1
|
Ozment E, Tamvacakis AN, Zhou J, Rosiles-Loeza PY, Escobar-Hernandez EE, Fernandez-Valverde SL, Nakanishi N. Cnidarian hair cell development illuminates an ancient role for the class IV POU transcription factor in defining mechanoreceptor identity. eLife 2021; 10:74336. [PMID: 34939935 PMCID: PMC8846589 DOI: 10.7554/elife.74336] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/22/2021] [Indexed: 12/04/2022] Open
Abstract
Although specialized mechanosensory cells are found across animal phylogeny, early evolutionary histories of mechanoreceptor development remain enigmatic. Cnidaria (e.g. sea anemones and jellyfishes) is the sister group to well-studied Bilateria (e.g. flies and vertebrates), and has two mechanosensory cell types – a lineage-specific sensory effector known as the cnidocyte, and a classical mechanosensory neuron referred to as the hair cell. While developmental genetics of cnidocytes is increasingly understood, genes essential for cnidarian hair cell development are unknown. Here, we show that the class IV POU homeodomain transcription factor (POU-IV) – an indispensable regulator of mechanosensory cell differentiation in Bilateria and cnidocyte differentiation in Cnidaria – controls hair cell development in the sea anemone cnidarian Nematostella vectensis. N. vectensis POU-IV is postmitotically expressed in tentacular hair cells, and is necessary for development of the apical mechanosensory apparatus, but not of neurites, in hair cells. Moreover, it binds to deeply conserved DNA recognition elements, and turns on a unique set of effector genes – including the transmembrane receptor-encoding gene polycystin 1 – specifically in hair cells. Our results suggest that POU-IV directs differentiation of cnidarian hair cells and cnidocytes via distinct gene regulatory mechanisms, and support an evolutionarily ancient role for POU-IV in defining the mature state of mechanosensory neurons.
Collapse
Affiliation(s)
- Ethan Ozment
- Department of Biological Sciences, University of Arkansas, Fayetteville, United States
| | - Arianna N Tamvacakis
- Department of Biological Sciences, University of Arkansas, Fayetteville, United States
| | - Jianhong Zhou
- Department of Biological Sciences, University of Arkansas, Fayetteville, United States
| | - Pablo Yamild Rosiles-Loeza
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| | | | - Selene L Fernandez-Valverde
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| | - Nagayasu Nakanishi
- Department of Biological Sciences, University of Arkansas, Fayetteville, United States
| |
Collapse
|
2
|
Tournière O, Dolan D, Richards GS, Sunagar K, Columbus-Shenkar YY, Moran Y, Rentzsch F. NvPOU4/Brain3 Functions as a Terminal Selector Gene in the Nervous System of the Cnidarian Nematostella vectensis. Cell Rep 2021; 30:4473-4489.e5. [PMID: 32234481 DOI: 10.1016/j.celrep.2020.03.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/08/2020] [Accepted: 03/11/2020] [Indexed: 12/27/2022] Open
Abstract
Terminal selectors are transcription factors that control the morphological, physiological, and molecular features that characterize distinct cell types. Here, we show that, in the sea anemone Nematostella vectensis, NvPOU4 is expressed in post-mitotic cells that give rise to a diverse set of neural cell types, including cnidocytes and NvElav1-expressing neurons. Morphological analyses of NvPOU4 mutants crossed to transgenic reporter lines show that the loss of NvPOU4 does not affect the initial specification of neural cells. Transcriptomes derived from the mutants and from different neural cell populations reveal that NvPOU4 is required for the execution of the terminal differentiation program of these neural cells. These findings suggest that POU4 genes have ancient functions as terminal selectors for morphologically and functionally disparate types of neurons and they provide experimental support for the relevance of terminal selectors for understanding the evolution of cell types.
