1
|
Ban Z, Hou YJ, Ku E, Zhu Y, Hu Y, Karadanaian N, Zhao Y, Estelle M. BTB/POZ-MATH proteins regulate Arabidopsis seedling development by promoting auxin-independent degradation of the Aux/IAA protein IAA10. PLANT PHYSIOLOGY 2025; 198:kiaf155. [PMID: 40329867 PMCID: PMC12043071 DOI: 10.1093/plphys/kiaf155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/25/2025] [Accepted: 03/06/2025] [Indexed: 04/23/2025]
Abstract
After germination, seedlings undergo etiolated development (skotomorphogenesis), enabling them to grow toward the soil surface. In Arabidopsis (Arabidopsis thaliana), etiolated seedlings exhibit rapid hypocotyl elongation, apical hook formation, and closed cotyledons to protect the meristem. In this study, we found that high-order mutants in the BPM (BTB/POZ-MATH) gene family displayed defects in seedling development, characterized by a shorter hypocotyl, early apical hook opening, and opened cotyledons in the dark. BPM1, BPM2, BPM4, and BPM5 exhibited distinct expression patterns and subcellular localization in etiolated seedlings. In a hypocotyl segment assay, the bpm mutants showed defects in auxin response, indicating impaired auxin signaling in the hypocotyl. Expression of the auxin reporter DR5:GFP was also altered in the bpm1,4,5 mutant in various tissues compared with the wild type. Furthermore, yeast 2-hybrid, bimolecular fluorescence complementation, and co-immunoprecipitation assay analyses showed that BPM1 interacts with IAA10. Experiments in protoplasts indicated that BPM1 promotes IAA10 ubiquitylation and degradation, which was supported by greater IAA10 protein accumulation in the bpm1,4,5 mutant background. In addition, IAA10 overexpression resulted in phenotypes similar to those of the bpm mutants, indicating that the BPMs may target the Aux/IAA proteins for ubiquitylation and degradation. Overall, our findings shed light on the key roles of the BPMs in auxin signaling during seedling development.
Collapse
Affiliation(s)
- Zhaonan Ban
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Yueh-Ju Hou
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Ellyse Ku
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - YingLin Zhu
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Yun Hu
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Natalie Karadanaian
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Yunde Zhao
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Mark Estelle
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
2
|
Bhujbal SK, Rai AN, Joshi-Saha A. Dwarfs standing tall: breeding towards the 'Yellow revolution' through insights into plant height regulation. PLANT MOLECULAR BIOLOGY 2025; 115:34. [PMID: 39971832 PMCID: PMC11839727 DOI: 10.1007/s11103-025-01565-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 02/10/2025] [Indexed: 02/21/2025]
Abstract
High oilseed production is an exigency due to the increasing edible oil consumption of the growing population. Rapeseed and mustard are cultivated worldwide and contribute significantly to the world's total oilseed production. Already a plateau is reached in terms of area and yield in most of the existing cultivars. Most of the commercially cultivated high yielding rapeseed and mustard varieties are tall, mainly due to a wider use of heterosis. However, they are susceptible to lodging and consequent yield losses. Plant yield is strongly dependent upon its architecture; therefore, 'ideotype breeding' is the key approach adopted to develop new varieties with enhanced yield potential, which is less explored in these crops. Dwarf/ semi dwarf plant type varieties has shown its improved yield potential over tall plant type in cereals which further leads to 'Green revolution' in Asian countries. Although, many induced dwarf mutants in rapeseed and mustard were isolated, unlike dwarf green-revolution varieties of cereals, most of them had undesirable plant types with defects including extreme dwarfism and sterility, leading to poor yield potential. Understanding the genetic and molecular mechanisms governing plant height and its correlation with yield and yield contributing characters is crucial. In this review, recent insights into genetic, molecular, and anatomical regulation of plant height have been discussed. The role of hormones, their crosstalk, and hormonal control for cell division and expansion have been delineated with respect to plant architecture. Many dwarfing genes are identified as being part of various phytohormone pathways. Parallelly, molecular links between plant height and flowering time have been explored. The overall synthesis of the review points out some key target pathways and genes that will be useful for plant breeders as well as biotechnologists for targeted genome editing for improving plant architecture without a yield penalty.
Collapse
Affiliation(s)
- Shankar K Bhujbal
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, Maharashtra, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, Maharashtra, India
| | - Archana N Rai
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, Maharashtra, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, Maharashtra, India.
| | - Archana Joshi-Saha
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, Maharashtra, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, Maharashtra, India.
| |
Collapse
|
3
|
Ban Z, Hou YJ, Ku E, Zhu Y, Hu Y, Karadanaian N, Zhao Y, Estelle M. BPMs regulate Arabidopsis seedling development by promoting auxin-independent degradation of the Aux/IAA protein IAA10. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.625463. [PMID: 39651233 PMCID: PMC11623633 DOI: 10.1101/2024.11.26.625463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
After germination, seedlings undergo etiolated development (skotomorphogenesis), enabling them to grow towards the soil surface. In Arabidopsis, etiolated seedlings exhibit rapid hypocotyl elongation, apical hook formation and closed cotyledons to protect the meristem. In this study, we found that high-order mutants in the BPM gene family displayed defects in seedling development, characterized by a shorter hypocotyl, early apical hook opening, and opened cotyledons in the dark. BPM1, BPM2, BPM4, and BPM5 exhibit distinct expression patterns and subcellular localization in etiolated seedlings. In a hypocotyl segment assay the bpm mutants showed defects in auxin response indicating impaired auxin signaling in the hypocotyl. Expression of the auxin reporter DR5:GFP was also altered in the bpm1,4,5 mutant in various tissues compared to the wild type. Furthermore, we showed that BPM1 and IAA10 interact in yeast two-hybrid, BiFC, and Co-IP assays. Experiments in protoplasts indicated that BPM1 promotes ubiquitylation and degradation of IAA10, and the level of IAA10 protein is greater in the bpm1,4,5 mutant. In addition, IAA10 over-expression resulted in phenotypes similar to the bpm mutants. These results indicate that the BPMs target the Aux/IAA proteins for ubiquitylation and degradation. Overall, our findings shed light on the key roles of the BPMs in auxin signaling during seedling development.
Collapse
|
4
|
Wang D, Coleman HD. The transcriptional regulation of a putative hemicellulose gene, PtrPARVUS2 in poplar. Sci Rep 2024; 14:12592. [PMID: 38824196 PMCID: PMC11144201 DOI: 10.1038/s41598-024-63408-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024] Open
Abstract
The plant cell wall serves as a critical interface between the plant and its environment, offering protection against various stresses and contributing to biomass production. Hemicellulose is one of the major components of the cell wall, and understanding the transcriptional regulation of its production is essential to fully understanding cell wall formation. This study explores the regulatory mechanisms underlying one of the genes involved in hemicellulose biosynthesis, PtrPARVUS2. Six transcription factors (TFs) were identified from a xylem-biased library to negatively regulate PtrPARVUS2 expression. These TFs, belonging to diverse TF families, were confirmed to bind to specific cis-elements in the PtrPARVUS2 promoter region, as validated by Yeast One-Hybrid (Y1H) assays, transient expression analysis, and Chromatin Immunoprecipitation sequencing (ChIP-seq) assays. Furthermore, motif analysis identified putative cis-regulatory elements bound by these TFs, shedding light on the transcriptional regulation of SCW biosynthesis genes. Notably, several TFs targeted genes encoding uridine diphosphate glycosyltransferases (UGTs), crucial enzymes involved in hemicellulose glycosylation. Phylogenetic analysis of UGTs regulated by these TFs highlighted their diverse roles in modulating hemicellulose synthesis. Overall, this study identifies a set of TFs that regulate PARVUS2 in poplar, providing insights into the intricate coordination of TFs and PtrPARVUS2 in SCW formation. Understanding these regulatory mechanisms enhances our ability to engineer plant biomass for tailored applications, including biofuel production and bioproduct development.
Collapse
Affiliation(s)
- Dan Wang
- Department of Biology, Syracuse University, Syracuse, NY, 13244, USA
| | - Heather D Coleman
- Department of Biology, Syracuse University, Syracuse, NY, 13244, USA.
| |
Collapse
|
5
|
Emenecker RJ, Cammarata J, Yuan I, Howard C, Ebrahimi Naghani S, Robert HS, Nambara E, Strader LC. Abscisic acid biosynthesis is necessary for full auxin effects on hypocotyl elongation. Development 2023; 150:dev202106. [PMID: 37846593 PMCID: PMC10730017 DOI: 10.1242/dev.202106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/07/2023] [Indexed: 10/18/2023]
Abstract
In concert with other phytohormones, auxin regulates plant growth and development. However, how auxin and other phytohormones coordinately regulate distinct processes is not fully understood. In this work, we uncover an auxin-abscisic acid (ABA) interaction module in Arabidopsis that is specific to coordinating activities of these hormones in the hypocotyl. From our forward genetics screen, we determine that ABA biosynthesis is required for the full effects of auxin on hypocotyl elongation. Our data also suggest that ABA biosynthesis is not required for the inhibitory effects of auxin treatment on root elongation. Our transcriptome analysis identified distinct auxin-responsive genes in root and shoot tissues, which is consistent with differential regulation of growth in these tissues. Further, our data suggest that many gene targets repressed upon auxin treatment require an intact ABA pathway for full repression. Our results support a model in which auxin stimulates ABA biosynthesis to fully regulate hypocotyl elongation.
Collapse
Affiliation(s)
- Ryan J. Emenecker
- Department of Biology, Washington University, St. Louis, MO 63130, USA
- Center for Biomolecular Condensates, Washington University, St. Louis, MO 63130, USA
- Center for Engineering Mechanobiology, Washington University, St. Louis, MO 63130, USA
| | | | - Irene Yuan
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | - Caroline Howard
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Shekufeh Ebrahimi Naghani
- Mendel Centre for Genomics and Proteomics of Plant Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czechia
| | - Helene S. Robert
- Mendel Centre for Genomics and Proteomics of Plant Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Eiji Nambara
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Lucia C. Strader
- Center for Biomolecular Condensates, Washington University, St. Louis, MO 63130, USA
- Center for Engineering Mechanobiology, Washington University, St. Louis, MO 63130, USA
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
6
|
Liu H, Wang K, Yang J, Wang X, Mei Q, Qiu L, Ma F, Mao K. The apple transcription factor MdbHLH4 regulates plant morphology and fruit development by promoting cell enlargement. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 205:108207. [PMID: 38006791 DOI: 10.1016/j.plaphy.2023.108207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/12/2023] [Accepted: 11/16/2023] [Indexed: 11/27/2023]
Abstract
The bHLH family, the second largest transcription factor (TF) family in plants, plays a crucial role in regulating plant growth and development processes. However, the biological functions and mechanisms of most bHLH proteins remain unknown, particularly in apples. In this study, we found that MdbHLH4 positively modulates plant growth and development by enhancing cell expansion. Overexpression (OE) of MdbHLH4 resulted in increased biomass, stem and root length, leaf area, and larger areas of pith, xylem, and cortex with greater cell size compared with wild-type apple plants. Conversely, RNA interference (RNAi)-mediated silencing of MdbHLH4 led to reduced xylem and phloem as well as smaller cell size compared to wild-type apple plants. Ectopic expression of MdbHLH4 in tomatoes resulted in enlarged fruits with impaired color appearance, decreased accumulation of soluble solids, and decreased flesh firmness along with larger seeds. Subsequent investigations have shown that MdbHLH4 directly binds to the promoters of MdARF6b and MdPIF4b, enhancing their expression levels. These findings suggest that MdbHLH4 potentially regulates plant cell expansion through auxin and light signaling pathways. These study results not only provide new insights into the roles of bHLH transcription factors in regulating plant growth and development but also contribute to a deeper understanding of their underlying mechanisms.
Collapse
Affiliation(s)
- Huayu Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Kangning Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jie Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xingfa Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Quanlin Mei
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Lina Qiu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Ke Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
7
|
Schaefer K, Cairo Baza A, Huang T, Cioffi T, Elliott A, Shaw SL. WAVE-DAMPENED2-LIKE4 modulates the hyper-elongation of light-grown hypocotyl cells. PLANT PHYSIOLOGY 2023; 192:2687-2702. [PMID: 37096683 DOI: 10.1093/plphys/kiad248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 05/03/2023]
Abstract
Light, temperature, water, and nutrient availability influence how plants grow to maximize access to resources. Axial growth, the linear extension of tissues by coordinated axial cell expansion, plays a central role in these adaptive morphological responses. Using Arabidopsis (Arabidopsis thaliana) hypocotyl cells to explore axial growth control mechanisms, we investigated WAVE-DAMPENED2-LIKE4 (WDL4), an auxin-induced, microtubule-associated protein and member of the larger WDL gene family shown to modulate hypocotyl growth under changing environmental conditions. Loss-of-function wdl4 seedlings exhibited a hyper-elongation phenotype under light conditions, continuing to elongate when wild-type Col-0 hypocotyls arrested and reaching 150% to 200% of wild-type length before shoot emergence. wdl4 seedling hypocotyls showed dramatic hyper-elongation (500%) in response to temperature elevation, indicating an important role in morphological adaptation to environmental cues. WDL4 was associated with microtubules under both light and dark growth conditions, and no evidence was found for altered microtubule array patterning in loss-of-function wdl4 mutants under various conditions. Examination of hormone responses showed altered sensitivity to ethylene and evidence for changes in the spatial distribution of an auxin-dependent transcriptional reporter. Our data provide evidence that WDL4 regulates hypocotyl cell elongation without substantial changes to microtubule array patterning, suggesting an unconventional role in axial growth control.
