1
|
Herrera-Pariente C, Bonjoch L, Muñoz J, Fernàndez G, Soares de Lima Y, Mahmood R, Cuatrecasas M, Ocaña T, Lopez-Prades S, Llargués-Sistac G, Domínguez-Rovira X, Llach J, Luzko I, Díaz-Gay M, Lazaro C, Brunet J, Castillo-Manzano C, García-González MA, Lanas A, Carrillo M, Hernández San Gil R, Quintero E, Sala N, Llort G, Aguilera L, Carot L, Diez-Redondo P, Jover R, Ramon Y Cajal T, Cubiella J, Castells A, Balaguer F, Bujanda L, Castellví-Bel S, Moreira L. CTNND1 is involved in germline predisposition to early-onset gastric cancer by affecting cell-to-cell interactions. Gastric Cancer 2024; 27:747-759. [PMID: 38796558 PMCID: PMC11193828 DOI: 10.1007/s10120-024-01504-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/20/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND CDH1 and CTNNA1 remain as the main genes for hereditary gastric cancer. However, they only explain a small fraction of gastric cancer cases with suspected inherited basis. In this study, we aimed to identify new hereditary genes for early-onset gastric cancer patients (EOGC; < 50 years old). METHODS After germline exome sequencing in 20 EOGC patients and replication of relevant findings by gene-panel sequencing in an independent cohort of 152 patients, CTNND1 stood out as an interesting candidate gene, since its protein product (p120ctn) directly interacts with E-cadherin. We proceeded with functional characterization by generating two knockout CTNND1 cellular models by gene editing and introducing the detected genetic variants using a lentiviral delivery system. We assessed β-catenin and E-cadherin levels, cell detachment, as well as E-cadherin localization and cell-to-cell interaction by spheroid modeling. RESULTS Three CTNND1 germline variants [c.28_29delinsCT, p.(Ala10Leu); c.1105C > T, p.(Pro369Ser); c.1537A > G, p.(Asn513Asp)] were identified in our EOGC cohorts. Cells encoding CTNND1 variants displayed altered E-cadherin levels and intercellular interactions. In addition, the p.(Pro369Ser) variant, located in a key region in the E-cadherin/p120ctn binding domain, showed E-cadherin mislocalization. CONCLUSIONS Defects in CTNND1 could be involved in germline predisposition to gastric cancer by altering E-cadherin and, consequently, cell-to-cell interactions. In the present study, CTNND1 germline variants explained 2% (3/172) of the cases, although further studies in larger external cohorts are needed.
Collapse
Affiliation(s)
- Cristina Herrera-Pariente
- Gastroenterology, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi I Sunyer (FRCB-IDIBAPS), CIBEREHD, Universitat de Barcelona, Hospital Clínic, Villarroel 170, 08036, Barcelona, Spain
| | - Laia Bonjoch
- Gastroenterology, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi I Sunyer (FRCB-IDIBAPS), CIBEREHD, Universitat de Barcelona, Hospital Clínic, Villarroel 170, 08036, Barcelona, Spain
| | - Jenifer Muñoz
- Gastroenterology, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi I Sunyer (FRCB-IDIBAPS), CIBEREHD, Universitat de Barcelona, Hospital Clínic, Villarroel 170, 08036, Barcelona, Spain
| | | | - Yasmin Soares de Lima
- Gastroenterology, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi I Sunyer (FRCB-IDIBAPS), CIBEREHD, Universitat de Barcelona, Hospital Clínic, Villarroel 170, 08036, Barcelona, Spain
| | - Romesa Mahmood
- Gastroenterology, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi I Sunyer (FRCB-IDIBAPS), CIBEREHD, Universitat de Barcelona, Hospital Clínic, Villarroel 170, 08036, Barcelona, Spain
| | - Miriam Cuatrecasas
- Pathology, Hospital Clínic, FRCB-IDIBAPS, CIBEREHD, 08036, Barcelona, Spain
| | - Teresa Ocaña
- Gastroenterology, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi I Sunyer (FRCB-IDIBAPS), CIBEREHD, Universitat de Barcelona, Hospital Clínic, Villarroel 170, 08036, Barcelona, Spain
| | | | - Gemma Llargués-Sistac
- Gastroenterology, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi I Sunyer (FRCB-IDIBAPS), CIBEREHD, Universitat de Barcelona, Hospital Clínic, Villarroel 170, 08036, Barcelona, Spain