Collapse
Affiliation(s)
- Océane Tournière
- Sars International Centre for Marine Molecular Biology, University of Bergen, 5006 Bergen, Norway
| | - David Dolan
- Computational Biology Unit, Department for Informatics, University of Bergen, 5006 Bergen, Norway
| | - Gemma Sian Richards
- Sars International Centre for Marine Molecular Biology, University of Bergen, 5006 Bergen, Norway
| | - Kartik Sunagar
- Department of Ecology, Evolution and Behaviour, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401 Jerusalem, Israel; Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, India
| | - Yaara Y Columbus-Shenkar
- Department of Ecology, Evolution and Behaviour, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401 Jerusalem, Israel
| | - Yehu Moran
- Department of Ecology, Evolution and Behaviour, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401 Jerusalem, Israel
| | - Fabian Rentzsch
- Sars International Centre for Marine Molecular Biology, University of Bergen, 5006 Bergen, Norway; Department for Biological Sciences, University of Bergen, 5006 Bergen, Norway.
| |
Collapse
|
3
|
Riyas A, Kumar A, Chandran M, Jaleel A, Biju Kumar A. The venom proteome of three common scyphozoan jellyfishes (Chrysaora caliparea, Cyanea nozakii and Lychnorhiza malayensis) (Cnidaria: Scyphozoa) from the coastal waters of India. Toxicon 2021; 195:93-103. [PMID: 33741399 DOI: 10.1016/j.toxicon.2021.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 03/01/2021] [Accepted: 03/07/2021] [Indexed: 01/22/2023]
Abstract
The jellyfish venom stored in nematocysts contains highly toxic compounds comprising of polypeptides, enzymes and other proteins, which form their chemical defence armoury against predators. We have characterized the proteome of crude venom extract from three bloom-forming scyphozoan jellyfish along the south-west coast of India, Chrysaora caliparea, Cyanea nozakii and Lychnorhiza malayensis using a Quadrupole-Time of Flight (Q/TOF) mass spectrometry analysis. The most abundant toxin identified from Chrysaora caliparea and Lychnorhiza malayensis is similar to the pore-forming toxins and metalloproteinases. A protective antioxidant enzyme called peroxiredoxin was found abundantly in Cyanea nozakii. Metalloproteinase identified from the C. caliparea shows similarity with the venom of pit viper (Bothrops pauloensis), while that of L. malayensis was similar to the venom of snakes such as the Bothrops insularis and Bothrops asper. Kininogen-1 is a secreted protein, identified for the first time from the jellyfish L. malayensis. The proteome analysis of Cyanea nozakii, Chrysaora caliparea and Lychnorhiza malayensis contained 20, 12, 8 unique proteins, respectively. Our study characterized the proteome map of crude venom extract from L. malayensis and C. caliparea for the first time, and the venom profile is compared with published information elsewhere. Proteomic data from this study has been made available in the public domain.
Collapse
Affiliation(s)
- Abdul Riyas
- Department of Aquatic Biology and Fisheries, University of Kerala, Thiruvananthapuram, 695581, Kerala, India
| | - Aneesh Kumar
- Mass Spectrometry and Proteomics Core Facility, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Mahesh Chandran
- Mass Spectrometry and Proteomics Core Facility, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Abdul Jaleel
- Mass Spectrometry and Proteomics Core Facility, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Appukuttannair Biju Kumar
- Department of Aquatic Biology and Fisheries, University of Kerala, Thiruvananthapuram, 695581, Kerala, India.
| |
Collapse
|
4
|
|
5
|
Leyva-Díaz E, Masoudi N, Serrano-Saiz E, Glenwinkel L, Hobert O. Brn3/POU-IV-type POU homeobox genes-Paradigmatic regulators of neuronal identity across phylogeny. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 9:e374. [PMID: 32012462 DOI: 10.1002/wdev.374] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/18/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023]
Abstract
One approach to understand the construction of complex systems is to investigate whether there are simple design principles that are commonly used in building such a system. In the context of nervous system development, one may ask whether the generation of its highly diverse sets of constituents, that is, distinct neuronal cell types, relies on genetic mechanisms that share specific common features. Specifically, are there common patterns in the function of regulatory genes across different neuron types and are those regulatory mechanisms not only used in different parts of one nervous system, but are they conserved across animal phylogeny? We address these questions here by focusing on one specific, highly conserved and well-studied regulatory factor, the POU homeodomain transcription factor UNC-86. Work over the last 30 years has revealed a common and paradigmatic theme of unc-86 function throughout most of the neuron types in which Caenorhabditis elegans unc-86 is expressed. Apart from its role in preventing lineage reiterations during development, UNC-86 operates in combination with distinct partner proteins to initiate and maintain terminal differentiation programs, by coregulating a vast array of functionally distinct identity determinants of specific neuron types. Mouse orthologs of unc-86, the Brn3 genes, have been shown to fulfill a similar function in initiating and maintaining neuronal identity in specific parts of the mouse brain and similar functions appear to be carried out by the sole Drosophila ortholog, Acj6. The terminal selector function of UNC-86 in many different neuron types provides a paradigm for neuronal identity regulation across phylogeny. This article is categorized under: Gene Expression and Transcriptional Hierarchies > Regulatory Mechanisms Invertebrate Organogenesis > Worms Nervous System Development > Vertebrates: Regional Development.
