation(s)
- Charlotte Rigby
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, 08544 New Jersey, United States
- University of Cambridge, Department of Pathology, Addenbrooke’s Hospital, Cambridge CB2 2QQ, United Kingdom
- Public Health England, Addenbrooke’s Hospital, Cambridge CB2 2QQ, United Kingdom
| | - Kimberly Sabsay
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, 08544 New Jersey, United States
- Sigler Institute, Princeton University, Princeton, NJ 08544, United States
| | - Karishma Bisht
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, 08544 New Jersey, United States
| | - Dirk Eggink
- Department of Medical Microbiology, Amsterdam UMC, Amsterdam, The Netherlands
- Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Hamid Jalal
- Public Health England, Addenbrooke’s Hospital, Cambridge CB2 2QQ, United Kingdom
| | - Aartjan J.W. te Velthuis
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, 08544 New Jersey, United States
| |
Collapse
|
4
|
Programmable antivirals targeting critical conserved viral RNA secondary structures from influenza A virus and SARS-CoV-2. Nat Med 2022; 28:1944-1955. [PMID: 35982307 PMCID: PMC10132811 DOI: 10.1038/s41591-022-01908-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/20/2022] [Indexed: 12/18/2022]
Abstract
Influenza A virus's (IAV's) frequent genetic changes challenge vaccine strategies and engender resistance to current drugs. We sought to identify conserved and essential RNA secondary structures within IAV's genome that are predicted to have greater constraints on mutation in response to therapeutic targeting. We identified and genetically validated an RNA structure (packaging stem-loop 2 (PSL2)) that mediates in vitro packaging and in vivo disease and is conserved across all known IAV isolates. A PSL2-targeting locked nucleic acid (LNA), administered 3 d after, or 14 d before, a lethal IAV inoculum provided 100% survival in mice, led to the development of strong immunity to rechallenge with a tenfold lethal inoculum, evaded attempts to select for resistance and retained full potency against neuraminidase inhibitor-resistant virus. Use of an analogous approach to target SARS-CoV-2, prophylactic administration of LNAs specific for highly conserved RNA structures in the viral genome, protected hamsters from efficient transmission of the SARS-CoV-2 USA_WA1/2020 variant. These findings highlight the potential applicability of this approach to any virus of interest via a process we term 'programmable antivirals', with implications for antiviral prophylaxis and post-exposure therapy.
Collapse
|
5
|
Peterson JM, O'Leary CA, Moss WN. In silico analysis of local RNA secondary structure in influenza virus A, B and C finds evidence of widespread ordered stability but little evidence of significant covariation. Sci Rep 2022; 12:310. [PMID: 35013354 PMCID: PMC8748542 DOI: 10.1038/s41598-021-03767-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022] Open
Abstract
Influenza virus is a persistent threat to human health; indeed, the deadliest modern pandemic was in 1918 when an H1N1 virus killed an estimated 50 million people globally. The intent of this work is to better understand influenza from an RNA-centric perspective to provide local, structural motifs with likely significance to the influenza infectious cycle for therapeutic targeting. To accomplish this, we analyzed over four hundred thousand RNA sequences spanning three major clades: influenza A, B and C. We scanned influenza segments for local secondary structure, identified/modeled motifs of likely functionality, and coupled the results to an analysis of evolutionary conservation. We discovered 185 significant regions of predicted ordered stability, yet evidence of sequence covariation was limited to 7 motifs, where 3-found in influenza C-had higher than expected amounts of sequence covariation.
Collapse
Affiliation(s)
- Jake M Peterson
- Roy J. Carver Department of Biophysics, Biochemistry and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Collin A O'Leary
- Roy J. Carver Department of Biophysics, Biochemistry and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Walter N Moss
- Roy J. Carver Department of Biophysics, Biochemistry and Molecular Biology, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
6
|
Szabat M, Lorent D, Czapik T, Tomaszewska M, Kierzek E, Kierzek R. RNA Secondary Structure as a First Step for Rational Design of the Oligonucleotides towards Inhibition of Influenza A Virus Replication. Pathogens 2020; 9:pathogens9110925. [PMID: 33171815 PMCID: PMC7694947 DOI: 10.3390/pathogens9110925] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
Influenza is an important research subject around the world because of its threat to humanity. Influenza A virus (IAV) causes seasonal epidemics and sporadic, but dangerous pandemics. A rapid antigen changes and recombination of the viral RNA genome contribute to the reduced effectiveness of vaccination and anti-influenza drugs. Hence, there is a necessity to develop new antiviral drugs and strategies to limit the influenza spread. IAV is a single-stranded negative sense RNA virus with a genome (viral RNA—vRNA) consisting of eight segments. Segments within influenza virion are assembled into viral ribonucleoprotein (vRNP) complexes that are independent transcription-replication units. Each step in the influenza life cycle is regulated by the RNA and is dependent on its interplay and dynamics. Therefore, viral RNA can be a proper target to design novel therapeutics. Here, we briefly described examples of anti-influenza strategies based on the antisense oligonucleotide (ASO), small interfering RNA (siRNA), microRNA (miRNA) and catalytic nucleic acids. In particular we focused on the vRNA structure-function relationship as well as presented the advantages of using secondary structure information in predicting therapeutic targets and the potential future of this field.
