1
|
Justa HCD, Baldissera AB, Machado MI, Souza SH, Polli NLC, Boia-Ferreira M, Schluga PHDC, Donatti L, Wille ACM, Minozzo JC, Gremski LH, Veiga SS. Induction of ectosome formation by binding of phospholipases D from Loxosceles venoms to endothelial cell surface: Mechanism of interaction. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159579. [PMID: 39547302 DOI: 10.1016/j.bbalip.2024.159579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/01/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
Members of the phospholipase D (PLD) superfamily found in Loxosceles spider venoms are potent toxins with inflammatory and necrotizing activities. They degrade phospholipids in cell membranes, generating bioactive molecules that activate skin cells. These skin cells, in turn, activate leukocytes involved in dermonecrosis, characterized by aseptic coagulative necrosis. Although the literature has advanced in understanding the structure-function relationship, the cell biology resulting from the interactions of these molecules with cells remains poorly understood. In this study, we show that different cells exposed to recombinant PLDs bind these molecules to their plasma membrane, leading to the subsequent organization of extracellular microvesicles/ectosomes. The binding occurs as quickly as five minutes or less after exposure, increases over time, and eventually, the PLDs are expelled from the cell surface without generating cytotoxicity. PLDs are not endocytosed, nor do they spatially colocalize with acidic organelles in the intracellular environment. At least two regions of PLDs - the domain involved in magnesium ion coordination and the choline binding site - appear to play a role in cell surface binding and ectosome organization. However, the amino acids involved in catalysis do not participate in these events. The binding of these PLDs to the cell membrane, independent of catalytic activity, is sufficient to trigger intracellular signaling and enhance the expression of the pro-inflammatory IL-8 gene. These results are supported by the observation that isoforms of PLDs lacking catalytic activity induce an inflammatory response in vivo when injected into the skin of rabbits, without causing dermonecrosis. Our data indicate that these PLDs bind to the surface of target cells, promoting the organization of extracellular vesicles/ectosomes. Subsequently, these events activate pro-inflammatory genes and induce an inflammatory response in vivo. The binding to cells is not dependent on amino acids involved in catalysis but rather on amino acids involved in magnesium coordination. The binding of PLDs to the cell surface, formation of ectosomes, and activation of cells appear to initiate signals involved in inflammatory responses that can lead to dermonecrosis in accidents. This correlation is supported by experimental observations indicating that the events of toxin binding to cells, formation of microvesicles, and inflammatory responses observed both in vitro and in vivo are interconnected.
Collapse
Affiliation(s)
- Hanna Câmara da Justa
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81530-900, Brazil
| | | | | | - Samira Hajjar Souza
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81530-900, Brazil
| | | | - Marianna Boia-Ferreira
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81530-900, Brazil
| | | | - Lucelia Donatti
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81530-900, Brazil
| | - Ana Carolina M Wille
- Department of Structural, Molecular Biology and Genetics, State University of Ponta Grossa (UEPG), Ponta Grossa 84030-900, Brazil
| | - João Carlos Minozzo
- Production and Research Center of Immunobiological Products (CPPI), State Department of Health, Piraquara 83302-200, Brazil
| | - Luiza Helena Gremski
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81530-900, Brazil
| | - Silvio S Veiga
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81530-900, Brazil.
| |
Collapse
|
2
|
Wille ACM, Machado MI, Souza SH, da Justa HC, de Fraga-Ferreira ME, Mello EDS, Gremski LH, Veiga SS. Brown Spider Venom Phospholipases D: From Potent Molecules Involved in Pathogenesis of Brown Spider Bites to Molecular Tools for Studying Ectosomes, Ectocytosis, and Its Applications. Toxins (Basel) 2025; 17:70. [PMID: 39998087 PMCID: PMC11860474 DOI: 10.3390/toxins17020070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/24/2025] [Accepted: 01/31/2025] [Indexed: 02/26/2025] Open
Abstract
Accidents caused by Loxosceles spiders, commonly known as brown spiders, are frequent in warm and temperate regions worldwide, with a higher prevalence in South America and the southern United States. In the venoms of species clinically associated with accidents, phospholipases D (PLDs) are the most expressed toxins. This classification is based on the toxins' ability to cleave various phospholipids, with a preference for sphingomyelin. Studies using purified PLDs have demonstrated that these enzymes cleave phospholipids from cells, producing derivatives that can activate leukocytes. A dysregulated inflammatory response is the primary effect following envenomation, leading to dermonecrosis, which is histopathologically characterized by aseptic coagulative necrosis-a key feature of envenomation. Although advances in understanding the structure-function relationship of enzymes have been achieved through molecular biology, heterologous expression, site-directed mutations, crystallography, and bioinformatic analyses-describing PLDs in the venoms of various species and highlighting the conservation of amino acid residues involved in catalysis, substrate binding, and magnesium stabilization-little is known about the cellular biology of these PLDs. Studies have shown that the treatment of various cells with recombinant PLDs stimulates the formation of ectosomes and ectocytosis, events that initiate a cascade of intracellular signaling in PLD-binding cells and lead to the release of extracellular microvesicles. These microvesicles may act as signalosomes for other target cells, thereby triggering an inflammatory response and dermonecrosis. In this review, we will discuss the biochemical properties of PLDs, the target cells that bind to them, and the ectocytosis-dependent pathophysiology of envenoming.
