1
|
Lin Q, Li W, Zhang Y, Li Y, Liu P, Huang X, Huang K, Cao D, Gong Q, Zhou D, An D. Brain Morphometric Alterations in Focal to Bilateral Tonic-Clonic Seizures in Epilepsy Associated With Excitatory/Inhibitory Imbalance. CNS Neurosci Ther 2024; 30:e70129. [PMID: 39582215 PMCID: PMC11586465 DOI: 10.1111/cns.70129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND Focal to bilateral tonic-clonic seizures (FBTCS) represent the most severe seizure type in temporal lobe epilepsy (TLE), associated with extensive network abnormalities. Nevertheless, the genetic and cellular factors predispose specific TLE patients to FBTCS remain poorly understood. This study aimed to elucidate the relationship between brain morphometric alterations and transcriptional profiles in TLE patients with FBTCS (FBTCS+) compared to those without FBTCS (FBTCS-). METHODS We enrolled 126 unilateral TLE patients (89 FBTCS+ and 37 FBTCS-) along with 60 age- and gender-matched healthy controls (HC). We assessed gray matter volume to identify morphometric differences between patients and HC. Partial least squares regression was employed to investigate the association between the morphometric disparities and human brain transcriptomic data obtained from the Allen Human Brain Atlas. RESULTS Compared with HC, FBTCS+ patients exhibited morphometric alterations in bilateral cortical and subcortical regions. Conversely, FBTCS- patients exhibited more localized alterations. Imaging transcriptomic analysis revealed both FBTCS- and FBTCS+ groups harbored genes that spatially correlated with morphometric alterations. Additionally, pathway enrichment analysis identified common pathways involved in neural development and synaptic function in both groups. The FBTCS- group displayed unique pathway enrichment in catabolic processes. Furthermore, mapping these genes to specific cell types indicated enrichment in excitatory and inhibitory neurons in the FBTCS- group, while FBTCS+ group only enriched in excitatory neurons. The distinct cellular expression differences between FBTCS- and FBTCS+ groups are consistent with the distribution patterns of GABAergic expression. CONCLUSION We applied imaging transcriptomic analysis linking the morphometric changes and neurobiology in TLE patients with and without FBTCS, including gene expression, biological pathways, cell types, and neurotransmitter receptors. Our findings revealed abnormalities in inhibitory neurons and altered distribution patterns of GABAergic receptors in FBTCS+, suggesting that an excitatory/inhibitory imbalance may contribute to the increased susceptibility of certain individuals to FBTCS.
Collapse
Affiliation(s)
- Qiuxing Lin
- Department of Neurology, West China HospitalSichuan UniversityChengduSichuanChina
| | - Wei Li
- Department of Neurology, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yingying Zhang
- Department of Neurology, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yuming Li
- Department of Neurology, West China HospitalSichuan UniversityChengduSichuanChina
| | - Peiwen Liu
- Department of Neurology, West China HospitalSichuan UniversityChengduSichuanChina
| | - Xiang Huang
- Department of Neurology, West China HospitalSichuan UniversityChengduSichuanChina
| | - Kailing Huang
- Department of Neurology, West China HospitalSichuan UniversityChengduSichuanChina
| | - Danyang Cao
- Department of Neurology, West China HospitalSichuan UniversityChengduSichuanChina
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center, West China HospitalSichuan UniversityChengduSichuanChina
| | - Dong Zhou
- Department of Neurology, West China HospitalSichuan UniversityChengduSichuanChina
| | - Dongmei An
- Department of Neurology, West China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
2
|
Li K, Cao JF, Gong Y, Xiong L, Wu M, Qi Y, Ying X, Liu D, Ma X, Zhang X. Rapamycin improves the survival of epilepsy model cells by blocking phosphorylation of mTOR base on computer simulations and cellular experiments. Neurochem Int 2024; 176:105746. [PMID: 38641027 DOI: 10.1016/j.neuint.2024.105746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
PURPOSE Epilepsy is a chronic brain dysfunction characterized by recurrent epileptic seizures. Rapamycin is a naturally occurring macrolide from Streptomyces hygroscopicus, and rapamycin may provide a protective effect on the nervous system by affecting mTOR. Therefore, we investigated the pharmacologic mechanism of rapamycin treating epilepsy through bioinformatics analysis, cellular experiments and supercomputer simulation. METHODS Bioinformatics analysis was used to analyze targets of rapamycin treating epilepsy. We established epilepsy cell model by HT22 cells. RT-qPCR, WB and IF were used to verify the effects of rapamycin on mTOR at gene level and protein level. Computer simulations were used to model and evaluate the stability of rapamycin binding to mTOR protein. RESULTS Bioinformatics indicated mTOR played an essential role in signaling pathways of cell growth and cell metabolism. Cellular experiments showed that rapamycin could promote cell survival, and rapamycin did not have an effect on mRNA expression of mTOR. However, rapamycin was able to significantly inhibit the phosphorylation of mTOR at protein level. Computer simulations indicated that rapamycin was involved in the treatment of epilepsy through regulating phosphorylation of mTOR at protein level. CONCLUSION We found that rapamycin was capable of promoting the survival of epilepsy cells by inhibiting the phosphorylation of mTOR at protein level, and rapamycin did not have an effect on mRNA expression of mTOR. In addition to the traditional study that rapamycin affects mTORC1 complex by acting on FKBP12, this study found rapamycin could also directly block the phosphorylation of mTOR, therefore affecting the assembly of mTORC1 complex and mTOR signaling pathway.
Collapse
Affiliation(s)
- Kezhou Li
- College of Medicine, Southwest Jiaotong University, Chengdu, China; Pancreatic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Jun-Feng Cao
- Chengdu Medical College, Chengdu, China; College of Medicine, Southwest Jiaotong University, Chengdu, China
| | | | - Li Xiong
- Chengdu Medical College, Chengdu, China
| | - Mei Wu
- Chengdu Medical College, Chengdu, China
| | - Yue Qi
- Chengdu Medical College, Chengdu, China
| | | | | | - Xuntai Ma
- Chengdu Medical College, Chengdu, China; The First Affiliated Hospital of Clinical Medical College of Chengdu Medical College, Chengdu, China.
| | - Xiao Zhang
- Chengdu Medical College, Chengdu, China.
| |
Collapse
|
3
|
Patodia S, Lim YM, Chung F, Stylianou I, El Hachami H, Thom M. Cortical neuronal hypertrophy and mTOR pathway activation in CAN regions in SUDEP. Epilepsia 2022; 63:2427-2438. [PMID: 35716147 PMCID: PMC9795893 DOI: 10.1111/epi.17335] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Dysfunctional connectivity and preexisting structural abnormalities of central autonomic network (CAN) regions have been shown on magnetic resonance imaging (MRI) in sudden unexpected death in epilepsy (SUDEP) and may be mechanistically relevant. In a previous postmortem study we reported increased microglia in CAN regions, including the superior temporal gyrus (STG) in SUDEP. In this current study we investigated mammalian target of rapamycin (mTOR) pathway activation and neuronal c-Fos activation in CAN regions in SUDEP compared to control groups. METHODS In a series of 59 postmortem cases (SUDEP, n = 26; epilepsy controls [EPCs], n = 14; and nonepilepsy controls [NECs], n = 19), we quantified pS6-240/4, pS6-235/6 (markers of mTOR activation) and c-Fos neuronal densities and labeling index in the STG, anterior cingulate, insula, frontobasal, and pulvinar regions using immunohistochemistry with whole-slide automated image analysis. RESULTS Significantly more pS6-positive neurons were present in the STG in cases with a history of recent seizures prior to death and also in SUDEP compared to other cause of death groups. No differences were noted for c-Fos neuronal labeling in any region between cause of death groups. Cortical neuronal hypertrophy in the STG was observed in some SUDEP cases and associated with pS6-240/4 expression. pS6-235/6 highlighted neuronal intranuclear inclusions, mainly in SUDEP cases and in the STG region. SIGNIFICANCE Neuronal labeling for pS6 in the STG correlated with both seizure activity in the period prior to death and SUDEP. Further investigations are required to explore the significance of this region in terms of autonomic network dysfunction that may increase the vulnerability for SUDEP.