| | - Xavier Domínguez-Rovira
- Gastroenterology, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi I Sunyer (FRCB-IDIBAPS), CIBEREHD, Universitat de Barcelona, Hospital Clínic, Villarroel 170, 08036, Barcelona, Spain
| | - Joan Llach
- Gastroenterology, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi I Sunyer (FRCB-IDIBAPS), CIBEREHD, Universitat de Barcelona, Hospital Clínic, Villarroel 170, 08036, Barcelona, Spain
| | - Irina Luzko
- Gastroenterology, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi I Sunyer (FRCB-IDIBAPS), CIBEREHD, Universitat de Barcelona, Hospital Clínic, Villarroel 170, 08036, Barcelona, Spain
| | - Marcos Díaz-Gay
- Department of Cellular and Molecular Medicine and Department of Bioengineering and Moores Cancer Center, UC San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Conxi Lazaro
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, CIBERONC, 08908, Barcelona, Spain
| | - Joan Brunet
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, CIBERONC, 08908, Barcelona, Spain
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBGI, 17190, Girona, Spain
| | | | - María Asunción García-González
- Instituto de Investigación Sanitaria Aragón, Instituto Aragonés de Ciencias de La Salud, CIBEREHD, 50009, Zaragoza, Spain
| | - Angel Lanas
- Instituto de Investigación Sanitaria Aragón, Instituto Aragonés de Ciencias de La Salud, CIBEREHD, 50009, Zaragoza, Spain
- Gastroenterology, Hospital Clínico Universitario de Zaragoza, Instituto de Investigación Sanitaria Aragón, Universidad de Zaragoza, CIBEREHD, 50009, Zaragoza, Spain
| | - Marta Carrillo
- Gastroenterology, Centro de Investigación Biomédica de Canarias (CIBICAN), Hospital Universitario de Canarias, Instituto Universitario de Tecnologías Biomédicas (ITB), Universidad de La Laguna, 38320, Santa Cruz de Tenerife, Spain
| | | | - Enrique Quintero
- Gastroenterology, Centro de Investigación Biomédica de Canarias (CIBICAN), Hospital Universitario de Canarias, Instituto Universitario de Tecnologías Biomédicas (ITB), Universidad de La Laguna, 38320, Santa Cruz de Tenerife, Spain
| | - Nuria Sala
- Unit of Nutrition and Cancer, Translational Research Laboratory, Catalan Institute of Oncology (ICO) and Bellvitge Biomedical Research Institute (IDIBELL), 08908, Barcelona, Spain
| | - Gemma Llort
- Medical Oncology, Parc Taulí University Hospital, 08208, Sabadell, Spain
| | - Lara Aguilera
- Gastroenterology, Vall d'Hebron Research Institute, 08035, Barcelona, Spain
| | - Laura Carot
- Gastroenterology, Hospital del Mar, 08003, Barcelona, Spain
| | | | - Rodrigo Jover
- Gastroenterology, Departamento de Medicina Clínica, Hospital General Universitario Dr. Balmis, Instituto de Investigación Sanitaria ISABIAL, Universidad Miguel Hernández, 03010, Alicante, Spain
| | | | - Joaquín Cubiella
- Gastroenterology, Complexo Hospitalario de Ourense, CIBEREHD, 32005, Ourense, Spain
| | - Antoni Castells
- Gastroenterology, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi I Sunyer (FRCB-IDIBAPS), CIBEREHD, Universitat de Barcelona, Hospital Clínic, Villarroel 170, 08036, Barcelona, Spain
| | - Francesc Balaguer
- Gastroenterology, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi I Sunyer (FRCB-IDIBAPS), CIBEREHD, Universitat de Barcelona, Hospital Clínic, Villarroel 170, 08036, Barcelona, Spain
| | - Luis Bujanda
- Department of Hepatology and Gastroenterology, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Biodonostia Health Research Institute - Donostia University Hospital, Universidad del País Vasco (UPV/EHU), 20014, San Sebastián, Spain
| | - Sergi Castellví-Bel
- Gastroenterology, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi I Sunyer (FRCB-IDIBAPS), CIBEREHD, Universitat de Barcelona, Hospital Clínic, Villarroel 170, 08036, Barcelona, Spain
| | - Leticia Moreira
- Gastroenterology, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi I Sunyer (FRCB-IDIBAPS), CIBEREHD, Universitat de Barcelona, Hospital Clínic, Villarroel 170, 08036, Barcelona, Spain.
