1
|
Liu LJ, Liao JM, Zhu F. Proliferating cell nuclear antigen clamp associated factor, a potential proto-oncogene with increased expression in malignant gastrointestinal tumors. World J Gastrointest Oncol 2021; 13:1425-1439. [PMID: 34721775 PMCID: PMC8529917 DOI: 10.4251/wjgo.v13.i10.1425] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/11/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal (GI) cancers, including malignancies in the gastrointestinal tract and accessory organs of digestion, represent the leading cause of death worldwide due to the poor prognosis of most GI cancers. An investigation into the potential molecular targets of prediction, diagnosis, prognosis, and therapy in GI cancers is urgently required. Proliferating cell nuclear antigen (PCNA) clamp associated factor (PCLAF), which plays an essential role in cell proliferation, apoptosis, and cell cycle regulation by binding to PCNA, is a potential molecular target of GI cancers as it contributes to a series of malignant properties, including tumorigenesis, epithelial-mesenchymal transition, migration, and invasion. Furthermore, PCLAF is an underlying plasma prediction target in colorectal cancer and liver cancer. In addition to GI cancers, PCLAF is also involved in other types of cancers and autoimmune diseases. Several pivotal pathways, including the Rb/E2F pathway, NF-κB pathway, and p53-p21 cascade, are implicated in PCLAF-mediated diseases. PCLAF also contributes to some diseases through dysregulation of the p53 pathway, WNT signal pathway, MEK/ERK pathway, and PI3K/AKT/mTOR signal cascade. This review mainly describes in detail the role of PCLAF in physiological status and GI cancers. The signaling pathways involved in PCLAF are also summarized. Suppression of the interaction of PCLAF/PCNA or the expression of PCLAF might be potential biological therapeutic strategies for GI cancers.
Collapse
Affiliation(s)
- Li-Juan Liu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy & Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Jian-Ming Liao
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy & Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, Hubei Province, China
- Department of Neurosurgery, Renmin Hospital, Wuhan University, Wuhan 430060, Hubei Province, China
| | - Fan Zhu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy & Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, Hubei Province, China
| |
Collapse
|
2
|
Chon C, Chon G, Matsui Y, Zeng H, Lai ZC, Liu A. Efficient multiplexed genome engineering with a polycistronic tRNA and CRISPR guide-RNA reveals an important role of detonator in reproduction of Drosophila melanogaster. PLoS One 2021; 16:e0245454. [PMID: 33444382 PMCID: PMC7808601 DOI: 10.1371/journal.pone.0245454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 01/03/2021] [Indexed: 11/18/2022] Open
Abstract
Genome association studies in human and genetic studies in mouse implicated members of the transmembrane protein 132 (TMEM132) family in multiple conditions including panic disorder, hearing loss, limb and kidney malformation. However, the presence of five TMEM132 paralogs in mammalian genomes makes it extremely challenging to reveal the full requirement for these proteins in vivo. In contrast, there is only one TMEM132 homolog, detonator (dtn), in the genome of fruit fly Drosophila melanogaster, enabling straightforward research into its in vivo function. In the current study, we generate multiple loss-of-function dtn mutant fly strains through a polycistronic tRNA-gRNA approach, and show that most embryos lacking both maternal and paternal dtn fail to hatch into larvae, indicating an essential role of dtn in Drosophila reproduction.
Collapse
Affiliation(s)
- Cristin Chon
- Department of Biology, Eberly College of Science, Centers for Cellular Dynamics and Cellular and Molecular Investigation of Neurological Diseases, Huck Institutes of Life Sciences, The Pennsylvania State University, State College, PA, United States of America
| | - Grace Chon
- Department of Biology, Eberly College of Science, Centers for Cellular Dynamics and Cellular and Molecular Investigation of Neurological Diseases, Huck Institutes of Life Sciences, The Pennsylvania State University, State College, PA, United States of America
| | - Yurika Matsui
- Department of Biology, Eberly College of Science, Centers for Cellular Dynamics and Cellular and Molecular Investigation of Neurological Diseases, Huck Institutes of Life Sciences, The Pennsylvania State University, State College, PA, United States of America
| | - Huiqing Zeng
- Department of Biology, Eberly College of Science, Centers for Cellular Dynamics and Cellular and Molecular Investigation of Neurological Diseases, Huck Institutes of Life Sciences, The Pennsylvania State University, State College, PA, United States of America
| | - Zhi-Chun Lai
- Department of Biology, Eberly College of Science, Centers for Cellular Dynamics and Cellular and Molecular Investigation of Neurological Diseases, Huck Institutes of Life Sciences, The Pennsylvania State University, State College, PA, United States of America
| | - Aimin Liu
- Department of Biology, Eberly College of Science, Centers for Cellular Dynamics and Cellular and Molecular Investigation of Neurological Diseases, Huck Institutes of Life Sciences, The Pennsylvania State University, State College, PA, United States of America
| |
Collapse
|
3
|
Terradas M, Capellá G, Valle L. Dominantly Inherited Hereditary Nonpolyposis Colorectal Cancer Not Caused by MMR Genes. J Clin Med 2020; 9:jcm9061954. [PMID: 32585810 PMCID: PMC7355797 DOI: 10.3390/jcm9061954] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 12/30/2022] Open
Abstract
In the past two decades, multiple studies have been undertaken to elucidate the genetic cause of the predisposition to mismatch repair (MMR)-proficient nonpolyposis colorectal cancer (CRC). Here, we present the proposed candidate genes according to their involvement in specific pathways considered relevant in hereditary CRC and/or colorectal carcinogenesis. To date, only pathogenic variants in RPS20 may be convincedly linked to hereditary CRC. Nevertheless, accumulated evidence supports the involvement in the CRC predisposition of other genes, including MRE11, BARD1, POT1, BUB1B, POLE2, BRF1, IL12RB1, PTPN12, or the epigenetic alteration of PTPRJ. The contribution of the identified candidate genes to familial/early onset MMR-proficient nonpolyposis CRC, if any, is extremely small, suggesting that other factors, such as the accumulation of low risk CRC alleles, shared environmental exposures, and/or gene-environmental interactions, may explain the missing heritability in CRC.
Collapse
Affiliation(s)
- Mariona Terradas
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain; (M.T.); (G.C.)
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Gabriel Capellá
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain; (M.T.); (G.C.)
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Laura Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain; (M.T.); (G.C.)