Collapse
Affiliation(s)
- Smriti Patodia
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
| | - Yau Mun Lim
- Department of NeurodegenerationUCL Queen Square Institute of NeurologyLondonUK
| | - Freda Chung
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
| | - Irene Stylianou
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
| | - Hanaa El Hachami
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
| | - Maria Thom
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
| |
Collapse
|
4
|
Siang LH, Arulsamy A, Yoon YK, Shaikh MF. Fruits for Seizures? A Systematic Review on the Potential Anti-Convulsant Effects of Fruits and their Phytochemicals. Curr Neuropharmacol 2022; 20:1925-1940. [PMID: 34517803 PMCID: PMC9886799 DOI: 10.2174/1570159x19666210913120637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/04/2021] [Accepted: 09/10/2021] [Indexed: 11/22/2022] Open
Abstract
Epilepsy is a devastating neurological disorder. Current anti-convulsant drugs are only effective in about 70% of patients, while the rest remain drug-resistant. Thus, alternative methods have been explored to control seizures in these drug-resistant patients. One such method may be through the utilization of fruit phytochemicals. These phytochemicals have been reported to have beneficial properties such as anti-convulsant, anti-oxidant, and anti-inflammatory activities. However, some fruits may also elicit harmful effects. This review aims to summarize and elucidate the anti- or pro-convulsant effects of fruits used in relation to seizures in hopes of providing a good therapeutic reference to epileptic patients and their carers. Three databases, SCOPUS, ScienceDirect, and PubMed, were utilized for the literature search. Based on the PRISMA guidelines, a total of 40 articles were selected for critical appraisal in this review. Overall, the extracts and phytochemicals of fruits managed to effectively reduce seizure activities in various preclinical seizure models, acting mainly through the activation of the inhibitory neurotransmission and blocking the excitatory neurotransmission. Only star fruit has been identified as a pro-convulsant fruit due to its caramboxin and oxalate compounds. Future studies should focus more on utilizing these fruits as possible treatment strategies for epilepsy.
Collapse
Affiliation(s)
| | | | | | - Mohd. Farooq Shaikh
- Address correspondence to this author at the Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia; Tel/Fax: +60 3 5514 4483; E-mail:
| |
Collapse
|
5
|
Hwang K, Vaknalli RN, Addo-Osafo K, Vicente M, Vossel K. Tauopathy and Epilepsy Comorbidities and Underlying Mechanisms. Front Aging Neurosci 2022; 14:903973. [PMID: 35923547 PMCID: PMC9340804 DOI: 10.3389/fnagi.2022.903973] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
Tau is a microtubule-associated protein known to bind and promote assembly of microtubules in neurons under physiological conditions. However, under pathological conditions, aggregation of hyperphosphorylated tau causes neuronal toxicity, neurodegeneration, and resulting tauopathies like Alzheimer's disease (AD). Clinically, patients with tauopathies present with either dementia, movement disorders, or a combination of both. The deposition of hyperphosphorylated tau in the brain is also associated with epilepsy and network hyperexcitability in a variety of neurological diseases. Furthermore, pharmacological and genetic targeting of tau-based mechanisms can have anti-seizure effects. Suppressing tau phosphorylation decreases seizure activity in acquired epilepsy models while reducing or ablating tau attenuates network hyperexcitability in both Alzheimer's and epilepsy models. However, it remains unclear whether tauopathy and epilepsy comorbidities are mediated by convergent mechanisms occurring upstream of epileptogenesis and tau aggregation, by feedforward mechanisms between the two, or simply by coincident processes. In this review, we investigate the relationship between tauopathies and seizure disorders, including temporal lobe epilepsy (TLE), post-traumatic epilepsy (PTE), autism spectrum disorder (ASD), Dravet syndrome, Nodding syndrome, Niemann-Pick type C disease (NPC), Lafora disease, focal cortical dysplasia, and tuberous sclerosis complex. We also explore potential mechanisms implicating the role of tau kinases and phosphatases as well as the mammalian target of rapamycin (mTOR) in the promotion of co-pathology. Understanding the role of these co-pathologies could lead to new insights and therapies targeting both epileptogenic mechanisms and cognitive decline.
Collapse
|
6
|
Li H, Kang S, Sun L. A Study on the Evaluation of Polyenoic Vegetable Oils and Their Female Health Benefits Based on Time Series Analysis Model: The Case of Peony Seed Oil. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:3127698. [PMID: 35368936 PMCID: PMC8975637 DOI: 10.1155/2022/3127698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/29/2022] [Indexed: 11/17/2022]
Abstract
Polyenoic vegetable oils mainly contain polyenoic acids such as linoleic acid and linolenic acid, as well as active ingredients such as VE, phytosterols, mineral elements, and squalene. Among them, schisandra oil, kiwi seed oil, grape seed oil, maitake fruit oil, and evening primrose seed oil all contain up to 80% or more polyenoic acids. Studies have shown that polygenic vegetable oils have the effects of assisting in lowering blood lipids, antioxidation, delaying ageing, anti-inflammation, sun protection, moisturizing, slimming and weight loss, etc. They can be widely used in nutritional and healthy edible oils, health food, skin care, and cosmetic products and have great prospects for development and utilization. This paper explores the application of artificial neural networks in the analysis of data. A nonlinear time series prediction method based on the BP algorithm is proposed. The prediction accuracy is much higher than that of the traditional method.
Collapse
Affiliation(s)
- Haibo Li
- Shengnong Technology Group, Jinzhong, Shanxi 030805, China
| | - Songhao Kang
- College of Engineering, China Agricultural University, Haidian, Beijing 100083, China
| | - Lijuan Sun
- Beijing Madixin Food Technology Co,Ltd., Haidian, Beijing 100036, China
| |
Collapse
|
7
|
Twible C, Abdo R, Zhang Q. Astrocyte Role in Temporal Lobe Epilepsy and Development of Mossy Fiber Sprouting. Front Cell Neurosci 2021; 15:725693. [PMID: 34658792 PMCID: PMC8514632 DOI: 10.3389/fncel.2021.725693] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Epilepsy affects approximately 50 million people worldwide, with 60% of adult epilepsies presenting an onset of focal origin. The most common focal epilepsy is temporal lobe epilepsy (TLE). The role of astrocytes in the presentation and development of TLE has been increasingly studied and discussed within the literature. The most common histopathological diagnosis of TLE is hippocampal sclerosis. Hippocampal sclerosis is characterized by neuronal cell loss within the Cornu ammonis and reactive astrogliosis. In some cases, mossy fiber sprouting may be observed. Mossy fiber sprouting has been controversial in its contribution to epileptogenesis in TLE patients, and the mechanisms surrounding the phenomenon have yet to be elucidated. Several studies have reported that mossy fiber sprouting has an almost certain co-existence with reactive astrogliosis within the hippocampus under epileptic conditions. Astrocytes are known to play an important role in the survival and axonal outgrowth of central and peripheral nervous system neurons, pointing to a potential role of astrocytes in TLE and associated cellular alterations. Herein, we review the recent developments surrounding the role of astrocytes in the pathogenic process of TLE and mossy fiber sprouting, with a focus on proposed signaling pathways and cellular mechanisms, histological observations, and clinical correlations in human patients.
