1
|
Hirata M, Wittayarat M, Tanihara F, Sato Y, Namula Z, Le QA, Lin Q, Takebayashi K, Otoi T. One-step genome editing of porcine zygotes through the electroporation of a CRISPR/Cas9 system with two guide RNAs. In Vitro Cell Dev Biol Anim 2020; 56:614-621. [PMID: 32978715 DOI: 10.1007/s11626-020-00507-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/08/2020] [Indexed: 11/30/2022]
Abstract
In the present study, we investigated whether electroporation could be used for one-step multiplex CRISPR/Cas9-based genome editing, targeting IL2RG and GHR in porcine embryos. First, we evaluated and selected guide RNAs (gRNAs) by analyzing blastocyst formation rates and genome editing efficiency. This was performed in embryos electroporated with one of three different gRNAs targeting IL2RG or one of two gRNAs targeting GHR. No significant differences in embryo development rates were found between control embryos and those subjected to electroporation, irrespective of the target gene. Two gRNAs targeting IL2RG (nos. 2 and 3) contributed to an increased biallelic mutation rate in porcine blastocysts compared with gRNA no. 1. There were no significant differences in the mutation rates between the two gRNAs targeting GHR. In our next experiment, the mutation efficiency and the development of embryos simultaneously electroporated with gRNAs targeting IL2RG and GHR were investigated. Similar embryo development rates were observed between embryos electroporated with two gRNAs and control embryos. When IL2RG-targeting gRNA no. 2 was used with GHR-targeting gRNAs no. 1 or no. 2, a significantly higher double biallelic mutation rate was observed than with IL2RG-targeting gRNA no. 3. In conclusion, we demonstrate the feasibility of using electroporation to transfer multiple gRNAs and Cas9 into porcine zygotes, enabling the double biallelic mutation of multiple genes with favorable embryo survival.
Collapse
Affiliation(s)
- Maki Hirata
- Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, 2272-1 Ishii, Myozai-gun, Tokushima, 779-3233, Japan
| | - Manita Wittayarat
- Faculty of Veterinary Science, Prince of Songkla University, Songkhla, Thailand
| | - Fuminori Tanihara
- Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, 2272-1 Ishii, Myozai-gun, Tokushima, 779-3233, Japan.
| | - Yoko Sato
- School of Biological Science, Tokai University, Sapporo, Japan
| | - Zhao Namula
- College of Agricultural Science, Guangdong Ocean University, Guangdong, China
| | - Quynh Anh Le
- Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, 2272-1 Ishii, Myozai-gun, Tokushima, 779-3233, Japan
| | - Qingyi Lin
- Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, 2272-1 Ishii, Myozai-gun, Tokushima, 779-3233, Japan
| | - Koki Takebayashi
- Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, 2272-1 Ishii, Myozai-gun, Tokushima, 779-3233, Japan
| | - Takeshige Otoi
- Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, 2272-1 Ishii, Myozai-gun, Tokushima, 779-3233, Japan
| |
Collapse
|
2
|
Skipper KA, Hollensen AK, Antoniou MN, Mikkelsen JG. Sustained transgene expression from sleeping beauty DNA transposons containing a core fragment of the HNRPA2B1-CBX3 ubiquitous chromatin opening element (UCOE). BMC Biotechnol 2019; 19:75. [PMID: 31706316 PMCID: PMC6842454 DOI: 10.1186/s12896-019-0570-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/15/2019] [Indexed: 12/22/2022] Open
Abstract
Background DNA transposon-based vectors are effective nonviral tools for gene therapy and genetic engineering of cells. However, promoter DNA methylation and a near-random integration profile, which can result in transgene integration into heterochromatin, renders such vectors vulnerable to transcriptional repression. Therefore, to secure persistent transgene expression it may be necessary to protect transposon-embedded transgenes with anti-transcriptional silencing elements. Results We compare four different protective strategies in CHO-K1 cells. Our findings show robust protection from silencing of transgene cassettes mediated by the ubiquitous chromatin-opening element (UCOE) derived from the HNRPA2B1-CBX3 locus. Using a bioinformatic approach, we define a shorter HNRPA2B1-CBX3 UCOE core fragment and demonstrate that this can robustly maintain transgene expression after extended passaging of CHO-K1 cells carrying DNA transposon vectors equipped with this protective feature. Conclusions Our findings contribute to the understanding of the mechanism of HNRPA2B1-CBX3 UCOE-based transgene protection and support the use of a correctly oriented core fragment of this UCOE for DNA transposon vector-based production of recombinant proteins in CHO-K1 cells.
Collapse
Affiliation(s)
| | - Anne Kruse Hollensen
- Department of Biomedicine, HEALTH, Aarhus University, DK- 8000, Aarhus C, Denmark.,Department of Molecular Biology and Genetics, Science and Technology, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Michael N Antoniou
- Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, 8th Floor Tower Wing, Guy's Hospital, London, SE1 9RT, UK
| | | |
Collapse
|
3
|
Haslund D, Ryø LB, Seidelin Majidi S, Rose I, Skipper KA, Fryland T, Bohn AB, Koch C, Thomsen MK, Palarasah Y, Corydon TJ, Bygum A, Nejsum LN, Mikkelsen JG. Dominant-negative SERPING1 variants cause intracellular retention of C1 inhibitor in hereditary angioedema. J Clin Invest 2018; 129:388-405. [PMID: 30398465 DOI: 10.1172/jci98869] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 10/30/2018] [Indexed: 12/18/2022] Open
Abstract
Hereditary angioedema (HAE) is an autosomal dominant disease characterized by recurrent edema attacks associated with morbidity and mortality. HAE results from variations in the SERPING1 gene that encodes the C1 inhibitor (C1INH), a serine protease inhibitor (serpin). Reduced plasma levels of C1INH lead to enhanced activation of the contact system, triggering high levels of bradykinin and increased vascular permeability, but the cellular mechanisms leading to low C1INH levels (20%-30% of normal) in heterozygous HAE type I patients remain obscure. Here, we showed that C1INH encoded by a subset of HAE-causing SERPING1 alleles affected secretion of normal C1INH protein in a dominant-negative fashion by triggering formation of protein-protein interactions between normal and mutant C1INH, leading to the creation of larger intracellular C1INH aggregates that were trapped in the endoplasmic reticulum (ER). Notably, intracellular aggregation of C1INH and ER abnormality were observed in fibroblasts from a heterozygous carrier of a dominant-negative SERPING1 gene variant, but the condition was ameliorated by viral delivery of the SERPING1 gene. Collectively, our data link abnormal accumulation of serpins, a hallmark of serpinopathies, with dominant-negative disease mechanisms affecting C1INH plasma levels in HAE type I patients, and may pave the way for new treatments of HAE.
