1
|
Lialios P, Alimperti S. Role of E-cadherin in epithelial barrier dysfunction: implications for bacterial infection, inflammation, and disease pathogenesis. Front Cell Infect Microbiol 2025; 15:1506636. [PMID: 40007608 PMCID: PMC11850337 DOI: 10.3389/fcimb.2025.1506636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/15/2025] [Indexed: 02/27/2025] Open
Abstract
Epithelial barriers serve as critical defense lines against microbial infiltration and maintain tissue homeostasis. E-cadherin, an essential component of adherens junctions, has emerged as a pivotal molecule that secures epithelial homeostasis. Lately, its pleiotropic role beyond barrier function, including its involvement in immune responses, has become more evident. Herein, we delve into the intricate relationship between (dys)regulation of epithelial homeostasis and the versatile functionality of E-cadherin, describing complex mechanisms that underlie barrier integrity and disruption in disease pathogenesis such as bacterial infection and inflammation, among others. Clinical implications of E-cadherin perturbations in host pathophysiology are emphasized; downregulation, proteolytic phenomena, abnormal localization/signaling and aberrant immune reactions are linked with a broad spectrum of pathology beyond infectious diseases. Finally, potential therapeutic interventions that may harness E-cadherin to mitigate barrier-associated tissue damage are explored. Overall, this review highlights the crucial role of E-cadherin in systemic health, offering insights that could pave the way for strategies to reinforce/restore barrier integrity and treat related diseases.
Collapse
Affiliation(s)
- Peter Lialios
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, United States
- Center for Biological and Biomedical Engineering, Georgetown University, Washington, DC, United States
| | - Stella Alimperti
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, United States
- Center for Biological and Biomedical Engineering, Georgetown University, Washington, DC, United States
| |
Collapse
|
2
|
Smiline Girija SA. Hijacking the epigenetic mechanisms of A. baumannii. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2024; 13:51-53. [PMID: 38504783 PMCID: PMC10946551 DOI: 10.22099/mbrc.2024.48801.1899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Epigenetic mechanisms attribute to the resistance and virulence of Acinetobacter baumannii sparking a renewed area of research. Unveiling the targets pertained to the epigenetic modulation in the bacterium would aid in the curbing its complications in various recalcitrant infections. This review thus throws light on the various epigenetic mechanisms exhibited by A. bauamnnii, urging the need to implement epigenetic based novel strategies in precision medicine.
Collapse
Affiliation(s)
- S A Smiline Girija
- Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai-600 077, Tamilnadu, India
| |
Collapse
|
3
|
Bou Zerdan M, Kassab J, Meouchy P, Haroun E, Nehme R, Bou Zerdan M, Fahed G, Petrosino M, Dutta D, Graziano S. The Lung Microbiota and Lung Cancer: A Growing Relationship. Cancers (Basel) 2022; 14:cancers14194813. [PMID: 36230736 PMCID: PMC9563611 DOI: 10.3390/cancers14194813] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/15/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary In the past few years, the microbiota has emerged as a major player in cancer management. The efficacy of chemotherapy or immunotherapy may be influenced by the concomitant use of antibiotics before, during, or shortly after treatment with immune checkpoint inhibitors. Despite this, the mechanism linking the microbiota, host immunity, and malignancies are not clear, and the role of microbiota manipulation and analyses in cancer management is underway. In this manuscript, we discuss the role of the microbiota in the initiation, progression, and treatment outcomes of lung cancer. Abstract The lung is home to a dynamic microbial population crucial to modulating immune balance. Interest in the role of the lung microbiota in disease pathogenesis and treatment has exponentially increased. In lung cancer, early studies suggested an important role of dysbiosis in tumor initiation and progression. These results have helped accelerate research into the lung microbiota as a potential diagnostic marker and therapeutic target. Microbiota signatures could represent diagnostic biomarkers of early-stage disease. Lung microbiota research is in its infancy with a limited number of studies and only single-center studies with a significant methodological variation. Large, multicenter longitudinal studies are needed to establish the clinical potential of this exciting field.