Collapse
Affiliation(s)
- Carolyn Twible
- Department of Pathology and Lab Medicine, Western University, London, ON, Canada
| | - Rober Abdo
- Department of Pathology and Lab Medicine, Western University, London, ON, Canada.,Department of Anatomy and Cell Biology, Western University, London, ON, Canada
| | - Qi Zhang
- Department of Pathology and Lab Medicine, Western University, London, ON, Canada.,Department of Pathology and Lab Medicine, London Health Sciences Centre, University Hospital, London, ON, Canada
| |
Collapse
|
8
|
Bando SY, Bertonha FB, Pimentel-Silva LR, de Oliveira JGM, Carneiro MAD, Oku MHM, Wen HT, Castro LHM, Moreira-Filho CA. Hippocampal CA3 transcriptional modules associated with granule cell alterations and cognitive impairment in refractory mesial temporal lobe epilepsy patients. Sci Rep 2021; 11:10257. [PMID: 33986407 PMCID: PMC8119682 DOI: 10.1038/s41598-021-89802-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/30/2021] [Indexed: 01/03/2023] Open
Abstract
In about a third of the patients with epilepsy the seizures are not drug-controlled. The current limitation of the antiepileptic drug therapy derives from an insufficient understanding of epilepsy pathophysiology. In order to overcome this situation, it is necessary to consider epilepsy as a disturbed network of interactions, instead of just looking for changes in single molecular components. Here, we studied CA3 transcriptional signatures and dentate gyrus histopathologic alterations in hippocampal explants surgically obtained from 57 RMTLE patients submitted to corticoamygdalohippocampectomy. By adopting a systems biology approach, integrating clinical, histopathological, and transcriptomic data (weighted gene co-expression network analysis), we were able to identify transcriptional modules highly correlated with age of disease onset, cognitive dysfunctions, and granule cell alterations. The enrichment analysis of transcriptional modules and the functional characterization of the highly connected genes in each trait-correlated module allowed us to unveil the modules’ main biological functions, paving the way for further investigations on their roles in RMTLE pathophysiology. Moreover, we found 15 genes with high gene significance values which have the potential to become novel biomarkers and/or therapeutic targets in RMTLE.
Collapse
Affiliation(s)
- Silvia Yumi Bando
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, 05403-900, Brazil
| | - Fernanda Bernardi Bertonha
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, 05403-900, Brazil
| | - Luciana Ramalho Pimentel-Silva
- Department of Neurology, Faculdade de Ciências Médicas da Universidade Estadual de Campinas, UNICAMP, Campinas, SP, 13083-887, Brazil
| | | | | | - Mariana Hiromi Manoel Oku
- Department of Neurology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, 05403-900, Brazil
| | - Hung-Tzu Wen
- Epilepsy Surgery Group, Hospital das Clínicas da FMUSP, São Paulo, SP, 05403-900, Brazil
| | | | | |
Collapse
|
9
|
Szala-Rycaj J, Zagaja M, Szewczyk A, Andres-Mach M. Selected flavonoids and their role in the treatment of epilepsy – a review of the latest reports from experimental studies. Acta Neurobiol Exp (Wars) 2021. [DOI: 10.21307/ane-2021-014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
Decanoic acid inhibits mTORC1 activity independent of glucose and insulin signaling. Proc Natl Acad Sci U S A 2020; 117:23617-23625. [PMID: 32879008 PMCID: PMC7519326 DOI: 10.1073/pnas.2008980117] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The mTORC1 complex provides a critical role in cell function, regulating a variety of processes including growth and autophagy. mTORC1 signaling is hyperactivated in a range of common diseases including cancer, epilepsy, and neurodegenerative disorders. Hence, mTORC1 signaling provides an important target for regulation in many contexts. Here, we show that decanoic acid, a key component of a widely used medicinal diet, reduces mTORC1 activity. We identify this in a tractable model system, and validate it in ex vivo rat brain tissue and in human iPSC-derived astrocytes from patients with a clinically relevant disease. Thus, we provide insight into an easily accessible therapeutic approach for a range of diseases. Low-glucose and -insulin conditions, associated with ketogenic diets, can reduce the activity of the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway, potentially leading to a range of positive medical and health-related effects. Here, we determined whether mTORC1 signaling is also a target for decanoic acid, a key component of the medium-chain triglyceride (MCT) ketogenic diet. Using a tractable model system, Dictyostelium, we show that decanoic acid can decrease mTORC1 activity, under conditions of constant glucose and in the absence of insulin, measured by phosphorylation of eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1). We determine that this effect of decanoic acid is dependent on a ubiquitin regulatory X domain-containing protein, mediating inhibition of a conserved Dictyostelium AAA ATPase, p97, a homolog of the human transitional endoplasmic reticulum ATPase (VCP/p97) protein. We then demonstrate that decanoic acid decreases mTORC1 activity in the absence of insulin and under high-glucose conditions in ex vivo rat hippocampus and in tuberous sclerosis complex (TSC) patient-derived astrocytes. Our data therefore indicate that dietary decanoic acid may provide a new therapeutic approach to down-regulate mTORC1 signaling.
Collapse
|
11
|
Jeong KH, Cho KO, Lee MY, Kim SY, Kim WJ. Vascular endothelial growth factor receptor-3 regulates astroglial glutamate transporter-1 expression via mTOR activation in reactive astrocytes following pilocarpine-induced status epilepticus. Glia 2020; 69:296-309. [PMID: 32835451 DOI: 10.1002/glia.23897] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/19/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022]
Abstract
Recent evidence has shown that the vascular endothelial growth factor (VEGF) system plays a crucial role in several neuropathological processes. We previously reported an upregulation of VEGF-C and its receptor, VEGFR-3, in reactive astrocytes after the onset of status epilepticus (SE). However, it remains unknown, which molecules act as downstream signals following VEGFR-3 upregulation, and are involved in reactive astrogliosis after SE. Therefore, we investigated whether VEGFR-3 upregulation within reactive astrocytes is associated with the activation of mammalian target of rapamycin (mTOR) signaling, which we confirmed by assaying for the phosphorylated form of S6 protein (pS6), and whether VEGFR-3-mediated mTOR activation induces astroglial glutamate transporter-1 (GLT-1) expression in the hippocampus after pilocarpine-induced SE. We found that spatiotemporal expression of pS6 was consistent with VEGFR-3 expression in the hippocampus after SE, and that both pS6 and VEGFR-3 were highly expressed in SE-induced reactive astrocytes. Treatment with the mTOR inhibitor rapamycin decreased astroglial VEGFR-3 expression and GLT-1 expression after SE. Treatment with a selective inhibitor for VEGFR-3 attenuated astroglial pS6 expression as well as suppressed GLT-1 expression and astroglial reactivity in the hippocampus after SE. These findings demonstrate that VEGFR-3-mediated mTOR activation could contribute to the regulation of GLT-1 expression in reactive astrocytes during the subacute phase of epilepsy. In conclusion, the present study suggests that VEGFR-3 upregulation in reactive astrocytes may play a role in preventing hyperexcitability induced by continued seizure activity.
