1
|
Guerrache A, Micheau O. TNF-Related Apoptosis-Inducing Ligand: Non-Apoptotic Signalling. Cells 2024; 13:521. [PMID: 38534365 PMCID: PMC10968836 DOI: 10.3390/cells13060521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/01/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
TNF-related apoptosis-inducing ligand (TRAIL or Apo2 or TNFSF10) belongs to the TNF superfamily. When bound to its agonistic receptors, TRAIL can induce apoptosis in tumour cells, while sparing healthy cells. Over the last three decades, this tumour selectivity has prompted many studies aiming at evaluating the anti-tumoral potential of TRAIL or its derivatives. Although most of these attempts have failed, so far, novel formulations are still being evaluated. However, emerging evidence indicates that TRAIL can also trigger a non-canonical signal transduction pathway that is likely to be detrimental for its use in oncology. Likewise, an increasing number of studies suggest that in some circumstances TRAIL can induce, via Death receptor 5 (DR5), tumour cell motility, potentially leading to and contributing to tumour metastasis. While the pro-apoptotic signal transduction machinery of TRAIL is well known from a mechanistic point of view, that of the non-canonical pathway is less understood. In this study, we the current state of knowledge of TRAIL non-canonical signalling.
Collapse
Affiliation(s)
- Abderrahmane Guerrache
- Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231, «Equipe DesCarTes», 21000 Dijon, France
| | - Olivier Micheau
- Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231, «Equipe DesCarTes», 21000 Dijon, France
- Laboratoire d’Excellence LipSTIC, 21000 Dijon, France
| |
Collapse
|
2
|
Zhang P, Feng Q, Chen W, Bai X. Catalpol antagonizes LPS-mediated inflammation and promotes osteoblast differentiation through the miR-124-3p/DNMT3b/TRAF6 axis. Acta Histochem 2024; 126:152118. [PMID: 38039796 DOI: 10.1016/j.acthis.2023.152118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/13/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND Dysregulated inflammation and osteoblast differentiation are implicated in osteoporosis. Exploring the activity of catalpol in inflammation and osteoblast differentiation deepens the understanding of osteoporosis pathogenesis. METHODS LPS was used to treated hFOB1.19 cells to induce inflammation and repress osteoblast differentiation. FOB1.19 cells were induced in osteoblast differentiation medium and treated with LPS and catalpol. Cell viability was assessed using CCK-8. ALP and Alizarin red S staining were conducted for analyzing osteoblast differentiation. The levels of IL-1β, TNF-α and IL-6 were examined by ELISA. The methylation of TRAF6 promoter was examined through MS-PCR. The binding of miR-124-3p to DNMT3b and DNMT3b to TRAF6 promoter was determined with dual luciferase reporter and ChIP assays. RESULTS LPS enhanced secretion of inflammatory cytokines and suppressed osteoblast differentiation. MiR-124-3p and TRAF6 were upregulated and DNMT3b was downregulated in LPS-induced hFOB1.19 cells. Catalpol protected hFOB1.19 cells against LPS via inhibiting inflammation and promoting osteoblast differentiation. MiR-124-3p targeted DNMT3b, and its overexpression abrogated catalpol-mediated protection in LPS-treated hFOB1.19 cells. In addition, DNMT3b methylated TRAF6 promoter to restrain its expression. Catalpol exerted protective effects through suppression of the miR-124-3p/DNMT3b/TRAF6 axis in hFOB1.19 cells. CONCLUSION Catalpol antagonizes LPS-mediated inflammation and suppressive osteoblast differentiation via controlling the miR-124-3p/DNMT3b/TRAF6 axis.
Collapse
Affiliation(s)
- Pan Zhang
- Department of Orthopaedics, The People's Hospital of Liaoning Province, Shenyang 110016, Liaoning, People's Republic of China
| | - Qun Feng
- Department of Orthopaedics, The People's Hospital of Liaoning Province, Shenyang 110016, Liaoning, People's Republic of China
| | - Wenxiao Chen
- Department of Orthopaedics, The People's Hospital of Liaoning Province, Shenyang 110016, Liaoning, People's Republic of China
| | - Xizhuang Bai
- Department of Orthopaedics, The People's Hospital of Liaoning Province, Shenyang 110016, Liaoning, People's Republic of China.
| |
Collapse
|
3
|
Cabău G, Gaal O, Badii M, Nica V, Mirea AM, Hotea I, HINT-consortium, Pamfil C, Popp RA, Netea MG, Rednic S, Crișan TO, Joosten LA. Hyperuricemia remodels the serum proteome toward a higher inflammatory state. iScience 2023; 26:107909. [PMID: 37810213 PMCID: PMC10550725 DOI: 10.1016/j.isci.2023.107909] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/01/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Gout is an autoinflammatory disease triggered by a complex innate immune response to MSU crystals and inflammatory triggers. While hyperuricemia is an obligatory risk factor for the development of gout, the majority of individuals with hyperuricemia never develop gout but have an increased risk of developing cardiometabolic disorders. Current management of gout aims at MSU crystal dissolution by lowering serum urate. We apply a targeted proteomic analysis, using Olink inflammation panel, to a large group of individuals with gout, asymptomatic hyperuricemia, and normouricemic controls, and we show a urate-driven inflammatory signature. We add in vivo evidence of persistent immune activation linked to urate exposure and describe immune pathways involved in the pathogenesis of gout. Our results support a pro-inflammatory effect of asymptomatic hyperuricemia and pave the way for new research into targetable mechanisms in gout and cardiometabolic complications of asymptomatic hyperuricemia.
Collapse
Affiliation(s)
- Georgiana Cabău
- Department of Medical Genetics, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Orsolya Gaal
- Department of Medical Genetics, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Internal Medicine, Radboudumc, Nijmegen, the Netherlands
| | - Medeea Badii
- Department of Medical Genetics, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Internal Medicine, Radboudumc, Nijmegen, the Netherlands
| | - Valentin Nica
- Department of Medical Genetics, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | | - Ioana Hotea
- Department of Rheumatology, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - HINT-consortium
- Department of Medical Genetics, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Internal Medicine, Radboudumc, Nijmegen, the Netherlands
- Department of Rheumatology, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Cristina Pamfil
- Department of Rheumatology, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Radu A. Popp
- Department of Medical Genetics, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihai G. Netea
- Department of Internal Medicine, Radboudumc, Nijmegen, the Netherlands
- Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Simona Rednic
- Department of Rheumatology, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Tania O. Crișan
- Department of Medical Genetics, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Internal Medicine, Radboudumc, Nijmegen, the Netherlands
| | - Leo A.B. Joosten
- Department of Medical Genetics, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Internal Medicine, Radboudumc, Nijmegen, the Netherlands
| |
Collapse
|
4
|
Li J, Li X, Zhou S, Wang Y, Lu Y, Wang Q, Zhao F. Tetrandrine inhibits RANKL-induced osteoclastogenesis by promoting the degradation of TRAIL. Mol Med 2022; 28:141. [DOI: 10.1186/s10020-022-00568-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/04/2022] [Indexed: 11/28/2022] Open
Abstract
Abstract
Background
Tetrandrine, a bisbenzylisoquinoline (BBI) alkaloid extracted from Stephania tetrandra (S. Moore), and is widely used in several diseases such as tuberculosis, hyperglycemia, malaria, and tumors. Tetrandrine was recently shown to prevent bone loss in ovariectomized mice. However, the specific mechanism underlying osteoclastogenesis inhibition remains unclear.
Methods
Tetrandrine’s cytotoxicity to cells was determined using the Cell Counting Kit-8 assay. Tartrate-resistant acid phosphatase staining, immunofluorescence and bone resorption assay were performed to evaluate osteoclasts’ differentiation and absorption capacity. The bone-forming capacity was assessed using alkaline phosphatase and Alizarin red S staining. qPCR and Western blotting were applied to assess the related genes and protein expression. Tetrandrine’s impact on TRAIL was demonstrated through a co-immunoprecipitation assay. Animal experiments were performed for the detection of the therapeutic effect of Tetrandrine on osteoporosis.
Results
Tetrandrine attenuated RANKL-induced osteoclastogenesis and decreased the related gene expression. The co-immunoprecipitation assay revealed that Tetrandrine administration accelerated the ubiquitination of TNF-related apoptosis-inducing ligand (TRAIL), which was subsequently degraded. Moreover, TRAIL overexpression was found to partially reverse the Tetrandrine-induced inhibition of osteoclastogenesis. Meanwhile, Tetrandrine significantly inhibited the phosphorylation of p38, p65, JNK, IKBα and IKKα/β, while the TRAIL overexpression weakened this effect. In addition, Tetrandrine promoted osteogenesis and inhibited the TRAIL expression in osteoblasts. Tetrandrine consistently improved bone destruction by stimulating bone formation and inhibiting bone resorption in an OVX-induced mouse model.
Conclusion
Tetrandrine inhibits RANKL-induced osteoclastogenesis by promoting TRAIL degradation and promotes osteoblast differentiation, suggesting its potential in antiosteopenia pharmacotherapy.