Collapse
Affiliation(s)
- Didde Haslund
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | | | - Iben Rose
- Department of Dermatology and Allergy Centre, Odense University Hospital, Odense C, Denmark
| | | | - Tue Fryland
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,iPSYCH, the Lundbeck Foundation Initiative for Integrative Psychiatric Research, Denmark
| | - Anja Bille Bohn
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Claus Koch
- Department of Cancer & Inflammation Research, University of Southern Denmark, Odense, Denmark
| | - Martin K Thomsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Yaseelan Palarasah
- Department of Cancer & Inflammation Research, University of Southern Denmark, Odense, Denmark.,Unit for Thrombosis Research, Department of Regional Health Research, University of Southern Denmark and Department of Clinical Biochemistry, Hospital of South West Jutland, Esbjerg, Denmark
| | - Thomas J Corydon
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Ophthalmology, Aarhus University Hospital, Aarhus, Denmark
| | - Anette Bygum
- Department of Dermatology and Allergy Centre, Odense University Hospital, Odense C, Denmark
| | - Lene N Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
4
|
Enhanced Tailored MicroRNA Sponge Activity of RNA Pol II-Transcribed TuD Hairpins Relative to Ectopically Expressed ciRS7-Derived circRNAs. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 13:365-375. [PMID: 30347350 PMCID: PMC6198105 DOI: 10.1016/j.omtn.2018.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/17/2018] [Accepted: 09/17/2018] [Indexed: 12/30/2022]
Abstract
As key regulators of gene expression, microRNAs (miRNAs) have emerged as targets in basic experimentation and therapy. Administration of DNA-encoded RNA molecules, targeting miRNAs through base pairing, is one viable strategy for inhibiting specific miRNAs. A naturally occurring circular RNA (circRNA), ciRS-7, serving as a miRNA-7 (miR-7) sponge was recently identified. This has sparked tremendous interest in adapting circRNAs for suppressing miRNA function. In parallel, we and others have demonstrated efficacy of expressed anti-miRNA Tough Decoy (TuD) hairpins. To compare properties of such inhibitors, we express ciRS-7 and TuD-containing miRNA suppressor transcripts from identical vector formats adapted from RNA polymerase II-directed expression plasmids previously used for production of ciRS-7. In general, markedly higher levels of miR-7 suppression with TuD transcripts relative to ciRS-7 are observed, leading to superior miRNA sponge effects using expressed TuD hairpins. Notably however, we find that individual ciRS-7 transcripts are more potent inhibitors of miR-7 activity than individual TuD7-containing transcripts, although each miR-7 seed match target site in ciRS-7 is, on average, less potent than the perfectly matched target sites in the TuD motif. All together, our studies call for improved means of designing and producing circRNAs for customized miRNA targeting to match TuD hairpins for tailored miRNA suppression.
Collapse
|
5
|
Generation of Venus fluorochrome expressing transgenic handmade cloned buffalo embryos using Sleeping Beauty transposon. Tissue Cell 2018; 51:49-55. [DOI: 10.1016/j.tice.2018.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 12/27/2022]
|
6
|
Staunstrup NH, Stenderup K, Mortensen S, Primo MN, Rosada C, Steiniche T, Liu Y, Li R, Schmidt M, Purup S, Dagnæs-Hansen F, Schrøder LD, Svensson L, Petersen TK, Callesen H, Bolund L, Mikkelsen JG. Psoriasiform skin disease in transgenic pigs with high-copy ectopic expression of human integrins α2 and β1. Dis Model Mech 2018; 10:869-880. [PMID: 28679670 PMCID: PMC5536904 DOI: 10.1242/dmm.028662] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 05/12/2017] [Indexed: 01/15/2023] Open
Abstract
Psoriasis is a complex human-specific disease characterized by perturbed keratinocyte proliferation and a pro-inflammatory environment in the skin. Porcine skin architecture and immunity are very similar to that in humans, rendering the pig a suitable animal model for studying the biology and treatment of psoriasis. Expression of integrins, which is normally confined to the basal layer of the epidermis, is maintained in suprabasal keratinocytes in psoriatic skin, modulating proliferation and differentiation as well as leukocyte infiltration. Here, we generated minipigs co-expressing integrins α2 and β1 in suprabasal epidermal layers. Integrin-transgenic minipigs born into the project displayed skin phenotypes that correlated with the number of inserted transgenes. Molecular analyses were in good concordance with histological observations of psoriatic hallmarks, including hypogranulosis and T-lymphocyte infiltration. These findings mark the first creation of minipigs with a psoriasiform phenotype resembling human psoriasis and demonstrate that integrin signaling plays a key role in psoriasis pathology. Summary: A cloned porcine disease model to advance topical treatment in the debilitating skin disorder psoriasis.
Collapse
Affiliation(s)
- Nicklas Heine Staunstrup
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.,iPSYCH The Lundbeck Foundation Initiative For Integrative Psychiatric Research, Denmark.,iSEQ, Centre for integrative sequencing, Aarhus, Denmark
| | - Karin Stenderup
- Department of Dermatology, Aarhus University Hospital, 8000 Aarhus C, Denmark
| | - Sidsel Mortensen
- Department of Skin Inflammation Pharmacology, LEO Pharma, 2750 Ballerup, Denmark
| | | | - Cecilia Rosada
- Department of Dermatology, Aarhus University Hospital, 8000 Aarhus C, Denmark
| | - Torben Steiniche
- Department of Dermatology, Aarhus University Hospital, 8000 Aarhus C, Denmark
| | - Ying Liu
- Department of Animal Science, Aarhus University, 8830 Tjele, Denmark
| | - Rong Li
- Department of Animal Science, Aarhus University, 8830 Tjele, Denmark
| | - Mette Schmidt
- Department of Veterinary Reproduction and Obstetrics, Faculty of Life Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | - Stig Purup
- Department of Animal Science, Aarhus University, 8830 Tjele, Denmark
| | | | | | - Lars Svensson
- Department of NME Ideation, LEO Pharma, 2750 Ballerup, Denmark
| | | | - Henrik Callesen
- Department of Animal Science, Aarhus University, 8830 Tjele, Denmark
| | - Lars Bolund
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.,iSEQ, Centre for integrative sequencing, Aarhus, Denmark.,HuaDa JiYin (BGI), Shenzhen 518083, China
| | | |
Collapse
|
7
|
IFI16 is required for DNA sensing in human macrophages by promoting production and function of cGAMP. Nat Commun 2017; 8:14391. [PMID: 28186168 PMCID: PMC5309897 DOI: 10.1038/ncomms14391] [Citation(s) in RCA: 222] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 12/22/2016] [Indexed: 12/21/2022] Open
Abstract
Innate immune activation by macrophages is an essential part of host defence against infection. Cytosolic recognition of microbial DNA in macrophages leads to induction of interferons and cytokines through activation of cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING). Other host factors, including interferon-gamma inducible factor 16 (IFI16), have been proposed to contribute to immune activation by DNA. However, their relation to the cGAS-STING pathway is not clear. Here, we show that IFI16 functions in the cGAS-STING pathway on two distinct levels. Depletion of IFI16 in macrophages impairs cGAMP production on DNA stimulation, whereas overexpression of IFI16 amplifies the function of cGAS. Furthermore, IFI16 is vital for the downstream signalling stimulated by cGAMP, facilitating recruitment and activation of TANK-binding kinase 1 in STING complex. Collectively, our results suggest that IFI16 is essential for efficient sensing and signalling upon DNA challenge in macrophages to promote interferons and antiviral responses. The role of IFI16 as a DNA sensor is highly controversial. With support from a Nature Communications back-to-back publication from Almine et al. the authors here provide functional evidence that IFI16 is required for DNA sensing via the cGAS-STING pathway in human macrophages.