Collapse
|
7
|
Attenuation Methods for Live Vaccines. Methods Mol Biol 2020. [PMID: 32959252 DOI: 10.1007/978-1-0716-0795-4_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Vaccination was developed by Edward Jenner in 1796. Since then, vaccination and vaccine development research has been a hotspot of research in the scientific community. Various ways of vaccine development are successfully employed in mass production of vaccines. One of the most successful ways to generate vaccines is the method of virulence attenuation in pathogens. The attenuated strains of viruses, bacteria, and parasites are used as vaccines which elicit robust immune response and confers protection against virulent pathogens. This chapter brings together the most common and efficient ways of generating live attenuated vaccine strains in viruses, bacteria, and parasites.
Collapse
|
8
|
Andrews RJ, Moss WN. Computational approaches for the discovery of splicing regulatory RNA structures. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194380. [PMID: 31048028 DOI: 10.1016/j.bbagrm.2019.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 12/14/2022]
Abstract
Global RNA structure and local functional motifs mediate interactions important in determining the rates and patterns of mRNA splicing. In this review, we overview approaches for the computational prediction of RNA secondary structure with a special emphasis on the discovery of motifs important to RNA splicing. The process of identifying and modeling potential splicing regulatory structures is illustrated using a recently-developed approach for RNA structural motif discovery, the ScanFold pipeline, which is applied to the identification of a known splicing regulatory structure in influenza virus.
Collapse
Affiliation(s)
- Ryan J Andrews
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Walter N Moss
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA.
| |
Collapse
|
9
|
Ferhadian D, Contrant M, Printz-Schweigert A, Smyth RP, Paillart JC, Marquet R. Structural and Functional Motifs in Influenza Virus RNAs. Front Microbiol 2018; 9:559. [PMID: 29651275 PMCID: PMC5884886 DOI: 10.3389/fmicb.2018.00559] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/12/2018] [Indexed: 12/22/2022] Open
Abstract
Influenza A viruses (IAV) are responsible for recurrent influenza epidemics and occasional devastating pandemics in humans and animals. They belong to the Orthomyxoviridae family and their genome consists of eight (-) sense viral RNA (vRNA) segments of different lengths coding for at least 11 viral proteins. A heterotrimeric polymerase complex is bound to the promoter consisting of the 13 5′-terminal and 12 3′-terminal nucleotides of each vRNA, while internal parts of the vRNAs are associated with multiple copies of the viral nucleoprotein (NP), thus forming ribonucleoproteins (vRNP). Transcription and replication of vRNAs result in viral mRNAs (vmRNAs) and complementary RNAs (cRNAs), respectively. Complementary RNAs are the exact positive copies of vRNAs; they also form ribonucleoproteins (cRNPs) and are intermediate templates in the vRNA amplification process. On the contrary, vmRNAs have a 5′ cap snatched from cellular mRNAs and a 3′ polyA tail, both gained by the viral polymerase complex. Hence, unlike vRNAs and cRNAs, vmRNAs do not have a terminal promoter able to recruit the viral polymerase. Furthermore, synthesis of at least two viral proteins requires vmRNA splicing. Except for extensive analysis of the viral promoter structure and function and a few, mostly bioinformatics, studies addressing the vRNA and vmRNA structure, structural studies of the influenza A vRNAs, cRNAs, and vmRNAs are still in their infancy. The recent crystal structures of the influenza polymerase heterotrimeric complex drastically improved our understanding of the replication and transcription processes. The vRNA structure has been mainly studied in vitro using RNA probing, but its structure has been very recently studied within native vRNPs using crosslinking and RNA probing coupled to next generation RNA sequencing. Concerning vmRNAs, most studies focused on the segment M and NS splice sites and several structures initially predicted by bioinformatics analysis have now been validated experimentally and their role in the viral life cycle demonstrated. This review aims to compile the structural motifs found in the different RNA classes (vRNA, cRNA, and vmRNA) of influenza viruses and their function in the viral replication cycle.
Collapse
Affiliation(s)
- Damien Ferhadian
- CNRS - UPR 9002, Architecture et Réactivité de l'ARN, IBMC, Université de Strasbourg, Strasbourg, France
| | - Maud Contrant
- CNRS - UPR 9002, Architecture et Réactivité de l'ARN, IBMC, Université de Strasbourg, Strasbourg, France
| | - Anne Printz-Schweigert
- CNRS - UPR 9002, Architecture et Réactivité de l'ARN, IBMC, Université de Strasbourg, Strasbourg, France
| | - Redmond P Smyth
- CNRS - UPR 9002, Architecture et Réactivité de l'ARN, IBMC, Université de Strasbourg, Strasbourg, France
| | - Jean-Christophe Paillart
- CNRS - UPR 9002, Architecture et Réactivité de l'ARN, IBMC, Université de Strasbourg, Strasbourg, France
| | - Roland Marquet
- CNRS - UPR 9002, Architecture et Réactivité de l'ARN, IBMC, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
10
|
Soszynska-Jozwiak M, Michalak P, Moss WN, Kierzek R, Kesy J, Kierzek E. Influenza virus segment 5 (+)RNA - secondary structure and new targets for antiviral strategies. Sci Rep 2017; 7:15041. [PMID: 29118447 PMCID: PMC5678188 DOI: 10.1038/s41598-017-15317-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/24/2017] [Indexed: 01/05/2023] Open
Abstract
Influenza A virus is a threat for humans due to seasonal epidemics and occasional pandemics. This virus can generate new strains that are dangerous through nucleotide/amino acid changes or through segmental recombination of the viral RNA genome. It is important to gain wider knowledge about influenza virus RNA to create new strategies for drugs that will inhibit its spread. Here, we present the experimentally determined secondary structure of the influenza segment 5 (+)RNA. Two RNAs were studied: the full-length segment 5 (+)RNA and a shorter construct containing only the coding region. Chemical mapping data combined with thermodynamic energy minimization were used in secondary structure prediction. Sequence/structure analysis showed that the determined secondary structure of segment 5 (+)RNA is mostly conserved between influenza virus type A strains. Microarray mapping and RNase H cleavage identified accessible sites for oligonucleotides in the revealed secondary structure of segment 5 (+)RNA. Antisense oligonucleotides were designed based on the secondary structure model and tested against influenza virus in cell culture. Inhibition of influenza virus proliferation was noticed, identifying good targets for antisense strategies. Effective target sites fall within two domains, which are conserved in sequence/structure indicating their importance to the virus.