Collapse
Affiliation(s)
- Ana Carolina Martins Wille
- Department of Structural, Molecular Biology and Genetics, State University of Ponta Grossa (UEPG), Ponta Grossa 84030-900, Brazil;
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81530-900, Brazil; (M.I.M.); (S.H.S.); (H.C.d.J.); (M.E.d.F.-F.); (E.d.S.M.); (L.H.G.)
| | - Mariana Izabele Machado
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81530-900, Brazil; (M.I.M.); (S.H.S.); (H.C.d.J.); (M.E.d.F.-F.); (E.d.S.M.); (L.H.G.)
| | - Samira Hajjar Souza
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81530-900, Brazil; (M.I.M.); (S.H.S.); (H.C.d.J.); (M.E.d.F.-F.); (E.d.S.M.); (L.H.G.)
| | - Hanna Câmara da Justa
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81530-900, Brazil; (M.I.M.); (S.H.S.); (H.C.d.J.); (M.E.d.F.-F.); (E.d.S.M.); (L.H.G.)
| | - Maria Eduarda de Fraga-Ferreira
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81530-900, Brazil; (M.I.M.); (S.H.S.); (H.C.d.J.); (M.E.d.F.-F.); (E.d.S.M.); (L.H.G.)
| | - Eloise de Souza Mello
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81530-900, Brazil; (M.I.M.); (S.H.S.); (H.C.d.J.); (M.E.d.F.-F.); (E.d.S.M.); (L.H.G.)
| | - Luiza Helena Gremski
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81530-900, Brazil; (M.I.M.); (S.H.S.); (H.C.d.J.); (M.E.d.F.-F.); (E.d.S.M.); (L.H.G.)
| | - Silvio Sanches Veiga
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81530-900, Brazil; (M.I.M.); (S.H.S.); (H.C.d.J.); (M.E.d.F.-F.); (E.d.S.M.); (L.H.G.)
| |
Collapse
|
3
|
Socas LBP, Valdivia-Pérez JA, Fanani ML, Ambroggio EE. Multidimensional Spectral Phasors of LAURDAN's Excitation-Emission Matrices: The Ultimate Sensor for Lipid Phases? J Am Chem Soc 2024; 146:17230-17239. [PMID: 38874760 DOI: 10.1021/jacs.4c03443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
The impact of lipid diversity on the lateral organization of biological membranes remains a topic of debate. While the existence of domains in lamellar membranes is well-established, the nonlamellar phases occurring in biological systems are less explored due to technical constraints. Here, we present the measurement of the excitation-emission matrices (EEM) of LAURDAN in several lipid structures. LAURDAN is a fluorescence probe widely used for characterizing lipid assemblies. The EEMs were analyzed by multidimensional spectral phasors (MdSP), an approach that seizes information from both the excitation and emission spectra. We developed a computer algorithm to construct EEM data based on a model for LAURDAN's photophysics. The MdSP calculated from the simulated EEMs reveals that all feasible possibilities lie inside a universal triangle in the phasor's plot. We use this triangle to propose a ternary representation for the phasors, allowing a better assessment of LAURDAN's surroundings in terms of hydration, water mobility, and local electronic environment. Building upon this foundation, we constructed a theoretical "phase map" that can assess both lamellar and nonlamellar membranes. We thoroughly validated this theory using well-known lipid mixtures under different phase-state conditions and enzymatically generated systems. Our results confirm that the use of MdSP is a powerful tool for obtaining quantitative information on both lamellar and nonlamellar structures. This study not only advances our understanding of the impact of lipid diversity on membrane organization but also provides a robust and general framework for the assessment of fluorescence properties that can be further extended to other probes.
Collapse
Affiliation(s)
- Luis B P Socas
- Departamento de Química Biológica-Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende s/n, Córdoba X5000HUA, Argentina
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Universidad Nacional de Córdoba, CONICET, Haya de la Torre y Medina Allende s/n, Córdoba X5000HUA, Argentina
| | - Jessica A Valdivia-Pérez
- Departamento de Química Biológica-Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende s/n, Córdoba X5000HUA, Argentina
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Universidad Nacional de Córdoba, CONICET, Haya de la Torre y Medina Allende s/n, Córdoba X5000HUA, Argentina
| | - María L Fanani
- Departamento de Química Biológica-Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende s/n, Córdoba X5000HUA, Argentina
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Universidad Nacional de Córdoba, CONICET, Haya de la Torre y Medina Allende s/n, Córdoba X5000HUA, Argentina
| | - Ernesto E Ambroggio
- Departamento de Química Biológica-Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende s/n, Córdoba X5000HUA, Argentina
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Universidad Nacional de Córdoba, CONICET, Haya de la Torre y Medina Allende s/n, Córdoba X5000HUA, Argentina
| |
Collapse
|
4
|
Lachmayr H, Merrill AH. A Brief Overview of the Toxic Sphingomyelinase Ds of Brown Recluse Spider Venom and Other Organisms and Simple Methods To Detect Production of Its Signature Cyclic Ceramide Phosphate. Mol Pharmacol 2024; 105:144-154. [PMID: 37739813 PMCID: PMC10877732 DOI: 10.1124/molpharm.123.000709] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/05/2023] [Accepted: 08/29/2023] [Indexed: 09/24/2023] Open
Abstract
A special category of phospholipase D (PLD) in the venom of the brown recluse spider (Loxosceles reclusa) and several other sicariid spiders accounts for the dermonecrosis and many of the other clinical symptoms of envenomation. Related proteins are produced by other organisms, including fungi and bacteria. These PLDs are often referred to as sphingomyelinase Ds (SMase Ds) because they cleave sphingomyelin (SM) to choline and "ceramide phosphate." The lipid product has actually been found to be a novel sphingolipid: ceramide 1,3-cyclic phosphate (Cer1,3P). Since there are no effective treatments for the injury induced by the bites of these spiders, SMase D/PLDs are attractive targets for therapeutic intervention, and some of their features will be described in this minireview. In addition, two simple methods are described for detecting the characteristic SMase D activity using a fluorescent SM analog, (N-[12-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]dodecanoyl]-SM (C12-NBD-SM), that is cleaved to C12-NBD-Cer1,3P, which is easily separated from other potential metabolites by thin-layer chromatography and visualized under UV light. Besides confirming that C12-NBD-Cer1,3P is the only product detected upon incubation of C12-NBD-SM with brown recluse spider venom, the method was also able to detect for the first time very low levels of activity in venom from another spider, Kukulcania hibernalis The simplicity of the methods makes it relatively easy to determine this signature activity of SMase D/PLD. SIGNIFICANCE STATEMENT: The sphingomyelinase D/phospholipase D that are present in the venom of the brown recluse spider and other sources cause considerable human injury, but detection of the novel sphingolipid product, ceramide 1,3-cyclic phosphate, is not easy by previously published methods. This minireview describes simple methods for detection of this activity that will be useful for studies of its occurrence in spider venoms and other biological samples, perhaps including lesions from suspected spider bites and infections.