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain.
| |
Collapse
|
2
|
Liu Y, Song J, Gu J, Xu S, Wang X, Liu Y. The Role of BTBD7 in Normal Development and Tumor Progression. Technol Cancer Res Treat 2023; 22:15330338231167732. [PMID: 37050886 PMCID: PMC10102955 DOI: 10.1177/15330338231167732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
BTB/POZ domain-containing protein 7 (BTBD7) has a relative molecular weight of 126KD and contains two conserved BTB/POZ protein sequences. BTBD7 has been shown to play an essential role in normal human development, precancerous lesions, heat-stress response, and tumor progression. BTBD7 promotes branching morphogenesis during development and participates in the salivary gland, lung, and tooth formation. Furthermore, many studies have shown that aberrant expression of BTBD7 promotes heat stress response and the progression of precancerous lesions. BTBD7 has also been found to play an important role in cancer. High expression of BTBD7 affects tumor progression by regulating multiple pathways. Therefore, a complete understanding of BTBD7 is crucial for exploring human development and tumor progression. This paper reviews the research progress of BTBD7, which lays a foundation for the application of BTBD7 in regenerative medicine and as a biomarker for tumor prediction or potential therapeutic target.
Collapse
Affiliation(s)
- Yun Liu
- School of Stomatology, Weifang Medical University, Weifang, Shandong, China
| | - Jiwu Song
- Weifang People's Hospital, First Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Jianchang Gu
- School of Stomatology, Weifang Medical University, Weifang, Shandong, China
| | - Shuangshuang Xu
- School of Stomatology, Weifang Medical University, Weifang, Shandong, China
| | - Xiaolan Wang
- School of Stomatology, Weifang Medical University, Weifang, Shandong, China
| | - Yunxia Liu
- School of Stomatology, Weifang Medical University, Weifang, Shandong, China
- Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
3
|
Sun Z, Cao Y, Hu G, Zhao J, Chen M, Wang S, Ye Z, Chen H, Wang W, Wang Y. Jinfu'an Decoction Inhibits Invasion and Metastasis in Human Lung Cancer Cells (H1650) via p120ctn-Mediated Induction and Kaiso. Med Sci Monit 2018; 24:2878-2886. [PMID: 29735970 PMCID: PMC5965019 DOI: 10.12659/msm.909748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/03/2018] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Previous research showed that Jin-Fu-An decoction has a significant effect on lung cancer. However, it remains unclear whether p120ctn and its transcription factor Kaiso play a role in lung cancer cell proliferation, adhesion, migration, and metastasis. MATERIAL AND METHODS Proliferation inhibition was detected by CCK-8 assay. The migration and invasion were detected using Transwell assay. The location and expression of p120ctn and Kaiso were monitored by immunofluorescence staining. The expression changes of p120ctn, its isoform 1A, its S288 phosphorylation, and Kaiso were measured by Western blot assay. RESULTS The lung cancer cell line H1650 administered Jin-Fu-An decoction had significantly reduced the growth in dose-dependent and time-dependent manners. Migration and metastasis were significantly inhibited by application of Jin-Fu-An decoction in a dose-dependent manner. Additionally, Jin-Fu-An decoction decreased the expressions of p120ctn, its isoform 1A, and its S288 phosphorylation, but the protein level of Kaiso was elevated. CONCLUSIONS Jin-Fu-An decoction inhibits the proliferation, adhesion, migration, and metastasis though down-regulation of p120ctn or its isoform 1A expression, mediating the up-regulation of Kaiso. The underlying mechanism of Jin-Fu-An decoction might involve targeting the lower expression of p120ctn S288 phosphorylation, which suggests that Jin-Fu-An decoction may be a potential therapeutic measure as prevention and control of recurrence and metastasis of lung cancer.