Collapse
Affiliation(s)
- Marta Soszynska-Jozwiak
- Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704, Poznan, Noskowskiego 12/14, Poland
| | - Paula Michalak
- Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704, Poznan, Noskowskiego 12/14, Poland
| | - Walter N Moss
- Roy J. Carver Department of Biophysics, Biochemistry and Molecular Biology, Iowa State University, Ames, IA, 50011, United States of America
| | - Ryszard Kierzek
- Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704, Poznan, Noskowskiego 12/14, Poland
| | - Julita Kesy
- Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704, Poznan, Noskowskiego 12/14, Poland
| | - Elzbieta Kierzek
- Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704, Poznan, Noskowskiego 12/14, Poland.
| |
Collapse
|
11
|
Subtype-specific structural constraints in the evolution of influenza A virus hemagglutinin genes. Sci Rep 2016; 6:38892. [PMID: 27966593 PMCID: PMC5155281 DOI: 10.1038/srep38892] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/14/2016] [Indexed: 11/08/2022] Open
Abstract
The influenza A virus genome consists of eight RNA segments. RNA structures within these segments and complementary (cRNA) and protein-coding mRNAs may play a role in virus replication. Here, conserved putative secondary structures that impose significant evolutionary constraints on the gene segment encoding the surface glycoprotein hemagglutinin (HA) were investigated using available sequence data on tens of thousands of virus strains. Structural constraints were identified by analysis of covariations of nucleotides suggested to be paired by structure prediction algorithms. The significance of covariations was estimated by mutual information calculations and tracing multiple covariation events during virus evolution. Covariation patterns demonstrated that structured domains in HA RNAs were mostly subtype-specific, whereas some structures were conserved in several subtypes. The influence of RNA folding on virus replication was studied by plaque assays of mutant viruses with disrupted structures. The results suggest that over the whole length of the HA segment there are local structured domains which contribute to the virus fitness but individually are not essential for the virus. Existence of subtype-specific structured regions in the segments of the influenza A virus genome is apparently an important factor in virus evolution and reassortment of its genes.
Collapse
|
12
|
Secondary structure model of the naked segment 7 influenza A virus genomic RNA. Biochem J 2016; 473:4327-4348. [PMID: 27694388 DOI: 10.1042/bcj20160651] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/25/2016] [Accepted: 09/30/2016] [Indexed: 11/17/2022]
Abstract
The influenza A virus (IAV) genome comprises eight negative-sense viral (v)RNA segments. The seventh segment of the genome encodes two essential viral proteins and is specifically packaged alongside the other seven vRNAs. To gain insights into the possible roles of RNA structure both within and without virions, a secondary structure model of a naked (protein-free) segment 7 vRNA (vRNA7) has been determined using chemical mapping and thermodynamic energy minimization. The proposed structure model was validated using microarray mapping, RNase H cleavage and comparative sequence analysis. Additionally, the detailed structures of three vRNA7 fragment constructs - comprising independently folded subdomains - were determined. Much of the proposed vRNA7 structure is preserved between IAV strains, suggesting their importance in the influenza replication cycle. Possible structure rearrangements, which allow or preclude long-range RNA interactions, are also proposed.
Collapse
|
13
|
Kobayashi Y, Dadonaite B, van Doremalen N, Suzuki Y, Barclay WS, Pybus OG. Computational and molecular analysis of conserved influenza A virus RNA secondary structures involved in infectious virion production. RNA Biol 2016; 13:883-94. [PMID: 27399914 DOI: 10.1080/15476286.2016.1208331] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
As well as encoding viral proteins, genomes of RNA viruses harbor secondary and tertiary RNA structures that have been associated with functions essential for successful replication and propagation. Here, we identified stem-loop structures that are extremely conserved among 1,884 M segment sequences of influenza A virus (IAV) strains from various subtypes and host species using computational and evolutionary methods. These structures were predicted within the 3' and 5' ends of the coding regions of M1 and M2, respectively, where packaging signals have been previously proposed to exist. These signals are thought to be required for the incorporation of a single copy of 8 different negative-strand RNA segments (vRNAs) into an IAV particle. To directly test the functionality of conserved stem-loop structures, we undertook reverse genetic experiments to introduce synonymous mutations designed to disrupt secondary structures predicted at 3 locations and found them to attenuate infectivity of recombinant virus. In one mutant, predicted to disrupt stem loop structure at nucleotide positions 219-240, attenuation was more evident at increased temperature and was accompanied by an increase in the production of defective virus particles. Our results suggest that the conserved secondary structures predicted in the M segment are involved in the production of infectious viral particles during IAV replication.