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-93-260-7145
| |
Collapse
|
4
|
Toma C, Díaz‐Gay M, Franch‐Expósito S, Arnau‐Collell C, Overs B, Muñoz J, Bonjoch L, Soares de Lima Y, Ocaña T, Cuatrecasas M, Castells A, Bujanda L, Balaguer F, Cubiella J, Caldés T, Fullerton JM, Castellví‐Bel S. Using linkage studies combined with whole-exome sequencing to identify novel candidate genes for familial colorectal cancer. Int J Cancer 2020; 146:1568-1577. [PMID: 31525256 PMCID: PMC7004061 DOI: 10.1002/ijc.32683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/23/2019] [Indexed: 12/23/2022]
Abstract
Colorectal cancer (CRC) is a complex disorder for which the majority of the underlying germline predisposition factors remain still unidentified. Here, we combined whole-exome sequencing (WES) and linkage analysis in families with multiple relatives affected by CRC to identify candidate genes harboring rare variants with potential high-penetrance effects. Forty-seven affected subjects from 18 extended CRC families underwent WES. Genome-wide linkage analysis was performed under linear and exponential models. Suggestive linkage peaks were identified on chromosomes 1q22-q24.2 (maxSNP = rs2134095; LODlinear = 2.38, LODexp = 2.196), 7q31.2-q34 (maxSNP = rs6953296; LODlinear = 2.197, LODexp = 2.149) and 10q21.2-q23.1 (maxSNP = rs1904589; LODlinear = 1.445, LODexp = 2.195). These linkage signals were replicated in 10 independent sets of random markers from each of these regions. To assess the contribution of rare variants predicted to be pathogenic, we performed a family-based segregation test with 89 rare variants predicted to be deleterious from 78 genes under the linkage intervals. This analysis showed significant segregation of rare variants with CRC in 18 genes (weighted p-value > 0.0028). Protein network analysis and functional evaluation were used to suggest a plausible candidate gene for germline CRC predisposition. Etiologic rare variants implicated in cancer germline predisposition may be identified by combining traditional linkage with WES data. This approach can be used with already available NGS data from families with several sequenced members to further identify candidate genes involved germline predisposition to disease. This approach resulted in one candidate gene associated with increased risk of CRC but needs evidence from further studies.
Collapse
Affiliation(s)
- Claudio Toma
- Neuroscience Research AustraliaSydneyAustralia
- School of Medical SciencesUniversity of New South WalesSydneyAustralia
| | - Marcos Díaz‐Gay
- Gastroenterology Department, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Hospital Clínic, University of BarcelonaBarcelonaSpain
| | - Sebastià Franch‐Expósito
- Gastroenterology Department, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Hospital Clínic, University of BarcelonaBarcelonaSpain
| | - Coral Arnau‐Collell
- Gastroenterology Department, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Hospital Clínic, University of BarcelonaBarcelonaSpain
| | - Bronwyn Overs
- Neuroscience Research AustraliaSydneyAustralia
- School of Medical SciencesUniversity of New South WalesSydneyAustralia
| | - Jenifer Muñoz
- Gastroenterology Department, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Hospital Clínic, University of BarcelonaBarcelonaSpain
| | - Laia Bonjoch
- Gastroenterology Department, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Hospital Clínic, University of BarcelonaBarcelonaSpain
| | - Yasmin Soares de Lima
- Gastroenterology Department, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Hospital Clínic, University of BarcelonaBarcelonaSpain
| | - Teresa Ocaña
- Gastroenterology Department, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Hospital Clínic, University of BarcelonaBarcelonaSpain
| | - Miriam Cuatrecasas
- Pathology Department, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) and Tumor Bank‐BiobankHospital ClínicBarcelonaSpain
| | - Antoni Castells
- Gastroenterology Department, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Hospital Clínic, University of BarcelonaBarcelonaSpain
| | - Luis Bujanda
- Gastroenterology Department, Hospital Donostia‐Instituto Biodonostia, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Basque Country University (UPV/EHU)San SebastianSpain
| | - Francesc Balaguer
- Gastroenterology Department, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Hospital Clínic, University of BarcelonaBarcelonaSpain
| | - Joaquín Cubiella
- Gastroenterology Department, Complexo Hospitalario Universitario de Ourense, Instituto de Investigación Sanitaria Galicia SurCentro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)OurenseSpain
| | - Trinidad Caldés
- Molecular Oncology LaboratoryHospital Clinico San Carlos, CIBERONC (Centro de Investigacion Biomedica en Red de Cancer), IdISSCMadridSpain
| | - Janice M. Fullerton
- Neuroscience Research AustraliaSydneyAustralia
- School of Medical SciencesUniversity of New South WalesSydneyAustralia
| | - Sergi Castellví‐Bel
- Gastroenterology Department, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Hospital Clínic, University of BarcelonaBarcelonaSpain
| |
Collapse
|
5
|
von Holst S, Jiao X, Liu W, Kontham V, Thutkawkorapin J, Ringdahl J, Bryant P, Lindblom A. Linkage analysis revealed risk loci on 6p21 and 18p11.2-q11.2 in familial colon and rectal cancer, respectively. Eur J Hum Genet 2019; 27:1286-1295. [PMID: 30952955 PMCID: PMC6777498 DOI: 10.1038/s41431-019-0388-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 02/13/2019] [Accepted: 03/12/2019] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer (CRC) is one of the major cancer types in the western world including Sweden. However, known genetic risk factors could only explain a limited part of heritability of the disease. Moreover, colon and rectal cancers are habitually discussed as one entity, colorectal cancer, although different carcinogenesis has been recognized. A genome-wide linkage scan in 32 colon- and 56 rectal cancer families from Sweden was performed based on 475 non-FAP/HNPCC patients genotyped using SNP arrays. A maximum HLOD of 2.50 at locus 6p21.1-p12.1 and a HLOD of 2.56 at 18p11.2 was obtained for colon and rectal cancer families, respectively. Exome sequencing over the regions of interest in 12 patients from six families identified 22 and 25 candidate risk variants for colon and rectal cancer, respectively. Haplotype association analysis in the two regions was carried out between additional 477 familial CRC cases and 4780 controls and suggested candidate haplotypes possibly associated with CRC risk. This study suggested two new linkage regions for colon cancer and rectal cancer with candidate predisposing variants. Further studies are required to elucidate the pathogenic mechanism of these regions and to pinpoint the causative genes.
Collapse
Affiliation(s)
- Susanna von Holst
- Department of Molecular Medicine and Surgery, Karolinska Institutet, and Department of Clinical Genetics, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Xiang Jiao
- Department of Molecular Medicine and Surgery, Karolinska Institutet, and Department of Clinical Genetics, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Wen Liu
- Department of Molecular Medicine and Surgery, Karolinska Institutet, and Department of Clinical Genetics, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Vinaykumar Kontham
- Department of Molecular Medicine and Surgery, Karolinska Institutet, and Department of Clinical Genetics, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Jessada Thutkawkorapin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, and Department of Clinical Genetics, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Jenny Ringdahl
- Department of Molecular Medicine and Surgery, Karolinska Institutet, and Department of Clinical Genetics, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Patrick Bryant
- Department of Molecular Medicine and Surgery, Karolinska Institutet, and Department of Clinical Genetics, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, and Department of Clinical Genetics, Karolinska University Hospital, 171 76, Stockholm, Sweden.