Collapse
|
8
|
Jin L, Zhu HY, Guo Q, Li XC, Zhang YC, Cui CD, Li WX, Cui ZY, Yin XJ, Kang JD. Effect of histone acetylation modification with MGCD0103, a histone deacetylase inhibitor, on nuclear reprogramming and the developmental competence of porcine somatic cell nuclear transfer embryos. Theriogenology 2016; 87:298-305. [PMID: 27742403 DOI: 10.1016/j.theriogenology.2016.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 08/27/2016] [Accepted: 09/06/2016] [Indexed: 12/23/2022]
Abstract
Cloning remains as an important technique to enhance the reconstitution and distribution of animal population with high-genetic merit. One of the major detrimental factors of this technique is the abnormal epigenetic modifications. MGCD0103 is known as a histone deacetylase inhibitor. In this study, we investigated the effect of MGCD0103 on the in vitro blastocyst formation rate in porcine somatic cell nuclear transferred (SCNT) embryos and expression in acetylation of the histone H3 lysine 9 and histone H4 lysine 12. We compared the in vitro embryonic development of SCNT embryos treated with different concentrations of MGCD0103 for 24 hours. Our results reported that treating with 0.2-μM MGCD0103 for 24 hours effectively improved the development of SCNT embryos, in comparison to the control group (blastocyst formation rate, 25.5 vs. 10.7%, P < 0.05). Then we tested the in vitro development of SCNT embryos treated with 0.2-μM MGCD0103 for various intervals after activation. Treatment for 6 hours significantly improved the development of pig SCNT embryos, compared with the control group (blastocyst formation rate, 21.2 vs. 10.5%, P < 0.05). Furthermore, MGCD0103 supplementation significantly (P < 0.05) increases the average fluorescence intensity of AcH3K9 and AcH4K12 in embryos at the pseudo-pronuclear stage. To examine the in vivo development, MGCD0103-treated SCNT embryos were transferred into two surrogate sows, one of whom became pregnant and three fetuses developed. These results suggest that MGCD0103 can enhance the nuclear reprogramming and improve in vitro developmental potential of porcine SCNT embryos.
Collapse
Affiliation(s)
- Long Jin
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Hai-Ying Zhu
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Qing Guo
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Xiao-Chen Li
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Yu-Chen Zhang
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Cheng-Du Cui
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Wen-Xue Li
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Zheng-Yun Cui
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Xi-Jun Yin
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China.
| | - Jin-Dan Kang
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China.
| |
Collapse
|
9
|
Liu Y, Wang X, Dong W, Fu K, Gao N, Li W, Li R. Biological tooth root reconstruction with a scaffold of swine treated dentin matrix. RSC Adv 2016. [DOI: 10.1039/c5ra27332c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Treated dentin matrix (TDM) is an ideal scaffolding material with odontogenic ability, which is important for supporting cell growth and regeneration of dental tissue.
Collapse
Affiliation(s)
- Yiming Liu
- Department of Stomatology
- The First Affiliated Hospital of Zhengzhou University
- Zhengzhou University
- Zhengzhou 450052
- P. R. China
| | - Xi Wang
- Department of Stomatology
- The First Affiliated Hospital of Zhengzhou University
- Zhengzhou University
- Zhengzhou 450052
- P. R. China
| | - Wenhang Dong
- Department of Stomatology
- The First Affiliated Hospital of Zhengzhou University
- Zhengzhou University
- Zhengzhou 450052
- P. R. China
| | - Kun Fu
- Department of Stomatology
- The First Affiliated Hospital of Zhengzhou University
- Zhengzhou University
- Zhengzhou 450052
- P. R. China
| | - Ning Gao
- Department of Stomatology
- The First Affiliated Hospital of Zhengzhou University
- Zhengzhou University
- Zhengzhou 450052
- P. R. China
| | - Wenlu Li
- Department of Stomatology
- The First Affiliated Hospital of Zhengzhou University
- Zhengzhou University
- Zhengzhou 450052
- P. R. China
| | - Rui Li
- Department of Stomatology
- The First Affiliated Hospital of Zhengzhou University
- Zhengzhou University
- Zhengzhou 450052
- P. R. China
| |
Collapse
|
10
|
Alessio AP, Fili AE, Garrels W, Forcato DO, Olmos Nicotra MF, Liaudat AC, Bevacqua RJ, Savy V, Hiriart MI, Talluri TR, Owens JB, Ivics Z, Salamone DF, Moisyadi S, Kues WA, Bosch P. Establishment of cell-based transposon-mediated transgenesis in cattle. Theriogenology 2015; 85:1297-311.e2. [PMID: 26838464 DOI: 10.1016/j.theriogenology.2015.12.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/10/2015] [Accepted: 12/18/2015] [Indexed: 12/15/2022]
Abstract
Transposon-mediated transgenesis is a well-established tool for genome modification in small animal models. However, translation of this active transgenic method to large animals warrants further investigations. Here, the piggyBac (PB) and sleeping beauty (SB) transposon systems were assessed for stable gene transfer into the cattle genome. Bovine fibroblasts were transfected either with a helper-independent PB system or a binary SB system. Both transposons were highly active in bovine cells increasing the efficiency of DNA integration up to 88 times over basal nonfacilitated integrations in a colony formation assay. SB transposase catalyzed multiplex transgene integrations in fibroblast cells transfected with the helper vector and two donor vectors carrying different transgenes (fluorophore and neomycin resistance). Stably transfected fibroblasts were used for SCNT and on in vitro embryo culture, morphologically normal blastocysts that expressed the fluorophore were obtained with both transposon systems. The data indicate that transposition is a feasible approach for genetic engineering in the cattle genome.
Collapse
Affiliation(s)
- Ana P Alessio
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fco-Qcas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, República Argentina
| | - Alejandro E Fili
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fco-Qcas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, República Argentina
| | - Wiebke Garrels
- Department of Biotechnology, Friedrich-Loeffler-Institut, Institut für Nutztiergenetik, Neustadt, Germany
| | - Diego O Forcato
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fco-Qcas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, República Argentina
| | - María F Olmos Nicotra
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fco-Qcas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, República Argentina
| | - Ana C Liaudat
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fco-Qcas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, República Argentina
| | - Romina J Bevacqua
- Laboratorio de Biotecnología Animal, Departamento de Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, República Argentina
| | - Virginia Savy
- Laboratorio de Biotecnología Animal, Departamento de Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, República Argentina
| | - María I Hiriart
- Laboratorio de Biotecnología Animal, Departamento de Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, República Argentina
| | - Thirumala R Talluri
- Department of Biotechnology, Friedrich-Loeffler-Institut, Institut für Nutztiergenetik, Neustadt, Germany
| | - Jesse B Owens
- Department of Anatomy, Biochemistry and Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, Langen, Germany
| | - Daniel F Salamone
- Laboratorio de Biotecnología Animal, Departamento de Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, República Argentina
| | - Stefan Moisyadi
- Department of Anatomy, Biochemistry and Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Wilfried A Kues
- Department of Biotechnology, Friedrich-Loeffler-Institut, Institut für Nutztiergenetik, Neustadt, Germany
| | - Pablo Bosch
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fco-Qcas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, República Argentina.
| |
Collapse
|
11
|
Epigenetic Regulation of Epidermal Stem Cell Biomarkers and Their Role in Wound Healing. Int J Mol Sci 2015; 17:ijms17010016. [PMID: 26712738 PMCID: PMC4730263 DOI: 10.3390/ijms17010016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 12/11/2015] [Accepted: 12/16/2015] [Indexed: 12/11/2022] Open
Abstract
As an actively renewable tissue, changes in skin architecture are subjected to the regulation of stem cells that maintain the population of cells responsible for the formation of epidermal layers. Stems cells retain their self-renewal property and express biomarkers that are unique to this population. However, differential regulation of the biomarkers can initiate the pathway of terminal cell differentiation. Although, pockets of non-clarity in stem cell maintenance and differentiation in skin still exist, the influence of epigenetics in epidermal stem cell functions and differentiation in skin homeostasis and wound healing is clearly evident. The focus of this review is to discuss the epigenetic regulation of confirmed and probable epidermal stem cell biomarkers in epidermal stratification of normal skin and in diseased states. The role of epigenetics in wound healing, especially in diseased states of diabetes and cancer, will also be conveyed.