Collapse
Affiliation(s)
- Hannah Lachmayr
- School of Biological Sciences and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Alfred H Merrill
- School of Biological Sciences and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
5
|
Drabik D, Drab M, Penič S, Iglič A, Czogalla A. Investigation of nano- and microdomains formed by ceramide 1 phosphate in lipid bilayers. Sci Rep 2023; 13:18570. [PMID: 37903839 PMCID: PMC10616280 DOI: 10.1038/s41598-023-45575-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/21/2023] [Indexed: 11/01/2023] Open
Abstract
Biological membranes are renowned for their intricate complexity, with the formation of membrane domains being pivotal to the successful execution of numerous cellular processes. However, due to their nanoscale characteristics, these domains are often understudied, as the experimental techniques required for quantitative investigation present significant challenges. In this study we employ spot-variation z-scan fluorescence correlation spectroscopy (svzFCS) tailored for artificial lipid vesicles of varying composition and combine this approach with high-resolution imaging. This method has been harnessed to examine the lipid-segregation behavior of distinct types of ceramide-1-phosphate (C1P), a crucial class of signaling molecules, within these membranes. Moreover, we provide a quantitative portrayal of the lipid membranes studied and the domains induced by C1P at both nano and microscales. Given the lack of definitive conclusions from the experimental data obtained, it was supplemented with comprehensive in silico studies-including the analysis of diffusion coefficient via molecular dynamics and domain populations via Monte Carlo simulations. This approach enhanced our insight into the dynamic behavior of these molecules within model lipid membranes, confirming that nano- and microdomains can co-exist in lipid vesicles.
Collapse
Affiliation(s)
- Dominik Drabik
- Laboratory of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a, 50-383, Wrocław, Poland.
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Pl. Grunwaldzki 13, 50-377, Wrocław, Poland.
| | - Mitja Drab
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška cesta 25, 1000, Ljubljana, Slovenia.
| | - Samo Penič
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška cesta 25, 1000, Ljubljana, Slovenia
- Laboratory of Bioelectromagnetics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška cesta 25, 1000, Ljubljana, Slovenia
| | - Aleš Iglič
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška cesta 25, 1000, Ljubljana, Slovenia
| | - Aleksander Czogalla
- Laboratory of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a, 50-383, Wrocław, Poland.
| |
Collapse
|
6
|
Cordes MHJ, Sundman AK, Fox HC, Binford GJ. Protein salvage and repurposing in evolution: Phospholipase D toxins are stabilized by a remodeled scrap of a membrane association domain. Protein Sci 2023; 32:e4701. [PMID: 37313620 PMCID: PMC10303701 DOI: 10.1002/pro.4701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 06/15/2023]
Abstract
The glycerophosphodiester phosphodiesterase (GDPD)-like SMaseD/PLD domain family, which includes phospholipase D (PLD) toxins in recluse spiders and actinobacteria, evolved anciently in bacteria from the GDPD. The PLD enzymes retained the core (β/α)8 barrel fold of GDPD, while gaining a signature C-terminal expansion motif and losing a small insertion domain. Using sequence alignments and phylogenetic analysis, we infer that the C-terminal motif derives from a segment of an ancient bacterial PLAT domain. Formally, part of a protein containing a PLAT domain repeat underwent fusion to the C terminus of a GDPD barrel, leading to attachment of a segment of a PLAT domain, followed by a second complete PLAT domain. The complete domain was retained only in some basal homologs, but the PLAT segment was conserved and repurposed as the expansion motif. The PLAT segment corresponds to strands β7-β8 of a β-sandwich, while the expansion motif as represented in spider PLD toxins has been remodeled as an α-helix, a β-strand, and an ordered loop. The GDPD-PLAT fusion led to two acquisitions in founding the GDPD-like SMaseD/PLD family: (1) a PLAT domain that presumably supported early lipase activity by mediating membrane association, and (2) an expansion motif that putatively stabilized the catalytic domain, possibly compensating for, or permitting, loss of the insertion domain. Of wider significance, messy domain shuffling events can leave behind scraps of domains that can be salvaged, remodeled, and repurposed.
Collapse
Affiliation(s)
| | | | - Holden C. Fox
- Department of Chemistry and BiochemistryUniversity of ArizonaTucsonArizonaUSA
| | | |
Collapse
|
7
|
Chaves-Moreira D, Gremski LH, de Moraes FR, Vuitika L, Wille ACM, Hernández González JE, Chaim OM, Senff-Ribeiro A, Arni RK, Veiga SS. Brown Spider Venom Phospholipase-D Activity upon Different Lipid Substrates. Toxins (Basel) 2023; 15:toxins15020109. [PMID: 36828423 PMCID: PMC9965952 DOI: 10.3390/toxins15020109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
Brown spider envenomation results in dermonecrosis, characterized by an intense inflammatory reaction. The principal toxins of brown spider venoms are phospholipase-D isoforms, which interact with different cellular membrane components, degrade phospholipids, and generate bioactive mediators leading to harmful effects. The Loxosceles intermedia phospholipase D, LiRecDT1, possesses a loop that modulates the accessibility to the active site and plays a crucial role in substrate. In vitro and in silico analyses were performed to determine aspects of this enzyme's substrate preference. Sphingomyelin d18:1/6:0 was the preferred substrate of LiRecDT1 compared to other Sphingomyelins. Lysophosphatidylcholine 16:0/0:0 was preferred among other lysophosphatidylcholines, but much less than Sphingomyelin d18:1/6:0. In contrast, phosphatidylcholine d18:1/16:0 was not cleaved. Thus, the number of carbon atoms in the substrate plays a vital role in determining the optimal activity of this phospholipase-D. The presence of an amide group at C2 plays a key role in recognition and activity. In silico analyses indicated that a subsite containing the aromatic residues Y228 and W230 appears essential for choline recognition by cation-π interactions. These findings may help to explain why different cells, with different phospholipid fatty acid compositions exhibit distinct susceptibilities to brown spider venoms.