| |
Collapse
|
6
|
Wittkowski KM, Dadurian C, Seybold MP, Kim HS, Hoshino A, Lyden D. Complex polymorphisms in endocytosis genes suggest alpha-cyclodextrin as a treatment for breast cancer. PLoS One 2018; 13:e0199012. [PMID: 29965997 PMCID: PMC6028090 DOI: 10.1371/journal.pone.0199012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 05/17/2018] [Indexed: 02/06/2023] Open
Abstract
Most breast cancer deaths are caused by metastasis and treatment options beyond radiation and cytotoxic drugs, which have severe side effects, and hormonal treatments, which are or become ineffective for many patients, are urgently needed. This study reanalyzed existing data from three genome-wide association studies (GWAS) using a novel computational biostatistics approach (muGWAS), which had been validated in studies of 600-2000 subjects in epilepsy and autism. MuGWAS jointly analyzes several neighboring single nucleotide polymorphisms while incorporating knowledge about genetics of heritable diseases into the statistical method and about GWAS into the rules for determining adaptive genome-wide significance. Results from three independent GWAS of 1000-2000 subjects each, which were made available under the National Institute of Health's "Up For A Challenge" (U4C) project, not only confirmed cell-cycle control and receptor/AKT signaling, but, for the first time in breast cancer GWAS, also consistently identified many genes involved in endo-/exocytosis (EEC), most of which had already been observed in functional and expression studies of breast cancer. In particular, the findings include genes that translocate (ATP8A1, ATP8B1, ANO4, ABCA1) and metabolize (AGPAT3, AGPAT4, DGKQ, LPPR1) phospholipids entering the phosphatidylinositol cycle, which controls EEC. These novel findings suggest scavenging phospholipids as a novel intervention to control local spread of cancer, packaging of exosomes (which prepare distant microenvironment for organ-specific metastases), and endocytosis of β1 integrins (which are required for spread of metastatic phenotype and mesenchymal migration of tumor cells). Beta-cyclodextrins (βCD) have already been shown to be effective in in vitro and animal studies of breast cancer, but exhibits cholesterol-related ototoxicity. The smaller alpha-cyclodextrins (αCD) also scavenges phospholipids, but cannot fit cholesterol. An in-vitro study presented here confirms hydroxypropyl (HP)-αCD to be twice as effective as HPβCD against migration of human cells of both receptor negative and estrogen-receptor positive breast cancer. If the previous successful animal studies with βCDs are replicated with the safer and more effective αCDs, clinical trials of adjuvant treatment with αCDs are warranted. Ultimately, all breast cancer are expected to benefit from treatment with HPαCD, but women with triple-negative breast cancer (TNBC) will benefit most, because they have fewer treatment options and their cancer advances more aggressively.
Collapse
Affiliation(s)
- Knut M. Wittkowski
- Center for Clinical and Translational Science, The Rockefeller University, New York, New York, United States of America
| | - Christina Dadurian
- Center for Clinical and Translational Science, The Rockefeller University, New York, New York, United States of America
| | - Martin P. Seybold
- Institut für Formale Methoden der Informatik, Universität Stuttgart, Stuttgart, Germany
| | - Han Sang Kim
- Department of Pediatrics, and Cell and Developmental Biology Weill Medical College of Cornell University, New York, New York, United States of America
| | - Ayuko Hoshino
- Department of Pediatrics, and Cell and Developmental Biology Weill Medical College of Cornell University, New York, New York, United States of America
| | - David Lyden
- Department of Pediatrics, and Cell and Developmental Biology Weill Medical College of Cornell University, New York, New York, United States of America
| |
Collapse
|
7
|
Jenkins MA, Win AK, Templeton AS, Angelakos MS, Buchanan DD, Cotterchio M, Figueiredo JC, Thibodeau SN, Baron JA, Potter JD, Hopper JL, Casey G, Gallinger S, Le Marchand L, Lindor NM, Newcomb PA, Haile RW. Cohort Profile: The Colon Cancer Family Registry Cohort (CCFRC). Int J Epidemiol 2018; 47:387-388i. [PMID: 29490034 PMCID: PMC5913593 DOI: 10.1093/ije/dyy006] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/19/2017] [Accepted: 01/15/2018] [Indexed: 01/02/2023] Open
Affiliation(s)
- Mark A Jenkins
- Centre for Epidemiology and Biostatistics, University of Melbourne, Parkville, VIC, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, Australia
| | - Aung Ko Win
- Centre for Epidemiology and Biostatistics, University of Melbourne, Parkville, VIC, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, Australia
- Genetic Medicine, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Allyson S Templeton
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Maggie S Angelakos
- Centre for Epidemiology and Biostatistics, University of Melbourne, Parkville, VIC, Australia
| | - Daniel D Buchanan
- Centre for Epidemiology and Biostatistics, University of Melbourne, Parkville, VIC, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, Australia
- Genetic Medicine, Royal Melbourne Hospital, Parkville, VIC, Australia
- Colorectal Oncogenomics Group, University of Melbourne, Parkville, VIC, Australia
| | | | - Jane C Figueiredo
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - John A Baron
- Department of Medicine, University of North Carolina School of Medicine, and Department of Epidemiology, Gillings School of Global Public Health, Chapel Hill, NC, USA
| | - John D Potter
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- School of Public Health, University of Washington, Seattle, WA, USA
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, University of Melbourne, Parkville, VIC, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, Australia
| | - Graham Casey
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Steven Gallinger
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | | | - Noralane M Lindor
- Department of Health Science Research, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- School of Public Health, University of Washington, Seattle, WA, USA
| | - Robert W Haile
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
8
|
Thutkawkorapin J, Mahdessian H, Barber T, Picelli S, von Holst S, Lundin J, Valle L, Kontham V, Liu T, Nilsson D, Jiao X, Lindblom A. Two novel colorectal cancer risk loci in the region on chromosome 9q22.32. Oncotarget 2018. [PMID: 29541405 PMCID: PMC5834248 DOI: 10.18632/oncotarget.24340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Highly penetrant cancer syndromes account for less than 5% of all cases with familial colorectal cancer (CRC), and other genetic contribution explains the majority of the genetic contribution to CRC. A CRC susceptibility locus on chromosome 9q has been suggested. In this study, families where risk of CRC was linked to the region, were used to search for predisposing mutations in all genes in the region. No disease-causing mutation was found. Next, haplotype association studies were performed in the region, comparing Swedish CRC cases (2664) and controls (4782). Two overlapping haplotypes were suggested. One 10-SNP haplotype was indicated in familial CRC (OR 1.4, p = 0.00005) and one 25-SNP haplotype was indicated in sporadic CRC (OR 2.2, p = 0.0000012). The allele frequencies of the 10-SNP and the 25-SNP haplotypes were 13.7% and 2.5% respectively and both included one RNA, RP11-332M4.1 and RP11-l80l4.2, in the non-overlapping regions. The sporadic 25-SNP haplotype could not be studied further, but the familial 10-SNP haplotype was analyzed in 61 additional CRC families, and 6 of them were informative for all markers and had the risk haplotype. Targeted sequencing of the 10-SNP region in the linked families identified one variant in RP11-332M4.1, suggestive to confer the increased CRC risk on this haplotype. Our results support the presence of two loci at 9q22.32, each with one RNA as the putative cause of increased CRC risk. These RNAs could exert their effect through the same, or different, genes/pathways, possibly through the regulation of neighboring genes, such as PTCH1, FANCC, DKFZP434H0512, ERCC6L2 or the processed transcript LINC00046.