Collapse
|
12
|
Gupta MK, Teo AKK, Rao TN, Bhatt S, Kleinridders A, Shirakawa J, Takatani T, Hu J, De Jesus DF, Windmueller R, Wagers AJ, Kulkarni RN. Excessive Cellular Proliferation Negatively Impacts Reprogramming Efficiency of Human Fibroblasts. Stem Cells Transl Med 2015; 4:1101-8. [PMID: 26253715 DOI: 10.5966/sctm.2014-0217] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 06/22/2015] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED The impact of somatic cell proliferation rate on induction of pluripotent stem cells remains controversial. Herein, we report that rapid proliferation of human somatic fibroblasts is detrimental to reprogramming efficiency when reprogrammed using a lentiviral vector expressing OCT4, SOX2, KLF4, and cMYC in insulin-rich defined medium. Human fibroblasts grown in this medium showed higher proliferation, enhanced expression of insulin signaling and cell cycle genes, and a switch from glycolytic to oxidative phosphorylation metabolism, but they displayed poor reprogramming efficiency compared with cells grown in normal medium. Thus, in contrast to previous studies, our work reveals an inverse correlation between the proliferation rate of somatic cells and reprogramming efficiency, and also suggests that upregulation of proteins in the growth factor signaling pathway limits the ability to induce pluripotency in human somatic fibroblasts. SIGNIFICANCE The efficiency with which human cells can be reprogrammed is of interest to stem cell biology. In this study, human fibroblasts cultured in media containing different concentrations of growth factors such as insulin and insulin-like growth factor-1 exhibited variable abilities to proliferate, with consequences on pluripotency. This occurred in part because of changes in the expression of proteins involved in the growth factor signaling pathway, glycolysis, and oxidative phosphorylation. These findings have implications for efficient reprogramming of human cells.
Collapse
Affiliation(s)
- Manoj K Gupta
- Sections of Islet Cell and Regenerative Biology and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Adrian Kee Keong Teo
- Sections of Islet Cell and Regenerative Biology and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tata Nageswara Rao
- Sections of Islet Cell and Regenerative Biology and Howard Hughes Medical Institute, Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Shweta Bhatt
- Sections of Islet Cell and Regenerative Biology and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Andre Kleinridders
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Integrative Physiology and Metabolism, Joslin Diabetes Center, and
| | - Jun Shirakawa
- Sections of Islet Cell and Regenerative Biology and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tomozumi Takatani
- Sections of Islet Cell and Regenerative Biology and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jiang Hu
- Sections of Islet Cell and Regenerative Biology and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Dario F De Jesus
- Sections of Islet Cell and Regenerative Biology and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Rebecca Windmueller
- Sections of Islet Cell and Regenerative Biology and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Amy J Wagers
- Sections of Islet Cell and Regenerative Biology and Howard Hughes Medical Institute, Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Rohit N Kulkarni
- Sections of Islet Cell and Regenerative Biology and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA;
| |
Collapse
|
13
|
Skipper KA, Mikkelsen JG. Delivering the Goods for Genome Engineering and Editing. Hum Gene Ther 2015; 26:486-97. [DOI: 10.1089/hum.2015.063] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
14
|
|
15
|
Bosch P, Forcato DO, Alustiza FE, Alessio AP, Fili AE, Olmos Nicotra MF, Liaudat AC, Rodríguez N, Talluri TR, Kues WA. Exogenous enzymes upgrade transgenesis and genetic engineering of farm animals. Cell Mol Life Sci 2015; 72:1907-29. [PMID: 25636347 PMCID: PMC11114025 DOI: 10.1007/s00018-015-1842-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/15/2015] [Accepted: 01/16/2015] [Indexed: 01/14/2023]
Abstract
Transgenic farm animals are attractive alternative mammalian models to rodents for the study of developmental, genetic, reproductive and disease-related biological questions, as well for the production of recombinant proteins, or the assessment of xenotransplants for human patients. Until recently, the ability to generate transgenic farm animals relied on methods of passive transgenesis. In recent years, significant improvements have been made to introduce and apply active techniques of transgenesis and genetic engineering in these species. These new approaches dramatically enhance the ease and speed with which livestock species can be genetically modified, and allow to performing precise genetic modifications. This paper provides a synopsis of enzyme-mediated genetic engineering in livestock species covering the early attempts employing naturally occurring DNA-modifying proteins to recent approaches working with tailored enzymatic systems.
Collapse
Affiliation(s)
- Pablo Bosch
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fco-Qcas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba Republic of Argentina
| | - Diego O. Forcato
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fco-Qcas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba Republic of Argentina
| | - Fabrisio E. Alustiza
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fco-Qcas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba Republic of Argentina
| | - Ana P. Alessio
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fco-Qcas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba Republic of Argentina
| | - Alejandro E. Fili
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fco-Qcas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba Republic of Argentina
| | - María F. Olmos Nicotra
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fco-Qcas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba Republic of Argentina
| | - Ana C. Liaudat
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fco-Qcas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba Republic of Argentina
| | - Nancy Rodríguez
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fco-Qcas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba Republic of Argentina
| | - Thirumala R. Talluri
- Friedrich-Loeffler-Institute, Institute of Farm Animal Genetics, Biotechnology, 31535 Neustadt, Germany
| | - Wilfried A. Kues
- Friedrich-Loeffler-Institute, Institute of Farm Animal Genetics, Biotechnology, 31535 Neustadt, Germany
| |
Collapse
|
16
|
Lin L, Luo Y, Sørensen P, Prætorius H, Vajta G, Callesen H, Pribenszky C, Bolund L, Kristensen TN. Effects of high hydrostatic pressure on genomic expression profiling of porcine parthenogenetic activated and cloned embryos. Reprod Fertil Dev 2015; 26:469-84. [PMID: 24618454 DOI: 10.1071/rd13037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Accepted: 03/08/2013] [Indexed: 12/31/2022] Open
Abstract
Handmade cloning (HMC) has been used to generate transgenic pigs for biomedical research. Recently, we found that parthenogenetic activation (PA) of porcine oocytes and improved HMC efficiency could be achieved by treatment with sublethal high hydrostatic pressure (HHP). However, the molecular mechanism underlying the effects of HHP treatment on embryonic development is poorly understood and so was investigated in the present study. Thus, in the present study, we undertook genome-wide gene expression analysis in HHP-treated and untreated oocytes, as well as in 4-cell and blastocyst stage embryos derived by PA or HMC. Hierarchical clustering depicted stage-specific genomic expression profiling. At the 4-cell and blastocyst stages, 103 and 163 transcripts were differentially expressed between the HMC and PA embryos, respectively (P<0.05). These transcripts are predominantly involved in regulating cellular differentiation, gene expression and cell-to-cell signalling. We found that 44 transcripts were altered by HHP treatment, with most exhibiting lower expression in HHP-treated oocytes. Genes involved in embryonic development were prominent among the transcripts affected by HHP. Two of these genes (INHBB and ME3) were further validated by quantitative reverse transcription-polymerase chain reaction. We also observed that HHP treatment activated expression of the imprinting gene DLX5 in 4-cell PA embryos. In conclusion, our genomic expression profiling data suggest that HHP alters the RNA constitution in porcine oocytes and affects the expression of imprinting genes during embryonic development.