Collapse
Affiliation(s)
- Kristina Schaefer
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | - Tina Huang
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Timothy Cioffi
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Andrew Elliott
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Sidney L Shaw
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
8
|
Zheng S, Shin K, Lin W, Wang W, Yang X. Identification and Characterization of PRE Genes in Moso Bamboo ( Phyllostachys edulis). Int J Mol Sci 2023; 24:ijms24086886. [PMID: 37108050 PMCID: PMC10138968 DOI: 10.3390/ijms24086886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/24/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Basic helix-loop-helix (bHLH)/HLH transcription factors are involved in various aspects of the growth and development of plants. Here, we identified four HLH genes, PePRE1-4, in moso bamboo plants that are homologous to Arabidopsis PRE genes. In bamboo seedlings, PePRE1/3 were found to be highly expressed in the internode and lamina joint by using quantitative RT-PCR analysis. In the elongating internode of bamboo shoots, PePRE genes are expressed at higher levels in the basal segment than in the mature top segment. Overexpression of PePREs (PePREs-OX) in Arabidopsis showed longer petioles and hypocotyls, as well as earlier flowering. PePRE1 overexpression restored the phenotype due to the deficiency of AtPRE genes caused by artificial micro-RNA. PePRE1-OX plants showed hypersensitivity to propiconazole treatment compared with the wild type. In addition, PePRE1/3 but not PePRE2/4 proteins accumulated as punctate structures in the cytosol, which was disrupted by the vesicle recycling inhibitor brefeldin A (BFA). PePRE genes have a positive function in the internode elongation of moso bamboo shoots, and overexpression of PePREs genes promotes flowering and growth in Arabidopsis. Our findings provided new insights about the fast-growing mechanism of bamboo shoots and the application of PRE genes from bamboo.
Collapse
Affiliation(s)
- Sujin Zheng
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kihye Shin
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Department of Microbiology and Immunology, Jeju National University College of Medicine, Jeju 63243, Republic of Korea
| | - Wenxiong Lin
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenfei Wang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuelian Yang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
9
|
Sang Q, Fan L, Liu T, Qiu Y, Du J, Mo B, Chen M, Chen X. MicroRNA156 conditions auxin sensitivity to enable growth plasticity in response to environmental changes in Arabidopsis. Nat Commun 2023; 14:1449. [PMID: 36949101 PMCID: PMC10033679 DOI: 10.1038/s41467-023-36774-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/14/2023] [Indexed: 03/24/2023] Open
Abstract
MicroRNAs (miRNAs) play diverse roles in plant development, but whether and how miRNAs participate in thermomorphogenesis remain ambiguous. Here we show that HYPONASTIC LEAVES 1 (HYL1)-a key component of miRNA biogenesis-acts downstream of the thermal regulator PHYTOCHROME INTERACTING FACTOR 4 in the temperature-dependent plasticity of hypocotyl growth in Arabidopsis. A hyl1-2 suppressor screen identified a dominant dicer-like1 allele that rescues hyl1-2's defects in miRNA biogenesis and thermoresponsive hypocotyl elongation. Genome-wide miRNA and transcriptome analysis revealed microRNA156 (miR156) and its target SQUAMOSA PROMOTER-BINDING-PROTEIN-LIKE 9 (SPL9) to be critical regulators of thermomorphogenesis. Surprisingly, perturbation of the miR156/SPL9 module disengages seedling responsiveness to warm temperatures by impeding auxin sensitivity. Moreover, miR156-dependent auxin sensitivity also operates in the shade avoidance response at lower temperatures. Thus, these results unveil the miR156/SPL9 module as a previously uncharacterized genetic circuit that enables plant growth plasticity in response to environmental temperature and light changes.
Collapse
Affiliation(s)
- Qing Sang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of the Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Lusheng Fan
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Tianxiang Liu
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Yongjian Qiu
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
- Department of Biology, University of Mississippi, Oxford, MS, 38677, USA
| | - Juan Du
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of the Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Meng Chen
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA.
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA.
- School of Life Sciences, Peking-Tsinghua Joint Center for Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
10
|
Kong Y, Wang G, Tang H, Yang J, Yang Y, Wang J, Li G, Li Y, Yuan J. Multi-omics analysis provides insight into the phytotoxicity of chicken manure and cornstalk on seed germination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160611. [PMID: 36460104 DOI: 10.1016/j.scitotenv.2022.160611] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/21/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
To minimize environmental risks and the phytotoxic influence of organic materials on crop growth, it is necessary to test their phytotoxicity and maturity when they were used in farmland. However, the stress response of seed germination to chicken manure and cornstalks is not clear. This study used multi-omics analysis to investigate the inhibition mechanism of seed germination by chicken manure and cornstalk. Chicken manure caused destructive inhibition of seed germination with higher phytotoxicity (GI = 0). Cornstalk also had a low GI (8.81 %), while it mainly inhibited radicle growth (RL = 9.39 %) rather than seed germination (GR = 93.33 %). The response of radish seed germination to chicken manure and cornstalk phytotoxic stresses was accompanied by metabolic adjustments of storage substance accumulation, antioxidant enzyme activity change, phytohormone induction, and expression of specific proteins and gene regulation. Combined transcriptomic and proteomic analysis revealed that differential expression of 13,090 (5944 upregulated/7146 downregulated) and 3850 (2389 upregulated/1461 downregulated) genes (DEGs), and 1041 (82 upregulated/932 downregulated) and 575 (111 upregulated/464 downregulated) proteins (DEPs) at chicken manure and cornstalk treatment, respectively. Most down-regulated genes and proteins were involved in phenylpropanoid biosynthesis under chicken manure stress, which caused irreversible inhibition of seed germination. Down-regulation of phytohormone signal transduction-related genes under cornstalk stress resulted in inhibition of radicle growth, but the inhibitory stress was restorable. These findings provide new insight into the phytotoxicity of livestock manure and cornstalk on seed germination.
Collapse
Affiliation(s)
- Yilin Kong
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Guoying Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Huan Tang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jia Yang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Yan Yang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Jiani Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Yun Li
- College of Resources and Environmental Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Jing Yuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China.
| |
Collapse
|
11
|
A combination of plasma membrane sterol biosynthesis and autophagy is required for shade-induced hypocotyl elongation. Nat Commun 2022; 13:5659. [PMID: 36216814 PMCID: PMC9550796 DOI: 10.1038/s41467-022-33384-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 09/15/2022] [Indexed: 12/04/2022] Open
Abstract
Plant growth ultimately depends on fixed carbon, thus the available light for photosynthesis. Due to canopy light absorption properties, vegetative shade combines low blue (LB) light and a low red to far-red ratio (LRFR). In shade-avoiding plants, these two conditions independently trigger growth adaptations to enhance light access. However, how these conditions, differing in light quality and quantity, similarly promote hypocotyl growth remains unknown. Using RNA sequencing we show that these two features of shade trigger different transcriptional reprogramming. LB induces starvation responses, suggesting a switch to a catabolic state. Accordingly, LB promotes autophagy. In contrast, LRFR induced anabolism including expression of sterol biosynthesis genes in hypocotyls in a manner dependent on PHYTOCHROME-INTERACTING FACTORs (PIFs). Genetic analyses show that the combination of sterol biosynthesis and autophagy is essential for hypocotyl growth promotion in vegetative shade. We propose that vegetative shade enhances hypocotyl growth by combining autophagy-mediated recycling and promotion of specific lipid biosynthetic processes. Plants subject to vegetative shade receive a low quantity of blue light (LB) and a low ratio of red to far-red light (LFLR). Here the authors show that while LB induces autophagy, LFLR leads to changes in lipid metabolism, and propose that these processes may contribute to shade avoidance responses.
Collapse
|
12
|
Ping X, Ye Q, Yan M, Zeng J, Yan X, Li H, Li J, Liu L. Integrated genetic mapping and transcriptome analysis reveal the BnaA03.IAA7 protein regulates plant architecture and gibberellin signaling in Brassica napus L. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3497-3510. [PMID: 35962210 DOI: 10.1007/s00122-022-04196-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
A novel mutation in the BnaA03.IAA7 protein reduces plant height and enhances gibberellin signaling in Brassica napus L. Rapeseed (Brassica napus) is an excellent and important source for vegetable oil production, but its production is severely affected by lodging. Lodging hinders mechanization and decreases yield, and an ideal solution is semidwarf breeding. Limited by germplasm resources, semidwarf breeding developed slowly in rapeseed. In the current study, a mutant called sdA03 was isolated from EMS-mutagenized lines of Zhongshuang 11 (ZS11). The inheritance analysis showed that phenotypes of sdA03 were controlled by a single semidominant gene. Genetic mapping, RNA-seq and candidate gene analysis identified BnaA03.IAA7 as a candidate gene, and a function test confirmed that the mutated BnaA03.iaa7 regulates plant architecture in a dose-dependent manner. Yeast two-hybrid and transient expression experiments illustrated the P87L substitution in the GWPPV/I degron motif of BnaA03.iaa7 impaired the interaction between BnaA03.IAA7 and TIR1 proteins, and BnaA03.iaa7 prevented ARF from activating the auxin signaling pathway.The gibberellin (GA) content was higher in sdA03 hypocotyls than in those of ZS11. Further expression analysis showed more active gibberellin signaling in hypocotyl and richer expression of GA synthetic genes in root and cotyledon of sdA03 seedlings. Finally, a marker was developed based on the SNP found in BnaA03.iaa7 and used in molecular breeding. The study enriched our understanding of the architectural regulation of rapeseed and provided germplasm resources for breeding.
Collapse
Affiliation(s)
- Xiaoke Ping
- College of Agronomy and Biotechnology, Academy of Agricultural Sciences, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Southwest University, Chongqing, 400715, China
| | - Qianjun Ye
- College of Agronomy and Biotechnology, Academy of Agricultural Sciences, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Southwest University, Chongqing, 400715, China
| | - Mei Yan
- College of Agronomy and Biotechnology, Academy of Agricultural Sciences, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Southwest University, Chongqing, 400715, China
| | - Jianyan Zeng
- Biotechnology Research Center, Southwest University, Chongqing, 400715, China
| | - Xingying Yan
- Biotechnology Research Center, Southwest University, Chongqing, 400715, China
| | - Haitao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, 430070, China
| | - Jiana Li
- College of Agronomy and Biotechnology, Academy of Agricultural Sciences, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Southwest University, Chongqing, 400715, China
| | - Liezhao Liu
- College of Agronomy and Biotechnology, Academy of Agricultural Sciences, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
13
|
Nagpal P, Reeves PH, Wong JH, Armengot L, Chae K, Rieveschl NB, Trinidad B, Davidsdottir V, Jain P, Gray WM, Jaillais Y, Reed JW. SAUR63 stimulates cell growth at the plasma membrane. PLoS Genet 2022; 18:e1010375. [PMID: 36121899 PMCID: PMC9522268 DOI: 10.1371/journal.pgen.1010375] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 09/29/2022] [Accepted: 08/04/2022] [Indexed: 11/20/2022] Open
Abstract
In plants, regulated cell expansion determines organ size and shape. Several members of the family of redundantly acting Small Auxin Up RNA (SAUR) proteins can stimulate plasma membrane (PM) H+-ATPase proton pumping activity by inhibiting PM-associated PP2C.D phosphatases, thereby increasing the PM electrochemical potential, acidifying the apoplast, and stimulating cell expansion. Similarly, Arabidopsis thaliana SAUR63 was able to increase growth of various organs, antagonize PP2C.D5 phosphatase, and increase H+-ATPase activity. Using a gain-of-function approach to bypass genetic redundancy, we dissected structural requirements for SAUR63 growth-promoting activity. The divergent N-terminal domain of SAUR63 has a predicted basic amphipathic α-helix and was able to drive partial PM association. Deletion of the N-terminal domain decreased PM association of a SAUR63 fusion protein, as well as decreasing protein level and eliminating growth-promoting activity. Conversely, forced PM association restored ability to promote H+-ATPase activity and cell expansion, indicating that SAUR63 is active when PM-associated. Lipid binding assays and perturbations of PM lipid composition indicate that the N-terminal domain can interact with PM anionic lipids. Mutations in the conserved SAUR domain also reduced PM association in root cells. Thus, both the N-terminal domain and the SAUR domain may cooperatively mediate the SAUR63 PM association required to promote growth. Plant organs reach their final shape and size after substantial cell expansion. Proton pumps at the plasma membrane promote cell expansion by acidifying the cell wall to loosen it, and by increasing electrochemical potential across the plasma membrane for solute uptake that maintains intracellular turgor. Plasma-membrane-associated proteins tightly regulate proton pump activity, in order for organs to grow to an appropriate extent. We have studied requirements for activity of one such regulatory protein in the model plant Arabidopsis called SAUR63. This protein is made rapidly in response to plant growth hormones, and it increases proton pump activity to promote organ growth. These activities depend on its binding to anionic lipids in the plasma membrane, and forced plasma membrane association of SAUR63 can increase growth. Many proteins in the same family are found within Arabidopsis and in all land plants, and likely differ in their affinity for the plasma membrane or in other properties. Further studies of other family members may show how such proteins regulate growth under diverse physiological contexts.