Collapse
Affiliation(s)
- Maroun Bou Zerdan
- Department of Internal Medicine, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Hematology and Oncology, Cleveland Clinic Florida, Weston, FL 33326, USA
| | - Joseph Kassab
- Faculty of Medicine, Saint-Joseph University, Beirut 11072180, Lebanon
| | - Paul Meouchy
- Department of Internal Medicine, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, Beirut 11072020, Lebanon
| | - Elio Haroun
- Department of Medicine, Division of Hematology and Oncology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Rami Nehme
- Department of Medicine, University of Pavia, 27100 Pavia, Italy
| | - Morgan Bou Zerdan
- Faculty of Medicine, American University of Beirut, Beirut 11072020, Lebanon
| | - Gracia Fahed
- Faculty of Medicine, American University of Beirut, Beirut 11072020, Lebanon
| | - Michael Petrosino
- Department of Internal Medicine, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Dibyendu Dutta
- Department of Medicine, Division of Hematology and Oncology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Correspondence: (D.D.); (S.G.)
| | - Stephen Graziano
- Department of Medicine, Division of Hematology and Oncology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Correspondence: (D.D.); (S.G.)
| |
Collapse
|
4
|
Rolando M, Silvestre CD, Gomez-Valero L, Buchrieser C. Bacterial methyltransferases: from targeting bacterial genomes to host epigenetics. MICROLIFE 2022; 3:uqac014. [PMID: 37223361 PMCID: PMC10117894 DOI: 10.1093/femsml/uqac014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/19/2022] [Accepted: 08/05/2022] [Indexed: 05/25/2023]
Abstract
Methyltransferase (MTases) enzymes transfer methyl groups particularly on proteins and nucleotides, thereby participating in controlling the epigenetic information in both prokaryotes and eukaryotes. The concept of epigenetic regulation by DNA methylation has been extensively described for eukaryotes. However, recent studies have extended this concept to bacteria showing that DNA methylation can also exert epigenetic control on bacterial phenotypes. Indeed, the addition of epigenetic information to nucleotide sequences confers adaptive traits including virulence-related characteristics to bacterial cells. In eukaryotes, an additional layer of epigenetic regulation is obtained by post-translational modifications of histone proteins. Interestingly, in the last decades it was shown that bacterial MTases, besides playing an important role in epigenetic regulations at the microbe level by exerting an epigenetic control on their own gene expression, are also important players in host-microbe interactions. Indeed, secreted nucleomodulins, bacterial effectors that target the nucleus of infected cells, have been shown to directly modify the epigenetic landscape of the host. A subclass of nucleomodulins encodes MTase activities, targeting both host DNA and histone proteins, leading to important transcriptional changes in the host cell. In this review, we will focus on lysine and arginine MTases of bacteria and their hosts. The identification and characterization of these enzymes will help to fight bacterial pathogens as they may emerge as promising targets for the development of novel epigenetic inhibitors in both bacteria and the host cells they infect.
Collapse
Affiliation(s)
- Monica Rolando
- Institut Pasteur, Université de Paris, CNRS UMR 6047, Unité Biologie des Bactéries Intracellulaires, 28, Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Cristina Di Silvestre
- Institut Pasteur, Université de Paris, CNRS UMR 6047, Unité Biologie des Bactéries Intracellulaires, 28, Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Laura Gomez-Valero
- Institut Pasteur, Université de Paris, CNRS UMR 6047, Unité Biologie des Bactéries Intracellulaires, 28, Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Carmen Buchrieser
- Institut Pasteur, Université de Paris, CNRS UMR 6047, Unité Biologie des Bactéries Intracellulaires, 28, Rue du Dr. Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
5
|
Gutierrez A, Demond H, Brebi P, Ili CG. Novel Methylation Biomarkers for Colorectal Cancer Prognosis. Biomolecules 2021; 11:1722. [PMID: 34827720 PMCID: PMC8615818 DOI: 10.3390/biom11111722] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) comprises the third most common cancer worldwide and the second regarding number of deaths. In order to make a correct and early diagnosis to predict metastasis formation, biomarkers are an important tool. Although there are multiple signaling pathways associated with cancer progression, the most recognized are the MAPK pathway, p53 pathway, and TGF-β pathway. These pathways regulate many important functions in the cell, such as cell cycle regulation, proliferation, differentiation, and metastasis formation, among others. Changes in expression in genes belonging to these pathways are drivers of carcinogenesis. Often these expression changes are caused by mutations; however, epigenetic changes, such as DNA methylation, are increasingly acknowledged to play a role in the deregulation of oncogenic genes. This makes DNA methylation changes an interesting biomarkers in cancer. Among the newly identified biomarkers for CRC metastasis INHBB, SMOC2, BDNF, and TBRG4 are included, all of which are highly deregulated by methylation and closely associated with metastasis. The identification of such biomarkers in metastasis of CRC may allow a better treatment and early identification of cancer formation in order to perform better diagnostics and improve the life expectancy.