Collapse
Affiliation(s)
- Lin Lin
- Department of Biomedicine, Aarhus University, Wilhelm Meyer Alle 4, 8000, Aarhus C, Denmark
| | - Yonglun Luo
- Department of Biomedicine, Aarhus University, Wilhelm Meyer Alle 4, 8000, Aarhus C, Denmark
| | - Peter Sørensen
- Department of Animal Science, Aarhus University, Blichers Alle 20, 8830, Tjele, Denmark
| | - Helle Prætorius
- Department of Biomedicine, Aarhus University, Wilhelm Meyer Alle 4, 8000, Aarhus C, Denmark
| | - Gabor Vajta
- BGI/HuaDa, Beishan Road 10, 518000, Shenzhen, China
| | - Henrik Callesen
- Department of Animal Science, Aarhus University, Blichers Alle 20, 8830, Tjele, Denmark
| | - Csaba Pribenszky
- Department of Animal Breeding and Genetics, Szent István University, István u. 2, Budapest, 1078, Hungary
| | - Lars Bolund
- Department of Biomedicine, Aarhus University, Wilhelm Meyer Alle 4, 8000, Aarhus C, Denmark
| | - Torsten Nygård Kristensen
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, Blichers Alle 20, 8830, Tjele, Denmark
| |
Collapse
|
17
|
Callesen H, Liu Y, Pedersen HS, Li R, Schmidt M. Increasing efficiency in production of cloned piglets. Cell Reprogram 2014; 16:407-10. [PMID: 25333333 DOI: 10.1089/cell.2014.0053] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The low efficiency in obtaining piglets after production of cloned embryos was challenged in two steps-first by performing in vitro culture for 5-6 days after cloning to obtain later-stage embryos for more precise selection for transfer, and second by reducing the number of embryos transferred per recipient sow. The data set consisted of combined results from a 4-year period where cloning was performed to produce piglets that were transgenic for important human diseases. For this, different transgenes and cell types were used, and the cloning work was performed by several persons using oocytes from different pig breeds, but following a standardized and optimized protocol. Results showed that in vitro culture is possible with a relatively stable rate of transferable embryos around 41% and a pregnancy rate around 90%. Furthermore, a reduction from around 80 embryos to 40 embryos transferred per recipient was possible without changing the efficiency of around 14% (piglets born out of embryos transferred). It was concluded that this approach can increase the efficiency in obtaining piglets by means of in vitro culture and selection of high-quality embryos with subsequent transfer into more recipients. Such changes can also reduce the need for personnel, time, and material when working with this technology.
Collapse
Affiliation(s)
- Henrik Callesen
- 1 Department of Animal Science, Aarhus University , DK-8830, Tjele, Denmark
| | | | | | | | | |
Collapse
|
18
|
Caruntu C, Boda D, Dumitrascu G, Constantin C, Neagu M. Proteomics focusing on immune markers in psoriatic arthritis. Biomark Med 2014; 9:513-28. [PMID: 25034152 DOI: 10.2217/bmm.14.76] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The immune-pathogenesis of psoriatic arthritis represents a subject of intense research, as a still unknown factor can trigger the chronic inflammation that, upon a defective immune terrain, generates this auto-immune/auto-inflammatory condition. The pathogenesis complexity of psoriatic arthritis resides in the psoriatic synovitis milieu, where intricate immune relations are emerging during disease development. Innate immune response generates inflammatory cytokines driving effectors functions for immune and non-immune cells that sustain the chronical character of the synovitis. Herein, we review the updated information regarding biomarkers/immune markers that sustain the heterogeneity and complexity of psoriatic arthritis pathogenesis, this complexity leading to multifaceted methodological approaches for disease investigation. New immune proteomic or genomic biomarkers can enlarge and identify new therapeutic targets.
Collapse
Affiliation(s)
- Constantin Caruntu
- Dermatology Research Laboratory, "Carol Davila" University of Medicine & Pharmacy, 22-24 Gr. Manolescu, 0111234, Sector 1, Bucharest, Romania.,"Victor Babes" National Institute of Pathology,99-101 Splaiul Independentei, 050096, Bucharest, Romania
| | - Daniel Boda
- Dermatology Research Laboratory, "Carol Davila" University of Medicine & Pharmacy, 22-24 Gr. Manolescu, 0111234, Sector 1, Bucharest, Romania
| | - Georgiana Dumitrascu
- "Victor Babes" National Institute of Pathology,99-101 Splaiul Independentei, 050096, Bucharest, Romania
| | - Carolina Constantin
- "Victor Babes" National Institute of Pathology,99-101 Splaiul Independentei, 050096, Bucharest, Romania
| | - Monica Neagu
- "Victor Babes" National Institute of Pathology,99-101 Splaiul Independentei, 050096, Bucharest, Romania
| |
Collapse
|
19
|
Cai Y, Mikkelsen JG. Driving DNA transposition by lentiviral protein transduction. Mob Genet Elements 2014; 4:e29591. [PMID: 25057443 PMCID: PMC4092313 DOI: 10.4161/mge.29591] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/11/2014] [Accepted: 06/16/2014] [Indexed: 12/16/2022] Open
Abstract
Gene vectors derived from DNA transposable elements have become powerful molecular tools in biomedical research and are slowly moving into the clinic as carriers of therapeutic genes. Conventional uses of DNA transposon-based gene vehicles rely on the intracellular production of the transposase protein from transfected nucleic acids. The transposase mediates mobilization of the DNA transposon, which is typically provided in the context of plasmid DNA. In recent work, we established lentiviral protein transduction from Gag precursors as a new strategy for direct delivery of the transposase protein. Inspired by the natural properties of infecting viruses to carry their own enzymes, we loaded lentivirus-derived particles not only with vector genomes carrying the DNA transposon vector but also with hundreds of transposase subunits. Such particles were found to drive efficient transposition of the piggyBac transposable element in a range of different cell types, including primary cells, and offer a new transposase delivery approach that guarantees short-term activity and limits potential cytotoxicity. DNA transposon vectors, originally developed and launched as a non-viral alternative to viral integrating vectors, have truly become viral. Here, we briefly review our findings and speculate on the perspectives and potential advantages of transposase delivery by lentiviral protein transduction.