Collapse
Affiliation(s)
- Punita Nagpal
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Paul H. Reeves
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jeh Haur Wong
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Laia Armengot
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Keun Chae
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Nathaniel B. Rieveschl
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Brendan Trinidad
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Vala Davidsdottir
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Prateek Jain
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - William M. Gray
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Jason W. Reed
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
- * E-mail:
| |
Collapse
|
14
|
PIF7 is a master regulator of thermomorphogenesis in shade. Nat Commun 2022; 13:4942. [PMID: 36038577 PMCID: PMC9424238 DOI: 10.1038/s41467-022-32585-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/06/2022] [Indexed: 11/26/2022] Open
Abstract
The size of plant organs is highly responsive to environmental conditions. The plant’s embryonic stem, or hypocotyl, displays phenotypic plasticity, in response to light and temperature. The hypocotyl of shade avoiding species elongates to outcompete neighboring plants and secure access to sunlight. Similar elongation occurs in high temperature. However, it is poorly understood how environmental light and temperature cues interact to effect plant growth. We found that shade combined with warm temperature produces a synergistic hypocotyl growth response that dependent on PHYTOCHROME-INTERACTING FACTOR 7 (PIF7) and auxin. This unique but agriculturally relevant scenario was almost totally independent on PIF4 activity. We show that warm temperature is sufficient to promote PIF7 DNA binding but not transcriptional activation and we demonstrate that additional, unknown factor/s must be working downstream of the phyB-PIF-auxin module. Our findings will improve the predictions of how plants will respond to increased ambient temperatures when grown at high density. Plant hypocotyl elongation response to light and temperature. Here the authors show that shade combined with warm temperature synergistically enhances the hypocotyl growth response via the PIF7 transcription factor, auxin, and as yet unknown factor.
Collapse
|
15
|
Differences in Environmental and Hormonal Regulation of Growth Responses in Two Highly Productive Hybrid Populus Genotypes. FORESTS 2022. [DOI: 10.3390/f13020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Phenotypic plasticity, in response to adverse conditions, determines plant productivity and survival. The aim of this study was to test if two highly productive Populus genotypes, characterised by different in vitro etiolation patterns, differ also in their responses to hormones gibberellin (GA) and abscisic acid (ABA), and to a GA biosynthesis inhibitor paclobutrazol (PBZ). The experiments on shoot cultures of ‘Hybrida 275′ (abbr. H275; Populus maximowiczii × P. trichocarpa) and IBL 91/78 (Populus tremula × P. alba) were conducted by either modulating the physical in vitro environment or by adding specific chemicals to the nutrient medium. Our results revealed two main sets of differences between the studied genotypes in environmental and hormonal regulation of growth responses. First, the genotype H275 responded to darkness with PBZ-inhibitable shoot elongation; in contrast, the elongation of IBL 91/78 shoots was not affected either by darkness or PBZ treatment. Secondly, the explants of H275 were unable to recover their growth if it was inhibited with ABA; in contrast, those of IBL 91/78 recovered so well after the temporal inhibition by ABA that, when rooted subsequently, they developed longer shoots and roots than without a previous ABA treatment. Our results indicate that GA catabolism and repressive signalling provide an important pathway to control growth and physiological adaptation in response to immediate or impending adverse conditions. These observations can help breeders define robust criteria for identifying genotypes with high resistance and productivity and highlight where genotypes exhibit susceptibility to stress.
Collapse
|
16
|
Rigal A, Doyle SM, Ritter A, Raggi S, Vain T, O’Brien JA, Goossens A, Pauwels L, Robert S. A network of stress-related genes regulates hypocotyl elongation downstream of selective auxin perception. PLANT PHYSIOLOGY 2021; 187:430-445. [PMID: 34618142 PMCID: PMC8418399 DOI: 10.1093/plphys/kiab269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/06/2021] [Indexed: 06/13/2023]
Abstract
The plant hormone auxin, a master coordinator of development, regulates hypocotyl elongation during seedling growth. We previously identified the synthetic molecule RubNeddin 1 (RN1), which induces degradation of the AUXIN/INDOLE-3-ACETIC ACID (AUX/IAA) transcriptional repressors INDOLE-3-ACETIC ACID-INDUCIBLE3 (IAA3) and IAA7 in planta and strongly promotes hypocotyl elongation. In the present study, we show that despite the structural similarity of RN1 to the synthetic auxin 2,4-dichlorophenoxyacetic-acid (2,4-D), direct treatments with these compounds in Arabidopsis (Arabidopsis thaliana) result in distinct effects, possibly due to enhanced uptake of RN1 and low-level, chronic release of 2,4-D from RN1 in planta. We confirm RN1-induced hypocotyl elongation occurs via specific TRANSPORT INHIBITOR RESISTANT1 (TIR1)/AUXIN SIGNALING F-BOX (AFB) receptor-mediated auxin signaling involving TIR1, AFB2, and AFB5. Using a transcriptome profiling strategy and candidate gene approach, we identify the genes ZINC FINGER OF ARABIDOPSIS THALIANA10 (ZAT10), ARABIDOPSIS TOXICOS EN LEVADURA31 (ATL31), and WRKY DNA-BINDING PROTEIN33 (WRKY33) as being rapidly upregulated by RN1, despite being downregulated by 2,4-D treatment. RN1-induced expression of these genes also occurs via TIR1/AFB-mediated auxin signaling. Our results suggest both hypocotyl elongation and transcription of these genes are induced by RN1 via the promoted degradation of the AUX/IAA transcriptional repressor IAA7. Moreover, these three genes, which are known to be stress-related, act in an inter-dependent transcriptional regulatory network controlling hypocotyl elongation. Together, our results suggest ZAT10, ATL31, and WRKY33 take part in a common gene network regulating hypocotyl elongation in Arabidopsis downstream of a selective auxin perception module likely involving TIR1, AFB2, and AFB5 and inducing the degradation of IAA7.
Collapse
Affiliation(s)
- Adeline Rigal
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Siamsa M. Doyle
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Andrés Ritter
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Sara Raggi
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Thomas Vain
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - José Antonio O’Brien
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Santiago, 8331150, Chile
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Avenida Libertador Bernardo O’Higgins 340, Santiago, 8331150, Chile
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Laurens Pauwels
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Stéphanie Robert
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| |
Collapse
|
17
|
Dash L, McEwan RE, Montes C, Mejia L, Walley JW, Dilkes BP, Kelley DR. slim shady is a novel allele of PHYTOCHROME B present in the T-DNA line SALK_015201. PLANT DIRECT 2021; 5:e00326. [PMID: 34136747 PMCID: PMC8197431 DOI: 10.1002/pld3.326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/13/2021] [Accepted: 04/22/2021] [Indexed: 05/06/2023]
Abstract
Auxin is a hormone that is required for hypocotyl elongation during seedling development. In response to auxin, rapid changes in transcript and protein abundance occur in hypocotyls, and some auxin responsive gene expression is linked to hypocotyl growth. To functionally validate proteomic studies, a reverse genetics screen was performed on mutants in auxin-regulated proteins to identify novel regulators of plant growth. This uncovered a long hypocotyl mutant, which we called slim shady, in an annotated insertion line in IMMUNOREGULATORY RNA-BINDING PROTEIN (IRR). Overexpression of the IRR gene failed to rescue the slim shady phenotype and characterization of a second T-DNA allele of IRR found that it had a wild-type (WT) hypocotyl length. The slim shady mutant has an elevated expression of numerous genes associated with the brassinosteroid-auxin-phytochrome (BAP) regulatory module compared to WT, including transcription factors that regulate brassinosteroid, auxin, and phytochrome pathways. Additionally, slim shady seedlings fail to exhibit a strong transcriptional response to auxin. Using whole genome sequence data and genetic complementation analysis with SALK_015201C, we determined that a novel single nucleotide polymorphism in PHYTOCHROME B was responsible for the slim shady phenotype. This is predicted to induce a frameshift and premature stop codon at leucine 1125, within the histidine kinase-related domain of the carboxy terminus of PHYB, which is required for phytochrome signaling and function. Genetic complementation analyses with phyb-9 confirmed that slim shady is a mutant allele of PHYB. This study advances our understanding of the molecular mechanisms in seedling development, by furthering our understanding of how light signaling is linked to auxin-dependent cell elongation. Furthermore, this study highlights the importance of confirming the genetic identity of research material before attributing phenotypes to known mutations sourced from T-DNA stocks.
Collapse
Affiliation(s)
- Linkan Dash
- Department of GeneticsDevelopment and Cell BiologyIowa State UniversityAmesIAUSA
| | - Robert E. McEwan
- Center for Plant BiologyPurdue UniversityWest LafayettINUSA
- Department of Horticulture and Landscape ArchitecturePurdue UniversityWest LafayettINUSA
| | - Christian Montes
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIAUSA
| | - Ludvin Mejia
- Department of GeneticsDevelopment and Cell BiologyIowa State UniversityAmesIAUSA
| | - Justin W. Walley
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIAUSA
| | - Brian P. Dilkes
- Center for Plant BiologyPurdue UniversityWest LafayettINUSA
- Department of Horticulture and Landscape ArchitecturePurdue UniversityWest LafayettINUSA
- Department of BiochemistryPurdue UniversityWest LafayettINUSA
| | - Dior R. Kelley
- Department of GeneticsDevelopment and Cell BiologyIowa State UniversityAmesIAUSA
| |
Collapse
|
18
|
van der Woude L, Piotrowski M, Klaasse G, Paulus JK, Krahn D, Ninck S, Kaschani F, Kaiser M, Novák O, Ljung K, Bulder S, van Verk M, Snoek BL, Fiers M, Martin NI, van der Hoorn RAL, Robert S, Smeekens S, van Zanten M. The chemical compound 'Heatin' stimulates hypocotyl elongation and interferes with the Arabidopsis NIT1-subfamily of nitrilases. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1523-1540. [PMID: 33768644 PMCID: PMC8360157 DOI: 10.1111/tpj.15250] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/22/2021] [Indexed: 05/17/2023]
Abstract
Temperature passively affects biological processes involved in plant growth. Therefore, it is challenging to study the dedicated temperature signalling pathways that orchestrate thermomorphogenesis, a suite of elongation growth-based adaptations that enhance leaf-cooling capacity. We screened a chemical library for compounds that restored hypocotyl elongation in the pif4-2-deficient mutant background at warm temperature conditions in Arabidopsis thaliana to identify modulators of thermomorphogenesis. The small aromatic compound 'Heatin', containing 1-iminomethyl-2-naphthol as a pharmacophore, was selected as an enhancer of elongation growth. We show that ARABIDOPSIS ALDEHYDE OXIDASES redundantly contribute to Heatin-mediated hypocotyl elongation. Following a chemical proteomics approach, the members of the NITRILASE1-subfamily of auxin biosynthesis enzymes were identified among the molecular targets of Heatin. Our data reveal that nitrilases are involved in promotion of hypocotyl elongation in response to high temperature and Heatin-mediated hypocotyl elongation requires the NITRILASE1-subfamily members, NIT1 and NIT2. Heatin inhibits NIT1-subfamily enzymatic activity in vitro and the application of Heatin accordingly results in the accumulation of NIT1-subfamily substrate indole-3-acetonitrile in vivo. However, levels of the NIT1-subfamily product, bioactive auxin (indole-3-acetic acid), were also significantly increased. It is likely that the stimulation of hypocotyl elongation by Heatin might be independent of its observed interaction with NITRILASE1-subfamily members. However, nitrilases may contribute to the Heatin response by stimulating indole-3-acetic acid biosynthesis in an indirect way. Heatin and its functional analogues present novel chemical entities for studying auxin biology.