Collapse
Affiliation(s)
- Yuki Kobayashi
- a Nihon University Veterinary Research Center , Fujisawa , Kanagawa , Japan.,b Department of Zoology , University of Oxford , Oxford , UK
| | - Bernadeta Dadonaite
- c Section of Virology, Department of Medicine, Imperial College London , London , UK
| | - Neeltje van Doremalen
- c Section of Virology, Department of Medicine, Imperial College London , London , UK.,d Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Hamilton , MT , USA
| | - Yoshiyuki Suzuki
- e Graduate School of Natural Sciences, Nagoya City University , Nagoya , Japan
| | - Wendy S Barclay
- c Section of Virology, Department of Medicine, Imperial College London , London , UK
| | - Oliver G Pybus
- b Department of Zoology , University of Oxford , Oxford , UK
| |
Collapse
|
14
|
To KKW, Mok KY, Chan ASF, Cheung NN, Wang P, Lui YM, Chan JFW, Chen H, Chan KH, Kao RYT, Yuen KY. Mycophenolic acid, an immunomodulator, has potent and broad-spectrum in vitro antiviral activity against pandemic, seasonal and avian influenza viruses affecting humans. J Gen Virol 2016; 97:1807-1817. [PMID: 27259985 DOI: 10.1099/jgv.0.000512] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Immunomodulators have been shown to improve the outcome of severe pneumonia. We have previously shown that mycophenolic acid (MPA), an immunomodulator, has antiviral activity against influenza A/WSN/1933(H1N1) using a high-throughput chemical screening assay. This study further investigated the antiviral activity and mechanism of action of MPA against contemporary clinical isolates of influenza A and B viruses. The 50 % cellular cytotoxicity (CC50) of MPA in Madin Darby canine kidney cell line was over 50 µM. MPA prevented influenza virus-induced cell death in the cell-protection assay, with significantly lower IC50 for influenza B virus B/411 than that of influenza A(H1N1)pdm09 virus H1/415 (0.208 vs 1.510 µM, P=0.0001). For H1/415, MPA interfered with the early stage of viral replication before protein synthesis. For B/411, MPA may also act at a later stage since MPA was active against B/411 even when added 12 h post-infection. Virus-yield reduction assay showed that the replication of B/411 was completely inhibited by MPA at concentrations ≥0.78 µM, while there was a dose-dependent reduction of viral titer for H1/415. The antiviral effect of MPA was completely reverted by guanosine supplementation. Plaque reduction assay showed that MPA had antiviral activity against eight different clinical isolates of A(H1N1), A(H3N2), A(H7N9) and influenza B viruses (IC50 <1 µM). In summary, MPA has broad-spectrum antiviral activity against human and avian-origin influenza viruses, in addition to its immunomodulatory activity. Together with a high chemotherapeutic index, the use of MPA as an antiviral agent should be further investigated in vivo.
Collapse
Affiliation(s)
- Kelvin K W To
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China.,State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China.,Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China
| | - Ka-Yi Mok
- Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China
| | - Andy S F Chan
- Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China
| | - Nam N Cheung
- Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China
| | - Pui Wang
- Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China
| | - Yin-Ming Lui
- Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China
| | - Jasper F W Chan
- State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China.,Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China
| | - Honglin Chen
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, 310003 Hangzhou, P. R. China.,Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China.,State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China
| | - Kwok-Hung Chan
- State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China.,Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China
| | - Richard Y T Kao
- Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China.,State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China
| | - Kwok-Yung Yuen
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China.,State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, 310003 Hangzhou, P. R. China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China.,Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China
| |
Collapse
|
15
|
Vasin AV, Petrova AV, Egorov VV, Plotnikova MA, Klotchenko SA, Karpenko MN, Kiselev OI. The influenza A virus NS genome segment displays lineage-specific patterns in predicted RNA secondary structure. BMC Res Notes 2016; 9:279. [PMID: 27206548 PMCID: PMC4875733 DOI: 10.1186/s13104-016-2083-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 05/10/2016] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Influenza A virus (IAV) is a segmented negative-sense RNA virus that causes seasonal epidemics and periodic pandemics in humans. Two regions (nucleotide positions 82-148 and 497-564) in the positive-sense RNA of the NS segment fold into a multi-branch loop or hairpin structures. RESULTS We studied 25,384 NS segment positive-sense RNA unique sequences of human and non-human IAVs in order to predict secondary RNA structures of the 82-148 and 497-564 regions using RNAfold software, and determined their host- and lineage-specific distributions. Hairpins prevailed in avian and avian-origin human IAVs, including H1N1pdm1918 and H5N1. In human and swine IAV hairpins distribution varied between evolutionary lineages. CONCLUSIONS These results suggest a possible functional role for these RNA secondary structures and the need for experimental evaluation of these structures in the influenza life cycle.