Collapse
Affiliation(s)
- Yujia Cai
- Department of Biomedicine; Aarhus University; Aarhus C, Denmark
| | | |
Collapse
|
20
|
Cai Y, Bak RO, Mikkelsen JG. Targeted genome editing by lentiviral protein transduction of zinc-finger and TAL-effector nucleases. eLife 2014; 3:e01911. [PMID: 24843011 PMCID: PMC3996624 DOI: 10.7554/elife.01911] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Future therapeutic use of engineered site-directed nucleases, like zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), relies on safe and effective means of delivering nucleases to cells. In this study, we adapt lentiviral vectors as carriers of designer nuclease proteins, providing efficient targeted gene disruption in vector-treated cell lines and primary cells. By co-packaging pairs of ZFN proteins with donor RNA in ‘all-in-one’ lentiviral particles, we co-deliver ZFN proteins and the donor template for homology-directed repair leading to targeted DNA insertion and gene correction. Comparative studies of ZFN activity in a predetermined target locus and a known nearby off-target locus demonstrate reduced off-target activity after ZFN protein transduction relative to conventional delivery approaches. Additionally, TALEN proteins are added to the repertoire of custom-designed nucleases that can be delivered by protein transduction. Altogether, our findings generate a new platform for genome engineering based on efficient and potentially safer delivery of programmable nucleases. DOI:http://dx.doi.org/10.7554/eLife.01911.001 Altering the genetic code of a living organism to produce certain desirable outcomes is the goal of genetic engineering. The field builds on a long history of human attempts to alter genetics, from selective breeding of crops and livestock to genetically modified organisms and gene therapies. Researchers routinely use gene editing to create ‘knock-out’ mice in which a particular gene is turned off: the researchers can learn more about the function of this gene by watching what happens when it is absent. As gene editing techniques have grown more sophisticated, they have become an increasingly promising tool for treating diseases that are caused by gene mutations. The aim of this work is to replace faulty genes with genes that work properly. However, it has been difficult to adapt genetic engineering techniques so that they can be used safely in humans. Scientists have created customized enzymes called nucleases that can remove specific genes, but it has been a challenge to get these nucleases into cells in the first place. A virus can be used to deliver the genes that encode these nucleases into the DNA of a cell, but this approach can lead to the production of too many nucleases and to the removal of more genes than intended. Now Cai et al. have developed a ‘hit-and-run’ method for getting the nucleases into cells and making them active only for a short period of time. This method involves using a virus to deliver two different nucleases to a cell. Once inside the cell, the viruses released the nucleases, which were able to remove up to one-quarter of their gene targets, with relatively few errors, in the time that they were active. Next, Cai et al. added gene patches—new genes to replace those removed by the nucleases—to the viruses. This ‘cut and patch’ strategy was successful in up to 8% of the treated cells. The results also suggest that this approach is safer than other gene-editing techniques. DOI:http://dx.doi.org/10.7554/eLife.01911.002
Collapse
Affiliation(s)
- Yujia Cai
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Rasmus O Bak
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
21
|
Liu H, Li Y, Wei Q, Liu C, Bolund L, Vajta G, Dou H, Yang W, Xu Y, Luan J, Wang J, Yang H, Staunstrup NH, Du Y. Development of transgenic minipigs with expression of antimorphic human cryptochrome 1. PLoS One 2013; 8:e76098. [PMID: 24146819 PMCID: PMC3797822 DOI: 10.1371/journal.pone.0076098] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 08/20/2013] [Indexed: 11/19/2022] Open
Abstract
Minipigs have become important biomedical models for human ailments due to similarities in organ anatomy, physiology, and circadian rhythms relative to humans. The homeostasis of circadian rhythms in both central and peripheral tissues is pivotal for numerous biological processes. Hence, biological rhythm disorders may contribute to the onset of cancers and metabolic disorders including obesity and type II diabetes, amongst others. A tight regulation of circadian clock effectors ensures a rhythmic expression profile of output genes which, depending on cell type, constitute about 3-20% of the transcribed mammalian genome. Central to this system is the negative regulator protein Cryptochrome 1 (CRY1) of which the dysfunction or absence has been linked to the pathogenesis of rhythm disorders. In this study, we generated transgenic Bama-minipigs featuring expression of the Cys414-Ala antimorphic human Cryptochrome 1 mutant (hCRY1(AP)). Using transgenic donor fibroblasts as nuclear donors, the method of handmade cloning (HMC) was used to produce reconstructed embryos, subsequently transferred to surrogate sows. A total of 23 viable piglets were delivered. All were transgenic and seemingly healthy. However, two pigs with high transgene expression succumbed during the first two months. Molecular analyzes in epidermal fibroblasts demonstrated disturbances to the expression profile of core circadian clock genes and elevated expression of the proinflammatory cytokines IL-6 and TNF-α, known to be risk factors in cancer and metabolic disorders.
Collapse
Affiliation(s)
- Huan Liu
- BGI-Shenzhen, Shenzhen, Guangdong, China
- ShenZhen Engineering Laboratory for Genomics-Assisted Animal Breeding, BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Yong Li
- BGI-Shenzhen, Shenzhen, Guangdong, China
- ShenZhen Engineering Laboratory for Genomics-Assisted Animal Breeding, BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Qiang Wei
- BGI-Shenzhen, Shenzhen, Guangdong, China
- ShenZhen Engineering Laboratory for Genomics-Assisted Animal Breeding, BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Chunxin Liu
- BGI-Shenzhen, Shenzhen, Guangdong, China
- ShenZhen Engineering Laboratory for Genomics-Assisted Animal Breeding, BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Lars Bolund
- BGI-Shenzhen, Shenzhen, Guangdong, China
- Department of Biomedicine, University of Aarhus, Aarhus C, Denmark
| | - Gábor Vajta
- BGI-Shenzhen, Shenzhen, Guangdong, China
- Central Queensland University, Rockhampton, Queensland, Australia
| | - Hongwei Dou
- BGI Ark Biotechnology, BGI-Shenzhen, Shenzhen, Guangdong, China
- ShenZhen Engineering Laboratory for Genomics-Assisted Animal Breeding, BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Wenxian Yang
- BGI Ark Biotechnology, BGI-Shenzhen, Shenzhen, Guangdong, China
- ShenZhen Engineering Laboratory for Genomics-Assisted Animal Breeding, BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Ying Xu
- BGI Ark Biotechnology, BGI-Shenzhen, Shenzhen, Guangdong, China
- ShenZhen Engineering Laboratory for Genomics-Assisted Animal Breeding, BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Jing Luan
- BGI Ark Biotechnology, BGI-Shenzhen, Shenzhen, Guangdong, China
- ShenZhen Engineering Laboratory for Genomics-Assisted Animal Breeding, BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Jun Wang
- BGI-Shenzhen, Shenzhen, Guangdong, China
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Nicklas Heine Staunstrup
- BGI Ark Biotechnology, BGI-Shenzhen, Shenzhen, Guangdong, China
- Department of Biomedicine, University of Aarhus, Aarhus C, Denmark
- * E-mail: (YD); (NHS)
| | - Yutao Du
- BGI-Shenzhen, Shenzhen, Guangdong, China
- BGI Ark Biotechnology, BGI-Shenzhen, Shenzhen, Guangdong, China
- ShenZhen Engineering Laboratory for Genomics-Assisted Animal Breeding, BGI-Shenzhen, Shenzhen, Guangdong, China
- * E-mail: (YD); (NHS)
| |
Collapse
|
22
|
Wu Z, Xu Z, Zou X, Zeng F, Shi J, Liu D, Urschitz J, Moisyadi S, Li Z. Pig transgenesis by piggyBac transposition in combination with somatic cell nuclear transfer. Transgenic Res 2013; 22:1107-18. [PMID: 23857557 DOI: 10.1007/s11248-013-9729-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 06/19/2013] [Indexed: 02/02/2023]
Abstract
The production of animals by somatic cell nuclear transfer (SCNT) is inefficient, with approximately 2% of micromanipulated oocytes going to term and resulting in live births. However, it is the most commonly used method for the generation of cloned transgenic livestock as it facilitates the attainment of transgenic animals once the nuclear donor cells are stably transfected and more importantly as alternatives methods of transgenesis in farm animals have proven even less efficient. Here we describe piggyBac-mediated transposition of a transgene into porcine primary cells and use of these genetically modified cells as nuclear donors for the generation of transgenic pigs by SCNT. Gene transfer by piggyBac transposition serves to provide an alternative approach for the transfection of nuclear donor cells used in SCNT.