Collapse
Affiliation(s)
- Eduardo Leyva-Díaz
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York
| | - Neda Masoudi
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York
| | | | - Lori Glenwinkel
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York
| | - Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York
| |
Collapse
|
6
|
Matsumoto Y, Piraino S, Miglietta MP. Transcriptome Characterization of Reverse Development in Turritopsis dohrnii (Hydrozoa, Cnidaria). G3 (BETHESDA, MD.) 2019; 9:4127-4138. [PMID: 31619459 PMCID: PMC6893190 DOI: 10.1534/g3.119.400487] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/08/2019] [Indexed: 02/08/2023]
Abstract
Medusae of Turritopsis dohrnii undergo reverse development in response to physical damage, adverse environmental conditions, or aging. Senescent, weakened or damaged medusae transform into a cluster of poorly differentiated cells (known as the cyst stage), which metamorphose back into a preceding life cycle stage, the polyp. During the metamorphosis, cell transdifferentiation occurs. The cyst represents the intermediate stage between a reverting medusa and a healthy polyp, during which cell transdifferentiation and tissue reorganization take place. Here we characterize and compare the transcriptomes of the polyp and newborn medusa stages of T. dohrnii with that of the cyst, to identify biological networks potentially involved in the reverse development and transdifferentiation processes. The polyp, medusa and cyst of T. dohrnii were sequenced through Illumina RNA-sequencing and assembled using a de novo approach, resulting in 92,569, 74,639 and 86,373 contigs, respectively. The transcriptomes were annotated and comparative analyses among the stages identified biological networks that were significantly over-and under-expressed in the cyst as compared to the polyp and medusa stages. Biological processes that occur at the cyst stage such as telomerase activity, regulation of transposable elements and DNA repair systems, and suppression of cell signaling pathways, mitotic cell division and cellular differentiation and development may be involved in T. dohrnii's reverse development and transdifferentiation. Our results are the first attempt to understand T. dohrnii's life-cycle reversal at the genetic level, and indicate possible avenues of future research on developmental strategies, cell transdifferentiation, and aging using T. dohrnii as a non-traditional in vivo system.
Collapse
Affiliation(s)
- Yui Matsumoto
- Texas A&M University at Galveston, Galveston, TX and
| | - Stefano Piraino
- Università del Salento, Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, 73100 Lecce, Italy
| | | |
Collapse
|
7
|
Schlosser G. A Short History of Nearly Every Sense-The Evolutionary History of Vertebrate Sensory Cell Types. Integr Comp Biol 2019; 58:301-316. [PMID: 29741623 DOI: 10.1093/icb/icy024] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Evolving from filter feeding chordate ancestors, vertebrates adopted a more active life style. These ecological and behavioral changes went along with an elaboration of the vertebrate head including novel complex paired sense organs such as the eyes, inner ears, and olfactory epithelia. However, the photoreceptors, mechanoreceptors, and chemoreceptors used in these sense organs have a long evolutionary history and homologous cell types can be recognized in many other bilaterians or even cnidarians. After briefly introducing some of the major sensory cell types found in vertebrates, this review summarizes the phylogenetic distribution of sensory cell types in metazoans and presents a scenario for the evolutionary history of various sensory cell types involving several cell type diversification and fusion events. It is proposed that the evolution of novel cranial sense organs in vertebrates involved the redeployment of evolutionarily ancient sensory cell types for building larger and more complex sense organs.