Collapse
Affiliation(s)
- Lennard van der Woude
- Molecular Plant PhysiologyInstitute of Environmental BiologyUtrecht UniversityPadualaan 8Utrecht3584 CHthe Netherlands
| | - Markus Piotrowski
- Department of Molecular Genetics and Physiology of PlantsFaculty of Biology and BiotechnologyUniversitätsstraße 150Bochum44801Germany
| | - Gruson Klaasse
- Department of Chemical Biology & Drug DiscoveryUtrecht Institute for Pharmaceutical SciencesUniversity UtrechtUniversiteitsweg 99Utrecht3584 CGthe Netherlands
| | - Judith K. Paulus
- Plant Chemetics LaboratoryDepartment of Plant SciencesUniversity of OxfordSouth Parks RoadOxfordOX1 3RBUK
| | - Daniel Krahn
- Plant Chemetics LaboratoryDepartment of Plant SciencesUniversity of OxfordSouth Parks RoadOxfordOX1 3RBUK
| | - Sabrina Ninck
- Chemische BiologieZentrum für Medizinische BiotechnologieFakultät für BiologieUniversität Duisburg‐EssenUniversitätsstr. 2Essen45117Germany
| | - Farnusch Kaschani
- Chemische BiologieZentrum für Medizinische BiotechnologieFakultät für BiologieUniversität Duisburg‐EssenUniversitätsstr. 2Essen45117Germany
| | - Markus Kaiser
- Chemische BiologieZentrum für Medizinische BiotechnologieFakultät für BiologieUniversität Duisburg‐EssenUniversitätsstr. 2Essen45117Germany
| | - Ondřej Novák
- Umeå Plant Science CentreDepartment of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeaSE‐901 83Sweden
- Laboratory of Growth RegulatorsThe Czech Academy of Sciences & Faculty of ScienceInstitute of Experimental BotanyPalacký UniversityŠlechtitelů 27Olomouc78371Czech Republic
| | - Karin Ljung
- Umeå Plant Science CentreDepartment of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeaSE‐901 83Sweden
| | - Suzanne Bulder
- Bejo Zaden B.V.Trambaan 1Warmenhuizen1749 CZthe Netherlands
| | - Marcel van Verk
- Plant‐Microbe InteractionsInstitute of Environmental BiologyUtrecht UniversityPadualaan 8Utrecht3584 CHthe Netherlands
- KeygeneAgro Business Park 90Wageningen6708 PWthe Netherlands
- Theoretical Biology and BioinformaticsInstitute of Biodynamics and BiocomplexityUtrecht UniversityPadualaan 8Utrecht3584 CHthe Netherlands
| | - Basten L. Snoek
- Theoretical Biology and BioinformaticsInstitute of Biodynamics and BiocomplexityUtrecht UniversityPadualaan 8Utrecht3584 CHthe Netherlands
| | - Martijn Fiers
- BioscienceWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
| | - Nathaniel I. Martin
- Department of Chemical Biology & Drug DiscoveryUtrecht Institute for Pharmaceutical SciencesUniversity UtrechtUniversiteitsweg 99Utrecht3584 CGthe Netherlands
- Biological Chemistry GroupSylvius LaboratoriesInstitute of Biology LeidenLeiden UniversitySylviusweg 72Leiden2333 BEthe Netherlands
| | - Renier A. L. van der Hoorn
- Plant Chemetics LaboratoryDepartment of Plant SciencesUniversity of OxfordSouth Parks RoadOxfordOX1 3RBUK
| | - Stéphanie Robert
- Umeå Plant Science CentreDepartment of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeaSE‐901 83Sweden
| | - Sjef Smeekens
- Molecular Plant PhysiologyInstitute of Environmental BiologyUtrecht UniversityPadualaan 8Utrecht3584 CHthe Netherlands
| | - Martijn van Zanten
- Molecular Plant PhysiologyInstitute of Environmental BiologyUtrecht UniversityPadualaan 8Utrecht3584 CHthe Netherlands
| |
Collapse
|
19
|
David R, Ng PQ, Smith LM, Searle IR. Novel allele elh of the UBP14 gene affects plant organ size via cell expansion in Arabidopsis thaliana.. MICROPUBLICATION BIOLOGY 2021; 2021. [PMID: 34189424 PMCID: PMC8232968 DOI: 10.17912/micropub.biology.000401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Plant organ size control is an essential process of plant growth and development. The regulation of plant organ size involves a complicated network of genetic, molecular interactions, as well as the interplay of environmental factors. Here, we report a temperature-sensitive hypocotyl elongation EMS-generated mutant, hereby referred to as elongated hypocotyl under high-temperature (elh). The elongated hypocotyl phenotype was prominent when the elh seedlings were grown at high temperature, 28°C, but not under the growth temperature of 21°C. We observed significantly larger organ sizes in elh plants, including cotyledons, petals and seeds. In elh plants, the cell sizes in cotyledons and petals were significantly larger than wild type. By measuring the cell density and organ area of cotyledons, petals and mature dissected embryos, we found no differences in total cell numbers in any organ indicating that cell expansion rather than cell proliferation was perturbed in elh. elh plants produced leaves at a slower rate than wild type plants, suggesting that perturbing the balance between cell division and cell expansion is linked to the developmental rate at which leaves are produced.
Collapse
Affiliation(s)
- Rakesh David
- School of Agriculture, Food and Wine, The University of Adelaide, Australia
| | - Pei Qin Ng
- School of Biological Sciences, The University of Adelaide, Australia
| | - Lisa M Smith
- Department of Animal and Plant Sciences, The University of Sheffield, UK
| | - Iain R Searle
- School of Biological Sciences, The University of Adelaide, Australia
| |
Collapse
|
20
|
Huber M, Nieuwendijk NM, Pantazopoulou CK, Pierik R. Light signalling shapes plant-plant interactions in dense canopies. PLANT, CELL & ENVIRONMENT 2021; 44:1014-1029. [PMID: 33047350 PMCID: PMC8049026 DOI: 10.1111/pce.13912] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 05/09/2023]
Abstract
Plants growing at high densities interact via a multitude of pathways. Here, we provide an overview of mechanisms and functional consequences of plant architectural responses initiated by light cues that occur in dense vegetation. We will review the current state of knowledge about shade avoidance, as well as its possible applications. On an individual level, plants perceive neighbour-associated changes in light quality and quantity mainly with phytochromes for red and far-red light and cryptochromes and phototropins for blue light. Downstream of these photoreceptors, elaborate signalling and integration takes place with the PHYTOCHROME INTERACTING FACTORS, several hormones and other regulators. This signalling leads to the shade avoidance responses, consisting of hyponasty, stem and petiole elongation, apical dominance and life cycle adjustments. Architectural changes of the individual plant have consequences for the plant community, affecting canopy structure, species composition and population fitness. In this context, we highlight the ecological, evolutionary and agricultural importance of shade avoidance.
Collapse
Affiliation(s)
- Martina Huber
- Plant Ecophysiology, Dept. BiologyUtrecht UniversityUtrechtThe Netherlands
| | | | | | - Ronald Pierik
- Plant Ecophysiology, Dept. BiologyUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
21
|
IAA3-mediated repression of PIF proteins coordinates light and auxin signaling in Arabidopsis. PLoS Genet 2021; 17:e1009384. [PMID: 33600444 PMCID: PMC7924758 DOI: 10.1371/journal.pgen.1009384] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 03/02/2021] [Accepted: 01/29/2021] [Indexed: 11/20/2022] Open
Abstract
The exogenous light signal and endogenous auxin are two critical factors that antagonistically regulate hypocotyl growth. However, the regulatory mechanisms integrating light and auxin signaling pathways need further investigation. In this study, we identified a direct link between the light and auxin signaling pathways mediated by the auxin transcriptional repressor IAA3 and light-controlled PIF transcription factors in Arabidopsis. The gain-of-function mutation in IAA3 caused hyposensitivity to light, whereas disruption of IAA3 led to an elongated hypocotyl under different light intensity conditions, indicating that IAA3 is required in light regulated hypocotyl growth. Genetic studies showed that the function of IAA3 in hypocotyl elongation is dependent on PIFs. Our data further demonstrated that IAA3 interacts with PIFs in vitro and in vivo, and it attenuates the DNA binding activities of PIFs to the target genes. Moreover, IAA3 negatively regulates the expression of PIFs-dependent genes. Collectively, our study reveals an interplay mechanism of light and auxin on the regulation of hypocotyl growth, coordinated by the IAA3 and PIFs transcriptional regulatory module. Sessile plants integrate environmental and endogenous signals to optimize their growth and development. Hypocotyl growth is a crucial developmental process tightly affected by light and auxin, but the underlying mechanism is still not well understood. Here, we demonstrate that the IAA3, a suppressor in auxin signaling, negatively regulates the light signaling regulator PIF protein activities. The IAA3 gain-of-function mutant displays reduced responses to light, while disruption of IAA3 results in elongated hypocotyl under various light intensity conditions. Genetic studies showed that IAA3 functions through PIFs to regulate hypocotyl growth. IAA3 physically interacts with PIFs through its C-terminal region and inhibits PIFs binding to target genes. Furthermore, IAA3 and PIFs coregulated a subset of downstream genes. The IAA3-PIFs interaction represents a novel layer of the regulatory mechanism by which light and auxin signals are integrated to affect hypocotyl growth.
Collapse
|
22
|
Crosstalk between auxin and gibberellin during stalk elongation in flowering Chinese cabbage. Sci Rep 2021; 11:3976. [PMID: 33597591 PMCID: PMC7889655 DOI: 10.1038/s41598-021-83519-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 02/04/2021] [Indexed: 11/08/2022] Open
Abstract
Plant growth and development are tightly regulated by phytohormones. However, little is known about the interaction between auxin and gibberellin acid (GA) during flower stalk elongation and how it is directly related to organ formation. Therefore, the effects of indole acetic acid (IAA) and GA3 treatments and their interaction on flower stalk elongation in flowering Chinese cabbage were investigated. The growth of flowering Chinese cabbage is regulated by IAA and GA3, and the opposite results were observed after treatments with uniconazole (GA synthesis inhibitor) and N-1-naphthylphthalamic acid (NPA) (auxin transport inhibitor). Anatomical analysis of the pith region in stalks revealed that IAA promoted expansion via signal transduction and transport pathways. GA3 regulated the elongation of flower stalks by controlling GA synthesis and partially controlling the IAA signaling pathway. GA3 also had a stronger effect on stalk elongation than IAA. The results of qRT-PCR and histological analysis revealed that GA3 and IAA induced the expansion of cell walls by activating the expression of genes encoding cell wall structural proteins such as Expansin (EXP). These findings provide new insights into the mechanism of stalk formation regulated by the combination of IAA and GA3.
Collapse
|
23
|
Dai X, Lu Q, Wang J, Wang L, Xiang F, Liu Z. MiR160 and its target genes ARF10, ARF16 and ARF17 modulate hypocotyl elongation in a light, BRZ, or PAC-dependent manner in Arabidopsis: miR160 promotes hypocotyl elongation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 303:110686. [PMID: 33487334 DOI: 10.1016/j.plantsci.2020.110686] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 09/01/2020] [Accepted: 09/14/2020] [Indexed: 05/18/2023]
Abstract
Multiple hormonal and environmental signals participate in the regulation of plant hypocotyl elongation, which allow the plants to optimize their survival strategy from seed germination to seedling establishment. Auxin plays key roles in cell elongation via auxin signaling transduction and its interactions with other hormonal and environmental signals. However, the roles of auxin response factor (ARF) family in cross-talk between auxin and other hormonal or environmental signals during hypocotyl elongation are not fully understood. Here we show that miR160 and its target genes ARF10, ARF16 and ARF17 modulate hypocotyl elongation in a light, brassinazole (BRZ, a BR biosynthesis inhibitor), or paclobutrazol (PAC, a GA biosynthesis inhibitor)-dependent manner in Arabidopsis. miR160, ARF10, ARF16 and ARF17 have no effects on hypocotyl elongation in the dark. However, in the presence of either light, BRZ, or PAC, ARF10, ARF16 and ARF17 inhibit hypocotyl elongation, and miR160 promotes hypocotyl elongation via cleavage of their mRNA. miR160 and ARF10 are both expressed in the hypocotyl. ARF10 represses the expression of PACLOBUTRAZOL RESISTANCE1 (PRE1) and 35S::PRE1 could partly rescue the phenotype of mARF10 (a miR160-resistant form of ARF10), suggesting that PRE1 acts downstream of ARF10 in regulating hypocotyl elongation. In conclusion, our results indicate that miR160-ARF10/16/17 might serve as a molecular link in cross-talk of auxin, light, BR, and GA in hypocotyl elongation.