Collapse
Affiliation(s)
- Zhenfang Wu
- Department of Animal Genetics, Breeding and Reproduction, South China Agricultural University, The New Building of College of Animal Science, Room 315, Guangzhou, 510642, Guangdong, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Hall V, Hinrichs K, Lazzari G, Betts DH, Hyttel P. Early embryonic development, assisted reproductive technologies, and pluripotent stem cell biology in domestic mammals. Vet J 2013; 197:128-42. [PMID: 23810186 DOI: 10.1016/j.tvjl.2013.05.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/03/2013] [Accepted: 05/04/2013] [Indexed: 01/01/2023]
Abstract
Over many decades assisted reproductive technologies, including artificial insemination, embryo transfer, in vitro production (IVP) of embryos, cloning by somatic cell nuclear transfer (SCNT), and stem cell culture, have been developed with the aim of refining breeding strategies for improved production and health in animal husbandry. More recently, biomedical applications of these technologies, in particular, SCNT and stem cell culture, have been pursued in domestic mammals in order to create models for human disease and therapy. The following review focuses on presenting important aspects of pre-implantation development in cattle, pigs, horses, and dogs. Biological aspects and impact of assisted reproductive technologies including IVP, SCNT, and culture of pluripotent stem cells are also addressed.
Collapse
Affiliation(s)
- V Hall
- Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
24
|
Hall VJ. Early development of the porcine embryo: the importance of cell signalling in development of pluripotent cell lines. Reprod Fertil Dev 2013; 25:94-102. [PMID: 23244832 DOI: 10.1071/rd12264] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Understanding the cell signalling events that govern cell renewal in porcine pluripotent cells may help improve culture conditions and allow for establishment of bona fide porcine embryonic stem cells (pESC) and stable porcine induced pluripotent stem cells (piPSC). This review investigates cell signalling in the porcine preimplantation embryo containing either the inner cell mass or epiblast, with particular emphasis on fibroblast growth factor, SMAD, WNT and Janus tyrosine kinases/signal transducers and activators of transcription signalling. It is clear that key differences exist in the cell signalling events that govern pluripotency in this species compared with similar embryonic stages in mouse and human. The fact that bona fide pESC have still not been produced and that piPSC cannot survive in culture following the silencing or downregulation of the reprogramming transgenes suggest that culture conditions are not optimal. Unravelling the factor/s that regulate pluripotency in porcine embryos will pave the way for future establishment of stable pluripotent stem cell lines.
Collapse
Affiliation(s)
- Vanessa Jane Hall
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Veterinary Clinical and Animal Sciences, Gronnegaardsvej 7, DK-1870 Frederiksberg C, Denmark.
| |
Collapse
|
25
|
Li J, Li R, Liu Y, Villemoes K, Purup S, Callesen H. Developmental kinetics of pig embryos by parthenogenetic activation or by handmade cloning. Reprod Domest Anim 2013; 48:866-73. [PMID: 23617742 DOI: 10.1111/rda.12176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Accepted: 04/01/2013] [Indexed: 11/29/2022]
Abstract
The developmental kinetics of pig embryos produced by parthenogenetic activation without (PAZF) or with (PAZI) zona pellucida or by handmade cloning (HMC) was compared by time-lapse videography. After cumulus cell removal, the matured oocytes were either left zona intact (PAZI) or were made zona free by pronase digestion (PAZF) before they were activated (PA). Other matured oocytes were used for HMC based on foetal fibroblast cells. On Day 0 (day of PA or reconstruction), the embryos were cultured for 7 days in vitro in our time-lapse system. Pictures were taken every 30 min, and afterwards, each cell cycle was identified for each embryo to be analysed. Results showed that the PA embryos (both PAZF and PAZI) had shorter first cell cycle compared with HMC (17.4. 17.8 vs 23.6 h), but had a longer time length from four cell to morula stages (57.9, 53.8 vs 44.9 h). However, at the second cell cycle, PAZF embryos needed shorter time, while PAZI embryos had similar time length as HMC embryos, and both were longer than PAZF (23.4, 24.8 vs 14.6 h). Both PAZF and PAZI embryos used similar time to reach the blastocyst stage, and this was later than HMC embryos. In addition, when all of these embryos were grouped into viable (developed to blastocysts) and non-viable (not developed to blastocysts), the only difference in the time length was observed on the first cell cycle (18.6 vs 24.5 h), but not on the later cell cycles. In conclusion, our results not only give detailed information regarding the time schedule of in vitro-handled pig embryos, but also indicate that the first cell cycle could be used as a selecting marker for embryo viability. However, to evaluate the effect of the produced techniques, the whole time schedule of the pre-implantation developmental kinetics should be observed.
Collapse
Affiliation(s)
- J Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
The field of regenerative medicine is approaching translation to clinical practice, and significant safety concerns and knowledge gaps have become clear as clinical practitioners are considering the potential risks and benefits of cell-based therapy. It is necessary to understand the full spectrum of stem cell actions and preclinical evidence for safety and therapeutic efficacy. The role of animal models for gaining this information has increased substantially. There is an urgent need for novel animal models to expand the range of current studies, most of which have been conducted in rodents. Extant models are providing important information but have limitations for a variety of disease categories and can have different size and physiology relative to humans. These differences can preclude the ability to reproduce the results of animal-based preclinical studies in human trials. Larger animal species, such as rabbits, dogs, pigs, sheep, goats, and non-human primates, are better predictors of responses in humans than are rodents, but in each case it will be necessary to choose the best model for a specific application. There is a wide spectrum of potential stem cell-based products that can be used for regenerative medicine, including embryonic and induced pluripotent stem cells, somatic stem cells, and differentiated cellular progeny. The state of knowledge and availability of these cells from large animals vary among species. In most cases, significant effort is required for establishing and characterizing cell lines, comparing behavior to human analogs, and testing potential applications. Stem cell-based therapies present significant safety challenges, which cannot be addressed by traditional procedures and require the development of new protocols and test systems, for which the rigorous use of larger animal species more closely resembling human behavior will be required. In this article, we discuss the current status and challenges of and several major directions for the future development of large animal models to facilitate advances in stem cell-based regenerative medicine.