Collapse
Affiliation(s)
- A V Vasin
- Research Institute of Influenza, 197376, St-Petersburg, Russia. .,Peter the Great St-Petersburg Polytechnic University, 195251, St-Petersburg, Russia.
| | - A V Petrova
- Research Institute of Influenza, 197376, St-Petersburg, Russia.,Peter the Great St-Petersburg Polytechnic University, 195251, St-Petersburg, Russia
| | - V V Egorov
- Research Institute of Influenza, 197376, St-Petersburg, Russia
| | - M A Plotnikova
- Research Institute of Influenza, 197376, St-Petersburg, Russia
| | - S A Klotchenko
- Research Institute of Influenza, 197376, St-Petersburg, Russia
| | - M N Karpenko
- Peter the Great St-Petersburg Polytechnic University, 195251, St-Petersburg, Russia
| | - O I Kiselev
- Research Institute of Influenza, 197376, St-Petersburg, Russia
| |
Collapse
|
16
|
Gaunt E, Wise HM, Zhang H, Lee LN, Atkinson NJ, Nicol MQ, Highton AJ, Klenerman P, Beard PM, Dutia BM, Digard P, Simmonds P. Elevation of CpG frequencies in influenza A genome attenuates pathogenicity but enhances host response to infection. eLife 2016; 5:e12735. [PMID: 26878752 PMCID: PMC4798949 DOI: 10.7554/elife.12735] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 02/15/2016] [Indexed: 01/09/2023] Open
Abstract
Previously, we demonstrated that frequencies of CpG and UpA dinucleotides profoundly influence the replication ability of echovirus 7 (Tulloch et al., 2014). Here, we show that that influenza A virus (IAV) with maximised frequencies of these dinucleotides in segment 5 showed comparable attenuation in cell culture compared to unmodified virus and a permuted control (CDLR). Attenuation was also manifested in vivo, with 10-100 fold reduced viral loads in lungs of mice infected with 200PFU of CpG-high and UpA-high mutants. However, both induced powerful inflammatory cytokine and adaptive (T cell and neutralising antibody) responses disproportionate to their replication. CpG-high infected mice also showed markedly reduced clinical severity, minimal weight loss and reduced immmunopathology in lung, yet sterilising immunity to lethal dose WT challenge was achieved after low dose (20PFU) pre-immunisation with this mutant. Increasing CpG dinucleotide frequencies represents a generic and potentially highly effective method for generating safe, highly immunoreactive vaccines.
Collapse
Affiliation(s)
- Eleanor Gaunt
- Infection and Immunity Division, Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Helen M Wise
- Infection and Immunity Division, Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Huayu Zhang
- Infection and Immunity Division, Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Lian N Lee
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicky J Atkinson
- Infection and Immunity Division, Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Marlynne Quigg Nicol
- Infection and Immunity Division, Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew J Highton
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Paul Klenerman
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Philippa M Beard
- Infection and Immunity Division, Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Bernadette M Dutia
- Infection and Immunity Division, Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Paul Digard
- Infection and Immunity Division, Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter Simmonds
- Infection and Immunity Division, Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
17
|
Lenartowicz E, Kesy J, Ruszkowska A, Soszynska-Jozwiak M, Michalak P, Moss WN, Turner DH, Kierzek R, Kierzek E. Self-Folding of Naked Segment 8 Genomic RNA of Influenza A Virus. PLoS One 2016; 11:e0148281. [PMID: 26848969 PMCID: PMC4743857 DOI: 10.1371/journal.pone.0148281] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 01/15/2016] [Indexed: 01/10/2023] Open
Abstract
Influenza A is a negative sense RNA virus that kills hundreds of thousands of humans each year. Base pairing in RNA is very favorable, but possibilities for RNA secondary structure of the influenza genomic RNA have not been investigated. This work presents the first experimentally-derived exploration of potential secondary structure in an influenza A naked (protein-free) genomic segment. Favorable folding regions are revealed by in vitro chemical structure mapping, thermodynamics, bioinformatics, and binding to isoenergetic microarrays of an entire natural sequence of the 875 nt segment 8 vRNA and of a smaller fragment. Segment 8 has thermodynamically stable and evolutionarily conserved RNA structure and encodes essential viral proteins NEP and NS1. This suggests that vRNA self-folding may generate helixes and loops that are important at one or more stages of the influenza life cycle.
Collapse
Affiliation(s)
- Elzbieta Lenartowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61–704 Poznan, Poland
| | - Julita Kesy
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61–704 Poznan, Poland
| | - Agnieszka Ruszkowska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61–704 Poznan, Poland
| | - Marta Soszynska-Jozwiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61–704 Poznan, Poland
| | - Paula Michalak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61–704 Poznan, Poland
| | - Walter N. Moss
- Department of Chemistry, University of Rochester, Rochester, New York, 14627, United States of America
| | - Douglas H. Turner
- Department of Chemistry, University of Rochester, Rochester, New York, 14627, United States of America
| | - Ryszard Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61–704 Poznan, Poland
| | - Elzbieta Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61–704 Poznan, Poland
- * E-mail:
| |
Collapse
|
18
|
A Conserved Secondary Structural Element in the Coding Region of the Influenza A Virus Nucleoprotein (NP) mRNA Is Important for the Regulation of Viral Proliferation. PLoS One 2015; 10:e0141132. [PMID: 26488402 PMCID: PMC4619443 DOI: 10.1371/journal.pone.0141132] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/05/2015] [Indexed: 11/22/2022] Open
Abstract
Influenza A virus is a threat to humans due to seasonal epidemics and infrequent, but dangerous, pandemics that lead to widespread infection and death. Eight segments of RNA constitute the genome of this virus and they encode greater than eight proteins via alternative splicing of coding (+)RNAs generated from the genomic (-)RNA template strand. RNA is essential in its life cycle. A bioinformatics analysis of segment 5, which encodes nucleoprotein, revealed a conserved structural motif in the (+)RNA. The secondary structure proposed by energy minimization and comparative analysis agrees with structure predicted based on experimental data using a 121 nucleotide in vitro RNA construct comprising an influenza A virus consensus sequence and also an entire segment 5 (+)RNA (strain A/VietNam/1203/2004 (H5N1)). The conserved motif consists of three hairpins with one being especially thermodynamically stable. The biological importance of this conserved secondary structure is supported in experiments using antisense oligonucleotides in cell line, which found that disruption of this motif led to inhibition of viral fitness. These results suggest that this conserved motif in the segment 5 (+)RNA might be a candidate for oligonucleotide-based antiviral therapy.