Collapse
Affiliation(s)
| | | | - Priscilla Brebi
- Millennium Institute on Immunology and Immunotherapy, Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4810296, Chile; (A.G.); (H.D.)
| | - Carmen Gloria Ili
- Millennium Institute on Immunology and Immunotherapy, Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4810296, Chile; (A.G.); (H.D.)
| |
Collapse
|
6
|
Devaux CA, Mezouar S, Mege JL. The E-Cadherin Cleavage Associated to Pathogenic Bacteria Infections Can Favor Bacterial Invasion and Transmigration, Dysregulation of the Immune Response and Cancer Induction in Humans. Front Microbiol 2019; 10:2598. [PMID: 31781079 PMCID: PMC6857109 DOI: 10.3389/fmicb.2019.02598] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/25/2019] [Indexed: 12/21/2022] Open
Abstract
Once bound to the epithelium, pathogenic bacteria have to cross epithelial barriers to invade their human host. In order to achieve this goal, they have to destroy the adherens junctions insured by cell adhesion molecules (CAM), such as E-cadherin (E-cad). The invasive bacteria use more or less sophisticated mechanisms aimed to deregulate CAM genes expression or to modulate the cell-surface expression of CAM proteins, which are otherwise rigorously regulated by a molecular crosstalk essential for homeostasis. Apart from the repression of CAM genes, a drastic decrease in adhesion molecules on human epithelial cells can be obtained by induction of eukaryotic endoproteases named sheddases or through synthesis of their own (prokaryotic) sheddases. Cleavage of CAM by sheddases results in the release of soluble forms of CAM. The overexpression of soluble CAM in body fluids can trigger inflammation and pro-carcinogenic programming leading to tumor induction and metastasis. In addition, the reduction of the surface expression of E-cad on epithelia could be accompanied by an alteration of the anti-bacterial and anti-tumoral immune responses. This immune response dysfunction is likely to occur through the deregulation of immune cells homing, which is controlled at the level of E-cad interaction by surface molecules αE integrin (CD103) and lectin receptor KLRG1. In this review, we highlight the central role of CAM cell-surface expression during pathogenic microbial invasion, with a particular focus on bacterial-induced cleavage of E-cad. We revisit herein the rapidly growing body of evidence indicating that high levels of soluble E-cad (sE-cad) in patients’ sera could serve as biomarker of bacterial-induced diseases.
Collapse
Affiliation(s)
- Christian A Devaux
- IRD, MEPHI, APHM, Aix-Marseille University, Marseille, France.,CNRS, Institute of Biological Science (INSB), Marseille, France.,Institut Hospitalo-Universitaire (IHU)-Mediterranee Infection, Marseille, France
| | - Soraya Mezouar
- IRD, MEPHI, APHM, Aix-Marseille University, Marseille, France.,Institut Hospitalo-Universitaire (IHU)-Mediterranee Infection, Marseille, France
| | - Jean-Louis Mege
- IRD, MEPHI, APHM, Aix-Marseille University, Marseille, France.,Institut Hospitalo-Universitaire (IHU)-Mediterranee Infection, Marseille, France.,APHM, UF Immunology Department, Marseille, France
| |
Collapse
|
7
|
Lin HW, Fu CF, Chang MC, Lu TP, Lin HP, Chiang YC, Chen CA, Cheng WF. CDH1, DLEC1 and SFRP5 methylation panel as a prognostic marker for advanced epithelial ovarian cancer. Epigenomics 2018; 10:1397-1413. [PMID: 30324802 DOI: 10.2217/epi-2018-0035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIM To investigate the CDH1, DLEC1 and SFRP5 gene methylation panel for advanced epithelial ovarian carcinoma (EOC). MATERIALS & METHODS One hundred and seventy-seven advanced EOC specimens were evaluated by methylation-specific PCR. We also used The Cancer Genome Atlas dataset to evaluate the panel. RESULTS The presence of two or more methylated genes was significant in recurrence (hazard ratio [HR]: 1.91 [1.33-2.76]; p = 0.002) and death (HR: 1.96 [1.26-3.06]; p = 0.006) in our cohort. In The Cancer Genome Atlas dataset, the presence of two or three methylated genes was significant in death (HR: 1.59 [1.15-2.18]; p = 0.0047) and close to the significance level in recurrence (HR: 1.37 [0.99-1.88]; p = 0.058). CONCLUSION The CDH1, DLEC1 and SFRP5 methylation panel is a potential prognostic biomarker for advanced EOC.