Collapse
Affiliation(s)
- Xuehuan Dai
- The Key Laboratory of the Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, Shandong, China
| | - Qing Lu
- The Key Laboratory of the Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, Shandong, China
| | - Jing Wang
- The Key Laboratory of the Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, Shandong, China
| | - Lili Wang
- The Key Laboratory of the Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, Shandong, China
| | - Fengning Xiang
- The Key Laboratory of the Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, Shandong, China
| | - Zhenhua Liu
- The Key Laboratory of the Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, Shandong, China.
| |
Collapse
|
24
|
Jonsson K, Lathe RS, Kierzkowski D, Routier-Kierzkowska AL, Hamant O, Bhalerao RP. Mechanochemical feedback mediates tissue bending required for seedling emergence. Curr Biol 2021; 31:1154-1164.e3. [PMID: 33417884 DOI: 10.1016/j.cub.2020.12.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/17/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022]
Abstract
Tissue bending is vital to plant development, as exemplified by apical hook formation during seedling emergence by bending of the hypocotyl. How tissue bending is coordinated during development remains poorly understood, especially in plants where cells are attached via rigid cell walls. Asymmetric distribution of the plant hormone auxin underlies differential cell elongation during apical hook formation. Yet the underlying mechanism remains unclear. Here, we demonstrate spatial correlation between asymmetric auxin distribution, methylesterified homogalacturonan (HG) pectin, and mechanical properties of the epidermal layer of the hypocotyl in Arabidopsis. Genetic and cell biological approaches show that this mechanochemical asymmetry is essential for differential cell elongation. We show that asymmetric auxin distribution underlies differential HG methylesterification, and conversely changes in HG methylesterification impact the auxin response domain. Our results suggest that a positive feedback loop between auxin distribution and HG methylesterification underpins asymmetric cell wall mechanochemical properties to promote tissue bending and seedling emergence.
Collapse
Affiliation(s)
- Kristoffer Jonsson
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90187 Umeå, Sweden.
| | - Rahul S Lathe
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90187 Umeå, Sweden
| | - Daniel Kierzkowski
- IRBV, Department of Biological Sciences, University of Montreal, 4101 Sherbrooke Est, Montréal H1X 2B2, QC, Canada
| | | | - Olivier Hamant
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon, France
| | - Rishikesh P Bhalerao
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90187 Umeå, Sweden.
| |
Collapse
|
25
|
Cai H, Chai M, Chen F, Huang Y, Zhang M, He Q, Liu L, Yan M, Qin Y. HBI1 acts downstream of ERECTA and SWR1 in regulating inflorescence architecture through the activation of the brassinosteroid and auxin signaling pathways. THE NEW PHYTOLOGIST 2021; 229:414-428. [PMID: 32746499 DOI: 10.1111/nph.16840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/23/2020] [Indexed: 05/20/2023]
Abstract
Inflorescence architecture critically influences plant reproductive success and crop yield, and it reflects the activity of the inflorescence meristem and pedicel length. In Arabidopsis thaliana, the ERECTA (ER) signaling pathway and the SWR1 chromatin remodeling complex jointly regulate inflorescence architecture by promoting the expression of the PACLOBUTRAZOL RESISTANCE (PRE) gene family. However, how PREs regulate inflorescence architecture remains unclear. RNA-sequencing and chromatin immunoprecipitation coupled with quantitative PCR analyses were performed. Genetic interactions between HOMOLOG OF BEE2 INTERACTING WITH IBH1 (HBI1) and the SWR1-ER-MPK6 pathway in the control of inflorescence architecture were further studied. The present findings support that HBI1 functions downstream of PREs in the SWR1 and ER pathways to regulate inflorescence architecture by promoting pedicel elongation. Specifically, it binds to the promoters of the brassinosteroid (BR) biosynthesis gene CYP85A2 and a series of auxin-related genes, including auxin response factor ARF3, and promotes their expression. In turn, ARF3 can also bind to auxin signaling genes as well as CYP85A2 to activate their expression and promote pedicel elongation. Our study provides evidence that inflorescence architecture regulation by SWR1 and ER involves the HBI1 regulatory hub and its activation of both the BR and auxin hormone pathways.
Collapse
Affiliation(s)
- Hanyang Cai
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Agriculture, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mengnan Chai
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Agriculture, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Fangqian Chen
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Agriculture, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Youmei Huang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Agriculture, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Man Zhang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Agriculture, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qing He
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Agriculture, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liping Liu
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Agriculture, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Maokai Yan
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Agriculture, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Yuan Qin
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Agriculture, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004, China
| |
Collapse
|
26
|
Ferrero LV, Gastaldi V, Ariel FD, Viola IL, Gonzalez DH. Class I TCP proteins TCP14 and TCP15 are required for elongation and gene expression responses to auxin. PLANT MOLECULAR BIOLOGY 2021; 105:147-159. [PMID: 32935297 DOI: 10.1007/s11103-020-01075-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 09/10/2020] [Indexed: 05/24/2023]
Abstract
Two class I TCP transcription factors are required for an efficient elongation of hypocotyls in response to auxin and for the correct expression of a subset of auxin-inducible genes In this work, we analyzed the response to auxin of plants with altered function of the class I TEOSINTE BRANCHED 1, CYCLOIDEA, PCF (TCP) transcription factors TCP14 and TCP15. Several SMALL AUXIN UP RNA (SAUR) genes showed decreased expression in mutant plants defective in these TCPs after an increase in ambient temperature to 29 °C, a condition that causes an increase in endogenous auxin levels. Overexpression of SAUR63 caused a more pronounced elongation response in the mutant than in the wild-type at 29 °C, suggesting that the decreased expression of SAUR genes is partly responsible for the defective elongation at warm temperature. Notably, several SAUR genes and the auxin response gene IAA19 also showed reduced expression in the mutant after auxin treatment, while the expression of other SAUR genes and of IAA29 was not affected or was even higher. Expression of the auxin reporter DR5::GUS was also higher in a tcp15 mutant than in a wild-type background after auxin treatment. However, the elongation of hypocotyls in response to auxin was impaired in the mutant. Remarkably, a significant proportion of auxin inducible genes and of targets of the AUXIN RESPONSE FACTOR 6 are regulated by TCP15 and often contain putative TCP recognition motifs in their promoters. Furthermore, we demonstrated that several among them are recognized by TCP15 in vivo. Our results indicate that TCP14 and TCP15 are required for an efficient elongation response to auxin, most likely by regulating a subset of auxin inducible genes related to cell expansion.
Collapse
Affiliation(s)
- Lucia V Ferrero
- Instituto de Agrobiotecnología del Litoral, Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, CONICET-Universidad Nacional del Litoral, Centro Científico Tecnológico CONICET Santa Fe. Colectora Ruta Nac. Nº 168 km 0, Paraje el Pozo s/n, 3000, Santa Fe, Argentina
| | - Victoria Gastaldi
- Instituto de Agrobiotecnología del Litoral, Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, CONICET-Universidad Nacional del Litoral, Centro Científico Tecnológico CONICET Santa Fe. Colectora Ruta Nac. Nº 168 km 0, Paraje el Pozo s/n, 3000, Santa Fe, Argentina
| | - Federico D Ariel
- Instituto de Agrobiotecnología del Litoral, Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, CONICET-Universidad Nacional del Litoral, Centro Científico Tecnológico CONICET Santa Fe. Colectora Ruta Nac. Nº 168 km 0, Paraje el Pozo s/n, 3000, Santa Fe, Argentina
| | - Ivana L Viola
- Instituto de Agrobiotecnología del Litoral, Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, CONICET-Universidad Nacional del Litoral, Centro Científico Tecnológico CONICET Santa Fe. Colectora Ruta Nac. Nº 168 km 0, Paraje el Pozo s/n, 3000, Santa Fe, Argentina
| | - Daniel H Gonzalez
- Instituto de Agrobiotecnología del Litoral, Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, CONICET-Universidad Nacional del Litoral, Centro Científico Tecnológico CONICET Santa Fe. Colectora Ruta Nac. Nº 168 km 0, Paraje el Pozo s/n, 3000, Santa Fe, Argentina.
| |
Collapse
|
27
|
Wang M, Tian Y, Han C, Zhou C, Bai MY, Fan M. Phospho-Mutant Activity Assays Provide Evidence for the Negative Regulation of Transcriptional Regulator PRE1 by Phosphorylation. Int J Mol Sci 2020; 21:ijms21239183. [PMID: 33276448 PMCID: PMC7729563 DOI: 10.3390/ijms21239183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/29/2020] [Accepted: 11/29/2020] [Indexed: 11/17/2022] Open
Abstract
The PACLOBUTRAZOL-RESISTANCE (PRE) gene family encodes a group of atypical helix-loop-helix (HLH) proteins that act as the major hub integrating a wide range of environmental and hormonal signals to regulate plant growth and development. PRE1, as a positive regulator of cell elongation, activates HBI1 DNA binding by sequestering its inhibitor IBH1. Furthermore, PRE1 can be phosphorylated at Ser-46 and Ser-67, but how this phosphorylation regulates the functions of PRE1 remains unclear. Here, we used a phospho-mutant activity assay to reveal that the phosphorylation at Ser-67 negatively regulates the functions of PRE1 on cell elongation. Both of mutations of serine 46, either to phospho-dead alanine or phospho-mimicking glutamic acid, had no significant effects on the functions of PRE1. However, the mutation of serine 67 to glutamic acid (PRE1S67E-Ox), but not alanine (PRE1S67A-Ox), significantly reduced the promoting effects of PRE1 on cell elongation. The mutation of Ser-67 to Glu-67 impaired the interaction of PRE1 with IBH1 and resulted in PRE1 failing to inhibit the interaction between IBH1 and HBI1, losing the ability to induce the expression of the subsequent cell elongation-related genes. Furthermore, we showed that PRE1-Ox and PRE1S67A-Ox both suppressed but PRE1S67E-Ox had no strong effects on the dwarf phenotypes of IBH1-Ox. Our study demonstrated that the PRE1 activity is negatively regulated by the phosphorylation at Ser-67.
Collapse
|
28
|
Tichá T, Samakovli D, Kuchařová A, Vavrdová T, Šamaj J. Multifaceted roles of HEAT SHOCK PROTEIN 90 molecular chaperones in plant development. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3966-3985. [PMID: 32293686 DOI: 10.1093/jxb/eraa177] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/06/2020] [Indexed: 05/20/2023]
Abstract
HEAT SHOCK PROTEINS 90 (HSP90s) are molecular chaperones that mediate correct folding and stability of many client proteins. These chaperones act as master molecular hubs involved in multiple aspects of cellular and developmental signalling in diverse organisms. Moreover, environmental and genetic perturbations affect both HSP90s and their clients, leading to alterations of molecular networks determining respectively plant phenotypes and genotypes and contributing to a broad phenotypic plasticity. Although HSP90 interaction networks affecting the genetic basis of phenotypic variation and diversity have been thoroughly studied in animals, such studies are just starting to emerge in plants. Here, we summarize current knowledge and discuss HSP90 network functions in plant development and cellular homeostasis.
Collapse
Affiliation(s)
- Tereza Tichá
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Despina Samakovli
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Anna Kuchařová
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Tereza Vavrdová
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Jozef Šamaj
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
29
|
Gras DE, Mansilla N, Rodríguez C, Welchen E, Gonzalez DH. Arabidopsis thaliana SURFEIT1-like genes link mitochondrial function to early plant development and hormonal growth responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:690-704. [PMID: 32248588 DOI: 10.1111/tpj.14762] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/02/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Mutations in SURFEIT1 (SURF1) genes affect cytochrome c oxidase (COX) levels in different prokaryotic and eukaryotic organisms. In this work, we report that Arabidopsis thaliana has two genes that potentially encode SURF1 proteins, as a result of a duplication that took place in Brassicaceae. Both genes encode mitochondrial proteins and mutation in AtSURF1a causes embryonic lethality. Mutation in AtSURF1b, instead, causes defects in hypocotyl elongation under growth-stimulating conditions, such as low light intensity, increased ambient temperature and incubation with glucose. Mutants in AtSURF1b show reduced expression of the auxin reporter DR5:GUS and increased levels of the gibberellin reporter GFP-RGA, suggesting that auxin and gibberellin homeostasis are affected. In agreement, growth defects caused by AtSURF1b mutation can be overcome by treatment with indole-3-acetic acid and gibberellin A3 , and also by increasing expression of the auxin biosynthesis gene YUC8 or the transcription factor PIF4, which shows lower abundance in AtSURF1b-deficient plants. Mutants in AtSURF1b display lower COX levels, higher alternative oxidase and superoxide levels, and increased expression of genes that respond to mitochondrial dysfunction. Decreased hypocotyl growth and DR5:GUS expression can be reversed by treatment with reduced glutathione, suggesting that redox changes, probably related to mitochondrial dysfunction, are responsible for the effect of AtSURF1b deficiency on hormone responses. The results indicate that changes in AtSURF1b affect mitochondrial function and the production of reactive oxygen species, which, in turn, impinges on a growth regulatory circuit that involves auxin, gibberellins and the transcription factor PIF4.