Collapse
Affiliation(s)
- Daniele Chaves-Moreira
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil
| | - Luiza Helena Gremski
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil
| | - Fábio Rogério de Moraes
- Department of Physics, Multi-User Center for Biomolecular Innovation, State University of São Paulo (UNESP), São Paulo 05315-970, Brazil
| | - Larissa Vuitika
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil
| | - Ana Carolina Martins Wille
- Department of Structural and Molecular Biology, State University of Ponta Grossa (UEPG), Ponta Grossa 84030-900, Brazil
| | - Jorge Enrique Hernández González
- Department of Physics, Multi-User Center for Biomolecular Innovation, State University of São Paulo (UNESP), São Paulo 05315-970, Brazil
| | - Olga Meiri Chaim
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA
| | - Andrea Senff-Ribeiro
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil
| | - Raghuvir Krishnaswamy Arni
- Department of Physics, Multi-User Center for Biomolecular Innovation, State University of São Paulo (UNESP), São Paulo 05315-970, Brazil
| | - Silvio Sanches Veiga
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil
- Correspondence: ; Tel.: +55-41-3361-1776
| |
Collapse
|
8
|
Gremski LH, da Justa HC, Polli NLC, Schluga PHDC, Theodoro JL, Wille ACM, Senff-Ribeiro A, Veiga SS. Systemic Loxoscelism, Less Frequent but More Deadly: The Involvement of Phospholipases D in the Pathophysiology of Envenomation. Toxins (Basel) 2022; 15:17. [PMID: 36668837 PMCID: PMC9864854 DOI: 10.3390/toxins15010017] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 12/29/2022] Open
Abstract
Bites of Loxosceles spiders can lead to a set of clinical manifestations called loxoscelism, and are considered a public health problem in many regions. The signs and symptoms of loxoscelism are divided into cutaneous and systemic forms. The former is more frequent and includes signs of envenoming at the bite site or neighboring regions. Systemic loxoscelism, although much less frequent, is associated with complications, and can even lead to death. It may include intravascular hemolysis, acute renal failure, and thrombocytopenia. Loxosceles venoms are enriched with phospholipases D (PLDs), which are a family of isoforms found at intra-species and inter-species levels. Under experimental conditions, these enzymes reproduce the main clinical signs of loxoscelism, including an exacerbated inflammatory response at the bite site and dermonecrosis, as well as thrombocytopenia, intravascular hemolysis, and acute renal failure. The role of PLDs in cutaneous loxoscelism was described over forty years ago, when studies identified and purified toxins featured as sphingomyelinase D. More recently, the production of recombinant PLDs and discoveries about their structure and mechanism has enabled a deeper characterization of these enzymes. In this review, we describe these biochemical and functional features of Loxosceles PLDs that determine their involvement in systemic loxoscelism.
Collapse
Affiliation(s)
- Luiza Helena Gremski
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil
| | - Hanna Câmara da Justa
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil
| | | | | | - João Lucas Theodoro
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil
| | - Ana Carolina Martins Wille
- Department of Structural, Molecular Biology and Genetics, State University of Ponta Grossa (UEPG), Ponta Grossa 84030-900, Brazil
| | - Andrea Senff-Ribeiro
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil
| | - Silvio Sanches Veiga
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil
| |
Collapse
|
9
|
Cytotoxic and genotoxic effects on human keratinocytes triggered by sphingomyelinase D from Loxosceles venom. Arch Toxicol 2020; 94:3563-3577. [DOI: 10.1007/s00204-020-02830-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023]
|
10
|
Gremski LH, da Justa HC, da Silva TP, Polli NLC, Antunes BC, Minozzo JC, Wille ACM, Senff-Ribeiro A, Arni RK, Veiga SS. Forty Years of the Description of Brown Spider Venom Phospholipases-D. Toxins (Basel) 2020; 12:toxins12030164. [PMID: 32155765 PMCID: PMC7150852 DOI: 10.3390/toxins12030164] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 01/24/2023] Open
Abstract
Spiders of the genus Loxosceles, popularly known as Brown spiders, are considered a serious public health issue, especially in regions of hot or temperate climates, such as parts of North and South America. Although the venoms of these arachnids are complex in molecular composition, often containing proteins with distinct biochemical characteristics, the literature has primarily described a family of toxins, the Phospholipases-D (PLDs), which are highly conserved in all Loxosceles species. PLDs trigger most of the major clinical symptoms of loxoscelism i.e., dermonecrosis, thrombocytopenia, hemolysis, and acute renal failure. The key role played by PLDs in the symptomatology of loxoscelism was first described 40 years ago, when researches purified a hemolytic toxin that cleaved sphingomyelin and generated choline, and was referred to as a Sphingomyelinase-D, which was subsequently changed to Phospholipase-D when it was demonstrated that the enzyme also cleaved other cellular phospholipids. In this review, we present the information gleaned over the last 40 years about PLDs from Loxosceles venoms especially with regard to the production and characterization of recombinant isoforms. The history of obtaining these toxins is discussed, as well as their molecular organization and mechanisms of interaction with their substrates. We will address cellular biology aspects of these toxins and how they can be used in the development of drugs to address inflammatory processes and loxoscelism. Present and future aspects of loxoscelism diagnosis will be discussed, as well as their biotechnological applications and actions expected for the future in this field.