Collapse
Affiliation(s)
- Jessada Thutkawkorapin
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm SE-17176, Sweden
| | - Hovsep Mahdessian
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm SE-17176, Sweden
| | - Tom Barber
- The Ludwig Center and Howard Hughes Medical Institute at the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
| | - Simone Picelli
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm SE-17176, Sweden
| | - Susanna von Holst
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm SE-17176, Sweden
| | - Johanna Lundin
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm SE-17176, Sweden
| | - Laura Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL and CIBERONC, Barcelona 08908, Spain
| | - Vinaykumar Kontham
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm SE-17176, Sweden
| | - Tao Liu
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm SE-17176, Sweden
| | - Daniel Nilsson
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm SE-17176, Sweden
| | - Xiang Jiao
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm SE-17176, Sweden
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm SE-17176, Sweden
| |
Collapse
|
9
|
Thutkawkorapin J, Picelli S, Kontham V, Liu T, Nilsson D, Lindblom A. Exome sequencing in one family with gastric- and rectal cancer. BMC Genet 2016; 17:41. [PMID: 26872740 PMCID: PMC4752738 DOI: 10.1186/s12863-016-0351-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 02/08/2016] [Indexed: 12/18/2022] Open
Abstract
Background Heritable factors are well known to increase the risk of cancer in families. Known susceptibility genes account for a small proportion of all colorectal cancer cases. The aim of this study was to identify the genetic background in a family suggested to segregate a dominant cancer syndrome with a high risk of rectal- and gastric cancer. We performed whole exome sequencing in three family members, 2 with rectal cancer and 1 with gastric cancer and followed it up in additional family members, other patients and controls. Results We identified 12 novel non-synonymous single nucleotide variants, which were shared among 5 affected members of this family. The mutations were found in 12 different genes; DZIP1L, PCOLCE2, IGSF10, SUCNR1, OR13C8, EPB41L4B, SEC16A, NOTCH1, TAS2R7, SF3A1, GAL3ST1, and TRIOBP. None of the mutations was suggested as a high penetrant mutation. It was not possible to completely rule out any of the mutations as contributing to disease, although seven were more unlikely than the others. Neither did we rule out the effect of all thousands of intronic, intergenic and synonymous variants shared between the three persons used for exome sequencing. Conclusions We propose this family, suggested to segregate dominant disease, could be an example of complex inheritance.
Collapse
Affiliation(s)
| | - Simone Picelli
- Karolinska Institutet, Department of Molecular Medicine and Surgery, Stockholm, Sweden. .,Eukaryotic Single Cell Genomics facility, Science for Life Laboratory, Stockholm, Sweden.
| | - Vinaykumar Kontham
- Karolinska Institutet, Department of Molecular Medicine and Surgery, Stockholm, Sweden.
| | - Tao Liu
- Karolinska Institutet, Department of Molecular Medicine and Surgery, Stockholm, Sweden.
| | - Daniel Nilsson
- Karolinska Institutet, Department of Molecular Medicine and Surgery, Stockholm, Sweden.
| | - Annika Lindblom
- Karolinska Institutet, Department of Molecular Medicine and Surgery, Stockholm, Sweden.
| |
Collapse
|
10
|
Kano H, Takayama T, Midorikawa Y, Nagase H. Promoter hypomethylation of RAR-related orphan receptor α 1 is correlated with unfavorable clinicopathological features in patients with colorectal cancer. Biosci Trends 2016; 10:202-9. [DOI: 10.5582/bst.2016.01097] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hisao Kano
- Department of Cancer Genetics, Nihon University School of Medicine
- Department of Digestive Surgery, Nihon University School of Medicine
| | | | - Yutaka Midorikawa
- Department of Digestive Surgery, Nihon University School of Medicine
| | - Hiroki Nagase
- Department of Cancer Genetics, Nihon University School of Medicine
- Division of Cancer Genetics, Chiba Cancer Center Research Institute
| |
Collapse
|
11
|
Bi HX, Shi HB, Zhang T, Cui G. PRDM14 promotes the migration of human non-small cell lung cancer through extracellular matrix degradation in vitro. Chin Med J (Engl) 2015; 128:373-7. [PMID: 25635434 PMCID: PMC4837869 DOI: 10.4103/0366-6999.150109] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Background: As a novel molecular markerof non-small cell lung cancer (NSCLC), PRDI-BF1 and RIZ homology domain containing protein 14 (PRDM14) is over-expressed in NSCLC tumor tissues. Extracellular matrix degradation mediated by the balance between matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs) is one of the most important mechanism in lung cancer metastasis. This study aimed to determine if PRDM14 promoted the migration of NSCLC cells through extracellular matrix degradation mediated by change of MMP/TIMP expression. Methods: The expression of PRDM14 was down-regulated in human cell line A 549 after transfection with lentiviral vector-mediated short-hairpin ribonucleic acids (shRNAs) which targeted the PRDM14 promoter. Cellular migration of shRNA-infected cells was detected by a scratch wound healing assay and transwell cell migration assay. Expression levels of MMP1, MMP2, TIMP1, and TIMP2 were measured by quantitative real-time polymerase chain reaction (RT-PCR). Results: Migration of PRDM14-shRNA-infected cells was significantly inhibited relative to control cells as measured by the scratch wound healing (P < 0.05) and transwell cell migration assays (P < 0.01). The expression of MMP1 in A549 cells infected by PRDM14-shRNA was down-regulated significantly (P < 0.01), whereas the expression of TIMP1 and TIMP2 was up-regulated significantly (P < 0.01). Conclusions: PRDM14 accelerates A549 cells migration in vitro through extracellular matrix degradation. PRDM14 is considered as a potential therapeutic target in metastatic NSCLC.
Collapse
Affiliation(s)
| | | | - Ting Zhang
- Department of Pathology, Program in Molecular and Translational Medicine, School of Medicine, Huzhou University, Huzhou, Zhejiang 313000, China
| | | |
Collapse
|
12
|
Sánchez-Tomé E, Rivera B, Perea J, Pita G, Rueda D, Mercadillo F, Canal A, Gonzalez-Neira A, Benitez J, Urioste M. Genome-wide linkage analysis and tumoral characterization reveal heterogeneity in familial colorectal cancer type X. J Gastroenterol 2015; 50:657-66. [PMID: 25381643 DOI: 10.1007/s00535-014-1009-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 10/20/2014] [Indexed: 02/04/2023]
Abstract
BACKGROUND Familial colorectal cancer type X (FCCTX) fulfils clinical criteria defining Lynch syndrome (LS), but is not related to germline mutations in DNA mismatch-repair genes. Its aetiology remains unexplained and there is little evidence of involvement of the common colorectal carcinogenetic pathways. We aimed to identify susceptibility loci and gain insights into carcinogenic pathways involved FCCTX tumour development. METHODS We performed a linkage analysis in 22 FCCTX families. We also constructed a tissue microarray in order to define an immunohistochemical (IHC) profile for FCCTX tumours (N = 27) by comparing them to three other types of colorectal tumors: LS (N = 18), stable early-onset (N = 31) and other sporadic disease (N = 80). Additionally, we screened for BRAF/KRAS mutations and determined CpG island methylator phenotype (CIMP) status for all FCCTX tumours. RESULTS We found suggestive evidence of linkage at four chromosomal regions; 2p24.3, 4q13.1, 4q31.21 and 12q21.2-q21.31. We screened genes in 12q21 and ruled out the implication of RASSF9 and NTS, good candidates due to their potential involvement in carcinogenesis and colorectal epithelium development. Based on IHC profiles FCCTX tumours did not form a single, exclusive cluster. They were clearly different from LS, but very similar to stable early onset tumours. The CIMP and chromosomal instability pathways were implicated in one-third and one-quarter of FCCTX cases, respectively. The remaining cases did not have alterations in any known carcinogenic pathways. CONCLUSIONS Our results highlight the heterogeneity of FCCTX tumours and call into question the utility of using only clinical criteria to identify FCCTX cases.