Collapse
Affiliation(s)
- Han-Wei Lin
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei 10055, Taiwan
| | - Chi-Feng Fu
- Department of Obstetrics & Gynecology, E-da Cancer Hospital, Kaohsiung 82445, Taiwan
| | - Ming-Cheng Chang
- Department of Obstetrics & Gynecology, College of Medicine, National Taiwan University, Taipei 10041, Taiwan.,Institute of Nuclear Energy Research, Atomic Energy Council, Executive Yuan, Taoyuan 32546, Taiwan
| | - Tzu-Pin Lu
- Institute of Epidemiology & Preventive Medicine, College of Public Health, National Taiwan University, Taipei 10055, Taiwan
| | - Hsiu-Ping Lin
- Department of Obstetrics & Gynecology, College of Medicine, National Taiwan University, Taipei 10041, Taiwan
| | - Ying-Cheng Chiang
- Department of Obstetrics & Gynecology, College of Medicine, National Taiwan University, Taipei 10041, Taiwan
| | - Chi-An Chen
- Department of Obstetrics & Gynecology, College of Medicine, National Taiwan University, Taipei 10041, Taiwan
| | - Wen-Fang Cheng
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei 10055, Taiwan.,Department of Obstetrics & Gynecology, College of Medicine, National Taiwan University, Taipei 10041, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW We wished to overview recent data on a subset of epigenetic changes elicited by intracellular bacteria in human cells. Reprogramming the gene expression pattern of various host cells may facilitate bacterial growth, survival, and spread. RECENT FINDINGS DNA-(cytosine C5)-methyltransferases of Mycoplasma hyorhinis targeting cytosine-phosphate-guanine (CpG) dinucleotides and a Mycobacterium tuberculosis methyltransferase targeting non-CpG sites methylated the host cell DNA and altered the pattern of gene expression. Gene silencing by CpG methylation and histone deacetylation, mediated by cellular enzymes, also occurred in M. tuberculosis-infected macrophages. M. tuberculosis elicited cell type-specific epigenetic changes: it caused increased DNA methylation in macrophages, but induced demethylation, deposition of euchromatic histone marks and activation of immune-related genes in dendritic cells. A secreted transposase of Acinetobacter baumannii silenced a cellular gene, whereas Mycobacterium leprae altered the epigenotype, phenotype, and fate of infected Schwann cells. The 'keystone pathogen' oral bacterium Porphyromonas gingivalis induced local DNA methylation and increased the level of histone acetylation in host cells. These epigenetic changes at the biofilm-gingiva interface may contribute to the development of periodontitis. SUMMARY Epigenetic regulators produced by intracellular bacteria alter the epigenotype and gene expression pattern of host cells and play an important role in pathogenesis.
Collapse
|
9
|
Niller HH, Minarovits J. Patho-epigenetics of Infectious Diseases Caused by Intracellular Bacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 879:107-130. [PMID: 26659266 DOI: 10.1007/978-3-319-24738-0_6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In multicellular eukaryotes including plants, animals and humans, epigenetic reprogramming may play a role in the pathogenesis of a wide variety of diseases. Recent studies revealed that in addition to viruses, pathogenic bacteria are also capable to dysregulate the epigenetic machinery of their target cells. In this chapter we focus on epigenetic alterations induced by bacteria infecting humans. Most of them are obligate or facultative intracellular bacteria that produce either bacterial toxins and surface proteins targeting the host cell membrane, or synthesise effector proteins entering the host cell nucleus. These bacterial products typically elicit histone modifications, i.e. alter the "histone code". Bacterial pathogens are capable to induce alterations of host cell DNA methylation patterns, too. Such changes in the host cell epigenotype and gene expression pattern may hinder the antibacterial immune response and create favourable conditions for bacterial colonization, growth, or spread. Epigenetic dysregulation mediated by bacterial products may also facilitate the production of inflammatory cytokines and other inflammatory mediators affecting the epigenotype of their target cells. Such indirect epigenetic changes as well as direct interference with the epigenetic machinery of the host cells may contribute to the initiation and progression of malignant tumors associated with distinct bacterial infections.