Collapse
Affiliation(s)
- Luiza Helena Gremski
- Departamento de Biologia Celular, Universidade Federal do Paraná (UFPR), Curitiba 81531-980, PR, Brazil; (L.H.G.); (H.C.d.J.); (T.P.d.S.); (N.L.C.P.); (B.C.A.); (A.S.-R.)
| | - Hanna Câmara da Justa
- Departamento de Biologia Celular, Universidade Federal do Paraná (UFPR), Curitiba 81531-980, PR, Brazil; (L.H.G.); (H.C.d.J.); (T.P.d.S.); (N.L.C.P.); (B.C.A.); (A.S.-R.)
| | - Thaís Pereira da Silva
- Departamento de Biologia Celular, Universidade Federal do Paraná (UFPR), Curitiba 81531-980, PR, Brazil; (L.H.G.); (H.C.d.J.); (T.P.d.S.); (N.L.C.P.); (B.C.A.); (A.S.-R.)
| | - Nayanne Louise Costacurta Polli
- Departamento de Biologia Celular, Universidade Federal do Paraná (UFPR), Curitiba 81531-980, PR, Brazil; (L.H.G.); (H.C.d.J.); (T.P.d.S.); (N.L.C.P.); (B.C.A.); (A.S.-R.)
| | - Bruno César Antunes
- Departamento de Biologia Celular, Universidade Federal do Paraná (UFPR), Curitiba 81531-980, PR, Brazil; (L.H.G.); (H.C.d.J.); (T.P.d.S.); (N.L.C.P.); (B.C.A.); (A.S.-R.)
- Centro de Produção e Pesquisa de Imunobiológicos (CPPI), Piraquara 83302-200, PR, Brazil;
| | - João Carlos Minozzo
- Centro de Produção e Pesquisa de Imunobiológicos (CPPI), Piraquara 83302-200, PR, Brazil;
| | - Ana Carolina Martins Wille
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa 84030-900, PR, Brazil;
| | - Andrea Senff-Ribeiro
- Departamento de Biologia Celular, Universidade Federal do Paraná (UFPR), Curitiba 81531-980, PR, Brazil; (L.H.G.); (H.C.d.J.); (T.P.d.S.); (N.L.C.P.); (B.C.A.); (A.S.-R.)
| | - Raghuvir Krishnaswamy Arni
- Centro Multiusuário de Inovação Biomolecular, Departamento de Física, Universidade Estadual Paulista (UNESP), São José do Rio Preto 15054-000, SP, Brazil;
| | - Silvio Sanches Veiga
- Departamento de Biologia Celular, Universidade Federal do Paraná (UFPR), Curitiba 81531-980, PR, Brazil; (L.H.G.); (H.C.d.J.); (T.P.d.S.); (N.L.C.P.); (B.C.A.); (A.S.-R.)
- Correspondence: ; Tel.: +55-(41)-3361-1776
| |
Collapse
|
11
|
Brown Spider ( Loxosceles) Venom Toxins as Potential Biotools for the Development of Novel Therapeutics. Toxins (Basel) 2019; 11:toxins11060355. [PMID: 31248109 PMCID: PMC6628458 DOI: 10.3390/toxins11060355] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 11/16/2022] Open
Abstract
Brown spider envenomation results in dermonecrosis with gravitational spreading characterized by a marked inflammatory reaction and with lower prevalence of systemic manifestations such as renal failure and hematological disturbances. Several toxins make up the venom of these species, and they are mainly peptides and proteins ranging from 5–40 kDa. The venoms have three major families of toxins: phospholipases-D, astacin-like metalloproteases, and the inhibitor cystine knot (ICK) peptides. Serine proteases, serpins, hyaluronidases, venom allergens, and a translationally controlled tumor protein (TCTP) are also present. Toxins hold essential biological properties that enable interactions with a range of distinct molecular targets. Therefore, the application of toxins as research tools and clinical products motivates repurposing their uses of interest. This review aims to discuss possibilities for brown spider venom toxins as putative models for designing molecules likely for therapeutics based on the status quo of brown spider venoms. Herein, we explore new possibilities for the venom components in the context of their biochemical and biological features, likewise their cellular targets, three-dimensional structures, and mechanisms of action.
Collapse
|
12
|
Shirota K, Yagi K, Inaba T, Li PC, Murata M, Sugita Y, Kobayashi T. Detection of Sphingomyelin Clusters by Raman Spectroscopy. Biophys J 2017; 111:999-1007. [PMID: 27602727 DOI: 10.1016/j.bpj.2016.07.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 07/21/2016] [Accepted: 07/22/2016] [Indexed: 01/23/2023] Open
Abstract
Sphingomyelin (SM) is a major sphingolipid in mammalian cells that forms specific lipid domains in combination with cholesterol (Chol). Using molecular-dynamics simulation and density functional theory calculation, we identified a characteristic Raman band of SM at ∼1643 cm(-1) as amide I of the SM cluster. Experimental results indicate that this band is sensitive to the hydration of SM and the presence of Chol. We showed that this amide I Raman band can be utilized to examine the membrane distribution of SM. Similarly to SM, ceramide phosphoethanolamine (CerPE) exhibited an amide I Raman band in almost the same region, although CerPE lacks three methyl groups in the phosphocholine moiety of SM. In contrast to SM, the amide I band of CerPE was not affected by Chol, suggesting the importance of the methyl groups of SM in the SM-Chol interaction.