Collapse
Affiliation(s)
- Zhe Sun
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Yang Cao
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Guangyun Hu
- Guangdong Second Provincial Traditional Chinese Medicine Hospital, Guangzhou, Guangdong, P.R. China
| | - Jiuda Zhao
- Affiliated Hospital of Qinghai University, Affiliated Cancer Hospital of Qinghai University, Xining, Qinghai, P.R. China
| | - Ming Chen
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Sisi Wang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Zengjie Ye
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Hongyu Chen
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Wenping Wang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Ya’nan Wang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
4
|
Hong JY, Oh IH, McCrea PD. Phosphorylation and isoform use in p120-catenin during development and tumorigenesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:102-14. [PMID: 26477567 DOI: 10.1016/j.bbamcr.2015.10.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 10/12/2015] [Accepted: 10/13/2015] [Indexed: 12/12/2022]
Abstract
P120-catenin is essential to vertebrate development, modulating cadherin and small-GTPase functions, and growing evidence points also to roles in the nucleus. A complexity in addressing p120-catenin's functions is its many isoforms, including optional splicing events, alternative points of translational initiation, and secondary modifications. In this review, we focus upon how choices in the initiation of protein translation, or the earlier splicing of the RNA transcript, relates to primary sequences that harbor established or putative regulatory phosphorylation sites. While certain p120 phosphorylation events arise via known kinases/phosphatases and have defined outcomes, in most cases the functional consequences are still to be established. In this review, we provide examples of p120-isoforms as they relate to phosphorylation events, and thereby to isoform dependent protein-protein associations and downstream functions. We also provide a view of upstream pathways that determine p120's phosphorylation state, and that have an impact upon development and disease. Because other members of the p120 subfamily undergo similar processing and phosphorylation, as well as related catenins of the plakophilin subfamily, what is learned regarding p120 will by extension have wide relevance in vertebrates.
Collapse
Affiliation(s)
- Ji Yeon Hong
- Division of Cardiology, Department of Medicine, Severance Biomedical Science Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Republic of Korea.
| | - Il-Hoan Oh
- The Catholic University of Korea, Catholic High Performance Cell Therapy Center, 505 Banpo-dong, Seocho-Ku, Seoul 137-701, Republic of Korea
| | - Pierre D McCrea
- Department of Genetics, University of Texas MD Anderson Cancer Center, University of Texas Graduate School of Biomedical Science, Houston, TX 77030, USA.