Collapse
Affiliation(s)
- E Sánchez-Tomé
- Familial Cancer Clinical Unit, Spanish National Cancer Research Center (CNIO), Madrid, Spain,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Wang MJ, Ping J, Li Y, Adell G, Arbman G, Nodin B, Meng WJ, Zhang H, Yu YY, Wang C, Yang L, Zhou ZG, Sun XF. The prognostic factors and multiple biomarkers in young patients with colorectal cancer. Sci Rep 2015; 5:10645. [PMID: 26013439 PMCID: PMC4445043 DOI: 10.1038/srep10645] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 04/24/2015] [Indexed: 02/05/2023] Open
Abstract
The incidence of colorectal cancer (CRC) in young patients (≤50 years of age) appears to be increasing. However, their clinicopathological characteristics and survival are controversial. Likewise, the biomarkers are unclear. We used the West China (2008-2013, China), Surveillance, Epidemiology, and End Results program (1973-2011, United States) and Linköping Cancer (1972-2009, Sweden) databases to analyse clinicopathological characteristics, survival and multiple biomarkers of young CRC patients. A total of 509,934 CRC patients were included from the three databases. The young CRC patients tended to have more distal location tumours, fewer tumour numbers, later stage, more mucinous carcinoma and poorer differentiation. The cancer-specific survival (CSS) of young patients was significantly better. The PRL (HR = 12.341, 95% CI = 1.615-94.276, P = 0.010), RBM3 (HR = 0.093, 95% CI = 0.012-0.712, P = 0.018), Wrap53 (HR = 1.952, 95% CI = 0.452-6.342, P = 0.031), p53 (HR = 5.549, 95% CI = 1.176-26.178, P = 0.045) and DNA status (HR = 17.602, 95% CI = 2.551-121.448, P = 0.001) were associated with CSS of the young patients. In conclusion, this study suggests that young CRC patients present advanced tumours and more malignant pathological features, while they have a better prognosis. The PRL, RBM3, Wrap53, p53 and DNA status are potential prognostic biomarkers for the young CRC patients.
Collapse
Affiliation(s)
- Mo-Jin Wang
- 1] Department of Gastrointestinal Surgery, Institute of Digestive Surgery and State key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China [2] Department of Oncology, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, SE 58183, Sweden
| | - Jie Ping
- Department of Oncology, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, SE 58183, Sweden
| | - Yuan Li
- Department of Paediatric Surgery, Institute of Digestive Surgery and State key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Gunnar Adell
- Department of Oncology, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, SE 58183, Sweden
| | - Gunnar Arbman
- Department of Surgery, and Department of Clinical and Experimental Medicine, Linköping University, Norrköping, SE 60174, Sweden
| | - Bjorn Nodin
- Department of pathology, Lund University, Lund, SE 22100, Sweden
| | - Wen-Jian Meng
- 1] Department of Gastrointestinal Surgery, Institute of Digestive Surgery and State key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China [2] Department of Oncology, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, SE 58183, Sweden
| | - Hong Zhang
- School of Medicine, Örebro University, Örebro, SE 70182, Sweden
| | - Yong-Yang Yu
- Department of Gastrointestinal Surgery, Institute of Digestive Surgery and State key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Cun Wang
- Department of Gastrointestinal Surgery, Institute of Digestive Surgery and State key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lie Yang
- Department of Gastrointestinal Surgery, Institute of Digestive Surgery and State key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zong-Guang Zhou
- Department of Gastrointestinal Surgery, Institute of Digestive Surgery and State key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiao-Feng Sun
- 1] Department of Gastrointestinal Surgery, Institute of Digestive Surgery and State key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China [2] Department of Oncology, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, SE 58183, Sweden
| |
Collapse
|
14
|
Esteban-Jurado C, Vila-Casadesús M, Garre P, Lozano JJ, Pristoupilova A, Beltran S, Muñoz J, Ocaña T, Balaguer F, López-Cerón M, Cuatrecasas M, Franch-Expósito S, Piqué JM, Castells A, Carracedo A, Ruiz-Ponte C, Abulí A, Bessa X, Andreu M, Bujanda L, Caldés T, Castellví-Bel S. Whole-exome sequencing identifies rare pathogenic variants in new predisposition genes for familial colorectal cancer. Genet Med 2015; 17:131-142. [PMID: 25058500 PMCID: PMC4318970 DOI: 10.1038/gim.2014.89] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 06/10/2014] [Indexed: 12/28/2022] Open
Abstract
PURPOSE Colorectal cancer is an important cause of mortality in the developed world. Hereditary forms are due to germ-line mutations in APC, MUTYH, and the mismatch repair genes, but many cases present familial aggregation but an unknown inherited cause. The hypothesis of rare high-penetrance mutations in new genes is a likely explanation for the underlying predisposition in some of these familial cases. METHODS Exome sequencing was performed in 43 patients with colorectal cancer from 29 families with strong disease aggregation without mutations in known hereditary colorectal cancer genes. Data analysis selected only very rare variants (0-0.1%), producing a putative loss of function and located in genes with a role compatible with cancer. Variants in genes previously involved in hereditary colorectal cancer or nearby previous colorectal cancer genome-wide association study hits were also chosen. RESULTS Twenty-eight final candidate variants were selected and validated by Sanger sequencing. Correct family segregation and somatic studies were used to categorize the most interesting variants in CDKN1B, XRCC4, EPHX1, NFKBIZ, SMARCA4, and BARD1. CONCLUSION We identified new potential colorectal cancer predisposition variants in genes that have a role in cancer predisposition and are involved in DNA repair and the cell cycle, which supports their putative involvement in germ-line predisposition to this neoplasm.