Collapse
Affiliation(s)
- Gerhard Schlosser
- School of Natural Sciences and Regenerative Medicine Institute (REMEDI), National University of Ireland, Biomedical Sciences Building, Newcastle Road, Galway H91 TK33, Ireland
| |
Collapse
|
8
|
Keith SA, Maynard JA, Edwards AJ, Guest JR, Bauman AG, van Hooidonk R, Heron SF, Berumen ML, Bouwmeester J, Piromvaragorn S, Rahbek C, Baird AH. Coral mass spawning predicted by rapid seasonal rise in ocean temperature. Proc Biol Sci 2017; 283:rspb.2016.0011. [PMID: 27170709 DOI: 10.1098/rspb.2016.0011] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 04/18/2016] [Indexed: 12/26/2022] Open
Abstract
Coral spawning times have been linked to multiple environmental factors; however, to what extent these factors act as generalized cues across multiple species and large spatial scales is unknown. We used a unique dataset of coral spawning from 34 reefs in the Indian and Pacific Oceans to test if month of spawning and peak spawning month in assemblages of Acropora spp. can be predicted by sea surface temperature (SST), photosynthetically available radiation, wind speed, current speed, rainfall or sunset time. Contrary to the classic view that high mean SST initiates coral spawning, we found rapid increases in SST to be the best predictor in both cases (month of spawning: R(2) = 0.73, peak: R(2) = 0.62). Our findings suggest that a rapid increase in SST provides the dominant proximate cue for coral mass spawning over large geographical scales. We hypothesize that coral spawning is ultimately timed to ensure optimal fertilization success.
Collapse
Affiliation(s)
- Sally A Keith
- Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Copenhagen 2100, Denmark ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
| | - Jeffrey A Maynard
- SymbioSeas and the Marine Applied Research Center, Wilmington, NC 28411, USA Laboratoire d'Excellence «CORAIL» USR 3278 CNRS - EPHE, CRIOBE, Papetoai, Moorea, French Polynesia
| | - Alasdair J Edwards
- School of Biology, Newcastle University, Ridley Building, Newcastle upon Tyne NE1 7RU, UK
| | - James R Guest
- SECORE International, 40 Jalan Anjung 5, Horizon Hills, Nusajaya 79100, Johor, Malaysia
| | - Andrew G Bauman
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Republic of Singapore
| | - Ruben van Hooidonk
- Atlantic Oceanographic and Meteorological Laboratory, NOAA, 4301 Rickenbacker Causeway, Miami, FL 33149, USA Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA
| | - Scott F Heron
- NOAA Coral Reef Watch, 675 Ross River Road, Townsville, Queensland 4817, Australia Marine Geophysical Laboratory, Physics Department, College of Science, Technology and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| | - Michael L Berumen
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23599-6900, Saudi Arabia
| | - Jessica Bouwmeester
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23599-6900, Saudi Arabia Department of Geology and Carl R. Woese Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Srisakul Piromvaragorn
- Center of Excellence for Biodiversity of Peninsular Thailand, Biology Department, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Carsten Rahbek
- Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Copenhagen 2100, Denmark Imperial College London, Silwood Park, Buckhurst Road, Ascot, Berkshire SL5 7PY, UK
| | - Andrew H Baird
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
9
|
Leclère L, Copley RR, Momose T, Houliston E. Hydrozoan insights in animal development and evolution. Curr Opin Genet Dev 2016; 39:157-167. [DOI: 10.1016/j.gde.2016.07.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 06/02/2016] [Accepted: 07/07/2016] [Indexed: 12/21/2022]
|
10
|
Nakanishi N, Camara AC, Yuan DC, Gold DA, Jacobs DK. Gene Expression Data from the Moon Jelly, Aurelia, Provide Insights into the Evolution of the Combinatorial Code Controlling Animal Sense Organ Development. PLoS One 2015; 10:e0132544. [PMID: 26225420 PMCID: PMC4520661 DOI: 10.1371/journal.pone.0132544] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 06/17/2015] [Indexed: 01/22/2023] Open
Abstract