Collapse
Affiliation(s)
- Kyoung Hoon Jeong
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Pharmacology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyung-Ok Cho
- Department of Pharmacology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea.,Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Mun-Yong Lee
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea.,Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seong Yun Kim
- Department of Pharmacology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea.,Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Won-Joo Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
12
|
Jin J, Shen X, Tian L, He G, Zhang Y. Pyrazolo[4,3-c]pyridine-4-one (PP-4-one) Exhibits Anti-Epileptogenic Effect in Rat Model of Traumatic Epilepsy by Mammalian Target of Rapamycin (mTOR) Signaling Pathway Downregulation. Med Sci Monit 2020; 26:e923919. [PMID: 32687486 PMCID: PMC7392056 DOI: 10.12659/msm.923919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background Post-traumatic epilepsy (PTE) is a common type of acquired epilepsies secondary to traumatic brain injury (TBI), accounting for approximately 10–25% of patients. The present study evaluated activity of PP-4-one against mTOR signaling activation in a rat model of FeCl2-induced post-traumatic epilepsy. Material/Methods Epilepsy in rats was induced by injecting 10 μl FeCl2 (concentration 100 mM) at a uniform rate of 1 μl/minute. The iNOS expression was detected using a Leica microscope connected to a digital camera system. Reverse transcription polymerase chain reaction (RT-PCR) was used for determination of NR1 mRNA expression. Results The post-traumatic epilepsy induced neuronal degeneration in the hippocampus and frontal cortex of the rats. Treatment with PP-4-one prevented neuronal degeneration in the hippocampus and frontal cortex in rats with post-traumatic epilepsy. The data revealed markedly higher levels of p-mTOR and p-P70S6K in rat hippocampal tissues after induction of traumatic epilepsy. Treatment of post-traumatic epilepsy rats with PP-4-one significantly suppressed p-mTOR and p-P70S6K expression, and PP-4-one treatment reduced epileptic brain injury in the rats with post-traumatic epilepsy. Conclusions PP-4-one exhibits an anti-epileptogenic effect in the rat model of PTE by inhibiting behavioral seizures through suppression of iNOS and astrocytic proliferation. Moreover, PP-4-one treatment suppressed NR1 expression and targeted the mTOR pathway in PTE-induced rats. Thus, PP-4-one shows promise as a novel and effective therapeutic agent for treatment of epilepsy induced by PTE.
Collapse
Affiliation(s)
- Jungong Jin
- Department of Neurosurgery, Xi'an International Medical Center Hospital, Xi'an, Shaanxi, China (mainland)
| | - Xi Shen
- Clinical Experimental Center, Xi'an International Medical Center Hospital, Xi'an, Shaanxi, China (mainland)
| | - Lu Tian
- Department of Neurology, Xi'an International Medical Center Hospital, Xi'an, Shaanxi, China (mainland)
| | - Guoyishi He
- Department of Neurosurgery, Xi'an International Medical Center Hospital, Xi'an, Shaanxi, China (mainland)
| | - Ying Zhang
- Department of Neurology, Xi'an International Medical Center Hospital, Xi'an, Shaanxi, China (mainland)
| |
Collapse
|
13
|
Han CL, Liu YP, Guo CJ, Du TT, Jiang Y, Wang KL, Shao XQ, Meng FG, Zhang JG. The lncRNA H19 binding to let-7b promotes hippocampal glial cell activation and epileptic seizures by targeting Stat3 in a rat model of temporal lobe epilepsy. Cell Prolif 2020; 53:e12856. [PMID: 32648622 PMCID: PMC7445408 DOI: 10.1111/cpr.12856] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/27/2020] [Accepted: 05/16/2020] [Indexed: 12/18/2022] Open
Abstract
Objectives Glial cell activation contributes to the inflammatory response and occurrence of epilepsy. Our preliminary study demonstrated that the long non‐coding RNA, H19, promotes hippocampal glial cell activation during epileptogenesis. However, the precise mechanisms underlying this effect remain unclear. Materials and methods H19 and let‐7b were overexpressed or silenced using an adeno‐associated viral vector in vivo. Their expression in a kainic acid‐induced epilepsy model was evaluated by real‐time quantitative PCR, fluorescence in situ hybridization, and cytoplasmic and nuclear RNA isolation. A dual‐luciferase reporter assay was used to evaluate the direct binding of let‐7b to its target genes and H19. Western blot, video camera monitoring and Morris water maze were performed to confirm the role of H19 and let7b on epileptogenesis. Results H19 was increased in rat hippocampus neurons after status epilepticus, which might be due to epileptic seizure‐induced hypoxia. Increased H19 aggravated the epileptic seizures, memory impairment and mossy fibre sprouting of the epileptic rats. H19 could competitively bind to let‐7b to suppress its expression. Overexpression of let‐7b inhibited hippocampal glial cell activation, inflammatory response and epileptic seizures by targeting Stat3. Moreover, overexpressed H19 reversed the inhibitory effect of let‐7b on glial cell activation. Conclusions LncRNA H19 could competitively bind to let‐7b to promote hippocampal glial cell activation and epileptic seizures by targeting Stat3 in a rat model of temporal lobe epilepsy.
Collapse
Affiliation(s)
- Chun-Lei Han
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yun-Peng Liu
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Chen-Jia Guo
- Department of Pathology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ting-Ting Du
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Ying Jiang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Kai-Liang Wang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Xiao-Qiu Shao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fan-Gang Meng
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jian-Guo Zhang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Sha L, Chen T, Deng Y, Du T, Ma K, Zhu W, Shen Y, Xu Q. Hsp90 inhibitor HSP990 in very low dose upregulates EAAT2 and exerts potent antiepileptic activity. Theranostics 2020; 10:8415-8429. [PMID: 32724478 PMCID: PMC7381737 DOI: 10.7150/thno.44721] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 06/11/2020] [Indexed: 12/26/2022] Open
Abstract
Rationale: Dysfunction or reduced levels of EAAT2 have been documented in epilepsy. We previously demonstrated the antiepileptic effects of Hsp90 inhibitor 17AAG in temporal lobe epilepsy by preventing EAAT2 degradation. Because of the potential toxicities of 17AAG, this study aimed to identify an alternative Hsp90 inhibitor with better performance on Hsp90 inhibition, improved blood-brain barrier penetration and minimal toxicity. Methods: We used cell-based screening and animal models of epilepsy, including mouse models of epilepsy and Alzheimer's disease, and a cynomolgus monkey model of epilepsy, to evaluate the antiepileptic effects of new Hsp90 inhibitors. Results: In both primary cultured astrocytes and normal mice, HSP990 enhanced EAAT2 levels at a lower dose than other Hsp90 inhibitors. In epileptic mice, administration of 0.1 mg/kg HSP990 led to upregulation of EAAT2 and inhibition of spontaneous seizures. Additionally, HSP990 inhibited seizures and improved cognitive functions in the APPswe/PS1dE9 transgenic model of Alzheimer's disease. In a cynomolgus monkey model of temporal lobe epilepsy, oral administration of low-dose HSP990 completely suppressed epileptiform discharges for up to 12 months, with no sign of hepatic and renal toxicity. Conclusions: These results support further preclinical studies of HSP990 treatment for temporal lobe epilepsy.