Collapse
Affiliation(s)
- Clara Esteban-Jurado
- Servei de Gastroenterologia, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, University of Barcelona, Barcelona, Spain
| | - Maria Vila-Casadesús
- Plataforma de Bioinformática, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain
| | - Pilar Garre
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Juan José Lozano
- Plataforma de Bioinformática, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain
| | - Anna Pristoupilova
- Centre Nacional d'Anàlisi Genòmica, Parc Científic de Barcelona, Barcelona, Spain
- Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Sergi Beltran
- Centre Nacional d'Anàlisi Genòmica, Parc Científic de Barcelona, Barcelona, Spain
| | - Jenifer Muñoz
- Servei de Gastroenterologia, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, University of Barcelona, Barcelona, Spain
| | - Teresa Ocaña
- Servei de Gastroenterologia, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, University of Barcelona, Barcelona, Spain
| | - Francesc Balaguer
- Servei de Gastroenterologia, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, University of Barcelona, Barcelona, Spain
| | - Maria López-Cerón
- Servei de Gastroenterologia, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, University of Barcelona, Barcelona, Spain
| | | | - Sebastià Franch-Expósito
- Servei de Gastroenterologia, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, University of Barcelona, Barcelona, Spain
| | - Josep M. Piqué
- Servei de Gastroenterologia, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, University of Barcelona, Barcelona, Spain
| | - Antoni Castells
- Servei de Gastroenterologia, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, University of Barcelona, Barcelona, Spain
| | - Angel Carracedo
- Galician Public Foundation of Genomic Medicine, Centro de Investigación Biomédica en Red de Enfermedades Raras, Genomics Medicine Group, Hospital Clínico, University of Santiago de Compostela, Galicia, Spain
| | - Clara Ruiz-Ponte
- Galician Public Foundation of Genomic Medicine, Centro de Investigación Biomédica en Red de Enfermedades Raras, Genomics Medicine Group, Hospital Clínico, University of Santiago de Compostela, Galicia, Spain
| | - Anna Abulí
- Department of Gastroenterology, Hospital del Mar-IMIM (Hospital del Mar Medical Research Centre), Pompeu Fabra University, Barcelona, Spain
| | - Xavier Bessa
- Department of Gastroenterology, Hospital del Mar-IMIM (Hospital del Mar Medical Research Centre), Pompeu Fabra University, Barcelona, Spain
| | - Montserrat Andreu
- Department of Gastroenterology, Hospital del Mar-IMIM (Hospital del Mar Medical Research Centre), Pompeu Fabra University, Barcelona, Spain
| | - Luis Bujanda
- Gastroenterology Department, Hospital Donostia – Instituto Biodonostia, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Country University (UPV/EHU), San Sebastián, Spain
| | - Trinidad Caldés
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Sergi Castellví-Bel
- Servei de Gastroenterologia, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, University of Barcelona, Barcelona, Spain
| | - the EPICOLON Consortium
- Servei de Gastroenterologia, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, University of Barcelona, Barcelona, Spain
- Plataforma de Bioinformática, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
- Centre Nacional d'Anàlisi Genòmica, Parc Científic de Barcelona, Barcelona, Spain
- Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
- Department of Pathology, Hospital Clinic, Barcelona, Spain
- Galician Public Foundation of Genomic Medicine, Centro de Investigación Biomédica en Red de Enfermedades Raras, Genomics Medicine Group, Hospital Clínico, University of Santiago de Compostela, Galicia, Spain
- Department of Gastroenterology, Hospital del Mar-IMIM (Hospital del Mar Medical Research Centre), Pompeu Fabra University, Barcelona, Spain
- Gastroenterology Department, Hospital Donostia – Instituto Biodonostia, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Country University (UPV/EHU), San Sebastián, Spain
| |
Collapse
|
15
|
Kirzin S, Marisa L, Guimbaud R, De Reynies A, Legrain M, Laurent-Puig P, Cordelier P, Pradère B, Bonnet D, Meggetto F, Portier G, Brousset P, Selves J. Sporadic early-onset colorectal cancer is a specific sub-type of cancer: a morphological, molecular and genetics study. PLoS One 2014; 9:e103159. [PMID: 25083765 PMCID: PMC4118858 DOI: 10.1371/journal.pone.0103159] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 06/26/2014] [Indexed: 02/06/2023] Open
Abstract
Sporadic early onset colorectal carcinoma (EOCRC) which has by definition no identified hereditary predisposition is a growing problem that remains poorly understood. Molecular analysis could improve identification of distinct sub-types of colorectal cancers (CRC) with therapeutic implications and thus can help establish that sporadic EOCRC is a distinct entity. From 954 patients resected for CRC at our institution, 98 patients were selected. Patients aged 45–60 years were excluded to help define “young” and “old” groups. Thirty-nine cases of sporadic EOCRC (patients≤45 years with microsatellite stable tumors) were compared to both microsatellite stable tumors from older patients (36 cases, patients>60 years) and to groups of patients with microsatellite instability. Each group was tested for TP53, KRAS, BRAF, PIK3CA mutations and the presence of a methylator phenotype. Gene expression profiles were also used for pathway analysis. Compared to microsatellite stable CRC from old patients, sporadic EOCRC were characterized by distal location, frequent synchronous metastases and infrequent synchronous adenomas but did not have specific morphological characteristics. A familial history of CRC was more common in sporadic EOCRC patients despite a lack of identified hereditary conditions (p = 0.013). Genetic studies also showed the absence of BRAF mutations (p = 0.022) and the methylator phenotype (p = 0.005) in sporadic EOCRC compared to older patients. Gene expression analysis implicated key pathways such as Wnt/beta catenin, MAP Kinase, growth factor signaling (EGFR, HGF, PDGF) and the TNFR1 pathway in sporadic EOCRC. Wnt/beta catenin signaling activation was confirmed by aberrant nuclear beta catenin immunostaining (p = 0.01). This study strongly suggests that sporadic EOCRC is a distinct clinico-molecular entity presenting as a distal and aggressive disease associated with chromosome instability. Furthermore, several signaling pathways including the TNFR1 pathway have been identified as potential biomarkers for both the diagnosis and treatment of this disease.
Collapse
Affiliation(s)
- Sylvain Kirzin
- Centre de Recherche en Cancérologie de Toulouse, Unité Mixte de Recherche, 1037 INSERM – Université Toulouse III, Toulouse, France
- Department of Surgery, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Laetitia Marisa
- “Cartes d'Identité des Tumeurs” Program, Ligue Nationale Contre le Cancer, Paris, France
| | - Rosine Guimbaud
- Centre de Recherche en Cancérologie de Toulouse, Unité Mixte de Recherche, 1037 INSERM – Université Toulouse III, Toulouse, France
- Department of Oncology, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Aurélien De Reynies
- “Cartes d'Identité des Tumeurs” Program, Ligue Nationale Contre le Cancer, Paris, France
| | - Michèle Legrain
- Laboratoire de Biochimie Biologie Moléculaire, Hôpitaux Universitaires de Hautepierre, Strasbourg, France
| | - Pierre Laurent-Puig
- Bases Moléculaires de la réponse aux xénobiotiques, Université Paris Descartes, INSERM, UMR-S775, Paris, France
| | - Pierre Cordelier
- Centre de Recherche en Cancérologie de Toulouse, Unité Mixte de Recherche, 1037 INSERM – Université Toulouse III, Toulouse, France
| | - Bernard Pradère
- Department of Surgery, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Delphine Bonnet
- Department of Oncology, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Fabienne Meggetto
- Centre de Recherche en Cancérologie de Toulouse, Unité Mixte de Recherche, 1037 INSERM – Université Toulouse III, Toulouse, France
| | - Guillaume Portier
- Department of Surgery, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Pierre Brousset
- Centre de Recherche en Cancérologie de Toulouse, Unité Mixte de Recherche, 1037 INSERM – Université Toulouse III, Toulouse, France
- Department of Pathology, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Janick Selves
- Centre de Recherche en Cancérologie de Toulouse, Unité Mixte de Recherche, 1037 INSERM – Université Toulouse III, Toulouse, France
- Department of Pathology, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
- * E-mail:
| |
Collapse
|
16
|
Stoffel EM, Kastrinos F. Familial colorectal cancer, beyond Lynch syndrome. Clin Gastroenterol Hepatol 2014; 12:1059-68. [PMID: 23962553 PMCID: PMC3926911 DOI: 10.1016/j.cgh.2013.08.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 08/05/2013] [Accepted: 08/09/2013] [Indexed: 02/07/2023]
Abstract
Although 30% of individuals diagnosed with colorectal cancer (CRC) report a family history of the disease, only 5% to 6% carry germline mutations in genes associated with known hereditary cancer syndromes. The evaluation and management of families affected with CRC can be complicated by variability in disease phenotypes and limited sensitivity of genetic tests. In this review, we examine what is currently known about familial CRC and what we have yet to learn, and explore how novel genomic approaches might be used to identify additional genetic and epigenetic factors implicated in heritable risk for cancer.