In Bilateria, Pax6, Six, Eya and Dach families of transcription factors underlie the development and evolution of morphologically and phyletically distinct eyes, including the compound eyes in Drosophila and the camera-type eyes in vertebrates, indicating that bilaterian eyes evolved under the strong influence of ancestral developmental gene regulation. However the conservation in eye developmental genetics deeper in the Eumetazoa, and the origin of the conserved gene regulatory apparatus controlling eye development remain unclear due to limited comparative developmental data from Cnidaria. Here we show in the eye-bearing scyphozoan cnidarian Aurelia that the ectodermal photosensory domain of the developing medusa sensory structure known as the rhopalium expresses sine oculis (so)/six1/2 and eyes absent/eya, but not optix/six3/6 or pax (A&B). In addition, the so and eya co-expression domain encompasses the region of active cell proliferation, neurogenesis, and mechanoreceptor development in rhopalia. Consistent with the role of so and eya in rhopalial development, developmental transcriptome data across Aurelia life cycle stages show upregulation of so and eya, but not optix or pax (A&B), during medusa formation. Moreover, pax6 and dach are absent in the Aurelia genome, and thus are not required for eye development in Aurelia. Our data are consistent with so and eya, but not optix, pax or dach, having conserved functions in sensory structure specification across Eumetazoa. The lability of developmental components including Pax genes relative to so-eya is consistent with a model of sense organ development and evolution that involved the lineage specific modification of a combinatorial code that specifies animal sense organs.
Collapse
Affiliation(s)
- Nagayasu Nakanishi
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, California, United States of America
| | - Anthony C. Camara
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, California, United States of America
| | - David C. Yuan
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, California, United States of America
| | - David A. Gold
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, California, United States of America
| | - David K. Jacobs
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, California, United States of America
| |
Collapse
|
11
|
Schlosser G. Vertebrate cranial placodes as evolutionary innovations--the ancestor's tale. Curr Top Dev Biol 2015; 111:235-300. [PMID: 25662263 DOI: 10.1016/bs.ctdb.2014.11.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Evolutionary innovations often arise by tinkering with preexisting components building new regulatory networks by the rewiring of old parts. The cranial placodes of vertebrates, ectodermal thickenings that give rise to many of the cranial sense organs (ear, nose, lateral line) and ganglia, originated as such novel structures, when vertebrate ancestors elaborated their head in support of a more active and exploratory life style. This review addresses the question of how cranial placodes evolved by tinkering with ectodermal patterning mechanisms and sensory and neurosecretory cell types that have their own evolutionary history. With phylogenetic relationships among the major branches of metazoans now relatively well established, a comparative approach is used to infer, which structures evolved in which lineages and allows us to trace the origin of placodes and their components back from ancestor to ancestor. Some of the core networks of ectodermal patterning and sensory and neurosecretory differentiation were already established in the common ancestor of cnidarians and bilaterians and were greatly elaborated in the bilaterian ancestor (with BMP- and Wnt-dependent patterning of dorsoventral and anteroposterior ectoderm and multiple neurosecretory and sensory cell types). Rostral and caudal protoplacodal domains, giving rise to some neurosecretory and sensory cells, were then established in the ectoderm of the chordate and tunicate-vertebrate ancestor, respectively. However, proper cranial placodes as clusters of proliferating progenitors producing high-density arrays of neurosecretory and sensory cells only evolved and diversified in the ancestors of vertebrates.
Collapse
Affiliation(s)
- Gerhard Schlosser
- School of Natural Sciences & Regenerative Medicine Institute (REMEDI), National University of Ireland, Galway, Ireland.