Collapse
|
5
|
Concerted regulation of OPG/RANKL/ NF‑κB/MMP-13 trajectories contribute to ameliorative capability of prodigiosin and/or low dose γ-radiation against adjuvant- induced arthritis in rats. Int Immunopharmacol 2022; 111:109068. [PMID: 35944459 DOI: 10.1016/j.intimp.2022.109068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Prodigiosin (PDG) is a microbial red dye with antioxidant and anti-inflammatory properties, although its effect on rheumatoid arthritis (RA) remains uncertain. Also, multiple doses of low dose γ- radiation (LDR) have been observed to be as a successful intervention for RA. Thus, the purpose of this study was to investigate the ameliorative potential of PDG and/or LDR on adjuvant-induced arthritis (AIA) in rats. METHODS The anti-inflammatory and anti-arthritic effects of PDG and/or LDR were examined in vitro and in vivo, respectively. In the AIA model, the arthritic indexes, paw swelling degrees, body weight gain, and histopathological assessment in AIA rats were assayed. The impact of PDG (200 µg/kg; p.o) and/or LDR (0.5 Gy) on the levels of pro- and anti-inflammatory cytokines (IL-1β, TNF-α, IL-6, IL-18, IL-17A, and IL-10) as well as the regulation of osteoprotegrin (OPG)/ receptor activator of nuclear factor κB ligand (RANKL)/ nuclear factor-κB (NF-κB)/MMP-13 pathways was determined. Methotrexate (MTX; 0.05 mg/kg; twice/week, i.p) was administered concurrently as a standard anti-arthritic drug. RESULTS PDG and/or LDR markedly diminished the arthritic indexes, paw edema, weigh loss in AIA rats, alleviated the pathological alterations in joints, reduced the levels of pro-inflammatory cytokines IL-1β, TNF-α, IL-6, IL-18, IL-17A, and RANKL in serum and synovial tissues, while increasing anti-inflammatory cytokines IL-10 and OPG levels. Moreover, PDG and/or LDR down-regulated the expression of RANKL, NF-κBp65, MMP13, caspase-3, and decreased the RANKL/OPG ratio, whereas OPG and collagen II were enhanced in synovial tissues. CONCLUSION PDG and/or LDR exhibited obvious anti-RA activity on AIA.
Collapse
|
6
|
Suppression of osteoclastogenesis signalling pathways and attenuation of ameloblastic osteolysis induced by local administration of CaP-bisphosphonate and CaP-doxycycline cements: Review of the literature and therapeutic hypothesis. ADVANCES IN ORAL AND MAXILLOFACIAL SURGERY 2022. [DOI: 10.1016/j.adoms.2021.100241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
7
|
Liu Y, Liu J, Ma Y, Zhang Y, Chen Q, Yang X, Shang Y. The protective effects of Olmesartan against interleukin-29 (IL-29)-induced type 2 collagen degradation in human chondrocytes. Bioengineered 2022; 13:1802-1813. [PMID: 35012432 PMCID: PMC8805962 DOI: 10.1080/21655979.2021.1997090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/19/2021] [Indexed: 12/31/2022] Open
Abstract
Osteoarthritis (OA) is a cartilage degenerative disease commonly observed in the elderly population and is pathologically characterized by the degradation of the cartilage extracellular matrix (ECM). Matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTSs) are critical enzymes involved in the degradation of ECM. Olmesartan is an inhibitor of the angiotensin II receptor developed for the treatment of hypertension, and recent studies show that it exerts anti-inflammatory effects in arthritis. The present study aimed to investigate the mechanism of the protective effect of Olmesartan on cartilage ECM degradation. Interleukin-29 (IL-29) is a novel inflammatory mediator involved in the inflammation and degradation of cartilage in OA, and human T/C-28a2 cells treated with it were the inflammatory model in vitro. We found that the degradation of type 2 collagens and aggrecans was induced by IL-29, accompanied by the upregulation of MMPs and ADAMTSs, but the presence of Olmesartan significantly ameliorated these increases. In addition, Olmesartan abolished IL-29- induced oxidative stress and elevated the expression level of TNF receptor-associated factor 6 (TRAF-6). Mechanistically, we showed that Olmesartan suppressed IL-29- caused inhibitor kappa B α (IκBα) expression and nuclear translocation of nuclear factor kappa-B (NF-κB) p65, indicating it suppressed the activation of the NF-κB pathway. Collectively, our data reveal that Olmesartan exerted a protective function on IL-29- induced type 2 collagen degradation in human chondrocytes.
Collapse
Affiliation(s)
- Yunlong Liu
- Department of Knee Surgery, Luoyang Orthopedic-Traumatological Hospital of Henan Province, Zhengzhou, China
| | - Junyi Liu
- Department of Knee Surgery, Luoyang Orthopedic-Traumatological Hospital of Henan Province, Zhengzhou, China
| | - Yan Ma
- Lab of Molecular Biology, Luoyang Orthopedic-Traumatological Hospital of Henan Province, Zhengzhou, China
| | - Yongyong Zhang
- Lab of Molecular Biology, Luoyang Orthopedic-Traumatological Hospital of Henan Province, Zhengzhou, China
| | - Qiong Chen
- Department of Medicine, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Xin Yang
- Department of Knee Surgery, Luoyang Orthopedic-Traumatological Hospital of Henan Province, Zhengzhou, China
| | - Yanchun Shang
- Department of Knee Surgery, Luoyang Orthopedic-Traumatological Hospital of Henan Province, Zhengzhou, China
| |
Collapse
|
8
|
Huang XL, Liu C, Shi XM, Cheng YT, Zhou Q, Li JP, Liao J. Zoledronic acid inhibits osteoclastogenesis and bone resorptive function by suppressing RANKL‑mediated NF‑κB and JNK and their downstream signalling pathways. Mol Med Rep 2021; 25:59. [PMID: 34935053 PMCID: PMC8711024 DOI: 10.3892/mmr.2021.12575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 11/23/2021] [Indexed: 11/06/2022] Open
Abstract
Targeting excessive osteoclast differentiation and activity is considered a valid therapeutic approach for osteoporosis. Zoledronic acid (ZOL) plays a pivotal role in regulating bone mineral density. However, the exact molecular mechanisms responsible for the inhibitory effects of ZOL on receptor activator of nuclear factor (NF)-κB ligand (RANKL)-induced osteoclast formation are not entirely clear. The present study aimed to investigate the role of ZOL in osteoclast differentiation and function, and to determine whether NF-κB and mitogen-activated protein kinase, and their downstream signalling pathways, are involved in this process. RAW264.7 cells were cultured with RANKL for differentiation into osteoclasts, in either the presence or absence of ZOL. Osteoclast formation was observed by tartrate-resistant acid phosphatase staining and bone resorption pit assays using dentine slices. The expression of osteoclast-specific molecules was analysed using reverse transcription-quantitative polymerase chain reaction and western blotting assays to deduce the molecular mechanisms underlying the role of ZOL in osteoclastogenesis. The results showed that ZOL significantly attenuated osteoclastogenesis and bone resorptive capacity in vitro. ZOL also suppressed the activation of NF-κB and the phosphorylation of c-Jun N-terminal kinase. Furthermore, it inhibited the expression of the downstream factors c-Jun, c-Fos and nuclear factor of activated T cells c1, thereby decreasing the expression of dendritic cell-specific transmembrane protein and other osteoclast-specific markers. In conclusion, ZOL may have therapeutic potential for osteoporosis.
Collapse
Affiliation(s)
- Xiao-Lin Huang
- Stomatology Medical Center of Zhongshan People's Hospital, Zhongshan, Guangdong 528403, P.R. China
| | - Chao Liu
- Department of Respiratory Disease, Zhongshan People's Hospital, Zhongshan, Guangdong 528403, P.R. China
| | - Xue-Mei Shi
- Stomatology Medical Center of Zhongshan People's Hospital, Zhongshan, Guangdong 528403, P.R. China
| | - Yu-Ting Cheng
- School/Hospital of Stomatology, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Qian Zhou
- School/Hospital of Stomatology, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Jian-Ping Li
- Stomatology Medical Center of Zhongshan People's Hospital, Zhongshan, Guangdong 528403, P.R. China
| | - Jian Liao
- School/Hospital of Stomatology, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
9
|
Kim B, Cho YJ, Lim W. Osteoporosis therapies and their mechanisms of action (Review). Exp Ther Med 2021; 22:1379. [PMID: 34650627 PMCID: PMC8506919 DOI: 10.3892/etm.2021.10815] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022] Open
Abstract
Osteoporosis is a common disease that affects millions of patients worldwide and is most common in menopausal women. The main characteristics of osteoporosis are low bone density and increased risk of fractures due to deterioration of the bone architecture. Osteoporosis is a chronic disease that is difficult to treat; thus, investigations into novel effective therapeutic methods are required. A number of studies have focused on determining the most effective treatment options for this disease. There are several treatment options for osteoporosis that differ depending on the characteristics of the disease, and these include both well-established and newly developed drugs. The present review focuses on the various drugs available for osteoporosis, the associated mechanisms of action and the methods of administration.