Collapse
Affiliation(s)
- Elena M. Stoffel
- Division of Gastroenterology, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Fay Kastrinos
- Herbert Irving Comprehensive Cancer Center,Division of Digestive and Liver Diseases, Columbia University Medical Center,New York, NY
| |
Collapse
|
17
|
Thomas DC, Yang Z, Yang F. Two-phase and family-based designs for next-generation sequencing studies. Front Genet 2013; 4:276. [PMID: 24379824 PMCID: PMC3861783 DOI: 10.3389/fgene.2013.00276] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 11/19/2013] [Indexed: 12/21/2022] Open
Abstract
The cost of next-generation sequencing is now approaching that of early GWAS panels, but is still out of reach for large epidemiologic studies and the millions of rare variants expected poses challenges for distinguishing causal from non-causal variants. We review two types of designs for sequencing studies: two-phase designs for targeted follow-up of genomewide association studies using unrelated individuals; and family-based designs exploiting co-segregation for prioritizing variants and genes. Two-phase designs subsample subjects for sequencing from a larger case-control study jointly on the basis of their disease and carrier status; the discovered variants are then tested for association in the parent study. The analysis combines the full sequence data from the substudy with the more limited SNP data from the main study. We discuss various methods for selecting this subset of variants and describe the expected yield of true positive associations in the context of an on-going study of second breast cancers following radiotherapy. While the sharing of variants within families means that family-based designs are less efficient for discovery than sequencing unrelated individuals, the ability to exploit co-segregation of variants with disease within families helps distinguish causal from non-causal ones. Furthermore, by enriching for family history, the yield of causal variants can be improved and use of identity-by-descent information improves imputation of genotypes for other family members. We compare the relative efficiency of these designs with those using unrelated individuals for discovering and prioritizing variants or genes for testing association in larger studies. While associations can be tested with single variants, power is low for rare ones. Recent generalizations of burden or kernel tests for gene-level associations to family-based data are appealing. These approaches are illustrated in the context of a family-based study of colorectal cancer.
Collapse
Affiliation(s)
- Duncan C Thomas
- Department of Preventive Medicine, University of Southern California Los Angeles, CA, USA
| | - Zhao Yang
- Department of Preventive Medicine, University of Southern California Los Angeles, CA, USA
| | - Fan Yang
- Department of Preventive Medicine, University of Southern California Los Angeles, CA, USA
| |
Collapse
|
18
|
Kontham V, von Holst S, Lindblom A. Linkage analysis in familial non-Lynch syndrome colorectal cancer families from Sweden. PLoS One 2013; 8:e83936. [PMID: 24349560 PMCID: PMC3859667 DOI: 10.1371/journal.pone.0083936] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 11/18/2013] [Indexed: 12/28/2022] Open
Abstract
Family history is a major risk factor for colorectal cancer and many families segregate the disease as a seemingly monogenic trait. A minority of familial colorectal cancer could be explained by known monogenic genes and genetic loci. Familial polyposis and Lynch syndrome are two syndromes where the predisposing genes are known but numerous families have been tested without finding the predisposing gene. We performed a genome wide linkage analysis in 121 colorectal families with an increased risk of colorectal cancer. The families were ascertained from the department of clinical genetics at the Karolinska University Hospital in Stockholm, Sweden and were considered negative for Familial Polyposis and Lynch syndrome. In total 600 subjects were genotyped using single nucleotide polymorphism array chips. Parametric- and non-parametric linkage analyses were computed using MERLIN in all and subsets of families. No statistically significant result was seen, however, there were suggestive positive HLODs above two in parametric linkage analysis. This was observed in a recessive model for high-risk families, at locus 9q31.1 (HLOD=2.2, rs1338121) and for moderate-risk families, at locus Xp22.33 (LOD=2.2 and HLOD=2.5, rs2306737). Using families with early-onset, recessive analysis suggested one locus on 4p16.3 (LOD=2.2, rs920683) and one on 17p13.2 (LOD/HLOD=2.0, rs884250). No NPL score above two was seen for any of the families. Our linkage study provided additional support for the previously suggested region on chromosome 9 and suggested additional loci to be involved in colorectal cancer risk. Sequencing of genes in the regions will be done in future studies.
Collapse
Affiliation(s)
- Vinaykumar Kontham
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Susanna von Holst
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
19
|
Southey MC. The Role of New Sequencing Technology in Identifying Rare Mutations in New Susceptibility Genes for Cancer. CURRENT GENETIC MEDICINE REPORTS 2013. [DOI: 10.1007/s40142-013-0021-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
20
|
DeRycke MS, Gunawardena SR, Middha S, Asmann YW, Schaid DJ, McDonnell SK, Riska SM, Eckloff BW, Cunningham JM, Fridley BL, Serie DJ, Bamlet WR, Cicek MS, Jenkins MA, Duggan DJ, Buchanan D, Clendenning M, Haile RW, Woods MO, Gallinger SN, Casey G, Potter JD, Newcomb PA, Le Marchand L, Lindor NM, Thibodeau SN, Goode EL. Identification of novel variants in colorectal cancer families by high-throughput exome sequencing. Cancer Epidemiol Biomarkers Prev 2013; 22:1239-51. [PMID: 23637064 PMCID: PMC3704223 DOI: 10.1158/1055-9965.epi-12-1226] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) in densely affected families without Lynch Syndrome may be due to mutations in undiscovered genetic loci. Familial linkage analyses have yielded disparate results; the use of exome sequencing in coding regions may identify novel segregating variants. METHODS We completed exome sequencing on 40 affected cases from 16 multicase pedigrees to identify novel loci. Variants shared among all sequenced cases within each family were identified and filtered to exclude common variants and single-nucleotide variants (SNV) predicted to be benign. RESULTS We identified 32 nonsense or splice-site SNVs, 375 missense SNVs, 1,394 synonymous or noncoding SNVs, and 50 indels in the 16 families. Of particular interest are two validated and replicated missense variants in CENPE and KIF23, which are both located within previously reported CRC linkage regions, on chromosomes 1 and 15, respectively. CONCLUSIONS Whole-exome sequencing identified DNA variants in multiple genes. Additional sequencing of these genes in additional samples will further elucidate the role of variants in these regions in CRC susceptibility. IMPACT Exome sequencing of familial CRC cases can identify novel rare variants that may influence disease risk.