Collapse
|
19
|
Generation of Live Attenuated Influenza Virus by Using Codon Usage Bias. J Virol 2015; 89:10762-73. [PMID: 26269186 DOI: 10.1128/jvi.01443-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/05/2015] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED Seasonal influenza epidemics and occasional pandemics threaten public health worldwide. New alternative strategies for generating recombinant viruses with vaccine potential are needed. Interestingly, influenza viruses circulating in different hosts have been found to have distinct codon usage patterns, which may reflect host adaptation. We therefore hypothesized that it is possible to make a human seasonal influenza virus that is specifically attenuated in human cells but not in eggs by converting its codon usage so that it is similar to that observed from avian influenza viruses. This approach might help to generate human live attenuated viruses without affecting their yield in eggs. To test this hypothesis, over 300 silent mutations were introduced into the genome of a seasonal H1N1 influenza virus. The resultant mutant was significantly attenuated in mammalian cells and mice, yet it grew well in embryonated eggs. A single dose of intranasal vaccination induced potent innate, humoral, and cellular immune responses, and the mutant could protect mice against homologous and heterologous viral challenges. The attenuated mutant could also be used as a vaccine master donor strain by introducing hemagglutinin and neuraminidase genes derived from other strains. Thus, our approach is a successful strategy to generate attenuated viruses for future application as vaccines. IMPORTANCE Vaccination has been one of the best protective measures in combating influenza virus infection. Current licensed influenza vaccines and their production have various limitations. Our virus attenuation strategy makes use of the codon usage biases of human and avian influenza viruses to generate a human-derived influenza virus that is attenuated in mammalian hosts. This method, however, does not affect virus replication in eggs. This makes the resultant mutants highly compatible with existing egg-based vaccine production pipelines. The viral proteins generated from the codon bias mutants are identical to the wild-type viral proteins. In addition, our massive genome-wide mutational approach further minimizes the concern over reverse mutations. The potential use of this kind of codon bias mutant as a master donor strain to generate other live attenuated viruses is also demonstrated. These findings put forward a promising live attenuated influenza vaccine generation strategy to control influenza.
Collapse
|
20
|
Moss WN, Steitz JA. In silico discovery and modeling of non-coding RNA structure in viruses. Methods 2015; 91:48-56. [PMID: 26116541 DOI: 10.1016/j.ymeth.2015.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 06/17/2015] [Accepted: 06/22/2015] [Indexed: 11/30/2022] Open
Abstract
This review covers several computational methods for discovering structured non-coding RNAs in viruses and modeling their putative secondary structures. Here we will use examples from two target viruses to highlight these approaches: influenza A virus-a relatively small, segmented RNA virus; and Epstein-Barr virus-a relatively large DNA virus with a complex transcriptome. Each system has unique challenges to overcome and unique characteristics to exploit. From these particular cases, generically useful approaches can be derived for the study of additional viral targets.
Collapse
Affiliation(s)
- Walter N Moss
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Joan A Steitz
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA.
| |
Collapse
|
21
|
Gultyaev AP, Tsyganov-Bodounov A, Spronken MIJ, van der Kooij S, Fouchier RAM, Olsthoorn RCL. RNA structural constraints in the evolution of the influenza A virus genome NP segment. RNA Biol 2014; 11:942-52. [PMID: 25180940 DOI: 10.4161/rna.29730] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Conserved RNA secondary structures were predicted in the nucleoprotein (NP) segment of the influenza A virus genome using comparative sequence and structure analysis. A number of structural elements exhibiting nucleotide covariations were identified over the whole segment length, including protein-coding regions. Calculations of mutual information values at the paired nucleotide positions demonstrate that these structures impose considerable constraints on the virus genome evolution. Functional importance of a pseudoknot structure, predicted in the NP packaging signal region, was confirmed by plaque assays of the mutant viruses with disrupted structure and those with restored folding using compensatory substitutions. Possible functions of the conserved RNA folding patterns in the influenza A virus genome are discussed.
Collapse
Affiliation(s)
- Alexander P Gultyaev
- Department of Viroscience, Erasmus Medical Center, The Netherlands; Leiden Institute of Advanced Computer Science (LIACS), Leiden University, Niels Bohrweg 1, The Netherlands
| | - Anton Tsyganov-Bodounov
- Leiden Institute of Chemistry, Leiden University, P.O.Box 9502, 2300 RA Leiden, The Netherlands;; Current address: Illumina UK Ltd., Chesterford Research Park, Little Chesterford, Essex, UK
| | | | - Sander van der Kooij
- Department of Viroscience, Erasmus Medical Center, The Netherlands; Current address: BaseClear B.V., Einsteinweg, The Netherlands
| | - Ron A M Fouchier
- Department of Viroscience, Erasmus Medical Center, The Netherlands
| | - René C L Olsthoorn
- Leiden Institute of Chemistry, Leiden University, P.O.Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
22
|
Abstract
During their nuclear replication stage, influenza viruses hijack the host splicing machinery to process some of their RNA segments, the M and NS segments. In this review, we provide an overview of the current knowledge gathered on this interplay between influenza viruses and the cellular spliceosome, with a particular focus on influenza A viruses (IAV). These viruses have developed accurate regulation mechanisms to reassign the host spliceosome to alter host cellular expression and enable an optimal expression of specific spliced viral products throughout infection. Moreover, IAV segments undergoing splicing display high levels of similarity with human consensus splice sites and their viral transcripts show noteworthy secondary structures. Sequence alignments and consensus analyses, along with recently published studies, suggest both conservation and evolution of viral splice site sequences and structure for improved adaptation to the host. Altogether, these results emphasize the ability of IAV to be well adapted to the host's splicing machinery, and further investigations may contribute to a better understanding of splicing regulation with regard to viral replication, host range, and pathogenesis.