| |
Collapse
|
5
|
Fan C, Miao Y, Zhang X, Liu D, Jiang G, Lin X, Han Q, Luan L, Xu Z, Wang E. Btbd7 contributes to reduced E-cadherin expression and predicts poor prognosis in non-small cell lung cancer. BMC Cancer 2014; 14:704. [PMID: 25253020 PMCID: PMC4189533 DOI: 10.1186/1471-2407-14-704] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 09/16/2014] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Disorders of cell adhesion are critical steps in cancer progression in which varieties of markers including cadherins are involved in.Btbd7 was found to inhibit E-cadherin expression in MDCK cells and play important roles during branching morphogenesis of embryonic salivary glands and lungs. However its function in malignant tumors is largely unknown. The aim of this study is to investigate the clinicopathological significance and possible function of Btbd7 in non-small cell lung cancer. METHODS Immunohistochemistry and Western blotting were used to investigate Btbd7 expression in non-small cell lung cancer and lung tissues. The clinicopathological association and the overall survival was analyzed. In vitro experiments were performed using siRNA to investigate the function of Btbd7 in lung cancer cells. RESULTS Btbd7 expression was elevated in non-small cell lung cancer tissues compared to normal lung tissues. Increased Btbd7 expression was significantly associated with lymph node metastasis, reduced E-cadherin expression and patients' poor clinical outcome. Downregulation of Btbd7 expression in lung cancer cells by siRNA significantly inhibits cancer cell invasion and effectively restores E-cadherin expression in cancer cell membrane. CONCLUSIONS Btbd7 contributes to reduced expression of E-cadherin and may be a promising cancer marker in non-small cell lung cancer.
Collapse
Affiliation(s)
- Chuifeng Fan
- />Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, 110001 China
- />Institute of Pathology and Pathophysiology, China Medical University, Shenyang, 110001 China
| | - Yuan Miao
- />Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, 110001 China
- />Institute of Pathology and Pathophysiology, China Medical University, Shenyang, 110001 China
| | - Xiupeng Zhang
- />Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, 110001 China
- />Institute of Pathology and Pathophysiology, China Medical University, Shenyang, 110001 China
| | - Di Liu
- />Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, 110001 China
- />Institute of Pathology and Pathophysiology, China Medical University, Shenyang, 110001 China
| | - Guiyang Jiang
- />Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, 110001 China
- />Institute of Pathology and Pathophysiology, China Medical University, Shenyang, 110001 China
| | - Xuyong Lin
- />Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, 110001 China
- />Institute of Pathology and Pathophysiology, China Medical University, Shenyang, 110001 China
| | - Qiang Han
- />Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, 110001 China
- />Institute of Pathology and Pathophysiology, China Medical University, Shenyang, 110001 China
| | - Lan Luan
- />Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, 110001 China
- />Institute of Pathology and Pathophysiology, China Medical University, Shenyang, 110001 China
| | - Zhonghai Xu
- />Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, 110001 China
- />Institute of Pathology and Pathophysiology, China Medical University, Shenyang, 110001 China
| | - Enhua Wang
- />Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, 110001 China
- />Institute of Pathology and Pathophysiology, China Medical University, Shenyang, 110001 China
| |
Collapse
|
6
|
Zhao H, Zhao Y, Jiang G, Zhang X, Zhang Y, Dong Q, Luan L, Papavassiliou P, Wang E, Wang E. Dishevelled-3 activates p65 to upregulate p120-catenin transcription via a p38-dependent pathway in non-small cell lung cancer. Mol Carcinog 2014; 54 Suppl 1:E112-21. [PMID: 25156800 DOI: 10.1002/mc.22196] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 05/20/2014] [Accepted: 05/27/2014] [Indexed: 12/26/2022]
Abstract
Dishevelled-3 (Dvl-3) and p120-catenin (p120ctn) have abnormal expression in non-small cell lung cancer (NSCLC), which is associated with poor prognosis. Dvl-3 upregulates p120ctn transcription in NSCLC cells, but the mechanism is unknown. Here we transiently transfected Dvl-3 cDNA to NSCLC cells. Dvl-3 transfection is sufficient for induction of p38 signaling. In turn, Dvl-3 induces p38-mediated activation of the p65 so as to facilitate its nuclear translocation. Treatment with SB203580 (p38 inhibitor) or BAY 11-7082 (IκB-α phosphorylation inhibitor) suppresses Dvl-3 induced activation of p65. The results further show that active p65 interacts with PAX2 promoter to increase the expression of PAX2 and then PAX2 binds to p120ctn promoter so as to upregulate p120ctn gene transcription. Moreover, Dvl-3 transfection enhanced the binding of active p65 to Sp1 so as to decrease the binding of Sp1 to p120ctn promoter. The above-mentioned effects are linked to biological behavior of non-small cell lung cancer cells. These findings confirm that p38 and PAX2 are important for the Dvl-3 induced upregulation of p120ctn. Dvl-3 activates a p38 → p65 → PAX2 → p120ctn pathway to affect biological behavior of NSCLC cells.