Collapse
Affiliation(s)
- Melissa S. DeRycke
- Departments of Health Sciences Research, Biomedical Statistics and Informatics, Laboratory Medicine and Pathology, Medical Genetics, Medical Genomics Technology and Advanced Genomics Technology Center, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Shanaka R. Gunawardena
- Departments of Health Sciences Research, Biomedical Statistics and Informatics, Laboratory Medicine and Pathology, Medical Genetics, Medical Genomics Technology and Advanced Genomics Technology Center, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Sumit Middha
- Departments of Health Sciences Research, Biomedical Statistics and Informatics, Laboratory Medicine and Pathology, Medical Genetics, Medical Genomics Technology and Advanced Genomics Technology Center, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Yan W Asmann
- Departments of Health Sciences Research, Biomedical Statistics and Informatics, Laboratory Medicine and Pathology, Medical Genetics, Medical Genomics Technology and Advanced Genomics Technology Center, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Daniel J. Schaid
- Departments of Health Sciences Research, Biomedical Statistics and Informatics, Laboratory Medicine and Pathology, Medical Genetics, Medical Genomics Technology and Advanced Genomics Technology Center, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Shannon K. McDonnell
- Departments of Health Sciences Research, Biomedical Statistics and Informatics, Laboratory Medicine and Pathology, Medical Genetics, Medical Genomics Technology and Advanced Genomics Technology Center, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Shaun M. Riska
- Departments of Health Sciences Research, Biomedical Statistics and Informatics, Laboratory Medicine and Pathology, Medical Genetics, Medical Genomics Technology and Advanced Genomics Technology Center, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Bruce W Eckloff
- Departments of Health Sciences Research, Biomedical Statistics and Informatics, Laboratory Medicine and Pathology, Medical Genetics, Medical Genomics Technology and Advanced Genomics Technology Center, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Julie M. Cunningham
- Departments of Health Sciences Research, Biomedical Statistics and Informatics, Laboratory Medicine and Pathology, Medical Genetics, Medical Genomics Technology and Advanced Genomics Technology Center, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Brooke L. Fridley
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Daniel J. Serie
- Departments of Health Sciences Research, Biomedical Statistics and Informatics, Laboratory Medicine and Pathology, Medical Genetics, Medical Genomics Technology and Advanced Genomics Technology Center, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - William R. Bamlet
- Departments of Health Sciences Research, Biomedical Statistics and Informatics, Laboratory Medicine and Pathology, Medical Genetics, Medical Genomics Technology and Advanced Genomics Technology Center, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Mine S. Cicek
- Departments of Health Sciences Research, Biomedical Statistics and Informatics, Laboratory Medicine and Pathology, Medical Genetics, Medical Genomics Technology and Advanced Genomics Technology Center, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Mark A. Jenkins
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, University of Melbourne, Victoria 3010, Australia
| | - David J. Duggan
- Translational Genomics Research Institute, Phoenix, AZ, 85004, USA
| | - Daniel Buchanan
- Cancer and Population Studies Group, Queensland Institute of Medical Research, Queensland, Australia
| | - Mark Clendenning
- Cancer and Population Studies Group, Queensland Institute of Medical Research, Queensland, Australia
| | - Robert W. Haile
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Michael O. Woods
- Discipline of Genetics, Faculty of Medicine, Memorial University of Newfoundland, St. Johns, NL, Canada
| | | | - Graham Casey
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - John D. Potter
- Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Polly A. Newcomb
- Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Loic Le Marchand
- Department of Epidemiology, University of Hawaii, Honolulu, HI, USA
| | - Noralane M. Lindor
- Department of Health Sciences Research, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Stephen N. Thibodeau
- Departments of Health Sciences Research, Biomedical Statistics and Informatics, Laboratory Medicine and Pathology, Medical Genetics, Medical Genomics Technology and Advanced Genomics Technology Center, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Ellen L. Goode
- Departments of Health Sciences Research, Biomedical Statistics and Informatics, Laboratory Medicine and Pathology, Medical Genetics, Medical Genomics Technology and Advanced Genomics Technology Center, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| |
Collapse
|
21
|
Ogino S, Nishihara R, Lochhead P, Imamura Y, Kuchiba A, Morikawa T, Yamauchi M, Liao X, Qian ZR, Sun R, Sato K, Kirkner GJ, Wang M, Spiegelman D, Meyerhardt JA, Schernhammer ES, Chan AT, Giovannucci E, Fuchs CS. Prospective study of family history and colorectal cancer risk by tumor LINE-1 methylation level. J Natl Cancer Inst 2013; 105:130-40. [PMID: 23175808 PMCID: PMC3545905 DOI: 10.1093/jnci/djs482] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/27/2012] [Accepted: 10/18/2012] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Beyond known familial colorectal cancer (CRC) syndromes, the mechanisms underlying the elevated CRC risk associated with CRC family history remain largely unknown. A recent retrospective study suggests familial clustering of CRC with hypomethylation in long interspersed nucleotide element 1 (LINE-1). We tested the hypothesis that CRC family history might confer a higher risk of LINE-1 methylation-low CRC. METHODS Using the Nurses' Health Study and the Health Professionals Follow-up Study, we prospectively examined the association between CRC family history and the risk of rectal and colon cancer (N = 1224) according to tumor LINE-1 methylation level by duplication method Cox proportional hazards regression. We examined microsatellite instability (MSI) status to exclude the influence of Lynch syndrome. All statistical tests were two-sided. RESULTS The association between CRC family history and non-MSI CRC risk differed statistically significantly by LINE-1 methylation level (P (heterogeneity) = .02). CRC family history was associated with a statistically significantly higher risk of LINE-1 methylation-low non-MSI cancer (multivariable hazard ratio [HR] = 1.68, 95% confidence interval [CI] = 1.19 to 2.38 for 1 vs 0 first-degree relatives with CRC; multivariable HR = 3.48, 95% CI = 1.59 to 7.6 for ≥2 vs 0 first-degree relatives with CRC; P (trend) < .001). In contrast, CRC family history was not statistically significantly associated with LINE-1 methylation-high non-MSI cancer (P (trend) = .35). CONCLUSIONS This molecular pathological epidemiology study shows that CRC family history is associated with a higher risk of LINE-1 methylation-low CRC, suggesting previously unrecognized heritable predisposition to epigenetic alterations. Additional studies are needed to evaluate tumor LINE-1 methylation as a molecular biomarker for familial cancer risk assessment.
Collapse
Affiliation(s)
- Shuji Ogino
- Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, 450 Brookline Ave, Rm JF-215C, Boston, MA 02215, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Sun X, Vengoechea J, Elston R, Chen Y, Amos CI, Armstrong G, Bernstein JL, Claus E, Davis F, Houlston RS, Il'yasova D, Jenkins RB, Johansen C, Lai R, Lau CC, Liu Y, McCarthy BJ, Olson SH, Sadetzki S, Schildkraut J, Shete S, Yu R, Vick NA, Merrell R, Wrensch M, Yang P, Melin B, Bondy ML, Barnholtz-Sloan JS. A variable age of onset segregation model for linkage analysis, with correction for ascertainment, applied to glioma. Cancer Epidemiol Biomarkers Prev 2012; 21:2242-51. [PMID: 22962404 PMCID: PMC3518573 DOI: 10.1158/1055-9965.epi-12-0703] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND We propose a 2-step model-based approach, with correction for ascertainment, to linkage analysis of a binary trait with variable age of onset and apply it to a set of multiplex pedigrees segregating for adult glioma. METHODS First, we fit segregation models by formulating the likelihood for a person to have a bivariate phenotype, affection status and age of onset, along with other covariates, and from these we estimate population trait allele frequencies and penetrance parameters as a function of age (N = 281 multiplex glioma pedigrees). Second, the best fitting models are used as trait models in multipoint linkage analysis (N = 74 informative multiplex glioma pedigrees). To correct for ascertainment, a prevalence constraint is used in the likelihood of the segregation models for all 281 pedigrees. Then the trait allele frequencies are reestimated for the pedigree founders of the subset of 74 pedigrees chosen for linkage analysis. RESULTS Using the best-fitting segregation models in model-based multipoint linkage analysis, we identified 2 separate peaks on chromosome 17; the first agreed with a region identified by Shete and colleagues who used model-free affected-only linkage analysis, but with a narrowed peak: and the second agreed with a second region they found but had a larger maximum log of the odds (LOD). CONCLUSIONS Our approach was able to narrow the linkage peak previously published for glioma. IMPACT We provide a practical solution to model-based linkage analysis for disease affection status with variable age of onset for the kinds of pedigree data often collected for linkage analysis.
Collapse
Affiliation(s)
- Xiangqing Sun
- Department of Epidemiology and Biostatistics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|