Collapse
Affiliation(s)
| | - Kiyoshi Yagi
- Theoretical Molecular Science Laboratory, RIKEN, Saitama, Japan
| | | | - Pai-Chi Li
- Theoretical Molecular Science Laboratory, RIKEN, Saitama, Japan
| | - Michio Murata
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan; Lipid Active Structure Project, Japan Science and Technology Agency, ERATO, Osaka, Japan
| | - Yuji Sugita
- Theoretical Molecular Science Laboratory, RIKEN, Saitama, Japan
| | - Toshihide Kobayashi
- Lipid Biology Laboratory, RIKEN, Saitama, Japan; UMR 7213 CNRS, University of Strasbourg, Illkirch, France.
| |
Collapse
|
13
|
Brewer J, Thoke HS, Stock RP, Bagatolli LA. Enzymatic studies on planar supported membranes using a widefield fluorescence LAURDAN Generalized Polarization imaging approach. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:888-895. [DOI: 10.1016/j.bbamem.2017.01.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 01/15/2017] [Accepted: 01/19/2017] [Indexed: 12/01/2022]
|
14
|
Mariutti RB, Chaves-Moreira D, Vuitika L, Caruso ÍP, Coronado MA, Azevedo VA, Murakami MT, Veiga SS, Arni RK. Bacterial and Arachnid Sphingomyelinases D: Comparison of Biophysical and Pathological Activities. J Cell Biochem 2017; 118:2053-2063. [PMID: 27808444 DOI: 10.1002/jcb.25781] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 11/01/2016] [Indexed: 01/29/2023]
Abstract
Sphingomyelinases D have only been identified in arachnid venoms, Corynebacteria, Arcanobacterium, Photobacterium and in the fungi Aspergillus and Coccidioides. The arachnid and bacterial enzymes share very low sequence identity and do not contain the HKD sequence motif characteristic of the phospholipase D superfamily, however, molecular modeling and circular dichroism of SMases D from Loxosceles intermedia and Corynebacterium pseudotuberculosis indicate similar folds. The phospholipase, hemolytic and necrotic activities and mice vessel permeabilities were compared and both enzymes possess the ability to hydrolyze phospholipids and also promote similar pathological reactions in the host suggesting the existence of a common underlying mechanism in tissue disruption. J. Cell. Biochem. 118:2053-2063, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ricardo Barros Mariutti
- Department of Physics, Multiuser Center for Biomolecular Innovation, UNESP, São José do Rio Preto, SP, Brazil
| | | | | | - Ícaro Putinhon Caruso
- Department of Physics, Multiuser Center for Biomolecular Innovation, UNESP, São José do Rio Preto, SP, Brazil
| | - Monika A Coronado
- Department of Physics, Multiuser Center for Biomolecular Innovation, UNESP, São José do Rio Preto, SP, Brazil
| | - Vasco A Azevedo
- Institute of Biological Sciences, UFMG, Belo Horizonte, MG, Brazil
| | - Mario T Murakami
- Brazilian Biosciences National Laboratory, LNBio, Campinas, SP, Brazil
| | | | - Raghuvir K Arni
- Department of Physics, Multiuser Center for Biomolecular Innovation, UNESP, São José do Rio Preto, SP, Brazil
| |
Collapse
|
15
|
Henriques ST, Deplazes E, Lawrence N, Cheneval O, Chaousis S, Inserra M, Thongyoo P, King GF, Mark AE, Vetter I, Craik DJ, Schroeder CI. Interaction of Tarantula Venom Peptide ProTx-II with Lipid Membranes Is a Prerequisite for Its Inhibition of Human Voltage-gated Sodium Channel NaV1.7. J Biol Chem 2016; 291:17049-65. [PMID: 27311819 DOI: 10.1074/jbc.m116.729095] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Indexed: 12/11/2022] Open
Abstract
ProTx-II is a disulfide-rich peptide toxin from tarantula venom able to inhibit the human voltage-gated sodium channel 1.7 (hNaV1.7), a channel reported to be involved in nociception, and thus it might have potential as a pain therapeutic. ProTx-II acts by binding to the membrane-embedded voltage sensor domain of hNaV1.7, but the precise peptide channel-binding site and the importance of membrane binding on the inhibitory activity of ProTx-II remain unknown. In this study, we examined the structure and membrane-binding properties of ProTx-II and several analogues using NMR spectroscopy, surface plasmon resonance, fluorescence spectroscopy, and molecular dynamics simulations. Our results show a direct correlation between ProTx-II membrane binding affinity and its potency as an hNaV1.7 channel inhibitor. The data support a model whereby a hydrophobic patch on the ProTx-II surface anchors the molecule at the cell surface in a position that optimizes interaction of the peptide with the binding site on the voltage sensor domain. This is the first study to demonstrate that binding of ProTx-II to the lipid membrane is directly linked to its potency as an hNaV1.7 channel inhibitor.
Collapse
Affiliation(s)
| | - Evelyne Deplazes
- From the Institute for Molecular Bioscience and School of Chemistry and Molecular Biosciences, University of Queensland, Queensland 4072 and
| | | | | | | | | | | | | | - Alan E Mark
- From the Institute for Molecular Bioscience and School of Chemistry and Molecular Biosciences, University of Queensland, Queensland 4072 and
| | - Irina Vetter
- From the Institute for Molecular Bioscience and the School of Pharmacy, University of Queensland, Queensland 4102, Australia
| | | | | |
Collapse
|
16
|
Shirey CM, Ward KE, Stahelin RV. Investigation of the biophysical properties of a fluorescently modified ceramide-1-phosphate. Chem Phys Lipids 2016; 200:32-41. [PMID: 27318040 DOI: 10.1016/j.chemphyslip.2016.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 06/14/2016] [Indexed: 12/11/2022]
Abstract
Ceramide-1-phosphate (C1P) is an important signaling sphingolipid and a metabolite of ceramide. C1P contains an anionic phosphomonoester head group and has been shown to regulate physiological and pathophysiological processes such as cell proliferation, inflammation, apoptosis, phagocytosis, and macrophage chemotaxis. Despite this mechanistic information on its role in intra- and intercellular communication, little information is available on the biophysical properties of C1P in biological membranes and how it interacts with effector proteins. Fluorescently labeled lipids have been a useful tool to understand the membrane behavior properties of lipids such as phosphatidylserine, cholesterol, and some phosphoinositides. However, to the best of our knowledge, fluorescently labeled C1P hasn't been implemented to investigate its ability to serve as a mimetic of endogenous C1P in cells or untagged C1P in in vitro experiments. Cellular and in vitro assays demonstrate TopFluor-C1P harbors a fluorescent group that is fully buried in the hydrocarbon core and fluoresces across the spectrum of physiological pH values. Moreover, TopFluor-C1P didn't affect cellular toxicity at concentrations employed, was as effective as unlabeled C1P in recruiting an established protein effector to intracellular membranes, and its subcellular localization recapitulated what is known for endogenous C1P. Notably, the diffusion coefficient of TopFluor-C1P was slower than that of TopFluor-phosphatidylserine or TopFluor-cholesterol in the plasma membrane and similar to that of other fluorescently labeled sphingolipids including ceramide and sphingomyelin. These studies demonstrate that TopFluor-C1P should be a reliable mimetic of C1P to study C1P membrane biophysical properties and C1P interactions with proteins.