Collapse
Affiliation(s)
- Hans Helmut Niller
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Janos Minarovits
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, Tisza Lajos krt. 64, H-6720, Szeged, Hungary.
| |
Collapse
|
10
|
Besbes A, Le Goff S, Antunes A, Terrade A, Hong E, Giorgini D, Taha MK, Deghmane AE. Hyperinvasive Meningococci Induce Intra-nuclear Cleavage of the NF-κB Protein p65/RelA by Meningococcal IgA Protease. PLoS Pathog 2015; 11:e1005078. [PMID: 26241037 PMCID: PMC4524725 DOI: 10.1371/journal.ppat.1005078] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 07/10/2015] [Indexed: 11/30/2022] Open
Abstract
Differential modulation of NF-κB during meningococcal infection is critical in innate immune response to meningococcal disease. Non-invasive isolates of Neisseria meningitidis provoke a sustained NF-κB activation in epithelial cells. However, the hyperinvasive isolates of the ST-11 clonal complex (ST-11) only induce an early NF-κB activation followed by a sustained activation of JNK and apoptosis. We show that this temporal activation of NF-κB was caused by specific cleavage at the C-terminal region of NF-κB p65/RelA component within the nucleus of infected cells. This cleavage was mediated by the secreted 150 kDa meningococcal ST-11 IgA protease carrying nuclear localisation signals (NLS) in its α-peptide moiety that allowed efficient intra-nuclear transport. In a collection of non-ST-11 healthy carriage isolates lacking NLS in the α-peptide, secreted IgA protease was devoid of intra-nuclear transport. This part of iga polymorphism allows non-invasive isolates lacking NLS, unlike hyperinvasive ST-11 isolates of N. meningitides habouring NLS in their α-peptide, to be carried asymptomatically in the human nasopharynx through selective eradication of their ability to induce apoptosis in infected epithelial cells.
Collapse
Affiliation(s)
- Anissa Besbes
- Institut Pasteur, Invasive Bacterial Infections Unit, Paris, France
| | - Salomé Le Goff
- Institut Pasteur, Invasive Bacterial Infections Unit, Paris, France
| | - Ana Antunes
- Institut Pasteur, Invasive Bacterial Infections Unit, Paris, France
| | - Aude Terrade
- Institut Pasteur, Invasive Bacterial Infections Unit, Paris, France
| | - Eva Hong
- Institut Pasteur, Invasive Bacterial Infections Unit, Paris, France
| | - Dario Giorgini
- Institut Pasteur, Invasive Bacterial Infections Unit, Paris, France
| | | | | |
Collapse
|
11
|
Sitaraman R. Helicobacter pylori DNA methyltransferases and the epigenetic field effect in cancerization. Front Microbiol 2014; 5:115. [PMID: 24723914 PMCID: PMC3972471 DOI: 10.3389/fmicb.2014.00115] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 03/07/2014] [Indexed: 12/23/2022] Open
|
12
|
Silmon de Monerri NC, Kim K. Pathogens hijack the epigenome: a new twist on host-pathogen interactions. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:897-911. [PMID: 24525150 DOI: 10.1016/j.ajpath.2013.12.022] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 12/01/2013] [Accepted: 12/05/2013] [Indexed: 02/07/2023]
Abstract
Pathogens have evolved strategies to promote their survival by dramatically modifying the transcriptional profile and protein content of the host cells they infect. Modifications of the host transcriptome and proteome are mediated by pathogen-encoded effector molecules that modulate host cells through a variety of different mechanisms. Recent studies highlight the importance of the host chromatin and other epigenetic regulators as targets of pathogens. Host gene regulatory mechanisms may be targeted through cytoplasmic signaling, directly by pathogen effector proteins, and possibly by pathogen RNA. Although many of these changes are short-lived and persist only during the course of infection, several studies indicate that pathogens are able to induce long-term, heritable changes that are essential to pathogenesis of infectious diseases and persistence of pathogens within their hosts. In this review, we discuss how pathogens modulate the epigenome of host cells, a new and flourishing avenue of host-pathogen interaction studies.