Collapse
Affiliation(s)
- Beomchang Kim
- Laboratory of Orthopaedic Research, School of Medicine, Chosun University, Gwangju 61452, Republic of Korea
| | - Yong Jin Cho
- Department of Orthopaedic Surgery, College of Medicine, Chosun University, Gwangju 61452, Republic of Korea
| | - Wonbong Lim
- Laboratory of Orthopaedic Research, School of Medicine, Chosun University, Gwangju 61452, Republic of Korea
- Department of Orthopaedic Surgery, College of Medicine, Chosun University, Gwangju 61452, Republic of Korea
- Department of Premedical Sciences, College of Medicine, Chosun University, Gwangju 61452, Republic of Korea
| |
Collapse
|
10
|
Gao X, Wu Q, Zhang X, Tian J, Liang D, Min Y, Lu J, Zhang X, Cui L, Xu B, Liu Y. Salvianolate Ameliorates Osteopenia and Improves Bone Quality in Prednisone-Treated Rheumatoid Arthritis Rats by Regulating RANKL/RANK/OPG Signaling. Front Pharmacol 2021; 12:710169. [PMID: 34552485 PMCID: PMC8450458 DOI: 10.3389/fphar.2021.710169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/23/2021] [Indexed: 01/01/2023] Open
Abstract
Rheumatoid arthritis (RA) is closely associated with periarticular osteopenia and leads to a high risk of generalized osteoporosis. Although glucocorticoid (GC) treatment ameliorates joint degradation and manages inflammation in RA, GC application may induce further bone quality deterioration in RA patients. Current treatments for RA lack relevant strategies for the prevention and treatment of osteopenia in RA. In this study, we aimed to investigate whether salvianolate treatment ameliorated osteopenia in prednisone-treated RA rats. Lewis rats with collagen-induced arthritis (CIA) were administered prednisone (PDN) or PDN plus salvianolate (PDN+Sal) treatment for 90 days. The effects of Sal were investigated in PDN-treated CIA rats. To further evaluate the effects of Sal under inflammatory conditions, we investigated the effects of Sal treatment on the TNF-α-induced inflammatory response in MC3T3-E1 osteoblasts. Bone histomorphometry, bone mineral density (BMD), bone biomechanical properties, micro-computed tomography (micro-CT), immunohistochemistry, RT-PCR and western blot analyses were performed to evaluate the effects of Sal. The results demonstrated that RA induced bone loss and bone quality deterioration, with high bone turnover in CIA rats. PDN+Sal treatment significantly increased BMD and trabecular/cortical bone mass, suppressed inflammation, and improved bone biomechanical properties compared to CIA control and PDN treatment. PDN+Sal treatment significantly suppressed bone resorption and the RANKL and RANKL/OPG ratios compared to PDN. PDN+Sal and PDN treatment significantly inhibited TNF-α by 82 and 83%, respectively, and both suppressed inflammation in CIA rats. However, there was no significant difference between PDN+Sal and PDN treatment alone in regard to bone formation parameters or the management of inflammation and arthropathy. Sal significantly increased Osterix, OPN, and Col1a1 while decreasing RANKL, TRAF6, and TRAIL gene in TNF-α-induced MC3T3-E1 osteoblasts. Sal significantly increased Osterix, OPN and RUNX2 while decreasing NF-κB, TRAF6 and IL-1β protein in TNF-α-induced MC3T3-E1 osteoblasts. The results suggested that salvianolate treatment ameliorated osteopenia and improved bone quality in prednisone-treated RA rats, and the potential mechanism may be related to the regulation of the RANKL/RANK/OPG signaling pathway, TRAIL-TRAF6-NFκB signal axis, and downregulation of inflammatory cytokines. Salvianolate could be used as a promising supplemental therapeutic strategy to ameliorate osteopenia and improve bone quality in GC-treated RA patients.
Collapse
Affiliation(s)
- Xiang Gao
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drug, Guangdong Medical University, Zhanjiang, China.,Stem Cell Research and Cellular Therapy Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qingyun Wu
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drug, Guangdong Medical University, Zhanjiang, China.,Department of Pharmacy, Yangjiang People's Hospital, Yangjiang, China
| | - Xinle Zhang
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drug, Guangdong Medical University, Zhanjiang, China
| | - Jia Tian
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drug, Guangdong Medical University, Zhanjiang, China
| | - Dahong Liang
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drug, Guangdong Medical University, Zhanjiang, China
| | - Yalin Min
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drug, Guangdong Medical University, Zhanjiang, China
| | - Jiaqi Lu
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drug, Guangdong Medical University, Zhanjiang, China
| | - Xuemei Zhang
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drug, Guangdong Medical University, Zhanjiang, China
| | - Liao Cui
- Stem Cell Research and Cellular Therapy Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Bilian Xu
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drug, Guangdong Medical University, Zhanjiang, China
| | - Yanzhi Liu
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drug, Guangdong Medical University, Zhanjiang, China.,Clinic Research Institute of Zhanjiang, Affiliated Central People's Hospital of Zhanjiang of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
11
|
Chellaiah MA. L-Plastin Phosphorylation: Possible Regulation by a TNFR1 Signaling Cascade in Osteoclasts. Cells 2021; 10:2432. [PMID: 34572081 PMCID: PMC8464874 DOI: 10.3390/cells10092432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/25/2021] [Accepted: 09/09/2021] [Indexed: 12/30/2022] Open
Abstract
Tumor necrosis factor-alpha (TNF-α) signaling regulates phosphorylation of L-plastin, which is involved in forming the nascent sealing zone, a precursor zone for the matured sealing ring. This study aimed to illustrate the molecular mechanisms of L-plastin phosphorylation and the subsequent formation of the nascent sealing zone in osteoclasts treated with TNF-α. Here, we report that anti-TNF-receptor 1, inhibitors of signaling proteins (Src, PI3-K, Rho, and Rho-kinase), and siRNA of TRAF-6 attenuated the phosphorylation of LPL and filamentous actin content significantly in the presence of TNF-α. An inhibitor of integrin αvβ3, PKC, or PKA did not inhibit TNF-α-induced L-plastin phosphorylation. Inhibitors of Src and PI3-K and not Rho or Rho-kinase reduced tyrosine phosphorylation of TRAF-6, suggesting that Src and PI3-K regulate TRAF-6 phosphorylation, and Rho and Rho-kinase are downstream of TRAF-6 regulation. Osteoclasts expressing constitutively active or kinase-defective Src proteins were used to determine the role of Src on L-plastin phosphorylation; similarly, the effect of Rho was confirmed by transducing TAT-fused constitutively active (V14) or dominant-negative (N19) Rho proteins into osteoclasts. Pull-down analysis with glutathione S-transferase-fused SH2 and SH3 domains of Src and PI3-K demonstrated coprecipitation of L-plastin and TRAF-6 with the SH3 and SH2 domains of the PI3-K and Src proteins. However, the actual order of the interaction of proteins requires further elucidation; a comprehensive screening should corroborate the initial findings of protein interactions via the SH2/SH3 domains. Ultimately, inhibition of the interaction of proteins with SH2/SH3 could reduce L-plastin phosphorylation and affect NSZ formation and bone resorption in conditions that display osteoclast activation and bone loss.
Collapse
Affiliation(s)
- Meenakshi A Chellaiah
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| |
Collapse
|
12
|
Choi JH, Jang AR, Park MJ, Kim DI, Park JH. Melatonin Inhibits Osteoclastogenesis and Bone Loss in Ovariectomized Mice by Regulating PRMT1-Mediated Signaling. Endocrinology 2021; 162:6169647. [PMID: 33713122 DOI: 10.1210/endocr/bqab057] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Indexed: 12/16/2022]
Abstract
Melatonin, a pineal gland hormone, has been suggested to treat postmenopausal osteoporosis due to its inhibitory effect on osteoclast differentiation. We previously reported that protein arginine methyltransferase 1 (PRMT1) was an important mediator of receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis. However, the relationship between melatonin and PRMT1 in osteoclast differentiation and estrogen deficiency-induced osteoporosis is unclear. In this study, we investigated the inhibitory mechanisms of melatonin in vitro and in vivo by focusing on PRMT1. Melatonin treatment effectively blocked RANKL-induced osteoclastogenesis by inhibiting PRMT1 and asymmetric dimethylarginine (ADMA) expression. RANKL-induced tumor necrosis factor receptor-associated factor 6 (TRAF6) and the phosphorylation of JNK were also suppressed by melatonin, and TRAF6 siRNA attenuated RANKL-induced p-JNK and PRMT1 production. Melatonin inhibited the transcriptional activity of NF-κB by interfering with the binding of PRMT1 and NF-κB subunit p65 in RANKL-treated bone marrow-derived macrophages. Our results also revealed that melatonin inhibits RANKL-induced PRMT1 expression through receptors-independent pathway. Thus, the anti-osteoclastogenic effect of melatonin was mediated by a cascade of inhibition of RANKL-induced TRAF6, JNK, PRMT1, and NF-κB signaling in melatonin receptors-independent pathway. In vivo, ovariectomy caused significant decreases in bone mineral density, but melatonin treatment alleviated the ovariectomized (OVX)-induced bone loss by inhibiting bone resorption. Furthermore, the expression PRMT1 and TRAP mRNA was upregulated in OVX-femurs, but effectively suppressed by melatonin injection. These findings suggest that melatonin inhibited osteoclast differentiation and estrogen deficiency-induced osteoporosis by suppressing RANKL-induced TRAF6, JNK, PRMT1, and NF-κB signaling cascades in melatonin receptors-independent pathway.
Collapse
Affiliation(s)
- Joo-Hee Choi
- Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Ah-Ra Jang
- Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Min-Jung Park
- Department of Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Dong-Il Kim
- Department of Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jong-Hwan Park
- Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
13
|
Cardoso Alves L, Corazza N, Micheau O, Krebs P. The multifaceted role of TRAIL signaling in cancer and immunity. FEBS J 2020; 288:5530-5554. [PMID: 33215853 DOI: 10.1111/febs.15637] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/10/2020] [Accepted: 11/17/2020] [Indexed: 12/29/2022]
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF superfamily that can lead to the induction of apoptosis in tumor or infected cells. However, activation of TRAIL signaling may also trigger nonapoptotic pathways in cancer and in nontransformed cells, that is, immune cells. Here, we review the current knowledge on noncanonical TRAIL signaling. The biological outcomes of TRAIL signaling in immune and malignant cells are presented and explained, with a focus on the role of TRAIL for natural killer (NK) cell function. Furthermore, we highlight the technical difficulties in dissecting the precise molecular mechanisms involved in the switch between apoptotic and nonapoptotic TRAIL signaling. Finally, we discuss the consequences thereof for a therapeutic manipulation of TRAIL in cancer and possible approaches to bypass these difficulties.