Collapse
Affiliation(s)
- Longze Sha
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Neuroscience center, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Ting Chen
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Yu Deng
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Tingfu Du
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
- Neuroscience center, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Kaili Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
- Neuroscience center, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Wanwan Zhu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Neuroscience center, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Yan Shen
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Qi Xu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Neuroscience center, Chinese Academy of Medical Sciences, Beijing, 100005, China
| |
Collapse
|
15
|
Liu JYW, Dzurova N, Al-Kaaby B, Mills K, Sisodiya SM, Thom M. Granule Cell Dispersion in Human Temporal Lobe Epilepsy: Proteomics Investigation of Neurodevelopmental Migratory Pathways. Front Cell Neurosci 2020; 14:53. [PMID: 32256318 PMCID: PMC7090224 DOI: 10.3389/fncel.2020.00053] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/21/2020] [Indexed: 12/23/2022] Open
Abstract
Granule cell dispersion (GCD) is a common pathological feature observed in the hippocampus of patients with Mesial Temporal Lobe Epilepsy (MTLE). Pathomechanisms underlying GCD remain to be elucidated, but one hypothesis proposes aberrant reactivation of neurodevelopmental migratory pathways, possibly triggered by febrile seizures. This study aims to compare the proteomes of basal and dispersed granule cells in the hippocampus of eight MTLE patients with GCD to identify proteins that may mediate GCD in MTLE. Quantitative proteomics identified 1,882 proteins, of which 29% were found in basal granule cells only, 17% in dispersed only and 54% in both samples. Bioinformatics analyses revealed upregulated proteins in dispersed samples were involved in developmental cellular migratory processes, including cytoskeletal remodeling, axon guidance and signaling by Ras homologous (Rho) family of GTPases (P < 0.01). The expression of two Rho GTPases, RhoA and Rac1, was subsequently explored in immunohistochemical and in situ hybridization studies involving eighteen MTLE cases with or without GCD, and three normal post mortem cases. In cases with GCD, most dispersed granule cells in the outer-granular and molecular layers have an elongated soma and bipolar processes, with intense RhoA immunolabeling at opposite poles of the cell soma, while most granule cells in the basal granule cell layer were devoid of RhoA. A higher percentage of cells expressing RhoA was observed in cases with GCD than without GCD (P < 0.004). In GCD cases, the percentage of cells expressing RhoA was significantly higher in the inner molecular layer than the granule cell layer (P < 0.026), supporting proteomic findings. In situ hybridization studies using probes against RHOA and RAC1 mRNAs revealed fine peri- and nuclear puncta in granule cells of all cases. The density of cells expressing RHOA mRNAs was significantly higher in the inner molecular layer of cases with GCD than without GCD (P = 0.05). In summary, our study has found limited evidence for ongoing adult neurogenesis in the hippocampus of patients with MTLE, but evidence of differential dysmaturation between dispersed and basal granule cells has been demonstrated, and elevated expression of Rho GTPases in dispersed granule cells may contribute to the pathomechanisms underpinning GCD in MTLE.
Collapse
Affiliation(s)
- Joan Y W Liu
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, London, United Kingdom.,Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom.,School of Life Sciences, University of Westminster, London, United Kingdom
| | - Natasha Dzurova
- School of Life Sciences, University of Westminster, London, United Kingdom
| | - Batoul Al-Kaaby
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Kevin Mills
- Biological Mass Spectrometry Centre, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom.,Chalfont Centre for Epilepsy, Chalfont St Peter, United Kingdom
| | - Maria Thom
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, London, United Kingdom.,Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
16
|
Hodges SL, Lugo JN. Therapeutic role of targeting mTOR signaling and neuroinflammation in epilepsy. Epilepsy Res 2020; 161:106282. [PMID: 32036255 PMCID: PMC9205332 DOI: 10.1016/j.eplepsyres.2020.106282] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/03/2020] [Accepted: 01/29/2020] [Indexed: 02/08/2023]
Abstract
Existing therapies for epilepsy are primarily symptomatic and target mechanisms of neuronal transmission in order to restore the excitatory/inhibitory imbalance in the brain after seizures. However, approximately one third of individuals with epilepsy have medically refractory epilepsy and do not respond to available treatments. There is a critical need for the development of therapeutics that extend beyond manipulation of excitatory neurotransmission and target pathological changes underlying the cause of the disease. Epilepsy is a multifaceted condition, and it could be that effective treatment involves the targeting of several mechanisms. There is evidence for both dysregulated PI3K/Akt/mTOR (mTOR) signaling and heightened neuroinflammatory processes following seizures in the brain. Signaling via mTOR has been implicated in several epileptogenic processes, including synaptic plasticity mechanisms and changes in ion channel expression following seizures. Inflammatory signaling, such as increased synthesis of cytokines and other immune molecules, has also shown to play a significant role in the development of chronic epilepsy. mTOR pathway activation and immune signaling are known to interact in normal physiological states, as well as influence one another following seizures. Simultaneous inhibition of both processes could be a promising therapeutic avenue to prevent the development of chronic epilepsy by targeting two key pathological mechanisms implicated in epileptogenesis.
Collapse
Affiliation(s)
- Samantha L Hodges
- Institute of Biomedical Studies, Baylor University, Waco, TX 76798, USA
| | - Joaquin N Lugo
- Institute of Biomedical Studies, Baylor University, Waco, TX 76798, USA; Department of Psychology and Neuroscience, Baylor University, Waco, TX 76798, USA; Department of Biology, Baylor University, Waco, TX 76798, USA.
| |
Collapse
|
17
|
Hyperactive Akt-mTOR pathway as a therapeutic target for pain hypersensitivity in Cntnap2-deficient mice. Neuropharmacology 2020; 165:107816. [DOI: 10.1016/j.neuropharm.2019.107816] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/09/2019] [Accepted: 10/16/2019] [Indexed: 12/19/2022]
|
18
|
Chen SG, Tsai CH, Lin CJ, Lee CC, Yu HY, Hsieh TH, Liu HL. Transcranial focused ultrasound pulsation suppresses pentylenetetrazol induced epilepsy in vivo. Brain Stimul 2019; 13:35-46. [PMID: 31575487 DOI: 10.1016/j.brs.2019.09.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 09/04/2019] [Accepted: 09/23/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Epilepsy is a neurological disorder characterized by abnormal neuron discharge, and one-third of epilepsy patients suffer from drug-resistant epilepsy (DRE). The current management for DRE includes epileptogenic lesion resection, disconnection, and neuromodulation. Neuromodulation is achieved through invasive electrical stimulus including deep brain stimulation, vagus nerve stimulation, or responsive neurostimulation (RNS). As an alternative therapy, transcranial focused ultrasound (FUS) can transcranially and non-invasively modulate neuron activity. OBJECTIVE This study seeks to verify the use of FUS pulsations to suppress spikes in an acute epileptic small-animal model, and to investigate possible biological mechanisms by which FUS pulsations interfere with epileptic neuronal activity. METHODS The study used a total of 76 Sprague-Dawley rats. For the epilepsy model, rats were administered pentylenetetrazol (PTZ) to induce acute epileptic-like abnormal neuron discharges, followed by FUS exposure. Various ultrasound parameters were set to test the epilepsy-suppressing effect, while concurrently monitoring and analyzing electroencephalogram (EEG) signals. Animal behavior was monitored and histological examinations were conducted to evaluate the hazard posed by ultrasound exposure and the expression of neuronal activity markers. Western blotting was used to evaluate the correlation between FUS-induced epileptic suppression and the PI3K-mTOR signaling pathway. RESULTS We observed that FUS pulsations effectively suppressed epileptic activity and observed EEG spectrum oscillations; the spike-suppressing effect depended on the selection of ultrasound parameters and highly correlated with FUS exposure level. Expression level changes of c-Fos and GAD65 were confirmed in the cortex and hippocampus, indicating that FUS pulsations deactivated excitatory cells and activated GABAergic terminals. No tissue damage, inflammatory response, or behavioral abnormalities were observed in rats treated with FUS under these exposure parameters. We also found that the FUS pulsations down-regulated the S6 phosphorylation and decreased pAKT expression. CONCLUSION Our results suggest that pulsed FUS exposure effectively suppresses epileptic spikes in an acute epilepsy animal model, and finds that ultrasound pulsation interferes with neuronal activity and affects the PTZ-induced PI3K-Akt-mTOR pathway, which might help explain the mechanism underlying ultrasound-related epileptic spike control.