Collapse
Affiliation(s)
- Natalie C Silmon de Monerri
- Departments of Medicine, Pathology, and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York
| | - Kami Kim
- Departments of Medicine, Pathology, and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York.
| |
Collapse
|
13
|
Lei L, Dong X, Li Z, Zhong G. Identification of a novel nuclear localization signal sequence in Chlamydia trachomatis-secreted hypothetical protein CT311. PLoS One 2013; 8:e64529. [PMID: 23717625 PMCID: PMC3662721 DOI: 10.1371/journal.pone.0064529] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Accepted: 04/16/2013] [Indexed: 12/03/2022] Open
Abstract
We previously reported that Chlamydia trachomatis hypothetical protein CT311 was secreted out of chlamydial inclusion and into host cell cytosol. We now found that CT311 further entered host cell nucleus at the late stage of infection and continued to accumulate in the nucleus of C. trachomatis-infected cells. When CT311 was expressed via a transgene in mammalian cells, CT311 protein was exclusively detected in the nucleus, suggesting that CT311 by itself is sufficient for nuclear targeting. However, preexisting nuclear CT311 did not affect subsequent chlamydial infection. Using deletion constructs, we mapped a nuclear localization signal sequence of CT311 to residues 21 to 63 (21AVEGKPLSRAAQLRERRKDLHVSGKPSPRYALKKRALEAKKNK63). This sequence was sufficient for targeting a heterologous protein into mammalian cell nucleus and it contains two independent clusters of basic residues (34RERRK38 and 53KKRALEAKKNK63 respectively). Deletion or alanine substitution of the basic residues in either cluster led to loss of nuclear targeting activity, suggesting that both clusters are critical for the nuclear targeting function. These observations have demonstrated that the hypothetical protein CT311 possesses a novel nuclear localization signal sequence with dual modules of basic residues for targeting host cell nucleus during Chlamydia trachomatis infection.
Collapse
Affiliation(s)
- Lei Lei
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Xiaohua Dong
- Department of Pharmacology, School of Pharmacy, Hebei Northern University, Zhangjiakou, Hebei, P. R. China
| | - Zhongyu Li
- Department of Microbiology, University of South China, Hengyang, Hunan, P. R. China
| | - Guangming Zhong
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
14
|
Prediction and screening of nuclear targeting proteins with nuclear localization signals in Helicobacter pylori. J Microbiol Methods 2012; 91:490-6. [PMID: 23079023 DOI: 10.1016/j.mimet.2012.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 10/05/2012] [Accepted: 10/09/2012] [Indexed: 01/26/2023]
Abstract
Host cell pathology induced by nuclear targeting of bacterial proteins has recently been identified as a pathogenic mechanism of bacteria. However, very few bacterial proteins were identified to target the nuclei of host cells. This study was designed to screen nuclear targeting proteins with nuclear localization signals (NLSs) in Helicobacter pylori using a combination of bioinformatic analysis and the Gateway recombinational cloning system. Forty-nine functional or hypothetical proteins were predicted to carry the putative NLSs among 1570 open reading frames (ORFs) of H. pylori 26695. Entire sets of 49 H. pylori ORFs were cloned for the generation of green fluorescent protein-tagged proteins using the Gateway recombinational cloning system. Twenty-six H. pylori proteins with the putative NLSs were found to target in the nuclei of COS-7 cells, whereas 23 were localized in the cytoplasm of host cells. Deletion of NLS sequences from four selected nuclear targeting proteins, urease subunit A, Omp18, secreted protein involved in flagellar motility, and response regulator, resulted in cytoplasmic localization of these mutant proteins. In conclusion, a combination of bioinformatic analysis and the Gateway cloning system was shown to be a useful tool for large-scale screening of nuclear targeting proteins with NLSs in H. pylori, which can be used to better understand the H. pylori-directed host cell pathology.
Collapse
|