Collapse
Affiliation(s)
- Carolyn M Shirey
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Katherine E Ward
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Robert V Stahelin
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, United States; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine-South Bend, South Bend, IN 46617, United States.
| |
Collapse
|
17
|
Zhou K, Blom T. Trafficking and Functions of Bioactive Sphingolipids: Lessons from Cells and Model Membranes. Lipid Insights 2015; 8:11-20. [PMID: 26715852 PMCID: PMC4685176 DOI: 10.4137/lpi.s31615] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/08/2015] [Accepted: 11/10/2015] [Indexed: 12/15/2022] Open
Abstract
Ceramide and sphingosine and their phosphorylated counterparts are recognized as "bioactive sphingolipids" and modulate membrane integrity, the activity of enzymes, or act as ligands of G protein-coupled receptors. The subcellular distribution of the bioactive sphingolipids is central to their function as the same lipid can mediate diametrically opposite effects depending on its location. To ensure that these lipids are present in the right amount and in the appropriate organelles, cells employ selective lipid transport and compartmentalize sphingolipid-metabolizing enzymes to characteristic subcellular sites. Our knowledge of key mechanisms involved in sphingolipid signaling and trafficking has increased substantially in the past decades-thanks to advances in biochemical and cell biological methods. In this review, we focus on the bioactive sphingolipids and discuss how the combination of studies in cells and in model membranes have contributed to our understanding of how they behave and function in living organisms.
Collapse
Affiliation(s)
- Kecheng Zhou
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tomas Blom
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
18
|
Lajoie DM, Cordes MHJ. Spider, bacterial and fungal phospholipase D toxins make cyclic phosphate products. Toxicon 2015; 108:176-80. [PMID: 26482933 DOI: 10.1016/j.toxicon.2015.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 08/08/2015] [Accepted: 10/13/2015] [Indexed: 11/26/2022]
Abstract
Phospholipase D (PLD) toxins from sicariid spiders, which cause disease in mammals, were recently found to convert their primary substrates, sphingomyelin and lysophosphatidylcholine, to cyclic phospholipids. Here we show that two PLD toxins from pathogenic actinobacteria and ascomycete fungi, which share distant homology with the spider toxins, also generate cyclic phospholipids. This shared function supports divergent evolution of the PLD toxins from a common ancestor and suggests the importance of cyclic phospholipids in pathogenicity.
Collapse
Affiliation(s)
- Daniel M Lajoie
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Matthew H J Cordes
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
19
|
Abstract
All biological membranes consist of a complex composite of macromolecules and macromolecular assemblies, of which the fluid lipid-bilayer component is a core element with regard to cell encapsulation and barrier properties. The fluid lipid bilayer also supports the functional machinery of receptors, channels and pumps that are associated with the membrane. This bilayer is stabilized by weak physical and colloidal forces, and its nature is that of a self-assembled system of amphiphiles in water. Being only approximately 5 nm in thickness and still encapsulating a cell that is three orders of magnitude larger in diameter, the lipid bilayer as a material has very unusual physical properties, both in terms of structure and dynamics. Although the lipid bilayer is a fluid, it has a distinct and structured trans-bilayer profile, and in the plane of the bilayer the various molecular components, viz different lipid species and membrane proteins, have the capacity to organize laterally in terms of differentiated domains on different length and time scales. These elements of small-scale structure and order are crucial for the functioning of the membrane. It has turned out to be difficult to quantitatively study the small-scale structure of biological membranes. A major part of the insight into membrane micro- and nano-domains and the concepts used to describe them have hence come from studies of simple lipid bilayers as models of membranes, by use of a wide range of theoretical, experimental and simulational approaches. Many questions remain to be answered as to which extent the result from model studies can carry over to real biological membranes.
Collapse
|
20
|
Bagatolli LA. Monitoring Membrane Hydration with 2-(Dimethylamino)-6-Acylnaphtalenes Fluorescent Probes. Subcell Biochem 2015; 71:105-125. [PMID: 26438263 DOI: 10.1007/978-3-319-19060-0_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A family of polarity sensitive fluorescent probes (2-(dimethylamino)-6-acylnaphtalenes, i.e. LAURDAN, PRODAN, ACDAN) was introduced by Gregorio Weber in 1979, with the aim to monitor solvent relaxation phenomena on protein matrices. In the following years, however, PRODAN and particularly LAURDAN, were used to study membrane lateral structure and associated dynamics. Once incorporated into membranes, the (nanosecond) fluorescent decay of these probes is strongly affected by changes in the local polarity and relaxation dynamics of restricted water molecules existing at the membrane/water interface. For instance, when glycerophospholipid containing membranes undertake a solid ordered (gel) to liquid disordered phase transition the fluorescence emission maximum of these probes shift ~ 50 nm with a significant change in their fluorescence lifetime. Furthermore, the fluorescence parameters of LAURDAN and PRODAN are exquisitely sensitive to cholesterol effects, allowing interpretations that correlate changes in membrane packing with membrane hydration. Different membrane model systems as well as innate biological membranes have been studied with this family of probes allowing interesting comparative studies. This chapter presents a short historical overview about these fluorescent reporters, discusses on different models proposed to explain their sensitivity to membrane hydration, and includes relevant examples from experiments performed in artificial and biological membranes.