| |
Collapse
|
12
|
Wollesen T, McDougall C, Degnan BM, Wanninger A. POU genes are expressed during the formation of individual ganglia of the cephalopod central nervous system. EvoDevo 2014; 5:41. [PMID: 25908957 PMCID: PMC4407788 DOI: 10.1186/2041-9139-5-41] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 09/29/2014] [Indexed: 11/18/2022] Open
Abstract
Background Among the Lophotrochozoa, cephalopods possess the highest degree of central nervous system (CNS) centralization and complexity. Although the anatomy of the developing cephalopod CNS has been investigated, the developmental mechanisms underlying brain development and evolution are unknown. POU genes encode key transcription factors controlling nervous system development in a range of bilaterian species, including lophotrochozoans. In this study, we investigate the expression of POU genes during early development of the pygmy squid Idiosepius notoides and make comparisons with other bilaterians to reveal whether these genes have conserved or divergent roles during CNS development in this species. Results POU2, POU3, POU4 and POU6 orthologs were identified in transcriptomes derived from developmental stages and adult brain tissue of I. notoides. All four POU gene orthologs are expressed in different spatiotemporal combinations in the early embryo. Ino-POU2 is expressed in the gills and the palliovisceral, pedal, and optic ganglia of stage 19 to 20 embryos, whereas the cerebral and palliovisceral ganglia express Ino-POU3. Ino-POU4 is expressed in the optic and palliovisceral ganglia and the arms/intrabrachial ganglia of stage 19 to 20 individuals. Ino-POU6 is expressed in the palliovisceral ganglia during early development. In stage 25 embryos expression domains include the intrabrachial ganglia (Ino-POU3) and the pedal ganglia (Ino-POU6). All four POU genes are strongly expressed in large areas of the brain of stage 24 to 26 individuals. Expression could not be detected in late prehatching embryos (approximately stage 27 to 30). Conclusions The expression of four POU genes in unique spatiotemporal combinations during early neurogenesis and sensory organ development of I. notoides suggests that they fulfill distinct tasks during early brain development. Comparisons with other bilaterian species reveal that POU gene expression is associated with anteriormost neural structures, even between animals for which these structures are unlikely to be homologous. Within lophotrochozoans, POU3 and POU4 are the only two genes that have been comparatively investigated. Their expression patterns are broadly similar, indicating that the increased complexity of the cephalopod brain is likely due to other unknown factors.
Collapse
Affiliation(s)
- Tim Wollesen
- Department of Integrative Zoology, Faculty of Sciences, University of Vienna, Althanstr. 14, 1090 Vienna, Austria
| | - Carmel McDougall
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Bernard M Degnan
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Andreas Wanninger
- Department of Integrative Zoology, Faculty of Sciences, University of Vienna, Althanstr. 14, 1090 Vienna, Austria
| |
Collapse
|
13
|
Abstract
The POU genes represent a diverse class of animal-specific transcription factors that play important roles in neurogenesis, pluripotency, and cell-type specification. Although previous attempts have been made to reconstruct the evolution of the POU class, these studies have been limited by a small number of representative taxa, and a lack of sequences from basally branching organisms. In this study, we performed comparative analyses on available genomes and sequences recovered through "gene fishing" to better resolve the topology of the POU gene tree. We then used ancestral state reconstruction to map the most likely changes in amino acid evolution for the conserved domains. Our work suggests that four of the six POU families evolved before the last common ancestor of living animals-doubling previous estimates-and were followed by extensive clade-specific gene loss. Amino acid changes are distributed unequally across the gene tree, consistent with a neofunctionalization model of protein evolution. We consider our results in the context of early animal evolution, and the role of POU5 genes in maintaining stem cell pluripotency.