Collapse
Affiliation(s)
- Diana E Gras
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Natanael Mansilla
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Carina Rodríguez
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Elina Welchen
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Daniel H Gonzalez
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| |
Collapse
|
30
|
Marzi D, Brunetti P, Mele G, Napoli N, Calò L, Spaziani E, Matsui M, De Panfilis S, Costantino P, Serino G, Cardarelli M. Light controls stamen elongation via cryptochromes, phytochromes and COP1 through HY5 and HYH. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:379-394. [PMID: 32142184 DOI: 10.1111/tpj.14736] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/18/2020] [Accepted: 02/27/2020] [Indexed: 05/25/2023]
Abstract
In Arabidopsis, stamen elongation, which ensures male fertility, is controlled by the auxin response factor ARF8, which regulates the expression of the auxin repressor IAA19. Here, we uncover a role for light in controlling stamen elongation. By an extensive genetic and molecular analysis we show that the repressor of light signaling COP1, through its targets HY5 and HYH, controls stamen elongation, and that HY5 - oppositely to ARF8 - directly represses the expression of IAA19 in stamens. In addition, we show that in closed flower buds, when light is shielded by sepals and petals, the blue light receptors CRY1/CRY2 repress stamen elongation. Coherently, at flower disclosure and in subsequent stages, stamen elongation is repressed by the red and far-red light receptors PHYA/PHYB. In conclusion, different light qualities - sequentially perceived by specific photoreceptors - and the downstream COP1-HY5/HYH module finely tune auxin-induced stamen elongation and thus male fertility.
Collapse
Affiliation(s)
- Davide Marzi
- IBPM-CNR c/o Sapienza Università di Roma, Roma, Italy
- Dipartimento di Biologia e Biotecnologie Sapienza, Università di Roma, Roma, Italy
| | | | | | - Nadia Napoli
- Dipartimento di Biologia e Biotecnologie Sapienza, Università di Roma, Roma, Italy
| | - Lorenzo Calò
- Dipartimento di Biologia e Biotecnologie Sapienza, Università di Roma, Roma, Italy
| | - Erica Spaziani
- Dipartimento di Biologia e Biotecnologie Sapienza, Università di Roma, Roma, Italy
| | - Minami Matsui
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Simone De Panfilis
- Centre for Life Nano Science, Istituto Italiano di Tecnologia, Viale Regina Elena, 291, Roma, I-00161, Italy
| | - Paolo Costantino
- IBPM-CNR c/o Sapienza Università di Roma, Roma, Italy
- Dipartimento di Biologia e Biotecnologie Sapienza, Università di Roma, Roma, Italy
| | - Giovanna Serino
- Dipartimento di Biologia e Biotecnologie Sapienza, Università di Roma, Roma, Italy
| | | |
Collapse
|
31
|
Gastaldi V, Lucero LE, Ferrero LV, Ariel FD, Gonzalez DH. Class-I TCP Transcription Factors Activate the SAUR63 Gene Subfamily in Gibberellin-Dependent Stamen Filament Elongation. PLANT PHYSIOLOGY 2020; 182:2096-2110. [PMID: 31988200 PMCID: PMC7140962 DOI: 10.1104/pp.19.01501] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/10/2020] [Indexed: 05/06/2023]
Abstract
In autogamous plants like Arabidopsis (Arabidopsis thaliana), stamen filament elongation must be finely regulated to ensure that anthers reach the pistil at the correct developmental stage. In this work, we studied the roles of Arabidopsis TEOSINTE BRANCHED1, CYCLOIDEA, PCF15 (TCP15), and related class-I TCP transcription factors in stamen filament elongation. Plants with decreased expression of class-I TCPs and plants that express a fusion of TCP15 to a repressor domain (pTCP15::TCP15-EAR) had shorter stamens, indicating that class-I TCPs stimulate filament growth. These plants also showed reduced expression of several SMALL AUXIN UP RNA (SAUR)63 subfamily genes, which contain TCP target motifs in their promoters. Mutational analysis indicated that the TCP target motif in the SAUR63 promoter is required for expression of SAUR63 in stamen filaments. Moreover, TCP15 directly binds to the SAUR63 promoter region that contains the TCP target motif in vivo, highlighting the role of the TCPs in this process. Class-I TCPs are also required for the induction of SAUR63 subfamily genes by gibberellins (GAs). In addition, overexpression of SAUR63 restores filament growth in pTCP15::TCP15-EAR plants, whereas overexpression of TCP15 rescues the short stamen phenotype of GA-deficient plants. The results indicate that TCP15 and related class-I TCPs modulate GA-dependent stamen filament elongation by direct activation of SAUR63 subfamily genes through conserved target sites in their promoters. This work provides insight into GA-dependent stamen filament elongation.
Collapse
Affiliation(s)
- Victoria Gastaldi
- Instituto de Agrobiotecnología del Litoral, Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Leandro E Lucero
- Instituto de Agrobiotecnología del Litoral, Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Lucía V Ferrero
- Instituto de Agrobiotecnología del Litoral, Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Federico D Ariel
- Instituto de Agrobiotecnología del Litoral, Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Daniel H Gonzalez
- Instituto de Agrobiotecnología del Litoral, Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| |
Collapse
|
32
|
The epidermis coordinates thermoresponsive growth through the phyB-PIF4-auxin pathway. Nat Commun 2020; 11:1053. [PMID: 32103019 PMCID: PMC7044213 DOI: 10.1038/s41467-020-14905-w] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 02/10/2020] [Indexed: 02/07/2023] Open
Abstract
In plants, an elevation in ambient temperature induces adaptive morphological changes including elongated hypocotyls, which is predominantly regulated by a bHLH transcription factor, PIF4. Although PIF4 is expressed in all aerial tissues including the epidermis, mesophyll, and vascular bundle, its tissue-specific functions in thermomorphogenesis are not known. Here, we show that epidermis-specific expression of PIF4 induces constitutive long hypocotyls, while vasculature-specific expression of PIF4 has no effect on hypocotyl growth. RNA-Seq and qRT-PCR analyses reveal that auxin-responsive genes and growth-related genes are highly activated by epidermal, but not by vascular, PIF4. Additionally, inactivation of epidermal PIF4 or auxin signaling, and overexpression of epidermal phyB suppresses thermoresponsive growth, indicating that epidermal PIF4-auxin pathways are essential for the temperature responses. Further, we show that high temperatures increase both epidermal PIF4 transcription and the epidermal PIF4 DNA-binding ability. Taken together, our study demonstrates that the epidermis regulates thermoresponsive growth through the phyB-PIF4-auxin pathway. The PIF4 transcription factor along with the phyB photoreceptor, regulates growth responses to elevated temperature in plants. Here the authors show that PIF4 expression in the epidermis, rather than the vasculature, stimulates auxin responses and thermoresponsive growth in Arabidopsis.
Collapse
|
33
|
Auxin-Abscisic Acid Interactions in Plant Growth and Development. Biomolecules 2020; 10:biom10020281. [PMID: 32059519 PMCID: PMC7072425 DOI: 10.3390/biom10020281] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 01/10/2023] Open
Abstract
Plant hormones regulate many aspects of plant growth, development, and response to biotic and abiotic stress. Much research has gone into our understanding of individual plant hormones, focusing primarily on their mechanisms of action and the processes that they regulate. However, recent research has begun to focus on a more complex problem; how various plant hormones work together to regulate growth and developmental processes. In this review, we focus on two phytohormones, abscisic acid (ABA) and auxin. We begin with brief overviews of the hormones individually, followed by in depth analyses of interactions between auxin and ABA, focusing on interactions in individual tissues and how these interactions are occurring where possible. Finally, we end with a brief discussion and future prospects for the field.
Collapse
|
34
|
Bahmani R, Kim D, Modareszadeh M, Thompson AJ, Park JH, Yoo HH, Hwang S. The mechanism of root growth inhibition by the endocrine disruptor bisphenol A (BPA). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113516. [PMID: 31733969 DOI: 10.1016/j.envpol.2019.113516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/18/2019] [Accepted: 10/28/2019] [Indexed: 05/12/2023]
Abstract
Bisphenol A (BPA) is a harmful environmental contaminant acting as an endocrine disruptor in animals, but it also affects growth and development in plants. Here, we have elucidated the functional mechanism of root growth inhibition by BPA in Arabidopsis thaliana using mutants, reporter lines and a pharmacological approach. In response to 10 ppm BPA, fresh weight and main root length were reduced, while auxin levels increased. BPA inhibited root growth by reducing root cell length in the elongation zone by suppressing expansin expression and by decreasing the length of the meristem zone by repressing cell division. The inhibition of cell elongation and cell division was attributed to the enhanced accumulation/redistribution of auxin in the elongation zone and meristem zone in response to BPA. Correspondingly, the expressions of most auxin biosynthesis and transporter genes were enhanced in roots by BPA. Taken together, it is assumed that the endocrine disruptor BPA inhibits primary root growth by inhibiting cell elongation and division through auxin accumulation/redistribution in Arabidopsis. This study will contribute to understanding how BPA affects growth and development in plants.
Collapse
Affiliation(s)
- Ramin Bahmani
- Department of Molecular Biology, Sejong University, Seoul, 143-747, South Korea; Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul, 143-747, South Korea; The Plant Engineering Research Institute, Sejong University, Seoul, 143-747, South Korea
| | - DongGwan Kim
- Department of Molecular Biology, Sejong University, Seoul, 143-747, South Korea; Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul, 143-747, South Korea; The Plant Engineering Research Institute, Sejong University, Seoul, 143-747, South Korea
| | - Mahsa Modareszadeh
- Department of Molecular Biology, Sejong University, Seoul, 143-747, South Korea; Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul, 143-747, South Korea; The Plant Engineering Research Institute, Sejong University, Seoul, 143-747, South Korea
| | - Andrew J Thompson
- Cranfield Soil and Agrifood Institute, Cranfield University, Cranfield, Bedfordshire, MK43 0AL, UK
| | - Jeong Hoon Park
- College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 15588, South Korea
| | - Hye Hyun Yoo
- College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 15588, South Korea
| | - Seongbin Hwang
- Department of Molecular Biology, Sejong University, Seoul, 143-747, South Korea; Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul, 143-747, South Korea; The Plant Engineering Research Institute, Sejong University, Seoul, 143-747, South Korea.
| |
Collapse
|
35
|
Salehin M, Li B, Tang M, Katz E, Song L, Ecker JR, Kliebenstein DJ, Estelle M. Auxin-sensitive Aux/IAA proteins mediate drought tolerance in Arabidopsis by regulating glucosinolate levels. Nat Commun 2019. [PMID: 31492889 DOI: 10.1038/s41467-019-12002-12001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
A detailed understanding of abiotic stress tolerance in plants is essential to provide food security in the face of increasingly harsh climatic conditions. Glucosinolates (GLSs) are secondary metabolites found in the Brassicaceae that protect plants from herbivory and pathogen attack. Here we report that in Arabidopsis, aliphatic GLS levels are regulated by the auxin-sensitive Aux/IAA repressors IAA5, IAA6, and IAA19. These proteins act in a transcriptional cascade that maintains expression of GLS levels when plants are exposed to drought conditions. Loss of IAA5/6/19 results in reduced GLS levels and decreased drought tolerance. Further, we show that this phenotype is associated with a defect in stomatal regulation. Application of GLS to the iaa5,6,19 mutants restores stomatal regulation and normal drought tolerance. GLS action is dependent on the receptor kinase GHR1, suggesting that GLS may signal via reactive oxygen species. These results provide a novel connection between auxin signaling, GLS levels and drought response.
Collapse
Affiliation(s)
- Mohammad Salehin
- Section of Cell and Developmental Biology and Howard Hughes Medical Institute, University of California, San Diego, La Jolla CA., 92093, USA
| | - Baohua Li
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Michelle Tang
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Ella Katz
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Liang Song
- Genomic Analysis Laboratory, Howard Hughes Medical Institute and The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Joseph R Ecker
- Genomic Analysis Laboratory, Howard Hughes Medical Institute and The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | | | - Mark Estelle
- Section of Cell and Developmental Biology and Howard Hughes Medical Institute, University of California, San Diego, La Jolla CA., 92093, USA.
| |
Collapse
|
36
|
Salehin M, Li B, Tang M, Katz E, Song L, Ecker JR, Kliebenstein DJ, Estelle M. Auxin-sensitive Aux/IAA proteins mediate drought tolerance in Arabidopsis by regulating glucosinolate levels. Nat Commun 2019; 10:4021. [PMID: 31492889 PMCID: PMC6731224 DOI: 10.1038/s41467-019-12002-1] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/16/2019] [Indexed: 11/11/2022] Open
Abstract
A detailed understanding of abiotic stress tolerance in plants is essential to provide food security in the face of increasingly harsh climatic conditions. Glucosinolates (GLSs) are secondary metabolites found in the Brassicaceae that protect plants from herbivory and pathogen attack. Here we report that in Arabidopsis, aliphatic GLS levels are regulated by the auxin-sensitive Aux/IAA repressors IAA5, IAA6, and IAA19. These proteins act in a transcriptional cascade that maintains expression of GLS levels when plants are exposed to drought conditions. Loss of IAA5/6/19 results in reduced GLS levels and decreased drought tolerance. Further, we show that this phenotype is associated with a defect in stomatal regulation. Application of GLS to the iaa5,6,19 mutants restores stomatal regulation and normal drought tolerance. GLS action is dependent on the receptor kinase GHR1, suggesting that GLS may signal via reactive oxygen species. These results provide a novel connection between auxin signaling, GLS levels and drought response. Brassicaceae produce glucosinolates to protect against herbivory and pathogens. Here the authors show that auxin-sensitive Aux/IAA repressor proteins regulate aliphatic glucosinolate levels in Arabidopsis and this promotes stomatal closure via reactive oxygen species during drought stress.