Collapse
|
23
|
Priore SF, Kierzek E, Kierzek R, Baman JR, Moss WN, Dela-Moss LI, Turner DH. Secondary structure of a conserved domain in the intron of influenza A NS1 mRNA. PLoS One 2013; 8:e70615. [PMID: 24023714 PMCID: PMC3759394 DOI: 10.1371/journal.pone.0070615] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 06/22/2013] [Indexed: 12/04/2022] Open
Abstract
Influenza A virus is a segmented single-stranded (−)RNA virus that causes substantial annual morbidity and mortality. The transcriptome of influenza A is predicted to have extensive RNA secondary structure. The smallest genome segment, segment 8, encodes two proteins, NS1 and NEP, via alternative splicing. A conserved RNA domain in the intron of segment 8 may be important for regulating production of NS1. Two different multi-branch loop structures have been proposed for this region. A combination of in vitro chemical mapping and isoenergetic microarray techniques demonstrate that the consensus sequence for this region folds into a hairpin conformation. These results provide an alternative folding for this region and a foundation for designing experiments to probe its functional role in the influenza life cycle.
Collapse
Affiliation(s)
- Salvatore F. Priore
- Department of Chemistry and Center for RNA Biology, University of Rochester, Rochester, New York, United States of America
| | - Elzbieta Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Ryszard Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Jayson R. Baman
- Department of Chemistry and Center for RNA Biology, University of Rochester, Rochester, New York, United States of America
| | - Walter N. Moss
- Department of Chemistry and Center for RNA Biology, University of Rochester, Rochester, New York, United States of America
| | - Lumbini I. Dela-Moss
- Department of Chemistry and Center for RNA Biology, University of Rochester, Rochester, New York, United States of America
| | - Douglas H. Turner
- Department of Chemistry and Center for RNA Biology, University of Rochester, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
24
|
Priore SF, Moss WN, Turner DH. Influenza B virus has global ordered RNA structure in (+) and (-) strands but relatively less stable predicted RNA folding free energy than allowed by the encoded protein sequence. BMC Res Notes 2013; 6:330. [PMID: 23958134 PMCID: PMC3765861 DOI: 10.1186/1756-0500-6-330] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 07/03/2013] [Indexed: 12/03/2022] Open
Abstract
Background Influenza A virus contributes to seasonal epidemics and pandemics and contains Global Ordered RNA structure (GORS) in the nucleoprotein (NP), non-structural (NS), PB2, and M segments. A related virus, influenza B, is also a major annual public health threat, but unlike influenza A is very selective to human hosts. This study extends the search for GORS to influenza B. Findings A survey of all available influenza B sequences reveals GORS in the (+) and (−)RNAs of the NP, NS, PB2, and PB1 gene segments. The results are similar to influenza A, except GORS is observed for the M1 segment of influenza A but not for PB1. In general, the folding free energies of human-specific influenza B RNA segments are less stable than allowable by the encoded amino acid sequence. This is consistent with findings in influenza A, where human-specific influenza RNA folds are less stable than avian and swine strains. Conclusions These results reveal fundamental molecular similarities and differences between Influenza A and B and suggest a rational basis for choosing segments to target with therapeutics and for viral attenuation for live vaccines by altering RNA folding stability.
Collapse
Affiliation(s)
- Salvatore F Priore
- Department of Chemistry and Center for RNA Biology, University of Rochester, Rochester, NY 14627-0216, USA.
| | | | | |
Collapse
|
25
|
Moss WN, Steitz JA. Genome-wide analyses of Epstein-Barr virus reveal conserved RNA structures and a novel stable intronic sequence RNA. BMC Genomics 2013; 14:543. [PMID: 23937650 PMCID: PMC3751371 DOI: 10.1186/1471-2164-14-543] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 08/07/2013] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Epstein-Barr virus (EBV) is a human herpesvirus implicated in cancer and autoimmune disorders. Little is known concerning the roles of RNA structure in this important human pathogen. This study provides the first comprehensive genome-wide survey of RNA and RNA structure in EBV. RESULTS Novel EBV RNAs and RNA structures were identified by computational modeling and RNA-Seq analyses of EBV. Scans of the genomic sequences of four EBV strains (EBV-1, EBV-2, GD1, and GD2) and of the closely related Macacine herpesvirus 4 using the RNAz program discovered 265 regions with high probability of forming conserved RNA structures. Secondary structure models are proposed for these regions based on a combination of free energy minimization and comparative sequence analysis. The analysis of RNA-Seq data uncovered the first observation of a stable intronic sequence RNA (sisRNA) in EBV. The abundance of this sisRNA rivals that of the well-known and highly expressed EBV-encoded non-coding RNAs (EBERs). CONCLUSION This work identifies regions of the EBV genome likely to generate functional RNAs and RNA structures, provides structural models for these regions, and discusses potential functions suggested by the modeled structures. Enhanced understanding of the EBV transcriptome will guide future experimental analyses of the discovered RNAs and RNA structures.