Collapse
|
27
|
Bak RO, Hollensen AK, Primo MN, Sørensen CD, Mikkelsen JG. Potent microRNA suppression by RNA Pol II-transcribed 'Tough Decoy' inhibitors. RNA (NEW YORK, N.Y.) 2013; 19:280-93. [PMID: 23249752 PMCID: PMC3543086 DOI: 10.1261/rna.034850.112] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 11/09/2012] [Indexed: 05/13/2023]
Abstract
MicroRNAs (miRNAs) are key regulators of gene expression and modulators of diverse biological pathways. Analyses of miRNA function as well as therapeutic managing of miRNAs rely on cellular administration of miRNA inhibitors which may be achieved by the use of viral vehicles. This study explores the miRNA-suppressive capacity of inhibitors expressed intracellularly from lentivirus-derived gene vectors. Superior activity of two decoy-type inhibitors, a "Bulged Sponge" with eight miRNA recognition sites and a hairpin-shaped "Tough Decoy" containing two miRNA recognition sites, is demonstrated in a side-by-side comparison of seven types of miRNA inhibitors transcribed as short RNAs from an RNA Pol III promoter. We find that lentiviral vectors expressing Tough Decoy inhibitors are less vulnerable than Bulged Sponge-encoding vectors to targeting by the cognate miRNA and less prone, therefore, to reductions in transfer efficiency. Importantly, it is demonstrated that Tough Decoy inhibitors retain their miRNA suppression capacity in the context of longer RNA transcripts expressed from an RNA Pol II promoter. Such RNA Pol II-transcribed Tough Decoy inhibitors are new tools in managing of miRNAs and may have potential for temporal and spatial regulation of miRNA activity as well as for therapeutic targeting of miRNAs that are aberrantly expressed in human disease.
Collapse
|
28
|
Hollensen AK, Bak RO, Haslund D, Mikkelsen JG. Suppression of microRNAs by dual-targeting and clustered Tough Decoy inhibitors. RNA Biol 2013; 10:406-14. [PMID: 23324610 DOI: 10.4161/rna.23543] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
MicroRNAs (miRNAs) are ubiquitous regulators of gene expression that contribute to almost any cellular process. Methods for managing of miRNA activity are attracting increasing attention in relation to diverse experimental and therapeutic applications. DNA-encoded miRNA inhibitors expressed from plasmid or virus-based vectors provide persistent miRNA suppression and options of tissue-directed micromanaging. In this report, we explore the potential of exploiting short, hairpin-shaped RNAs for simultaneous suppression of two or more miRNAs. Based on the "Tough Decoy" (TuD) design, we create dual-targeting hairpins carrying two miRNA recognition sites and demonstrate potent co-suppression of different pairs of unrelated miRNAs by a single DNA-encoded inhibitor RNA. In addition, enhanced miRNA suppression is achieved by expression of RNA polymerase II-transcribed inhibitors carrying clustered TuD hairpins with up to a total of eight miRNA recognition sites. Notably, by expressing clustered TuD inhibitors harboring a single recognition site for each of a total of six miRNAs, we document robust parallel suppression of multiple miRNAs by inhibitor RNA molecules encoded by a single expression cassette. These findings unveil a new potential of TuD-based miRNA inhibitors and pave the way for standardizing synchronized suppression of families or clusters of miRNAs.
Collapse
|
29
|
|
30
|
Garrels W, Holler S, Cleve N, Niemann H, Ivics Z, Kues WA. Assessment of fecundity and germ line transmission in two transgenic pig lines produced by sleeping beauty transposition. Genes (Basel) 2012; 3:615-33. [PMID: 24705079 PMCID: PMC3899982 DOI: 10.3390/genes3040615] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 09/10/2012] [Accepted: 09/14/2012] [Indexed: 01/12/2023] Open
Abstract
Recently, we described a simplified injection method for producing transgenic pigs using a non-autonomous Sleeping Beauty transposon system. The founder animals showed ubiquitous expression of the Venus fluorophore in almost all cell types. To assess, whether expression of the reporter fluorophore affects animal welfare or fecundity, we analyzed reproductive parameters of two founder boars, germ line transmission, and organ and cell specific transgene expression in animals of the F1 and F2 generation. Molecular analysis of ejaculated sperm cells suggested three monomeric integrations of the Venus transposon in both founders. To test germ line transmission of the three monomeric transposon integrations, wild-type sows were artificially inseminated. The offspring were nursed to sexual maturity and hemizygous lines were established. A clear segregation of the monomeric transposons following the Mendelian rules was observed in the F1 and F2 offspring. Apparently, almost all somatic cells, as well as oocytes and spermatozoa, expressed the Venus fluorophore at cell-type specific levels. No detrimental effects of Venus expression on animal health or fecundity were found. Importantly, all hemizygous lines expressed the fluorophore in comparable levels, and no case of transgene silencing or variegated expression was found after germ line transmission, suggesting that the insertions occurred at transcriptionally permissive loci. The results show that Sleeping Beauty transposase-catalyzed transposition is a promising approach for stable genetic modification of the pig genome.
Collapse
Affiliation(s)
- Wiebke Garrels
- Friedrich-Loeffler-Institut, Institute of Farm Animal Genetics, Höltystraße 10, 31535 Neustadt, Germany.
| | - Stephanie Holler
- Friedrich-Loeffler-Institut, Institute of Farm Animal Genetics, Höltystraße 10, 31535 Neustadt, Germany.
| | - Nicole Cleve
- Friedrich-Loeffler-Institut, Institute of Farm Animal Genetics, Höltystraße 10, 31535 Neustadt, Germany.
| | - Heiner Niemann
- Friedrich-Loeffler-Institut, Institute of Farm Animal Genetics, Höltystraße 10, 31535 Neustadt, Germany.
| | - Zoltan Ivics
- Paul-Ehrlich-Institute, Paul-Ehrlich-Straße 51-59, 63225 Langen, Germany.
| | - Wilfried A Kues
- Friedrich-Loeffler-Institut, Institute of Farm Animal Genetics, Höltystraße 10, 31535 Neustadt, Germany.
| |
Collapse
|
31
|
Update on the state of play of Animal Health and Welfare and Environmental Impact of Animals derived from SCNT Cloning and their Offspring, and Food Safety of Products Obtained from those Animals. EFSA J 2012. [DOI: 10.2903/j.efsa.2012.2794] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
32
|
Tan WS, Carlson DF, Walton MW, Fahrenkrug SC, Hackett PB. Precision editing of large animal genomes. ADVANCES IN GENETICS 2012; 80:37-97. [PMID: 23084873 PMCID: PMC3683964 DOI: 10.1016/b978-0-12-404742-6.00002-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Transgenic animals are an important source of protein and nutrition for most humans and will play key roles in satisfying the increasing demand for food in an ever-increasing world population. The past decade has experienced a revolution in the development of methods that permit the introduction of specific alterations to complex genomes. This precision will enhance genome-based improvement of farm animals for food production. Precision genetics also will enhance the development of therapeutic biomaterials and models of human disease as resources for the development of advanced patient therapies.
Collapse
Affiliation(s)
- Wenfang Spring Tan
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | | | | | | | | |
Collapse
|