Collapse
Affiliation(s)
- Huanyu Zhao
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, China
| | - Yue Zhao
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, China
| | - Guiyang Jiang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, China
| | - Xiupeng Zhang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, China
| | - Yijun Zhang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, China
| | - Qianze Dong
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, China
| | - Lan Luan
- Department of Pathology, Fengtian Hospital Affiliated to Shenyang Medical College, China
| | | | - Endi Wang
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Enhua Wang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, China
| |
Collapse
|
7
|
Zhang Y, Zhao Y, Jiang G, Zhang X, Zhao H, Wu J, Xu K, Wang E. Impact of p120-catenin isoforms 1A and 3A on epithelial mesenchymal transition of lung cancer cells expressing E-cadherin in different subcellular locations. PLoS One 2014; 9:e88064. [PMID: 24505377 PMCID: PMC3913724 DOI: 10.1371/journal.pone.0088064] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 01/06/2014] [Indexed: 11/30/2022] Open
Abstract
The epithelial mesenchymal transition (EMT) is an important process in tumor development. Despite previous investigations, it remains unclear how p120-catenin (p120ctn) isoforms 1A and 3A affect the EMT of tumor cells. Here we investigated expression of p120ctn, E-cadherin and vimentin in 78 human non-small cell lung cancer (NSCLC) samples by immunohistochemistry and found that p120ctn membrane expression positively correlated with E-cadherin expression (P<0.001) and negatively correlated with vimentin expression and lymph node metastasis (P<0.05). Meanwhile, p120ctn cytoplasmic expression negatively correlated with E-cadherin expression (P<0.001) and positively correlated with vimentin expression and lymph node metastasis (P<0.05). Cells expressing high (H460 and SPC) and low (H1299 and LK2) levels of p120ctn were screen to investigate its impact on EMT. E-cadherin was restricted to the cell membrane in H460 and H1299 cells, whereas it was expressed in the cytoplasm of SPC and LK2 cells. Ablation of endogenous p120ctn isoform 1A in cells expressing high levels of the protein resulted in decreased E-cadherin expression, increased N-cadherin, vimentin and snail expression and enhanced invasiveness in H460 cells. Meanwhile, completely opposite results were observed in SPC cells. Furthermore, transfection of in H1299 cells expressing low p120ctn levels with the p120ctn isoform 1A plasmid resulted in increased E-cadherin expression, decreased N-cadherin, vimentin and snail expression and weakened invasiveness, while LK2 cells showed completely opposite results. Both cell lines expressing low p120ctn levels and transfected with the p120ctn isoform 3A plasmid appeared to have increased E-cadherin expression, decreased N-cadherin, vimentin and snail expression and weakened invasiveness. In conclusion, in cells with membrane E-cadherin, both p120ctn isoforms 1A and 3A inhibited EMT and decreased cell invasiveness. In cells with cytoplasmic E-cadherin, p120ctn isoform 1A promoted EMT and increased cell invasiveness, while p120ctn isoform 3A inhibited the EMT and decreased cell invasiveness.
Collapse
Affiliation(s)
- Yijun Zhang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Yue Zhao
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Guiyang Jiang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Xiupeng Zhang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Huanyu Zhao
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Junhua Wu
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Ke Xu
- Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Enhua Wang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
- * E-mail:
| |
Collapse
|