Collapse
Affiliation(s)
- Walter N Moss
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Joan A Steitz
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| |
Collapse
|
26
|
Moss WN, Dela-Moss LI, Priore SF, Turner DH. The influenza A segment 7 mRNA 3' splice site pseudoknot/hairpin family. RNA Biol 2012; 9:1305-10. [PMID: 23064116 PMCID: PMC3597570 DOI: 10.4161/rna.22343] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The 3′ splice site of the influenza A segment 7 transcript is utilized to produce mRNA for the critical M2 ion-channel protein. In solution a 63 nt fragment that includes this region can adopt two conformations: a pseudoknot and a hairpin. In each conformation, the splice site, a binding site for the SF2/ASF exonic splicing enhancer and a polypyrimidine tract, each exists in a different structural context. The most dramatic difference occurs for the splice site. In the hairpin the splice site is between two residues that are involved in a 2 by 2 nucleotide internal loop. In the pseudoknot, however, these bases are canonically paired within one of the pseudoknotted helices. The conformational switching observed in this region has implications for the regulation of splicing of the segment 7 mRNA. A measure of stability of the structures also shows interesting trends with respect to host specificity: avian strains tend to be the most stable, followed by swine and then human.
Collapse
Affiliation(s)
- Walter N Moss
- Department of Chemistry and Center for RNA Biology, University of Rochester; Rochester, NY, USA
| | | | | | | |
Collapse
|
27
|
Chursov A, Kopetzky SJ, Leshchiner I, Kondofersky I, Theis FJ, Frishman D, Shneider A. Specific temperature-induced perturbations of secondary mRNA structures are associated with the cold-adapted temperature-sensitive phenotype of influenza A virus. RNA Biol 2012; 9:1266-74. [PMID: 22995831 PMCID: PMC3583857 DOI: 10.4161/rna.22081] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
For decades, cold-adapted, temperature-sensitive (ca/ts) strains of influenza A virus have been used as live attenuated vaccines. Due to their great public health importance it is crucial to understand the molecular mechanism(s) of cold adaptation and temperature sensitivity that are currently unknown. For instance, secondary RNA structures play important roles in influenza biology. Thus, we hypothesized that a relatively minor change in temperature (32-39°C) can lead to perturbations in influenza RNA structures and, that these structural perturbations may be different for mRNAs of the wild type (wt) and ca/ts strains. To test this hypothesis, we developed a novel in silico method that enables assessing whether two related RNA molecules would undergo (dis)similar structural perturbations upon temperature change. The proposed method allows identifying those areas within an RNA chain where dissimilarities of RNA secondary structures at two different temperatures are particularly pronounced, without knowing particular RNA shapes at either temperature. We identified such areas in the NS2, PA, PB2 and NP mRNAs. However, these areas are not identical for the wt and ca/ts mutants. Differences in temperature-induced structural changes of wt and ca/ts mRNA structures may constitute a yet unappreciated molecular mechanism of the cold adaptation/temperature sensitivity phenomena.
Collapse
Affiliation(s)
- Andrey Chursov
- Department of Genome Oriented Bioinformatics, Technische Universität München, Wissenschaftzentrum Weihenstephan, Freising, Germany
| | | | | | | | | | | | | |
Collapse
|
28
|
Moss WN, Dela-Moss LI, Kierzek E, Kierzek R, Priore SF, Turner DH. The 3' splice site of influenza A segment 7 mRNA can exist in two conformations: a pseudoknot and a hairpin. PLoS One 2012; 7:e38323. [PMID: 22685560 PMCID: PMC3369869 DOI: 10.1371/journal.pone.0038323] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 05/03/2012] [Indexed: 12/29/2022] Open
Abstract
The 3′ splice site of influenza A segment 7 is used to produce mRNA for the M2 ion-channel protein, which is critical to the formation of viable influenza virions. Native gel analysis, enzymatic/chemical structure probing, and oligonucleotide binding studies of a 63 nt fragment, containing the 3′ splice site, key residues of an SF2/ASF splicing factor binding site, and a polypyrimidine tract, provide evidence for an equilibrium between pseudoknot and hairpin structures. This equilibrium is sensitive to multivalent cations, and can be forced towards the pseudoknot by addition of 5 mM cobalt hexammine. In the two conformations, the splice site and other functional elements exist in very different structural environments. In particular, the splice site is sequestered in the middle of a double helix in the pseudoknot conformation, while in the hairpin it resides in a two-by-two nucleotide internal loop. The results suggest that segment 7 mRNA splicing can be controlled by a conformational switch that exposes or hides the splice site.
Collapse
Affiliation(s)
- Walter N. Moss
- Department of Chemistry, Center for RNA Biology, University of Rochester, Rochester, New York, United States of America
| | - Lumbini I. Dela-Moss
- Department of Chemistry, Center for RNA Biology, University of Rochester, Rochester, New York, United States of America
| | - Elzbieta Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Noskowskiego, Poland
| | - Ryszard Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Noskowskiego, Poland
| | - Salvatore F. Priore
- Department of Chemistry, Center for RNA Biology, University of Rochester, Rochester, New York, United States of America
| | - Douglas H. Turner
- Department of Chemistry, Center for RNA Biology, University of Rochester, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|