Collapse
Affiliation(s)
- Mohammad Salehin
- Section of Cell and Developmental Biology and Howard Hughes Medical Institute, University of California, San Diego, La Jolla CA., 92093, USA
| | - Baohua Li
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Michelle Tang
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Ella Katz
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Liang Song
- Genomic Analysis Laboratory, Howard Hughes Medical Institute and The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Joseph R Ecker
- Genomic Analysis Laboratory, Howard Hughes Medical Institute and The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | | | - Mark Estelle
- Section of Cell and Developmental Biology and Howard Hughes Medical Institute, University of California, San Diego, La Jolla CA., 92093, USA.
| |
Collapse
|
37
|
Wong JH, Spartz AK, Park MY, Du M, Gray WM. Mutation of a Conserved Motif of PP2C.D Phosphatases Confers SAUR Immunity and Constitutive Activity. PLANT PHYSIOLOGY 2019; 181:353-366. [PMID: 31311832 PMCID: PMC6716246 DOI: 10.1104/pp.19.00496] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/21/2019] [Indexed: 05/05/2023]
Abstract
The phytohormone auxin promotes the growth of plant shoots by stimulating cell expansion via plasma membrane (PM) H+-ATPase activation, which facilitates cell wall loosening and solute uptake. Mechanistic insight was recently obtained by demonstrating that auxin-induced SMALL AUXIN UP RNA (SAUR) proteins inhibit D-CLADE TYPE 2C PROTEIN PHOSPHATASE (PP2C.D) activity, thereby trapping PM H+-ATPases in the phosphorylated, activated state, but how SAURs bind PP2C.D proteins and inhibit their activity is unknown. Here, we identified a highly conserved motif near the C-terminal region of the PP2C.D catalytic domain that is required for SAUR binding in Arabidopsis (Arabidopsis thaliana). Missense mutations in this motif abolished SAUR binding but had no apparent effect on catalytic activity. Consequently, mutant PP2C.D proteins that could not bind SAURs exhibited constitutive activity, as they were immune to SAUR inhibition. In planta expression of SAUR-immune pp2c.d2 or pp2c.d5 derivatives conferred severe cell expansion defects and corresponding constitutively low levels of PM H+-ATPase phosphorylation. These growth defects were not alleviated by either auxin treatment or 35S:StrepII-SAUR19 coexpression. In contrast, a PM H+-ATPase gain-of-function mutation that results in a constitutively active H+ pump partially suppressed SAUR-immune pp2c.d5 phenotypes, demonstrating that impaired PM H+-ATPase function is largely responsible for the reduced growth of the SAUR-immune pp2c.d5 mutant. Together, these findings provide crucial genetic support for SAUR-PP2C.D regulation of cell expansion via modulation of PM H+-ATPase activity. Furthermore, SAUR-immune pp2c.d derivatives provide new genetic tools for elucidating SAUR and PP2C.D functions and manipulating plant organ growth.
Collapse
Affiliation(s)
- Jeh Haur Wong
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Angela K Spartz
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Mee Yeon Park
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Minmin Du
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - William M Gray
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108
| |
Collapse
|
38
|
Yan Y, Jing X, Tang H, Li X, Gong B, Shi Q. Using Transcriptome to Discover a Novel Melatonin-Induced Sodic Alkaline Stress Resistant Pathway in Solanum lycopersicum L. PLANT & CELL PHYSIOLOGY 2019; 60:2051-2064. [PMID: 31268145 DOI: 10.1093/pcp/pcz126] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 06/20/2019] [Indexed: 05/03/2023]
Abstract
Melatonin plays important roles in multiple stress responses. However, the downstream signaling pathway and molecular mechanism are unclear until now. Here, we not only revealed the transcriptional control of melatonin-induced sodic alkaline stress tolerance, but also described a screen for key downstream transcriptional factors of melatonin through transcriptome analysis. The melatonin-induced transcriptional network of hormone, transcriptional factors and functional genes has been established under both control and stress conditions. Among these, six candidates of transcriptional factors have been identified via Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis. Using the virus-induced gene silencing approach, we confirmed that DREB1α and IAA3 were key downstream transcriptional factors of melatonin-induced sodic alkaline stress tolerance at the genetic level. The transcriptions of DREB1α and IAA3 could be activated by melatonin or sodic alkaline treatment. Interestingly, we found that DREB1α could directly upregulate the expression of IAA3 by binding to its promoters. Moreover, several physiological processes of Na+ detoxification, dehydration resistance, high pH buffering and reactive oxygen species scavenging were confirmed to depend or partly depend on DREB1α and IAA3 pathway in melatonin-induced stress tolerance. Taken together, this study suggested that DREB1α and IAA3 are positive resistant modulators, and provided a direct link among melatonin, DREB1α and IAA3 in the sodic alkaline stress tolerance activating in tomato plants.
Collapse
Affiliation(s)
- Yanyan Yan
- State Key Laboratory of Crop Biology, Tai'an, P.R. China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, P.R. China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, P.R. China
| | - Xin Jing
- State Key Laboratory of Crop Biology, Tai'an, P.R. China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, P.R. China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, P.R. China
| | - Huimeng Tang
- State Key Laboratory of Crop Biology, Tai'an, P.R. China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, P.R. China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, P.R. China
| | - Xiaotong Li
- State Key Laboratory of Crop Biology, Tai'an, P.R. China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, P.R. China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, P.R. China
| | - Biao Gong
- State Key Laboratory of Crop Biology, Tai'an, P.R. China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, P.R. China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, P.R. China
| | - Qinghua Shi
- State Key Laboratory of Crop Biology, Tai'an, P.R. China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, P.R. China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, P.R. China
| |
Collapse
|
39
|
Clark NM, Shen Z, Briggs SP, Walley JW, Kelley DR. Auxin Induces Widespread Proteome Remodeling in Arabidopsis Seedlings. Proteomics 2019; 19:e1900199. [DOI: 10.1002/pmic.201900199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/25/2019] [Indexed: 01/24/2023]
Affiliation(s)
- Natalie M. Clark
- Department of Plant Pathology and MicrobiologyIowa State University Ames IA 92093 USA
| | - Zhouxin Shen
- Section of Cell and Developmental BiologyUniversity of CaliforniaSan Diego La Jolla CA 92093 USA
| | - Steven P. Briggs
- Section of Cell and Developmental BiologyUniversity of CaliforniaSan Diego La Jolla CA 92093 USA
| | - Justin W. Walley
- Department of Plant Pathology and MicrobiologyIowa State University Ames IA 92093 USA
| | - Dior R. Kelley
- Department of Genetics, Development and Cell BiologyIowa State University Ames IA 50011 USA
| |
Collapse
|
40
|
Zheng L, Nagpal P, Villarino G, Trinidad B, Bird L, Huang Y, Reed JW. miR167 limits anther growth to potentiate anther dehiscence. Development 2019; 146:dev.174375. [PMID: 31262724 DOI: 10.1242/dev.174375] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 06/21/2019] [Indexed: 01/28/2023]
Abstract
In flowering plants, anther dehiscence and pollen release are essential for sexual reproduction. Anthers dehisce after cell wall degradation weakens stomium cell junctions in each anther locule, and desiccation creates mechanical forces that open the locules. Either effect or both together may break stomium cell junctions. The microRNA miR167 negatively regulates ARF6 and ARF8, which encode auxin response transcription factors. Arabidopsis mARF6 or mARF8 plants with mutated miR167 target sites have defective anther dehiscence and ovule development. Null mir167a mutations recapitulated mARF6 and mARF8 anther and ovule phenotypes, indicating that MIR167a is the main miR167 precursor gene that delimits ARF6 and ARF8 expression in these organs. Anthers of mir167a or mARF6/8 plants overexpressed genes encoding cell wall loosening functions associated with cell expansion, and grew larger than wild-type anthers did starting at flower stage 11. Experimental desiccation enabled dehiscence of miR167-deficient anthers, indicating competence to dehisce. Conversely, high humidity conditions delayed anther dehiscence in wild-type flowers. These results support a model in which miR167-mediated anther growth arrest permits anther dehiscence. Without miR167 regulation, excess anther growth delays dehiscence by prolonging desiccation.
Collapse
Affiliation(s)
- Lanjie Zheng
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA.,College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Punita Nagpal
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | - Gonzalo Villarino
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Brendan Trinidad
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | - Laurina Bird
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | - Yubi Huang
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jason W Reed
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA .,Laboratoire de Reproduction et Developpement des Plantes, Ecole Normale Superieure de Lyon, 69342 Lyon, France
| |
Collapse
|
41
|
Baba AI, Andrási N, Valkai I, Gorcsa T, Koczka L, Darula Z, Medzihradszky KF, Szabados L, Fehér A, Rigó G, Cséplő Á. AtCRK5 Protein Kinase Exhibits a Regulatory Role in Hypocotyl Hook Development during Skotomorphogenesis. Int J Mol Sci 2019; 20:ijms20143432. [PMID: 31336871 PMCID: PMC6678082 DOI: 10.3390/ijms20143432] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 12/25/2022] Open
Abstract
Seedling establishment following germination requires the fine tuning of plant hormone levels including that of auxin. Directional movement of auxin has a central role in the associated processes, among others, in hypocotyl hook development. Regulated auxin transport is ensured by several transporters (PINs, AUX1, ABCB) and their tight cooperation. Here we describe the regulatory role of the Arabidopsis thaliana CRK5 protein kinase during hypocotyl hook formation/opening influencing auxin transport and the auxin-ethylene-GA hormonal crosstalk. It was found that the Atcrk5-1 mutant exhibits an impaired hypocotyl hook establishment phenotype resulting only in limited bending in the dark. The Atcrk5-1 mutant proved to be deficient in the maintenance of local auxin accumulation at the concave side of the hypocotyl hook as demonstrated by decreased fluorescence of the auxin sensor DR5::GFP. Abundance of the polar auxin transport (PAT) proteins PIN3, PIN7, and AUX1 were also decreased in the Atcrk5-1 hypocotyl hook. The AtCRK5 protein kinase was reported to regulate PIN2 protein activity by phosphorylation during the root gravitropic response. Here it is shown that AtCRK5 can also phosphorylate in vitro the hydrophilic loops of PIN3. We propose that AtCRK5 may regulate hypocotyl hook formation in Arabidopsis thaliana through the phosphorylation of polar auxin transport (PAT) proteins, the fine tuning of auxin transport, and consequently the coordination of auxin-ethylene-GA levels.
Collapse
Affiliation(s)
- Abu Imran Baba
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, 6720 Szeged, Hungary
| | - Norbert Andrási
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary
| | - Ildikó Valkai
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary
| | - Teréz Gorcsa
- Agricultural Biotechnology Institute, Szent-Györgyi Albert u. 4, H-2100 Gödöllő, Hungary
| | - Lilla Koczka
- Developmental and Cell Biology of Plants, CEITEC Masaryk University, 62500 Brno, Czech Republic
| | - Zsuzsanna Darula
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary
| | - Katalin F Medzihradszky
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary
| | - László Szabados
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary
| | - Attila Fehér
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary
- Department of Plant Biology, University of Szeged, 52. Közép fasor, H-6726 Szeged, Hungary
| | - Gábor Rigó
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary.
- Department of Plant Biology, University of Szeged, 52. Közép fasor, H-6726 Szeged, Hungary.
| | - Ágnes Cséplő
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary.
| |
Collapse
|
42
|
Orthogonal regulation of phytochrome B abundance by stress-specific plastidial retrograde signaling metabolite. Nat Commun 2019; 10:2904. [PMID: 31266952 PMCID: PMC6606753 DOI: 10.1038/s41467-019-10867-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 06/04/2019] [Indexed: 11/30/2022] Open
Abstract
Plant survival necessitates constant monitoring of fluctuating light and balancing growth demands with adaptive responses, tasks mediated via interconnected sensing and signaling networks. Photoreceptor phytochrome B (phyB) and plastidial retrograde signaling metabolite methylerythritol cyclodiphosphate (MEcPP) are evolutionarily conserved sensing and signaling components eliciting responses through unknown connection(s). Here, via a suppressor screen, we identify two phyB mutant alleles that revert the dwarf and high salicylic acid phenotypes of the high MEcPP containing mutant ceh1. Biochemical analyses show high phyB protein levels in MEcPP-accumulating plants resulting from reduced expression of phyB antagonists and decreased auxin levels. We show that auxin treatment negatively regulates phyB abundance. Additional studies identify CAMTA3, a MEcPP-activated calcium-dependent transcriptional regulator, as critical for maintaining phyB abundance. These studies provide insights into biological organization fundamentals whereby a signal from a single plastidial metabolite is transduced into an ensemble of regulatory networks controlling the abundance of phyB, positioning plastids at the information apex directing adaptive responses. MEcPP is an evolutionarily conserved metabolite that acts as a plastid-to-nucleus retrograde signal to regulate adaptive responses to fluctuating light. Here the authors show that MEcPP regulates seedling development by stabilizing the phyB photoreceptor in an auxin and Ca2+ dependent manner.