Collapse
Affiliation(s)
- Sin-Guang Chen
- Department of Electrical Engineering, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan; Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region
| | - Chih-Hung Tsai
- Department of Electrical Engineering, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Jung Lin
- Department of Electrical Engineering, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Chia Lee
- Department of Neurosurgery, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine and Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Hsiang-Yu Yu
- School of Medicine and Brain Research Center, National Yang-Ming University, Taipei, Taiwan; Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tsung-Hsun Hsieh
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, Chang Gung University, Taoyuan, Taiwan; Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.
| | - Hao-Li Liu
- Department of Electrical Engineering, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan; Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| |
Collapse
|
19
|
Assessment of genetic variant burden in epilepsy-associated brain lesions. Eur J Hum Genet 2019; 27:1738-1744. [PMID: 31358956 DOI: 10.1038/s41431-019-0484-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 06/29/2019] [Accepted: 07/05/2019] [Indexed: 01/31/2023] Open
Abstract
It is challenging to estimate genetic variant burden across different subtypes of epilepsy. Herein, we used a comparative approach to assess the genetic variant burden and genotype-phenotype correlations in four most common brain lesions in patients with drug-resistant focal epilepsy. Targeted sequencing analysis was performed for a panel of 161 genes with a mean coverage of >400×. Lesional tissue was histopathologically reviewed and dissected from hippocampal sclerosis (n = 15), ganglioglioma (n = 16), dysembryoplastic neuroepithelial tumors (n = 8), and focal cortical dysplasia type II (n = 15). Peripheral blood (n = 12) or surgical tissue samples histopathologically classified as lesion-free (n = 42) were available for comparison. Variants were classified as pathogenic or likely pathogenic according to American College of Medical Genetics and Genomics guidelines. Overall, we identified pathogenic and likely pathogenic variants in 25.9% of patients with a mean coverage of 383×. The highest number of pathogenic/likely pathogenic variants was observed in patients with ganglioglioma (43.75%; all somatic) and dysembryoplastic neuroepithelial tumors (37.5%; all somatic), and in 20% of cases with focal cortical dysplasia type II (13.33% somatic, 6.67% germline). Pathogenic/likely pathogenic positive genes were disorder specific and BRAF V600E the only recurrent pathogenic variant. This study represents a reference for the genetic variant burden across the four most common lesion entities in patients with drug-resistant focal epilepsy. The observed large variability in variant burden by epileptic lesion type calls for whole exome sequencing of histopathologically well-characterized tissue in a diagnostic setting and in research to discover novel disease-associated genes.
Collapse
|
20
|
Glia activation of eukaryotic translation initiation factor 4e-binding protein 1 in temporal lobe epilepsy. Neuroreport 2019; 30:222-226. [PMID: 30672889 DOI: 10.1097/wnr.0000000000001188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This study was aimed to investigate whether 4e-binding protein 1 is activated during temporal lobe epileptogenesis. We used the hippocampus of patients with refractory temporal lobe epilepsy (TLE), diagnosed with hippocampal sclerosis (HS) or non-HS, to examine the distribution of phospho-4e-binding protein 1 (p4EBP1) by immunohistochemical staining (n=3-5). We also examined p4EBP1 in the kainic acid (KA)-induced mouse model of TLE before and after anticonvulsant treatment (n=3 per group). The results showed that the hippocampus of both patients with HS and KA mouse model displayed significantly upregulated p4EBP1 immunoreactivity in glial fibrillary acidic protein-positive astrocytes in hippocampus. Quantitative results showed that there is a 5.9-fold upregulation in the number of p4EBP1+glia-like cells in TLE group than control group (P<0.05). However, treatment with lamotrigine failed to suppress spontaneous seizures and did not affect the astrocytic distribution of p4EBP1 (P=0.73). Taken together, we investigated the spatiotemporal expression of p4EBP1 in the sclerotic hippocampus of both patients and a KA-induced mouse model and found glia activation of 4e-binding protein 1 in TLE. Our findings suggest that the upregulation of p4EBP1 in astrocytes may play a critical role in the pathogenesis of TLE.
Collapse
|
21
|
Kwon JY, Jung UJ, Kim DW, Kim S, Moon GJ, Hong J, Jeon MT, Shin M, Chang JH, Kim SR. Beneficial Effects of Hesperetin in a Mouse Model of Temporal Lobe Epilepsy. J Med Food 2018; 21:1306-1309. [DOI: 10.1089/jmf.2018.4183] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Jae Young Kwon
- BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu, Korea
| | - Un Ju Jung
- Department of Food Science and Nutrition, Pukyong National University, Busan, Korea
| | - Dong Woon Kim
- Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Korea
| | - Sehwan Kim
- BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu, Korea
| | - Gyeong Joon Moon
- BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu, Korea
| | - Jungwan Hong
- BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu, Korea
| | - Min-Tae Jeon
- BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu, Korea
| | - Minsang Shin
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Jeong Ho Chang
- Department of Biology Education, Kyungpook National University, Daegu, Korea
| | - Sang Ryong Kim
- BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu, Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, Korea
| |
Collapse
|
22
|
Kumar J, Solaiman A, Mahakkanukrauh P, Mohamed R, Das S. Sleep Related Epilepsy and Pharmacotherapy: An Insight. Front Pharmacol 2018; 9:1088. [PMID: 30319421 PMCID: PMC6171479 DOI: 10.3389/fphar.2018.01088] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/07/2018] [Indexed: 01/26/2023] Open
Abstract
In the last several decades, sleep-related epilepsy has drawn considerable attention among epileptologists and neuroscientists in the interest of new paradigms of the disease etiology, pathogenesis and management. Sleep-related epilepsy is nocturnal seizures that manifest solely during the sleep state. Sleep comprises two distinct stages i.e., non-rapid eye movement (NREM) and rapid eye movement (REM) that alternate every 90 min with NREM preceding REM. Current findings indicate that the sleep-related epilepsy manifests predominantly during the synchronized stages of sleep; NREM over REM stage. Sleep related hypermotor epilepsy (SHE), benign partial epilepsy with centrotemporal spikes or benign rolandic epilepsy (BECTS), and Panayiotopoulos Syndrome (PS) are three of the most frequently implicated epilepsies occurring during the sleep state. Although some familial types are described, others are seemingly sporadic occurrences. In the present review, we aim to discuss the predominance of sleep-related epilepsy during NREM, established familial links to the pathogenesis of SHE, BECTS and PS, and highlight the present available pharmacotherapy options.