Collapse
Affiliation(s)
| | - Nadia Corazza
- Institute of Pathology, University of Bern, Switzerland
| | - Olivier Micheau
- INSERM, Université Bourgogne Franche-Comté, LNC UMR1231, Dijon, France
| | | |
Collapse
|
14
|
Wang L, Fang D, Xu J, Luo R. Various pathways of zoledronic acid against osteoclasts and bone cancer metastasis: a brief review. BMC Cancer 2020; 20:1059. [PMID: 33143662 PMCID: PMC7607850 DOI: 10.1186/s12885-020-07568-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/26/2020] [Indexed: 12/19/2022] Open
Abstract
Zoledronic acid (ZA) is one of the most important and effective class of anti-resorptive drug available among bisphosphonate (BP), which could effectively reduce the risk of skeletal-related events, and lead to a treatment paradigm for patients with skeletal involvement from advanced cancers. However, the exact molecular mechanisms of its anticancer effects have only recently been identified. In this review, we elaborate the detail mechanisms of ZA through inhibiting osteoclasts and cancer cells, which include the inhibition of differentiation of osteoclasts via suppressing receptor activator of nuclear factor κB ligand (RANKL)/receptor activator of nuclear factor κB (RANK) pathway, non-canonical Wnt/Ca2+/calmodulin dependent protein kinase II (CaMKII) pathway, and preventing of macrophage differentiation into osteoclasts, in addition, induction of apoptosis of osteoclasts through inhibiting farnesyl pyrophosphate synthase (FPPS)-mediated mevalonate pathway, and activation of reactive oxygen species (ROS)-induced pathway. Furthermore, ZA also inhibits cancer cells proliferation, viability, motility, invasion and angiogenesis; induces cancer cell apoptosis; reverts chemoresistance and stimulates immune response; and acts in synergy with other anti-cancer drugs. In addition, some new ways for delivering ZA against cancer is introduced. We hope this review will provide more information in support of future studies of ZA in the treatment of cancers and bone cancer metastasis.
Collapse
Affiliation(s)
- Lianwei Wang
- Department of General Surgery, Fuling Central Hospital of Chongqing City, Chongqing, China
| | - Dengyang Fang
- Department of General Surgery, Fuling Central Hospital of Chongqing City, Chongqing, China
| | - Jinming Xu
- Department of General Surgery, Fuling Central Hospital of Chongqing City, Chongqing, China
| | - Runlan Luo
- Department of Ultrasound, Fuling Central Hospital of Chongqing City, Chongqing, 408300, China.
| |
Collapse
|
15
|
Chen J, Chen X, Huang X, Huang G, Gao Z, Wang W, Liu H. Genome-wide analysis of intermuscular bone development reveals changes of key genes expression and signaling pathways in blunt snout bream (Megalobrama amblycephala). Genomics 2020; 113:654-663. [PMID: 33011328 DOI: 10.1016/j.ygeno.2020.09.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 11/28/2022]
Abstract
Intermuscular bone (IB) is a hard-boned spicule exist in lower teleost, which brings a lot of detrimental effects on palatability and economic value of blunt snout bream (Megalobrama amblycephala). Masson trichrome staining for ossific IB indicated that some osteoblasts appeared at the edge of the bone matrix and a few osteocytes are present in the center of the mineralized bone matrix. By comparing the orthologous gene families of fish with IBs and without IBs, we screened the key signaling pathways associated with IB formation. Furthermore, the transcriptomic data demonstrated the functional importance of these gene families. The candidate genes involved in chondrocyte development were highly expressed in stage 1 compared with stage 2 and stage 3, suggesting that the development process of IB might mainly involve in intramembranous ossification. Our research reveals the molecular mechanism of IBs formation, and provides molecular evidence for the further study on intermuscular boneless stains.
Collapse
Affiliation(s)
- Jing Chen
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Xiuli Chen
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi, Nanning 530021, China
| | - Xin Huang
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Guanghua Huang
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi, Nanning 530021, China
| | - Zexia Gao
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Weimin Wang
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Han Liu
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
16
|
Osteoclast Multinucleation: Review of Current Literature. Int J Mol Sci 2020; 21:ijms21165685. [PMID: 32784443 PMCID: PMC7461040 DOI: 10.3390/ijms21165685] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/14/2022] Open
Abstract
Multinucleation is a hallmark of osteoclast maturation. The unique and dynamic multinucleation process not only increases cell size but causes functional alterations through reconstruction of the cytoskeleton, creating the actin ring and ruffled border that enable bone resorption. Our understanding of the molecular mechanisms underlying osteoclast multinucleation has advanced considerably in this century, especially since the identification of DC-STAMP and OC-STAMP as “master fusogens”. Regarding the molecules and pathways surrounding these STAMPs, however, only limited progress has been made due to the absence of their ligands. Various molecules and mechanisms other than the STAMPs are involved in osteoclast multinucleation. In addition, several preclinical studies have explored chemicals that may be able to target osteoclast multinucleation, which could enable us to control pathogenic bone metabolism more precisely. In this review, we will focus on recent discoveries regarding the STAMPs and other molecules involved in osteoclast multinucleation.
Collapse
|
17
|
Abstract
Cytokines and hematopoietic growth factors have traditionally been thought of as regulators of the development and function of immune and blood cells. However, an ever-expanding number of these factors have been discovered to have major effects on bone cells and the development of the skeleton in health and disease (Table 1). In addition, several cytokines have been directly linked to the development of osteoporosis in both animal models and in patients. In order to understand the mechanisms regulating bone cells and how this may be dysregulated in disease states, it is necessary to appreciate the diverse effects that cytokines and inflammation have on osteoblasts, osteoclasts, and bone mass. This chapter provides a broad overview of this topic with extensive references so that, if desired, readers can access specific references to delve into individual topics in greater detail.
Collapse
Affiliation(s)
- Joseph Lorenzo
- Departments of Medicine and Orthopaedic Surgery, UConn Health, Farmington, CT, USA.
| |
Collapse
|
18
|
The influence of TRAIL, adiponectin and sclerostin alterations on bone loss in BDL-induced cirrhotic rats and the effect of opioid system blockade. Life Sci 2019; 233:116706. [DOI: 10.1016/j.lfs.2019.116706] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/24/2019] [Accepted: 07/28/2019] [Indexed: 12/31/2022]
|
19
|
Ethiraj P, Sambandam Y, Hathaway-Schrader JD, Haque A, Novince CM, Reddy SV. RANKL triggers resistance to TRAIL-induced cell death in oral squamous cell carcinoma. J Cell Physiol 2019; 235:1663-1673. [PMID: 31309556 DOI: 10.1002/jcp.29086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/21/2019] [Indexed: 12/29/2022]
Abstract
Oral squamous cell carcinoma (OSCC) occurs as a malignancy of the oral cavity. RANK ligand (RANKL) is essential for osteoclast formation/bone resorption. Recently, we showed autoregulation of receptor activator of nuclear factor-κB ligand (RANKL) stimulates OSCC cell proliferation. OSCC cells show resistance to tumor necrosis factor related apoptosis inducing ligand (TRAIL) treatment. Therefore, we hypothesize that RANKL promotes resistance for TRAIL induction of OSCC apoptotic cell death. In this study, SCC14A and SCC74A cells cultured with TRAIL revealed high-level expression of RANKL which increased resistance to TRAIL inhibition of tumor cell proliferation. RANKL stimulation inhibited terminal deoxynucleotidyl transferase dUTP nick end labeling positive staining in TRAIL-treated cells. CRISPR/Cas-9 knockout of RANKL (RANKL-KO) increased caspase-9, caspase-3 activity and cytochrome c release in OSCC cells. RANKL inhibited proapoptotic proteins BAD and BAX expression. TRAIL treatment suppressed the SQSTM1/p62 and RANKL restored the expression. Interestingly, RANKL alone significantly increased proteasome activity. RANKL-KO in OSCC cells inhibited autophagic activity as evidenced by decreased light chain 3B-II and beclin-1 expression. Thus, RANKL stimulation of OSCC tumor cells triggered resistance for TRAIL-induced OSCC cell death. Taken together, blockade of RANKL may inhibit OSCC tumor progression and enhance the potential of TRAIL induced OSCC tumor cell apoptosis.
Collapse
Affiliation(s)
- Purushoth Ethiraj
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | - Yuvaraj Sambandam
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | - Jessica D Hathaway-Schrader
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Azizul Haque
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina.,Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| | - Chad M Novince
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Sakamuri V Reddy
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
20
|
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF superfamily that can initiate the apoptosis pathway by binding to its associated death receptors DR4 and DR5. The activation of the TRAIL pathway in inducing tumor-selective apoptosis leads to the development of TRAIL-based cancer therapies, which include recombinant forms of TRAIL, TRAIL receptor agonists, and other therapeutic agents. Importantly, TRAIL, DR4, and DR5 can all be induced by synthetic and natural agents that activate the TRAIL apoptosis pathway in cancer cells. Thus, understanding the regulation of the TRAIL apoptosis pathway can aid in the development of TRAIL-based therapies for the treatment of human cancer.