Collapse
|
43
|
Multiple Auxin-Response Regulators Enable Stability and Variability in Leaf Development. Curr Biol 2019; 29:1746-1759.e5. [DOI: 10.1016/j.cub.2019.04.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/25/2019] [Accepted: 04/18/2019] [Indexed: 12/18/2022]
|
44
|
Pu Y, Walley JW, Shen Z, Lang MG, Briggs SP, Estelle M, Kelley DR. Quantitative Early Auxin Root Proteomics Identifies GAUT10, a Galacturonosyltransferase, as a Novel Regulator of Root Meristem Maintenance. Mol Cell Proteomics 2019; 18:1157-1170. [PMID: 30918009 PMCID: PMC6553934 DOI: 10.1074/mcp.ra119.001378] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Indexed: 11/25/2022] Open
Abstract
Auxin induces rapid gene expression changes throughout root development. How auxin-induced transcriptional responses relate to changes in protein abundance is not well characterized. This report identifies early auxin responsive proteins in roots at 30 min and 2 h after hormone treatment using a quantitative proteomics approach in which 3,514 proteins were reliably quantified. A comparison of the >100 differentially expressed proteins at each the time point showed limited overlap, suggesting a dynamic and transient response to exogenous auxin. Several proteins with established roles in auxin-mediated root development exhibited altered abundance, providing support for this approach. While novel targeted proteomics assays demonstrate that all six auxin receptors remain stable in response to hormone. Additionally, 15 of the top responsive proteins display root and/or auxin response phenotypes, demonstrating the validity of these differentially expressed proteins. Auxin signaling in roots dictates proteome reprogramming of proteins enriched for several gene ontology terms, including transcription, translation, protein localization, thigmatropism, and cell wall modification. In addition, we identified auxin-regulated proteins that had not previously been implicated in auxin response. For example, genetic studies of the auxin responsive protein galacturonosyltransferase 10 demonstrate that this enzyme plays a key role in root development. Altogether these data complement and extend our understanding of auxin response beyond that provided by transcriptome studies and can be used to uncover novel proteins that may mediate root developmental programs.
Collapse
Affiliation(s)
- Yunting Pu
- From the Departments of ‡Genetics, Development and Cell Biology
| | - Justin W Walley
- ¶Plant Pathology and Microbiology, Iowa State University, Ames, IA
| | - Zhouxin Shen
- §Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA
| | - Michelle G Lang
- From the Departments of ‡Genetics, Development and Cell Biology
| | - Steven P Briggs
- §Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA
| | - Mark Estelle
- §Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA
| | - Dior R Kelley
- From the Departments of ‡Genetics, Development and Cell Biology,
| |
Collapse
|
45
|
Fei Q, Zhang J, Zhang Z, Wang Y, Liang L, Wu L, Gao H, Sun Y, Niu B, Li X. Effects of auxin and ethylene on root growth adaptation to different ambient temperatures in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 281:159-172. [PMID: 30824048 DOI: 10.1016/j.plantsci.2019.01.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 01/14/2019] [Accepted: 01/19/2019] [Indexed: 06/09/2023]
Abstract
As sessile organisms, plants can modify their growth strategy in response to different temperatures, however very little is known about how roots growth responds to ambient temperature change. Here, we found that high temperature-induced root elongation is dependent on light intensity and the root growth of most TAA1 loss-of-function mutants is more sensitive to higher temperatures in Arabidopsis. TAA1 encodes a tryptophan aminotransferase which involved in the indole-3-pyruvic acid (IPA) pathway of indole-3-acetic acid (IAA) biosynthesis. The root elongation in ckrc1-1(one allele mutant of TAA1) is less sensitive to lower temperatures and more sensitive to higher temperatures than that of Col-0. By comparing the regulatory mechanisms of ckrc1-1 root growth at different temperatures (17 °C, 22 °C, and 27 °C), different interactions between signals (auxin and ethylene) and the effects of downstream genes were observed at different ambient temperatures in Arabidopsis. Lower temperature-enhanced ETR1-mediated ethylene signaling did not promote the expression of CKRC1, while higher temperature-enhanced signaling did. CKRC1 had an important role in the ACC inhibition of cell elongation at 22 °C and 27 °C but not at 17 °C. CKRC1-dependent auxin biosynthesis was critical for maintaining PIN1, PIN2, and AUX1 expression at lower temperatures. CKRC1, AUX1, and PIN2 regulated root elongation by affecting different regions of the root at different temperatures in Arabidopsis. Our experimental results suggested that changes in the in vivo signals at different temperatures were multi-layered in Arabidopsis.
Collapse
Affiliation(s)
- Qionghui Fei
- Ministry of Education, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jiahe Zhang
- Ministry of Education, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Zheru Zhang
- Ministry of Education, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yuxiang Wang
- Ministry of Education, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Liyuan Liang
- Ministry of Education, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Lei Wu
- Ministry of Education, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Huanhuan Gao
- Ministry of Education, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yingli Sun
- Ministry of Education, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Bingtao Niu
- National Demonstration Center for Experimental Biology Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiaofeng Li
- Ministry of Education, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
46
|
PACLOBUTRAZOL-RESISTANCE Gene Family Regulates Floral Organ Growth with Unequal Genetic Redundancy in Arabidopsis thaliana. Int J Mol Sci 2019; 20:ijms20040869. [PMID: 30781591 PMCID: PMC6412927 DOI: 10.3390/ijms20040869] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/23/2019] [Accepted: 02/13/2019] [Indexed: 01/13/2023] Open
Abstract
A PACLOBUTRAZOL-RESISTANCE (PRE) gene family, consisting of six genes in Arabidopsis thaliana, encodes a group of helix-loop-helix proteins that act in the growth-promoting transcriptional network. To delineate the specific role of each of the PRE genes in organ growth, we took a reverse genetic approach by constructing high order pre loss-of-function mutants of Arabidopsis thaliana. In addition to dwarf vegetative growth, some double or high order pre mutants exhibited defective floral development, resulting in reduced fertility. While pre2pre5 is normally fertile, both pre2pre6 and pre5pre6 showed reduced fertility. Further, the reduced fertility was exacerbated in the pre2pre5pre6 mutant, indicative of the redundant and critical roles of these PREs. Self-pollination assay and scanning electron microscopy analysis showed that the sterility of pre2pre5pre6 was mainly ascribed to the reduced cell elongation of anther filament, limiting access of pollens to stigma. We found that the expression of a subset of flower-development related genes including ARGOS, IAA19, ACS8, and MYB24 was downregulated in the pre2pre5pre6 flowers. Given these results, we propose that PREs, with unequal functional redundancy, take part in the coordinated growth of floral organs, contributing to successful autogamous reproduction in Arabidopsis thaliana.
Collapse
|
47
|
Lee S, Behringer G, Hung R, Bennett J. Effects of fungal volatile organic compounds on Arabidopsis thaliana growth and gene expression. FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2018.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
48
|
Que F, Khadr A, Wang GL, Li T, Wang YH, Xu ZS, Xiong AS. Exogenous brassinosteroids altered cell length, gibberellin content, and cellulose deposition in promoting carrot petiole elongation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 277:110-120. [PMID: 30466576 DOI: 10.1016/j.plantsci.2018.10.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/13/2018] [Accepted: 10/10/2018] [Indexed: 05/21/2023]
Abstract
Brassinosteroid (BR) is a predominant plant hormone in regulating cell elongation and cell size. BR-deficient mutants display reduced plant growth and dwarfism in Arabidopsis and rice. In carrot, BRs promote petiole elongation, but its underlying mechanism involving exogenous BR remains unknown. Here, weighted gene co-expression network analysis and promoter region analysis were adopted to identify the potential genes that interacted with DcBZR1/BES1. Bioactive gibberellin (GA) level and cellulose deposition were also determined in the control and treated plants. Quantitative real-time PCR was performed to detect the expression profiles of GA biosynthesis-related genes, GA signaling genes, and cellulose synthase genes. Bioactive GA level and cellulose deposition were upregulated after the petioles were treated with 24-epibrassinolide (24-EBL). The most putative DcBZR1/BES1 genes were clustered in yellow module. The expression level of DCAR_009411 (a GA5-like gene) was significantly induced after 3 h of treatment. The expression levels of DCAR_019754 and DCAR_013973 (CESA-like genes) were also significantly induced after 3 h of 24-EBL treatment. Our results suggested that the effect of BR on carrot petiole growth was quick. These results also provided potential insights into the mechanism by which BRs modulate GA and cellulose synthesis to promote cell elongation in carrot petioles.
Collapse
Affiliation(s)
- Feng Que
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ahmed Khadr
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China; Faculty of Agriculture, Damanhour University, Egypt
| | - Guang-Long Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tong Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ya-Hui Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
49
|
Elliott A, Shaw SL. A Cycloheximide-Sensitive Step in Transverse Microtubule Array Patterning. PLANT PHYSIOLOGY 2018; 178:684-698. [PMID: 30154175 PMCID: PMC6181046 DOI: 10.1104/pp.18.00672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/19/2018] [Indexed: 05/21/2023]
Abstract
The growth properties of individual cells within a tissue determine plant morphology, and the organization of the cytoskeleton, particularly the microtubule arrays, determines cellular growth properties. We investigated the mechanisms governing the formation of transverse microtubule array patterns in axially growing Arabidopsis (Arabidopsis thaliana) epidermal hypocotyl cells. Using quantitative imaging approaches, we mapped the transition of the cortical microtubule arrays into a transverse coaligned pattern after induction with auxin and gibberellic acid. Hormone induction led to an early loss of microtubule plus end density and a rotation toward oblique patterns. Beginning 30 min after induction, transverse microtubules appeared at the cell's midzone concurrently with the loss of longitudinal polymers, eventually progressing apically and basally to remodel the array pattern. Based on the timing and known hormone-signaling pathways, we tested the hypothesis that the later events require de novo gene expression and, thus, constitute a level of genetic control over transverse patterning. We found that the presence of the translation inhibitor cycloheximide (CHX) resulted in a selective and reversible loss of transverse patterns that were replaced with radial-like pinwheel arrays exhibiting a split bipolar architecture centered at the cell's midzone. Experiments using hormone induction and CHX revealed that pinwheel arrays occur when transverse microtubules increase at the midzone but longitudinal microtubules in the split bipolar architecture are not suppressed. We propose that a key regulatory mechanism for creating the transverse microtubule coalignment in axially growing hypocotyls involves the expression of a CHX-sensitive factor that acts to suppress the nucleation of the longitudinally oriented polymers.
Collapse
Affiliation(s)
- Andrew Elliott
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405
| | - Sidney L Shaw
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| |
Collapse
|
50
|
Reed JW, Wu MF, Reeves PH, Hodgens C, Yadav V, Hayes S, Pierik R. Three Auxin Response Factors Promote Hypocotyl Elongation. PLANT PHYSIOLOGY 2018; 178:864-875. [PMID: 30139794 PMCID: PMC6181040 DOI: 10.1104/pp.18.00718] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/09/2018] [Indexed: 05/18/2023]
Abstract
The hormone auxin regulates growth largely by affecting gene expression. By studying Arabidopsis (Arabidopsis thaliana) mutants deficient in AUXIN RESPONSE FACTORS (ARFs), we have identified three ARF proteins that are required for auxin-responsive hypocotyl elongation. Plants deficient in these factors have reduced responses to environmental conditions that increase auxin levels, including far-red-enriched light and high temperature. Despite having decreased auxin responses, the ARF-deficient plants responded to brassinosteroid and gibberellin, indicating that different hormones can act partially independently. Aux/IAA proteins, encoded by IAA genes, interact with ARF proteins to repress auxin response. Silencing expression of multiple IAA genes increased hypocotyl elongation, suggesting that Aux/IAA proteins modulate ARF activity in hypocotyls in a potential negative feedback loop.
Collapse
Affiliation(s)
- Jason W Reed
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280
| | - Miin-Feng Wu
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280
| | - Paul H Reeves
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280
| | - Charles Hodgens
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280
| | - Vandana Yadav
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280
| | - Scott Hayes
- Department of Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Ronald Pierik
- Department of Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| |
Collapse
|