Collapse
Affiliation(s)
- Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Amro Solaiman
- Department of Anatomy, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Pasuk Mahakkanukrauh
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Excellence Centre in Forensic Osteology Research Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Rashidi Mohamed
- Department of Familty Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Srijit Das
- Department of Anatomy, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
23
|
Drion CM, van Scheppingen J, Arena A, Geijtenbeek KW, Kooijman L, van Vliet EA, Aronica E, Gorter JA. Effects of rapamycin and curcumin on inflammation and oxidative stress in vitro and in vivo - in search of potential anti-epileptogenic strategies for temporal lobe epilepsy. J Neuroinflammation 2018; 15:212. [PMID: 30037344 PMCID: PMC6056921 DOI: 10.1186/s12974-018-1247-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/02/2018] [Indexed: 12/22/2022] Open
Abstract
Background Previous studies in various rodent epilepsy models have suggested that mammalian target of rapamycin (mTOR) inhibition with rapamycin has anti-epileptogenic potential. Since treatment with rapamycin produces unwanted side effects, there is growing interest to study alternatives to rapamycin as anti-epileptogenic drugs. Therefore, we investigated curcumin, the main component of the natural spice turmeric. Curcumin is known to have anti-inflammatory and anti-oxidant effects and has been reported to inhibit the mTOR pathway. These properties make it a potential anti-epileptogenic compound and an alternative for rapamycin. Methods To study the anti-epileptogenic potential of curcumin compared to rapamycin, we first studied the effects of both compounds on mTOR activation, inflammation, and oxidative stress in vitro, using cell cultures of human fetal astrocytes and the neuronal cell line SH-SY5Y. Next, we investigated the effects of rapamycin and intracerebrally applied curcumin on status epilepticus (SE)—induced inflammation and oxidative stress in hippocampal tissue, during early stages of epileptogenesis in the post-electrical SE rat model for temporal lobe epilepsy (TLE). Results Rapamycin, but not curcumin, suppressed mTOR activation in cultured astrocytes. Instead, curcumin suppressed the mitogen-activated protein kinase (MAPK) pathway. Quantitative real-time PCR analysis revealed that curcumin, but not rapamycin, reduced the levels of inflammatory markers IL-6 and COX-2 in cultured astrocytes that were challenged with IL-1β. In SH-SY5Y cells, curcumin reduced reactive oxygen species (ROS) levels, suggesting anti-oxidant effects. In the post-SE rat model, however, treatment with rapamycin or curcumin did not suppress the expression of inflammatory and oxidative stress markers 1 week after SE. Conclusions These results indicate anti-inflammatory and anti-oxidant properties of curcumin, but not rapamycin, in vitro. Intracerebrally applied curcumin modified the MAPK pathway in vivo at 1 week after SE but failed to produce anti-inflammatory or anti-oxidant effects. Future studies should be directed to increasing the bioavailability of curcumin (or related compounds) in the brain to assess its anti-epileptogenic potential in vivo. Electronic supplementary material The online version of this article (10.1186/s12974-018-1247-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- C M Drion
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - J van Scheppingen
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - A Arena
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - K W Geijtenbeek
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - L Kooijman
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - E A van Vliet
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.,Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - E Aronica
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| | - J A Gorter
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
24
|
Godale CM, Danzer SC. Signaling Pathways and Cellular Mechanisms Regulating Mossy Fiber Sprouting in the Development of Epilepsy. Front Neurol 2018; 9:298. [PMID: 29774009 PMCID: PMC5943493 DOI: 10.3389/fneur.2018.00298] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/17/2018] [Indexed: 02/04/2023] Open
Abstract
The sprouting of hippocampal dentate granule cell axons, termed mossy fibers, into the dentate inner molecular layer is one of the most consistent findings in tissue from patients with mesial temporal lobe epilepsy. Decades of research in animal models have revealed that mossy fiber sprouting creates de novo recurrent excitatory connections in the hippocampus, fueling speculation that the pathology may drive temporal lobe epileptogenesis. Conducting definitive experiments to test this hypothesis, however, has been challenging due to the difficulty of dissociating this sprouting from the many other changes occurring during epileptogenesis. The field has been largely driven, therefore, by correlative data. Recently, the development of powerful transgenic mouse technologies and the discovery of novel drug targets has provided new tools to assess the role of mossy fiber sprouting in epilepsy. We can now selectively manipulate hippocampal granule cells in rodent epilepsy models, providing new insights into the granule cell subpopulations that participate in mossy fiber sprouting. The cellular pathways regulating this sprouting are also coming to light, providing new targets for pharmacological intervention. Surprisingly, many investigators have found that blocking mossy fiber sprouting has no effect on seizure occurrence, while seizure frequency can be reduced by treatments that have no effect on this sprouting. These results raise new questions about the role of mossy fiber sprouting in epilepsy. Here, we will review these findings with particular regard to the contributions of new granule cells to mossy fiber sprouting and the regulation of this sprouting by the mTOR signaling pathway.
Collapse
Affiliation(s)
- Christin M Godale
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, United States
| | - Steve C Danzer
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, United States.,Department of Anesthesia, University of Cincinnati, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
25
|
Calderon-Garcidueñas AL, Mathon B, Lévy P, Bertrand A, Mokhtari K, Samson V, Thuriès V, Lambrecq V, Nguyen VHM, Dupont S, Adam C, Baulac M, Clémenceau S, Duyckaerts C, Navarro V, Bielle F. New clinicopathological associations and histoprognostic markers in ILAE types of hippocampal sclerosis. Brain Pathol 2018; 28:644-655. [PMID: 29476662 DOI: 10.1111/bpa.12596] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 01/06/2018] [Accepted: 01/27/2018] [Indexed: 12/30/2022] Open
Abstract
Mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS) is a heterogeneous syndrome. Surgery results in seizure freedom for most pharmacoresistant patients, but the epileptic and cognitive prognosis remains variable. The 2013 International League Against Epilepsy (ILAE) histopathological classification of hippocampal sclerosis (HS) has fostered research to understand MTLE-HS heterogeneity. We investigated the associations between histopathological features (ILAE types, hypertrophic CA4 neurons, granule cell layer alterations, CD34 immunopositive cells) and clinical features (presurgical history, postsurgical outcome) in a monocentric series of 247 MTLE-HS patients treated by surgery. NeuN, GFAP and CD34 immunostainings and a double independent pathological examination were performed. 186 samples were type 1, 47 type 2, 7 type 3 and 7 samples were gliosis only but no neuronal loss (noHS). In the type 1, hypertrophic CA4 neurons were associated with a worse postsurgical outcome and granule cell layer duplication was associated with generalized seizures and episodes of status epilepticus. In the type 2, granule cell layer duplication was associated with generalized seizures. CD34+ stellate cells were more frequent in the type 2, type 3 and in noHS. These cells had a Nestin and SOX2 positive, immature neural immunophenotype. Patients with nodules of CD34+ cells had more frequent dysmnesic auras. CD34+ stellate cells in scarce pattern were associated with higher ratio of normal MRI and of stereo-electroencephalographic studies. CD34+ cells were associated with a trend for a better postsurgical outcome. Among CD34+ cases, we proposed a new entity of BRAF V600E positive HS and we described three hippocampal multinodular and vacuolating neuronal tumors. To conclude, our data identified new clinicopathological associations with ILAE types. They showed the prognostic value of CA4 hypertrophic neurons. They highlighted CD34+ stellate cells and BRAF V600E as biomarkers to further decipher MTLE-HS heterogeneity.