Collapse
|
21
|
TRAIL inhibits RANK signaling and suppresses osteoclast activation via inhibiting lipid raft assembly and TRAF6 recruitment. Cell Death Dis 2019; 10:77. [PMID: 30692521 PMCID: PMC6349873 DOI: 10.1038/s41419-019-1353-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/02/2019] [Accepted: 01/07/2019] [Indexed: 12/04/2022]
Abstract
Human osteoclast formation from mononuclear phagocyte precursors involves interactions between members of the tumor necrosis factor (TNF) ligand superfamily and their receptors. Recent evidence indicated that TNF-α-related apoptosis-inducing ligand (TRAIL) induces osteoclast differentiation via a TRAF6-dependent signaling pathway; but paradoxically, it inhibits RANK ligand (RANKL)-induced osteoclast differentiation. Although a number of signaling pathways were linked to the RANK and osteoclastogenesis, it is not known how TRAIL regulates RANK signaling. In this study, we demonstrate that TRAIL regulates RANK-induced osteoclastogenesis in terms of the assembly of lipid raft-associated signaling complexes. RANKL stimulation induced recruitment of TRAF6, c-Src, and DAP-12 into lipid rafts. However, the RANKL-induced assembly of lipid raft-associated signaling complexes and TRAF6 recruitment was abolished in the presence of TRAIL. TRAIL-induced dissociation of RANKL-induced lipid raft signaling complexes was reversed by treatment with TRAIL receptor (TRAIL-R) siRNA or an anti-TRAIL-R blocking antibody, indicating that TRAIL mediates suppression of RANKL-induced lipid raft signaling via interactions with TRAIL-R. Finally, we demonstrated that TRAIL suppressed inflammation-induced bone resorption and osteoclastogenesis in a collagen-induced arthritis (CIA) rat animal model. Our results provide a novel apoptosis-independent role of TRAIL in regulating RANK signaling and suppresses osteoclast activation via inhibiting lipid raft assembly and TRAF6 recruitment.
Collapse
|
22
|
TAK1 inhibition subverts the osteoclastogenic action of TRAIL while potentiating its antimyeloma effects. Blood Adv 2017; 1:2124-2137. [PMID: 29296860 DOI: 10.1182/bloodadvances.2017008813] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/27/2017] [Indexed: 12/12/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) agonists induce tumor-specific apoptosis indicating that they may be an attractive therapeutic strategy against cancers, including multiple myeloma (MM). Osteoclastogenesis is highly induced in MM, which in turn enhances MM growth, thereby forming a vicious cycle between MM tumor expansion and bone destruction. However, the effects of TRAIL on MM-enhanced osteoclastogenesis remain largely unknown. Here, we show that TRAIL induced apoptosis in MM cells, but not in osteoclasts (OCs), and that it rather facilitated receptor activator of NF-κB ligand-induced osteoclastogenesis along with upregulation of cellular FLICE inhibitory protein (c-FLIP). TRAIL did not induce death-inducing signaling complex formation in OCs, but formed secondary complex (complex II) with the phosphorylation of transforming growth factor β-activated kinase-1 (TAK1), and thus activated NF-κB signaling. c-FLIP knockdown abolished complex II formation, thus permitting TRAIL induction of OC cell death. The TAK1 inhibitor LLZ1640-2 abrogated the TRAIL-induced c-FLIP upregulation and NF-κB activation, and triggered TRAIL-induced caspase-8 activation and cell death in OCs. Interestingly, the TRAIL-induced caspase-8 activation caused enzymatic degradation of the transcription factor Sp1 to noticeably reduce c-FLIP expression, which further sensitized OCs to TRAIL-induced apoptosis. Furthermore, the TAK1 inhibition induced antiosteoclastogenic activity by TRAIL even in cocultures with MM cells while potentiating TRAIL's anti-MM effects. These results demonstrated that osteoclastic lineage cells use TRAIL for their differentiation and activation through tilting caspase-8-dependent apoptosis toward NF-κB activation, and that TAK1 inhibition subverts TRAIL-mediated NF-κB activation to resume TRAIL-induced apoptosis in OCs while further enhancing MM cell death in combination with TRAIL.
Collapse
|
23
|
Zhao X, Zhao G, Shi Z, Zhou C, Chen Y, Hu B, Yan S. Low-intensity pulsed ultrasound (LIPUS) prevents periprosthetic inflammatory loosening through FBXL2-TRAF6 ubiquitination pathway. Sci Rep 2017; 7:45779. [PMID: 28378753 PMCID: PMC5381120 DOI: 10.1038/srep45779] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/02/2017] [Indexed: 01/01/2023] Open
Abstract
Previous studies have shown that Low intensity pulsed ultrasound(LIPUS) prevents polyethylene-debris-induced periprosthetic loosening in vivo, but the details of the mechanism by which it does so remain unclear. In this article, we used polyethylene debris induced RAW 264.7 cells as the in vitro model, and tested the effect of LIPUS on this model. Changes in the level of inflammatory cytokines, cell proliferation, and apoptosis were assessed. Gene overexpression and siRNA technique were applied, and the levels of expression of FBXL2, TRAF6, ERK, and related inflammatory cytokines were also measured. Results indicated that FBXL2-mediated TRAF6 ubiquitination and degradation also plays an important role in aseptic periprosthetic loosening process, and LIPUS prevents such loosening by strengthening this pathway.
Collapse
Affiliation(s)
- Xiang Zhao
- Department of orthopaedic surgery, the second affiliated hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of orthopaedic research, Zhejiang University, Hangzhou, China
| | - Gangsheng Zhao
- Department of Orthopaedic Surgery, Yiwu Central Hospital, the affiliated hospital of Wenzhou Medical College, Yiwu, China
| | - Zhongli Shi
- Department of orthopaedic surgery, the second affiliated hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of orthopaedic research, Zhejiang University, Hangzhou, China
| | - Chenhe Zhou
- Department of orthopaedic surgery, the second affiliated hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of orthopaedic research, Zhejiang University, Hangzhou, China
| | - Yunlin Chen
- Department of Orthopaedic Surgery, Ningbo sixth hospital, China
| | - Bin Hu
- Department of orthopaedic surgery, the second affiliated hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of orthopaedic research, Zhejiang University, Hangzhou, China
| | - Shigui Yan
- Department of orthopaedic surgery, the second affiliated hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of orthopaedic research, Zhejiang University, Hangzhou, China
| |
Collapse
|
24
|
Li X, Sun W, Li J, Wang M, Zhang H, Pei L, Boyce BF, Wang Z, Xing L. Clomipramine causes osteoporosis by promoting osteoclastogenesis via E3 ligase Itch, which is prevented by Zoledronic acid. Sci Rep 2017; 7:41358. [PMID: 28145497 PMCID: PMC5286409 DOI: 10.1038/srep41358] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 12/20/2016] [Indexed: 02/06/2023] Open
Abstract
Patients taking antidepressants, including Clomipramine (CLP), have an increased risk of osteoporotic fracture. However, the effects of CLP on bone metabolism are unknown. Here, we demonstrate that WT mice treated with CLP for 2 weeks had significantly reduced trabecular bone volume and cortical bone thickness, associated with increased osteoclast (OC) numbers, but had no change in osteoblast numbers or bone formation rate. Bone marrow cells from CLP-treated mice had normal OC precursor frequency, but formed significantly more OCs when they were cultured with RANKL and M-CSF. CLP promoted OC formation and bone resorption and expression of OC-associated genes. CLP-induced bone loss was prevented by Zoledronic acid. At the molecular level, CLP inhibited the activity of the ubiquitin E3 ligase Itch. CLP did not promote OC formation from bone marrow cells of Itch-/- mice in vitro nor induce bone loss in Itch-/- mice. Our findings indicate that CLP causes bone loss by enhancing Itch-mediated osteoclastogenesis, which was prevented by Zoledronic acid. Thus, anti-resorptive therapy could be used to prevent bone loss in patients taking antidepressants, such as CLP.