Collapse
Affiliation(s)
- Luis A Bagatolli
- Membrane Biophysics and Biophotonics Group/MEMPHYS-Center for Biomembrane Physics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark.
| |
Collapse
|
21
|
|
22
|
Recent advances in the understanding of brown spider venoms: From the biology of spiders to the molecular mechanisms of toxins. Toxicon 2014; 83:91-120. [DOI: 10.1016/j.toxicon.2014.02.023] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 12/19/2013] [Accepted: 02/27/2014] [Indexed: 11/22/2022]
|
23
|
Lin CY, Chao L. Tunable nucleation time of functional sphingomyelinase--lipid features studied by membrane array statistic tool. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:13008-17. [PMID: 24059643 DOI: 10.1021/la401826b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Aggregation or assembly of lipids and proteins could significantly change the proteins' function. A peripheral membrane enzyme, sphingomyelinase (SMase), has been reported to be able to assemble to a functional feature with its lipid substrate, sphingomyelin (SM), and its lipid product, ceramide (Cer). SMase seems to processes its substrate more effectively in this feature. Here, we report that the functional feature has a tunable formation time. The peculiar behavior is that the feature formation has a time lag depending on the membrane composition. We hypothesized that the time lag is due to the significant nucleation energy barrier when the feature phase forms in its metastable parent phase in the 2-D lipid membrane. To study the stochastic nucleation of the feature, we built a corralled lipid membrane platform with numerous isolated membrane systems in parallel to capture the nucleation statistics. Using the high-throughput approach and the appropriate experimental design to circumvent the interplay of the complicated phase segregation in membranes induced by SMase, we found that the nucleation rate of the feature can be tuned by the supersaturation of the enzyme, the lipid substrate, and the lipid product, in the fluid phase of the membrane. The correlation between the supersaturation and the nucleation rate can be well described by the classical nucleation theory equation, suggesting that the feature formation follows the nucleation process with a certain component ratio specified in the equation. The certain relative component ratio suggests that the feature may have certain organization instead of being random aggregation. In addition, our finding suggests that nucleation could serve as a time lag control mechanism in this enzymatic system, and ways to reduce nucleation energy barrier could be used to shorten the aggregation time lag and vice versa.
Collapse
Affiliation(s)
- Charng-Yu Lin
- Department of Chemical Engineering, National Taiwan University , Taipei 106, Taiwan
| | | |
Collapse
|
24
|
Phospholipase D toxins of brown spider venom convert lysophosphatidylcholine and sphingomyelin to cyclic phosphates. PLoS One 2013; 8:e72372. [PMID: 24009677 PMCID: PMC3756997 DOI: 10.1371/journal.pone.0072372] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 07/15/2013] [Indexed: 11/19/2022] Open
Abstract
Venoms of brown spiders in the genus Loxosceles contain phospholipase D enzyme toxins that can cause severe dermonecrosis and even death in humans. These toxins cleave the substrates sphingomyelin and lysophosphatidylcholine in mammalian tissues, releasing the choline head group. The other products of substrate cleavage have previously been reported to be monoester phospholipids, which would result from substrate hydrolysis. Using (31)P NMR and mass spectrometry we demonstrate that recombinant toxins, as well as whole venoms from diverse Loxosceles species, exclusively catalyze transphosphatidylation rather than hydrolysis, forming cyclic phosphate products from both major substrates. Cyclic phosphates have vastly different biological properties from their monoester counterparts, and they may be relevant to the pathology of brown spider envenomation.
Collapse
|
25
|
Modulation of membrane phospholipids, the cytosolic calcium influx and cell proliferation following treatment of B16-F10 cells with recombinant phospholipase-D from Loxosceles intermedia (brown spider) venom. Toxicon 2013; 67:17-30. [DOI: 10.1016/j.toxicon.2013.01.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 01/24/2013] [Accepted: 01/29/2013] [Indexed: 10/27/2022]
|
26
|
Hankins JL, Ward KE, Linton SS, Barth BM, Stahelin RV, Fox TE, Kester M. Ceramide 1-phosphate mediates endothelial cell invasion via the annexin a2-p11 heterotetrameric protein complex. J Biol Chem 2013; 288:19726-38. [PMID: 23696646 DOI: 10.1074/jbc.m113.481622] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The bioactive sphingolipid, ceramide 1-phosphate (C-1-P), has been implicated as an extracellular chemotactic agent directing cellular migration in hematopoietic stem/progenitor cells and macrophages. However, interacting proteins that could mediate these actions of C-1-P have, thus far, eluded identification. We have now identified and characterized interactions between ceramide 1-phosphate and the annexin a2-p11 heterotetramer constituents. This C-1-P-receptor complex is capable of facilitating cellular invasion. Herein, we demonstrate in both coronary artery macrovascular endothelial cells and retinal microvascular endothelial cells that C-1-P induces invasion through an extracellular matrix barrier. By employing surface plasmon resonance, lipid-binding ELISA, and mass spectrometry technologies, we have demonstrated that the heterotetramer constituents bind to C-1-P. Although the annexin a2-p11 heterotetramer constituents do not bind the lipid C-1-P exclusively, other structurally similar lipids, such as phosphatidylserine, sphingosine 1-phosphate, and phosphatidic acid, could not elicit the potent chemotactic stimulation observed with C-1-P. Further, we show that siRNA-mediated knockdown of either annexin a2 or p11 protein significantly inhibits C-1-P-directed invasion, indicating that the heterotetrameric complex is required for C-1-P-mediated chemotaxis. These results imply that extracellular C-1-P, acting through the extracellular annexin a2-p11 heterotetrameric protein, can mediate vascular endothelial cell invasion.
Collapse
Affiliation(s)
- Jody L Hankins
- Department of Pharmacology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | | | |
Collapse
|