Collapse
Affiliation(s)
- David A Gold
- Department of Ecology and Evolution, University of California, Los Angeles
| | - Ruth D Gates
- Department of Ecology and Evolution, University of California, Los Angeles
| | - David K Jacobs
- Department of Ecology and Evolution, University of California, Los Angeles
| |
Collapse
|
14
|
Džunková M, Garcia-Garcerà M, Martínez-Priego L, D’Auria G, Calafell F, Moya A. Direct squencing from the minimal number of DNA molecules needed to fill a 454 picotiterplate. PLoS One 2014; 9:e97379. [PMID: 24887077 PMCID: PMC4041646 DOI: 10.1371/journal.pone.0097379] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 04/17/2014] [Indexed: 02/07/2023] Open
Abstract
The large amount of DNA needed to prepare a library in next generation sequencing protocols hinders direct sequencing of small DNA samples. This limitation is usually overcome by the enrichment of such samples with whole genome amplification (WGA), mostly by multiple displacement amplification (MDA) based on φ29 polymerase. However, this technique can be biased by the GC content of the sample and is prone to the development of chimeras as well as contamination during enrichment, which contributes to undesired noise during sequence data analysis, and also hampers the proper functional and/or taxonomic assignments. An alternative to MDA is direct DNA sequencing (DS), which represents the theoretical gold standard in genome sequencing. In this work, we explore the possibility of sequencing the genome of Escherichia coli fs 24 from the minimum number of DNA molecules required for pyrosequencing, according to the notion of one-bead-one-molecule. Using an optimized protocol for DS, we constructed a shotgun library containing the minimum number of DNA molecules needed to fill a selected region of a picotiterplate. We gathered most of the reference genome extension with uniform coverage. We compared the DS method with MDA applied to the same amount of starting DNA. As expected, MDA yielded a sparse and biased read distribution, with a very high amount of unassigned and unspecific DNA amplifications. The optimized DS protocol allows unbiased sequencing to be performed from samples with a very small amount of DNA.
Collapse
Affiliation(s)
- Mária Džunková
- Área de Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO-Salud Pública), Valencia, Spain
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, Valencia, Spain
- CIBER en Epidemiología y Salud Pública (CIBEResp), Madrid, Spain
| | - Marc Garcia-Garcerà
- Área de Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO-Salud Pública), Valencia, Spain
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, Valencia, Spain
- Institut de Biologia Evolutiva, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Llúcia Martínez-Priego
- Área de Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO-Salud Pública), Valencia, Spain
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, Valencia, Spain
| | - Giussepe D’Auria
- Área de Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO-Salud Pública), Valencia, Spain
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, Valencia, Spain
- CIBER en Epidemiología y Salud Pública (CIBEResp), Madrid, Spain
| | - Francesc Calafell
- Institut de Biologia Evolutiva, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Andrés Moya
- Área de Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO-Salud Pública), Valencia, Spain
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, Valencia, Spain
- CIBER en Epidemiología y Salud Pública (CIBEResp), Madrid, Spain
| |
Collapse
|
15
|
Sanders SM, Shcheglovitova M, Cartwright P. Differential gene expression between functionally specialized polyps of the colonial hydrozoan Hydractinia symbiolongicarpus (Phylum Cnidaria). BMC Genomics 2014; 15:406. [PMID: 24884766 PMCID: PMC4072882 DOI: 10.1186/1471-2164-15-406] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 05/20/2014] [Indexed: 02/06/2023] Open
Abstract
Background A colony of the hydrozoan Hydractinia symbiolongicarpus comprises genetically identical yet morphologically distinct and functionally specialized polyp types. The main labor divisions are between feeding, reproduction and defense. In H. symbiolongicarpus, the feeding polyp (called a gastrozooid) has elongated tentacles and a mouth, which are absent in the reproductive polyp (gonozooid) and defensive polyp (dactylozooid). Instead, the dactylozooid has an extended body column with an abundance of stinging cells (nematocysts) and the gonozooid bears gonophores on its body column. Morphological differences between polyp types can be attributed to simple changes in their axial patterning during development, and it has long been hypothesized that these specialized polyps arose through evolutionary alterations in oral-aboral patterning of the ancestral gastrozooid. Results An assembly of 66,508 transcripts (>200 bp) were generated using short-read Illumina RNA-Seq libraries constructed from feeding, reproductive, and defensive polyps of H. symbiolongicarpus. Using several different annotation methods, approximately 54% of the transcripts were annotated. Differential expression analyses were conducted between these three polyp types to isolate genes that may be involved in functional, histological, and pattering differences between polyp types. Nearly 7 K transcripts were differentially expressed in a polyp-specific manner, including members of the homeodomain, myosin, toxin and BMP gene families. We report the spatial expression of a subset of these polyp-specific transcripts to validate our differential expression analyses. Conclusions While potentially originating through simple changes in patterning, polymorphic polyps in Hydractinia are the result of differentially expressed functional, structural, and patterning genes. The differentially expressed genes identified in our study provide a starting point for future investigations of the developmental patterning and functional differences that are displayed in the different polyp types that confer a division of labor within a colony of H. symbiolongicarpus. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-406) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Steven M Sanders
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas 66045, USA.