Collapse
Affiliation(s)
- Xing Li
- Department of Immuno-oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Wen Sun
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jinbo Li
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Mengmeng Wang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA.,Institute of Chinese Minority Traditional Medicine, MINZU University of China, Beijing 100081, China
| | - Hengwei Zhang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Lingpeng Pei
- Institute of Chinese Minority Traditional Medicine, MINZU University of China, Beijing 100081, China
| | - Brendan F Boyce
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA.,Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Zhiyu Wang
- Department of Immuno-oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Lianping Xing
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA.,Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
25
|
Siegmund D, Lang I, Wajant H. Cell death-independent activities of the death receptors CD95, TRAILR1, and TRAILR2. FEBS J 2016; 284:1131-1159. [PMID: 27865080 DOI: 10.1111/febs.13968] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/10/2016] [Accepted: 11/17/2016] [Indexed: 12/25/2022]
Abstract
Since their identification more than 20 years ago, the death receptors CD95, TRAILR1, and TRAILR2 have been intensively studied with respect to their cell death-inducing activities. These receptors, however, can also trigger a variety of cell death-independent cellular responses reaching from the activation of proinflammatory gene transcription programs over the stimulation of proliferation and differentiation to induction of cell migration. The cell death-inducing signaling mechanisms of CD95 and the TRAIL death receptors are well understood. In contrast, despite the increasing recognition of the biological and pathophysiological relevance of the cell death-independent activities of CD95, TRAILR1, and TRAILR2, the corresponding signaling mechanisms are less understood and give no fully coherent picture. This review is focused on the cell death-independent activities of CD95 and the TRAIL death receptors and addresses mainly three questions: (a) how are these receptors linked to noncell death pathways at the molecular level, (b) which factors determine the balance of cell death and cell death-independent activities of CD95 and the TRAIL death receptors at the cellular level, and (c) what are the consequences of the cell death-independent functions of these receptors for their role in cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Daniela Siegmund
- Division of Molecular Internal Medicine, Medical Clinic and Polyclinic II, University Hospital Würzburg, Germany
| | - Isabell Lang
- Division of Molecular Internal Medicine, Medical Clinic and Polyclinic II, University Hospital Würzburg, Germany
| | - Harald Wajant
- Division of Molecular Internal Medicine, Medical Clinic and Polyclinic II, University Hospital Würzburg, Germany
| |
Collapse
|
26
|
Microgravity Induction of TRAIL Expression in Preosteoclast Cells Enhances Osteoclast Differentiation. Sci Rep 2016; 6:25143. [PMID: 27142480 PMCID: PMC4855152 DOI: 10.1038/srep25143] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 04/12/2016] [Indexed: 11/24/2022] Open
Abstract
Evidence indicates that astronauts experience significant bone loss in space. We previously showed that simulated microgravity (μXg) using the NASA developed rotary cell culture system (RCCS) enhanced bone resorbing osteoclast (OCL) differentiation. However, the mechanism by which μXg increases OCL formation is unclear. RANK/RANKL signaling pathway is critical for OCL differentiation. Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) has been shown to increase osteoclastogenesis. We hypothesize that TRAIL may play an important role in μXg enhanced OCL differentiation. In this study, we identified by RT profiler PCR array screening that μXg induces high levels of TRAIL expression in murine preosteoclast cells in the absence of RANKL stimulation compared to ground based (Xg) cultures. We further identified that μXg elevated the adaptor protein TRAF-6 and fusion genes OC-STAMP and DC-STAMP expression in preosteoclast cells. Interestingly, neutralizing antibody against TRAIL significantly reduced μXg induced OCL formation. We further identified that over-expression of pTRAIL in RAW 264.7 cells enhanced OCL differentiation. These results indicate that TRAIL signaling plays an important role in the μXg increased OCL differentiation. Therefore, inhibition of TRAIL expression could be an effective countermeasure for μXg induced bone loss.
Collapse
|
27
|
Guiho R, Biteau K, Heymann D, Redini F. TRAIL-based therapy in pediatric bone tumors: how to overcome resistance. Future Oncol 2015; 11:535-42. [PMID: 25675131 DOI: 10.2217/fon.14.293] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Osteosarcoma and Ewing's sarcoma, the two most frequent malignant primary tumors preferentially arise in children and young adults, and have a poor prognosis. TRAIL represents a promising therapeutic approach for most cancers but in the case of primary bone tumors, osteosarcoma cell lines are highly resistant to this pro-apoptotic cytokine. In addition, another signaling pathway mediating cell proliferation and migration may be even activated in this subset of resistant cells leading to protumoral effect. Therapeutic perspectives are linked to possibility to overcome TRAIL resistance by combining other drugs with TRAIL or death receptors agonistic antibodies. We hypothesized that the bone microenvironment may provide a favorable niche for TRAIL resistance that might be targeted by new resensitizing agents.
Collapse
|
28
|
Rhinacanthin C Inhibits Osteoclast Differentiation and Bone Resorption: Roles of TRAF6/TAK1/MAPKs/NF-κB/NFATc1 Signaling. PLoS One 2015; 10:e0130174. [PMID: 26083531 PMCID: PMC4471279 DOI: 10.1371/journal.pone.0130174] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 05/17/2015] [Indexed: 11/19/2022] Open
Abstract
Rhinacanthin C is a naphthoquinone ester with anti-inflammatory activity, found in Rhinacanthus nasutus (L) Kurz (Acanthaceae). We found that rhinacanthin C inhibited osteoclast differentiation stimulated by the receptor activator of nuclear factor-κB ligand (RANKL) in mouse bone marrow macrophage cultures, although the precise molecular mechanisms underlying this phenomenon are unclear. In this study, we investigated the inhibitory mechanisms of rhinacanthin C in osteoclastogenesis. Rhinacanthin C suppressed RANKL-induced nuclear factor of activated T cells c1 (NFATc1) expression. Phosphorylation of ERK, JNK, and NF-κB, but not p38, was inhibited by rhinacanthin C, which also inhibited RANKL-stimulated TRAF6-TAK1 complex formation. Thus, the anti-osteoclastogenic effect of rhinacanthin C is mediated by a cascade of inhibition of RANKL-induced TRAF6-TAK1 association followed by activation of MAPKs/NF-κB; this leads to suppression of c-Fos and NFATc1, which regulate transcription of genes associated with osteoclast differentiation. In vivo, rhinacanthin C also reduced RANKL-induced osteoclast formation and bone resorption in mouse calvaria. Rhinacanthin C also suppressed LPS-stimulated osteoclastogenesis and bone resorption in vitro and in vivo. Rhinacanthin C may provide a novel therapy for abnormal bone lysis that occurs during inflammatory bone resorption.
Collapse
|
29
|
Yamashita Y, Ukai T, Nakamura H, Yoshinaga Y, Kobayashi H, Takamori Y, Noguchi S, Yoshimura A, Hara Y. RANKL pretreatment plays an important role in the differentiation of pit-forming osteoclasts induced by TNF-α on murine bone marrow macrophages. Arch Oral Biol 2015; 60:1273-82. [PMID: 26099662 DOI: 10.1016/j.archoralbio.2015.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 04/22/2015] [Accepted: 06/03/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Osteoclasts differentiated from bone marrow macrophages (BMMs) induced by TNF-α alone do not have resorbing activity. When BMMs are stimulated with receptor activator of NF-κB ligand (RANKL) before TNF-α stimulation, pit-forming osteoclasts are differentiated. However, the details of the effect of RANKL pretreatment on the pit-forming osteoclast differentiation by TNF-α have not been established. The aim of this study is to examine the condition of RANKL pretreatment for differentiation of pit-forming osteoclasts induced by TNF-α. Murine BMMs were stimulated with various concentrations of RANKL for 24h in the presence of M-CSF, then the medium was changed and TNF-α was added. Osteoclasts and pits formation were examined. Osteoprotegerin (OPG), decoy receptor of RANKL, was added to the culture to examine the necessity of co-existing RANKL with TNF-α on the formation of pit-forming osteoclasts. To investigate the influence of RANKL of sufficient concentration as pretreatment for pit-forming osteoclast formation by TNF-α, dose- and time-dependent changes of osteoclast formation were checked. RESULTS The pit formation by osteoclasts in response to TNF-α required 10ng/mL RANKL pretreatment. Stimulation with this concentration of RANKL led to the differentiation of mature osteoclasts in the 72h culture. The pit formation was not inhibited by the OPG. CONCLUSION These results suggested that the concentration of RANKL pretreatment, which also alone can differentiate BMMs into osteoclasts, may be important in the differentiation of pit-forming osteoclasts by TNF-α. In addition, the effects of TNF-α after RANKL treatment might be independent of RANKL.
Collapse
Affiliation(s)
- Yasunori Yamashita
- Department of Periodontology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Takashi Ukai
- Department of Periodontology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
| | - Hirotaka Nakamura
- Department of Periodontology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yasunori Yoshinaga
- Department of Periodontology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hiroki Kobayashi
- Department of Periodontology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yuzo Takamori
- Department of Periodontology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Satoshi Noguchi
- Department of Periodontology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Atsutoshi Yoshimura
- Department of Periodontology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yoshitaka Hara
- Department of Periodontology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
30
|
Iuliani M, Pantano F, Buttigliero C, Fioramonti M, Bertaglia V, Vincenzi B, Zoccoli A, Ribelli G, Tucci M, Vignani F, Berruti A, Scagliotti GV, Tonini G, Santini D. Biological and clinical effects of abiraterone on anti-resorptive and anabolic activity in bone microenvironment. Oncotarget 2015; 6:12520-8. [PMID: 25904051 PMCID: PMC4494955 DOI: 10.18632/oncotarget.3724] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 03/03/2015] [Indexed: 11/25/2022] Open
Abstract
Abiraterone acetate (ABI) is associated not only with a significant survival advantage in both chemotherapy-naive and -treated patients with metastatic castration-resistant prostate cancer (mCRPC), but also with a delay in time to development of Skeletal Related Events and in radiological skeletal progression. These bone benefits may be related to a direct effect on prostate cancer cells in bone or to a specific mechanism directed to bone microenvironment. To test this hypothesis we designed an in vitro study aimed to evaluate a potential direct effect of ABI on human primary osteoclasts/osteoblasts (OCLs/OBLs). We also assessed changes in bone turnover markers, serum carboxy-terminal collagen crosslinks (CTX) and alkaline phosphatase (ALP), in 49 mCRPC patients treated with ABI.Our results showed that non-cytotoxic doses of ABI have a statistically significant inhibitory effect on OCL differentiation and activity inducing a down-modulation of OCL marker genes TRAP, cathepsin K and metalloproteinase-9. Furthermore ABI promoted OBL differentiation and bone matrix deposition up-regulating OBL specific genes, ALP and osteocalcin. Finally, we observed a significant decrease of serum CTX values and an increase of ALP in ABI-treated patients.These findings suggest a novel biological mechanism of action of ABI consisting in a direct bone anabolic and anti-resorptive activity.