| | | | | |
Collapse
|
16
|
Babonis LS, Martindale MQ. Old cell, new trick? Cnidocytes as a model for the evolution of novelty. Integr Comp Biol 2014; 54:714-22. [PMID: 24771087 DOI: 10.1093/icb/icu027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Understanding how new cell types arise is critical for understanding the evolution of organismal complexity. Questions of this nature, however, can be difficult to answer due to the challenge associated with defining the identity of a truly novel cell. Cnidarians (anemones, jellies, and their allies) provide a unique opportunity to investigate the molecular regulation and development of cell-novelty because they possess a cell that is unique to the cnidarian lineage and that also has a very well-characterized phenotype: the cnidocyte (stinging cell). Because cnidocytes are thought to differentiate from the cell lineage that also gives rise to neurons, cnidocytes can be expected to express many of the same genes expressed in their neural "sister" cells. Conversely, only cnidocytes posses a cnidocyst (the explosive organelle that gives cnidocytes their sting); therefore, those genes or gene-regulatory relationships required for the development of the cnidocyst can be expected to be expressed uniquely (or in unique combination) in cnidocytes. This system provides an important opportunity to: (1) construct the gene-regulatory network (GRN) underlying the differentiation of cnidocytes, (2) assess the relative contributions of both conserved and derived genes in the cnidocyte GRN, and (3) test hypotheses about the role of novel regulatory relationships in the generation of novel cell types. In this review, we summarize common challenges to studying the evolution of novelty, introduce the utility of cnidocyte differentiation in the model cnidarian, Nematostella vectensis, as a means of overcoming these challenges, and describe an experimental approach that leverages comparative tissue-specific transcriptomics to generate hypotheses about the GRNs underlying the acquisition of the cnidocyte identity.
Collapse
Affiliation(s)
- Leslie S Babonis
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 N Oceanshore Blvd, St. Augustine, FL 32080, USA
| | - Mark Q Martindale
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 N Oceanshore Blvd, St. Augustine, FL 32080, USA
| |
Collapse
|
17
|
Böttger A, Doxey AC, Hess MW, Pfaller K, Salvenmoser W, Deutzmann R, Geissner A, Pauly B, Altstätter J, Münder S, Heim A, Gabius HJ, McConkey BJ, David CN. Horizontal gene transfer contributed to the evolution of extracellular surface structures: the freshwater polyp Hydra is covered by a complex fibrous cuticle containing glycosaminoglycans and proteins of the PPOD and SWT (sweet tooth) families. PLoS One 2012; 7:e52278. [PMID: 23300632 PMCID: PMC3531485 DOI: 10.1371/journal.pone.0052278] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 11/12/2012] [Indexed: 01/11/2023] Open
Abstract
The single-cell layered ectoderm of the fresh water polyp Hydra fulfills the function of an epidermis by protecting the animals from the surrounding medium. Its outer surface is covered by a fibrous structure termed the cuticle layer, with similarity to the extracellular surface coats of mammalian epithelia. In this paper we have identified molecular components of the cuticle. We show that its outermost layer contains glycoproteins and glycosaminoglycans and we have identified chondroitin and chondroitin-6-sulfate chains. In a search for proteins that could be involved in organising this structure we found PPOD proteins and several members of a protein family containing only SWT (sweet tooth) domains. Structural analyses indicate that PPODs consist of two tandem β-trefoil domains with similarity to carbohydrate-binding sites found in lectins. Experimental evidence confirmed that PPODs can bind sulfated glycans and are secreted into the cuticle layer from granules localized under the apical surface of the ectodermal epithelial cells. PPODs are taxon-specific proteins which appear to have entered the Hydra genome by horizontal gene transfer from bacteria. Their acquisition at the time Hydra evolved from a marine ancestor may have been critical for the transition to the freshwater environment.
Collapse
Affiliation(s)
- Angelika Böttger
- Department Biologie II, Ludwig-Maximilians-University, Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|