Collapse
Affiliation(s)
- Michele Iuliani
- Translational Oncology Laboratory, Medical Oncology, University Campus Bio-Medico of Rome, Rome, Italy
| | - Francesco Pantano
- Translational Oncology Laboratory, Medical Oncology, University Campus Bio-Medico of Rome, Rome, Italy
| | - Consuelo Buttigliero
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, Turin, Italy
| | - Marco Fioramonti
- Translational Oncology Laboratory, Medical Oncology, University Campus Bio-Medico of Rome, Rome, Italy
| | - Valentina Bertaglia
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, Turin, Italy
| | - Bruno Vincenzi
- Translational Oncology Laboratory, Medical Oncology, University Campus Bio-Medico of Rome, Rome, Italy
| | - Alice Zoccoli
- Translational Oncology Laboratory, Medical Oncology, University Campus Bio-Medico of Rome, Rome, Italy
| | - Giulia Ribelli
- Translational Oncology Laboratory, Medical Oncology, University Campus Bio-Medico of Rome, Rome, Italy
| | - Marcello Tucci
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, Turin, Italy
| | - Francesca Vignani
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, Turin, Italy
| | - Alfredo Berruti
- U.O. Oncologia Medica, Ospedali Civili di Brescia, Brescia, Italy
| | | | - Giuseppe Tonini
- Translational Oncology Laboratory, Medical Oncology, University Campus Bio-Medico of Rome, Rome, Italy
| | - Daniele Santini
- Translational Oncology Laboratory, Medical Oncology, University Campus Bio-Medico of Rome, Rome, Italy
| |
Collapse
|
31
|
Idrissova L, Malhi H, Werneburg NW, LeBrasseur NK, Bronk SF, Fingas C, Tchkonia T, Pirtskhalava T, White TA, Stout MB, Hirsova P, Krishnan A, Liedtke C, Trautwein C, Finnberg N, El-Deiry WS, Kirkland JL, Gores GJ. TRAIL receptor deletion in mice suppresses the inflammation of nutrient excess. J Hepatol 2015; 62:1156-63. [PMID: 25445398 PMCID: PMC4404200 DOI: 10.1016/j.jhep.2014.11.033] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 11/14/2014] [Accepted: 11/18/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Low-grade chronic inflammation is a cardinal feature of the metabolic syndrome, yet its pathogenesis is not well defined. The purpose of this study was to examine the role of TRAIL receptor (TR) signaling in the pathogenesis of obesity-associated inflammation using mice with the genetic deletion of TR. METHODS TR knockout (TR(-/-)) mice and their littermate wild-type (WT) mice were fed a diet high in saturated fat, cholesterol and fructose (FFC) or chow. Metabolic phenotyping, liver injury, and liver and adipose tissue inflammation were assessed. Chemotaxis and activation of mouse bone marrow-derived macrophages (BMDMϕ) was measured. RESULTS Genetic deletion of TR completely repressed weight gain, adiposity and insulin resistance in FFC-fed mice. Moreover, TR(-/-) mice suppressed steatohepatitis, with essentially normal serum ALT, hepatocyte apoptosis and liver triglyceride accumulation. Gene array data implicated inhibition of macrophage-associated hepatic inflammation in the absence of the TR. In keeping with this, there was diminished accumulation and activation of inflammatory macrophages in liver and adipose tissue. TR(-/-) BMDMϕ manifest reduced chemotaxis and diminished activation of nuclear factor-κ B signaling upon activation by palmitate and lipopolysaccharide. CONCLUSIONS These data advance the concept that macrophage-associated hepatic and adipose tissue inflammation of nutrient excess requires TR signaling.
Collapse
Affiliation(s)
- Leila Idrissova
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, United States
| | - Harmeet Malhi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, United States.
| | - Nathan W Werneburg
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, United States
| | - Nathan K LeBrasseur
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, United States
| | - Steven F Bronk
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, United States
| | - Christian Fingas
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, United States
| | - Tamar Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, United States
| | - Tamar Pirtskhalava
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, United States
| | - Thomas A White
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, United States
| | - Michael B Stout
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, United States
| | - Petra Hirsova
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, United States
| | - Anuradha Krishnan
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, United States
| | | | | | - Niklas Finnberg
- Penn State Hershey Cancer Institute, Hershey, PA 17033, United States
| | - Wafik S El-Deiry
- Penn State Hershey Cancer Institute, Hershey, PA 17033, United States
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, United States
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, United States.
| |
Collapse
|
32
|
Sundaram K, Sambandam Y, Balasubramanian S, Pillai B, Voelkel-Johnson C, Ries WL, Reddy SV. STAT-6 mediates TRAIL induced RANK ligand expression in stromal/preosteoblast cells. Bone 2015; 71:137-44. [PMID: 25445452 DOI: 10.1016/j.bone.2014.10.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/14/2014] [Accepted: 10/23/2014] [Indexed: 02/02/2023]
Abstract
Receptor activator of nuclear factor kappa-B ligand (RANKL) is a critical osteoclastogenic factor expressed in bone marrow stromal/osteoblast lineage cells. Tumor necrosis factor (TNF) related apoptosis-inducing ligand (TRAIL) levels are elevated in pathologic conditions such as multiple myeloma and inflammatory arthritis, and have been positively correlated with osteolytic markers. Osteoprotegerin (OPG) which inhibits osteoclastogenesis is a decoy receptor for RANKL and also known to interact with TRAIL. Herein, we show that TRAIL increases DR5 and DcR1 receptors but no change in the levels of DR4 and DcR2 expression in human bone marrow derived stromal/preosteoblast (SAKA-T) cell line. We further demonstrated that TRAIL treatment significantly decreased OPG mRNA expression. Interestingly, TRAIL treatment induced RANKL mRNA expression in these cells. In addition, TRAIL significantly increased NF-kB and c-Jun N-terminal kinase (JNK) activity. Human transcription factor array screening by real-time RT-PCR identified TRAIL up-regulation of the signal transducers and activators of the transcription (STAT)-6 expression in SAKA-T cells. TRAIL stimulation induced p-STAT-6 expression in human bone marrow derived primary stromal/preosteoblast cells. Confocal microscopy analysis further revealed p-STAT-6 nuclear localization in SAKA-T cells. Chromatin immunoprecipitation (ChIP) assay confirmed p-STAT-6 binding to the hRANKL gene distal promoter region. In addition, siRNA suppression of STAT-6 expression inhibits TRAIL increased hRANKL gene promoter activity. Thus, our results suggest that TRAIL induces RANKL expression through a STAT-6 dependent transcriptional regulatory mechanism in bone marrow stromal/preosteoblast cells.
Collapse
Affiliation(s)
- Kumaran Sundaram
- Charles P. Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC, USA
| | - Yuvaraj Sambandam
- Charles P. Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC, USA
| | | | - Balakrishnan Pillai
- Charles P. Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC, USA
| | | | - William L Ries
- College of Dental Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Sakamuri V Reddy
- Charles P. Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
33
|
Prasad S, Kim JH, Gupta SC, Aggarwal BB. Targeting death receptors for TRAIL by agents designed by Mother Nature. Trends Pharmacol Sci 2014; 35:520-36. [PMID: 25128958 DOI: 10.1016/j.tips.2014.07.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/01/2014] [Accepted: 07/11/2014] [Indexed: 12/17/2022]
Abstract
Selective killing of cancer cells is one of the major goals of cancer therapy. Although chemotherapeutic agents are being used for cancer treatment, they lack selectivity toward tumor cells. Among the six different death receptors (DRs) identified to date, DR4 and DR5 are selectively expressed on cancer cells. Therefore, unlike chemotherapeutic agents, these receptors can potentially mediate selective killing of tumor cells. In this review we outline various nutraceuticals derived from 'Mother Nature' that can upregulate DRs and thus potentiate apoptosis. These nutraceuticals increase tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-induced apoptosis of cancer cells through different mechanisms. First, nutraceuticals have been found to induce DRs through the upregulation of various signaling molecules. Second, nutraceuticals can downregulate tumor cell-survival pathways. Third, nutraceuticals alone have been found to activate cell-death pathways. Although both TRAIL and agonistic antibodies against DR4 and DR5 are in clinical trials, combination with nutraceuticals is likely to boost their anticancer potential.
Collapse
Affiliation(s)
- Sahdeo Prasad
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Ji Hye Kim
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Subash C Gupta
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Bharat B Aggarwal
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
34
|
Liu FF, Wu X, Zhang Y, Wang Y, Jiang F. TRAIL/DR5 signaling promotes macrophage foam cell formation by modulating scavenger receptor expression. PLoS One 2014; 9:e87059. [PMID: 24466325 PMCID: PMC3899365 DOI: 10.1371/journal.pone.0087059] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 12/17/2013] [Indexed: 12/31/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo2L) has been shown to have protective effects against atherosclerosis. However, whether TRAIL has any effects on expression of macrophage scavenger receptors and lipid uptake has not yet been studied. Macrophage lines RAW264.7 and THP-1, and mouse primary peritoneal macrophages, were cultured in vitro and treated with recombinant human TRAIL. Real-time PCR and western blot were performed to measure mRNA and protein expressions. Foam cell formation was assessed by internalization of acetylated and oxidized low-density lipoproteins (LDL). Apoptosis was measured by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling. We found that TRAIL treatment increased expression of scavenger receptor (SR)-AI and SR-BI in a time- and dose-dependent manner, and this effect was accompanied by increased foam cell formation. These effects of TRAIL were abolished by a TRAIL neutralizing antibody or in DR5 receptor-deficient macrophages. The increased LDL uptake by TRAIL was blocked by SR-AI gene silencing or the SR-AI inhibitor poly(I:C), while SR-BI blockade with BLT-1 had no effect. TRAIL-induced SR-AI expression was blocked by the inhibitor of p38 mitogen-activated protein kinase, but not by inhibitors of ERK1/2 or JNK. TRAIL also induced apoptosis in macrophages. In contrast to macrophages, TRAIL showed little effects on SR expression or apoptosis in vascular smooth muscle cells. In conclusion, our results demonstrate that TRAIL promotes macrophage lipid uptake via SR-AI upregulation through activation of the p38 pathway.
Collapse
Affiliation(s)
- Fang Fang Liu
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Xiao Wu
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Yun Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Yan Wang
- Department of Cardiology, Beijing Hospital, Beijing, China
- * E-mail: (FJ); (YW)
| | - Fan Jiang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
- * E-mail: (FJ); (YW)
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW It is becoming more and more obvious that epigenetic processes influence the development of rheumatic diseases as strongly as the genetic background. Research on the role of microRNAs (miRNAs) in rheumatic diseases, and especially in rheumatoid arthritis (RA), has been very active for the past 5 years. Most studies have reported the aberrant expression of miRNAs in the circulation or joint tissues, and the pathogenic role of a few of them has been investigated in the experimental models. RECENT FINDINGS As inflammation and joint damage are the main hallmarks of RA, we focused on the three miRNAs, miR-146a, miR-155 and miR-223, whose functions have been studied in both the processes and the pathogenic role investigated in the experimental models. SUMMARY Focusing on the role of miR-146a, miR-155 and miR-223 in RA pathogenesis emphasizes the intertwined relationships between bone homeostasis and immunity, and the prominent role of monocytes in RA. Studying the miRNAs in RA will shed light on the pathological processes and help in identifying novel drug candidates and biomarkers.
Collapse
|
36
|
Gao B, Zheng L. microRNA Expression in Rat Apical Periodontitis Bone Lesion. Bone Res 2013; 1:170-85. [PMID: 26273501 DOI: 10.4248/br201302006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 04/18/2013] [Indexed: 01/08/2023] Open
Abstract
Apical periodontitis, dominated by dense inflammatory infiltrates and increased osteoclast activities, can lead to alveolar bone destruction and tooth loss. It is believed that miRNA participates in regulating various biological processes, osteoclastogenesis included. This study aims to investigate the differential expression of miRNAs in rat apical periodontitis and explore their functional target genes. Microarray analysis was used to identify differentially expressed miRNAs in apical periodontitis. Bioinformatics technique was applied for predicting the target genes of differentially expressed miRNAs and their biological functions. The result provided us with an insight into the potential biological effects of the differentially expressed miRNAs and showed particular enrichment of target genes involved in the MAPK signaling pathways. These findings may highlight the intricate and specific roles of miRNA in inflammation and osteoclastogenesis, both of which are key aspects of apical periodontitis, thus contributing to the future investigation into the etiology, underlying mechanism and treatment of apical periodontitis.
Collapse
Affiliation(s)
- Bo Gao
- Department of Pathology, University of Alabama at Birmingham , Birmingham, USA
| | - Liwei Zheng
- Department of Orofacial Sciences, University of California , San Francisco, USA
| |
Collapse
|
37
|
Yan R, Farrelly S, McCarthy JV. Presenilins are novel substrates for TRAF6-mediated ubiquitination. Cell Signal 2013; 25:1769-79. [PMID: 23707529 DOI: 10.1016/j.cellsig.2013.05.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 05/07/2013] [Indexed: 11/30/2022]
Abstract
Mutations in presenilins (PS1 and PS2) have been linked to the pathogenesis of early onset familial Alzheimer's disease. Presenilins function as the catalytic component of the γ-secretase protease complexes responsible for the cleavage of the amyloid precursor protein (APP), subsequent generation of amyloid-β and associated amyloid plaques in Alzheimer's disease. Biochemical and genetic studies have revealed that through interactions with several proteins, the presenilins are functionally involved in a range of cellular processes, including the regulation of intracellular calcium homeostasis. Our group has previously reported an association between presenilins and members of the tumour necrosis factor receptor-associated factor (TRAF) family of proteins. In this study we further investigated the association between TRAF6, an E3 ubiquitin ligase, and the presenilins. Here we show that the presenilin full-length holoproteins are novel substrates of TRAF6-mediated Lysine-63-linked ubiquitination. Interestingly, co-expression of catalytically active TRAF6 with the presenilins leads to decreased turnover of PS1 full-length holoprotein accompanying elevated presenilin protein levels. Similarly, while overexpression of TRAF6 increases presenilin holoprotein levels and ubiquitination in HEK293 cells, expression of catalytically deficient TRAF6 or TRAF6-deficiency leads to a reduction in presenilin protein levels and reduced PS1 ubiquitination. We also demonstrate that TRAF6 induces PS1 gene transcription in a JNK-dependent manner. Notably, we reveal that TRAF6-mediated ubiquitination of presenilin does not affect γ-secretase enzyme activity, but may regulate presenilin function in calcium signalling. Taken together, we propose that presenilins are novel substrates for TRAF6-mediated K63-linked ubiquitination and that ubiquitination of presenilins by TRAF6 increases presenilin holoprotein levels and in conditions in which TRAF6 ubiquitination of presenilins is reduced results in reduction of calcium release from the endoplasmic reticulum.
Collapse
Affiliation(s)
- Run Yan
- Signal Transduction Laboratory, Department of Biochemistry, Western Gate Building, Western Road, University College Cork, Cork, Ireland
| | | | | |
Collapse
|
38
|
Wang Y, Inger M, Jiang H, Tenenbaum H, Glogauer M. CD109 plays a role in osteoclastogenesis. PLoS One 2013; 8:e61213. [PMID: 23593435 PMCID: PMC3625217 DOI: 10.1371/journal.pone.0061213] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 03/07/2013] [Indexed: 11/18/2022] Open
Abstract
Osteoclasts are large multinucleated cells that arise from the fusion of cells from the monocyte/macrophage lineage. Osteoclastogenesis is mediated by macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-kB ligand (RANKL) and involves a complex multistep process that requires numerous other elements, many of which remain undefined. The primary aim of this project was to identify novel factors which regulate osteoclastogenesis. To carry out this investigation, microarray analysis was performed comparing two pre-osteoclast cell lines generated from RAW264.7 macrophages: one that has the capacity to fuse forming large multinucleated cells and one that does not fuse. It was found that CD109 was up-regulated by>17-fold in the osteoclast forming cell line when compared to the cell line that does not fuse, at day 2 of the differentiation process. Results obtained with microarray were confirmed by RT-qPCR and Western blot analyses in the two cell lines, in the parental RAW264.7 cell line, as well as primary murine monocytes from bone marrow. A significant increase of CD109 mRNA and protein expression during osteoclastogenesis occurred in all tested cell types. In order to characterize the role of CD109 in osteoclastogenesis, CD109 stable knockdown cell lines were established and fusion of osteoclast precursors into osteoclasts was assessed. It was found that CD109 knockdown cell lines were less capable of forming large multinucleated osteoclasts. It has been shown here that CD109 is expressed in monocytes undergoing RANKL-induced osteoclastogenesis. Moreover, when CD109 expression is suppressed in vitro, osteoclast formation decreases. This suggests that CD109 might be an important regulator of osteoclastogenesis. Further research is needed in order to characterize the role played by CD109 in regulation of osteoclast differentiation.
Collapse
Affiliation(s)
- Yongqiang Wang
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Maayan Inger
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Hongwei Jiang
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Howard Tenenbaum
- Department of Periodontology, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Michael Glogauer
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
39
|
Koide M, Kobayashi Y, Ninomiya T, Nakamura M, Yasuda H, Arai Y, Okahashi N, Yoshinari N, Takahashi N, Udagawa N. Osteoprotegerin-deficient male mice as a model for severe alveolar bone loss: comparison with RANKL-overexpressing transgenic male mice. Endocrinology 2013; 154:773-82. [PMID: 23291450 DOI: 10.1210/en.2012-1928] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Periodontitis, an inflammatory disease of periodontal tissues, is characterized by excessive alveolar bone resorption. An increase in the receptor activator of nuclear factor-κB ligand (RANKL) to osteoprotegerin (OPG) ratio is thought to reflect the severity of periodontitis. Here, we examined alveolar bone loss in OPG-deficient (OPG(-/-)) mice and RANKL-overexpressing transgenic (RANKL-Tg) mice. Alveolar bone loss in OPG(-/-) mice at 12 weeks was significantly higher than that in RANKL-Tg mice. OPG(-/-) but not RANKL-Tg mice exhibited severe bone resorption especially in cortical areas of the alveolar bone. An increased number of osteoclasts was observed in the cortical areas in OPG(-/-) but not in RANKL-Tg mice. Immunohistochemical analyses showed many OPG-positive signals in osteocytes but not osteoblasts. OPG-positive osteocytes in the cortical area of alveolar bones and long bones were abundant in both wild-type and RANKL-Tg mice. This suggests the resorption in cortical bone areas to be prevented by OPG produced locally. To test the usefulness of OPG(-/-) mice as an animal model for screening drugs to prevent alveolar bone loss, we administered an antimouse RANKL antibody or risedronate, a bisphosphonate, to OPG(-/-) mice. They suppressed alveolar bone resorption effectively. OPG(-/-) mice are useful for screening therapeutic agents against alveolar bone loss.
Collapse
Affiliation(s)
- Masanori Koide
- Institute for Oral Science, Matsumoto Dental University, Nagano 399-0781, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|