Collapse
Affiliation(s)
- Ana Laura Calderon-Garcidueñas
- Department of Neuropathology, AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière Charles Foix, Paris, France.,Institute of Forensic Medicine, Universidad Veracruzana, Boca del Río, Mexico
| | - Bertrand Mathon
- Department of Neurosurgery, AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière Charles Foix, Paris, France.,Sorbonne University, UPMC, Univ Paris 06, Paris, France
| | - Pierre Lévy
- Sorbonne University, UPMC, Univ Paris 06, Paris, France.,UPMC and Inserm UMR S 1136 (EPAR team), Département de Santé Publique, Hôpital Tenon, Groupe Hospitalier Universitaire de l'Est Parisien, AP-HP, Paris, France
| | - Anne Bertrand
- Sorbonne University, UPMC, Univ Paris 06, Paris, France.,Brain and Spine Institute (ICM; INSERM, UMRS 1127; CNRS, UMR 7225), Paris, France.,Inria Paris, Aramis project-team, Paris, France.,Department of Radiology, AP-HP, Hôpital Saint Antoine, Paris, France
| | - Karima Mokhtari
- Department of Neuropathology, AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière Charles Foix, Paris, France.,Brain and Spine Institute (ICM; INSERM, UMRS 1127; CNRS, UMR 7225), Paris, France
| | - Véronique Samson
- Department of Epileptology, AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière Charles Foix, Paris, France
| | - Valérie Thuriès
- Department of Neuropathology, AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière Charles Foix, Paris, France
| | - Virginie Lambrecq
- Sorbonne University, UPMC, Univ Paris 06, Paris, France.,Brain and Spine Institute (ICM; INSERM, UMRS 1127; CNRS, UMR 7225), Paris, France.,Department of Epileptology, AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière Charles Foix, Paris, France
| | - Vi-Huong Michel Nguyen
- Department of Epileptology, AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière Charles Foix, Paris, France
| | - Sophie Dupont
- Sorbonne University, UPMC, Univ Paris 06, Paris, France.,Brain and Spine Institute (ICM; INSERM, UMRS 1127; CNRS, UMR 7225), Paris, France.,Department of Epileptology, AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière Charles Foix, Paris, France.,Department of Rehabilitation, AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière Charles Foix, Paris, France
| | - Claude Adam
- Brain and Spine Institute (ICM; INSERM, UMRS 1127; CNRS, UMR 7225), Paris, France.,Department of Epileptology, AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière Charles Foix, Paris, France
| | - Michel Baulac
- Sorbonne University, UPMC, Univ Paris 06, Paris, France.,Brain and Spine Institute (ICM; INSERM, UMRS 1127; CNRS, UMR 7225), Paris, France.,Department of Epileptology, AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière Charles Foix, Paris, France
| | - Stéphane Clémenceau
- Department of Neurosurgery, AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière Charles Foix, Paris, France
| | - Charles Duyckaerts
- Department of Neuropathology, AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière Charles Foix, Paris, France.,Sorbonne University, UPMC, Univ Paris 06, Paris, France.,Brain and Spine Institute (ICM; INSERM, UMRS 1127; CNRS, UMR 7225), Paris, France
| | - Vincent Navarro
- Sorbonne University, UPMC, Univ Paris 06, Paris, France.,Brain and Spine Institute (ICM; INSERM, UMRS 1127; CNRS, UMR 7225), Paris, France.,Department of Epileptology, AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière Charles Foix, Paris, France
| | - Franck Bielle
- Department of Neuropathology, AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière Charles Foix, Paris, France.,Sorbonne University, UPMC, Univ Paris 06, Paris, France.,Brain and Spine Institute (ICM; INSERM, UMRS 1127; CNRS, UMR 7225), Paris, France
| |
Collapse
|
26
|
Wang F, Chen F, Wang G, Wei S, Fang F, Kang D, Lin Y. Rapamycin provides anti-epileptogenic effect in a rat model of post-traumatic epilepsy via deactivation of mTOR signaling pathway. Exp Ther Med 2018; 15:4763-4770. [PMID: 29904395 PMCID: PMC5996717 DOI: 10.3892/etm.2018.6004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 03/05/2018] [Indexed: 12/19/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) signaling pathway has attracted much attention in recent years. However, the contribution of mTOR activation to the development of post-traumatic epilepsy (PTE) remains largely unknown. The purpose of the present study was to investigate the activation of mTOR signaling in a rat model of FeCl2-induced PTE, and to explore the potential effect of its specific inhibitor rapamycin. The results indicated that the expression levels of p-mTOR and p-P70S6K, the overactivation biomarkers of mTOR signaling, increased significantly in hippocampal and perilesional cortex following PTE induction. Notably, they were significantly decreased in the aformementioned brain regions following rapamycin treatment. Furthermore, the frequency and number of behavioral seizures and epileptic brain injury were also greatly reduced. These results suggest that hyperactivation of the mTOR signaling pathway is a crucial mechanism of PTE development, and it may be considered a novel therapeutic target for PTE treatment.
Collapse
Affiliation(s)
- Feng Wang
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Fuxiang Chen
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Genbo Wang
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Shushan Wei
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Fu Fang
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Dezhi Kang
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Yuanxiang Lin
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| |
Collapse
|
27
|
Talos DM, Jacobs LM, Gourmaud S, Coto CA, Sun H, Lim KC, Lucas TH, Davis KA, Martinez-Lage M, Jensen FE. Mechanistic target of rapamycin complex 1 and 2 in human temporal lobe epilepsy. Ann Neurol 2018; 83:311-327. [PMID: 29331082 DOI: 10.1002/ana.25149] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Temporal lobe epilepsy (TLE) is a chronic epilepsy syndrome defined by seizures and progressive neurological disabilities, including cognitive impairments, anxiety, and depression. Here, human TLE specimens were investigated focusing on the mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) and complex 2 (mTORC2) activities in the brain, given that both pathways may represent unique targets for treatment. METHODS Surgically resected hippocampal and temporal lobe samples from therapy-resistant TLE patients were analyzed by western blotting to quantify the expression of established mTORC1 and mTORC2 activity markers and upstream or downstream signaling pathways involving the two complexes. Histological and immunohistochemical techniques were used to assess hippocampal and neocortical structural abnormalities and cell-specific expression of individual biomarkers. Samples from patients with focal cortical dysplasia (FCD) type II served as positive controls. RESULTS We found significantly increased expression of phospho-mTOR (Ser2448), phospho-S6 (Ser235/236), phospho-S6 (Ser240/244), and phospho-Akt (Ser473) in TLE samples compared to controls, consistent with activation of both mTORC1 and mTORC2. Our work identified the phosphoinositide 3-kinase and Ras/extracellular signal-regulated kinase signaling pathways as potential mTORC1 and mTORC2 upstream activators. In addition, we found that overactive mTORC2 signaling was accompanied by induction of two protein kinase B-dependent prosurvival pathways, as evidenced by increased inhibitory phosphorylation of forkhead box class O3a (Ser253) and glycogen synthase kinase 3 beta (Ser9). INTERPRETATION Our data demonstrate that mTOR signaling is significantly dysregulated in human TLE, offering new targets for pharmacological interventions. Specifically, clinically available drugs that suppress mTORC1 without compromising mTOR2 signaling, such as rapamycin and its analogs, may represent a new group of antiepileptogenic agents in TLE patients. Ann Neurol 2018;83:311-327.
Collapse
Affiliation(s)
- Delia M Talos
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Leah M Jacobs
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Sarah Gourmaud
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Carlos A Coto
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Hongyu Sun
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA.,Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Kuei-Cheng Lim
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Timothy H Lucas
- Department of Neurosurgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Kathryn A Davis
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Maria Martinez-Lage
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Frances E Jensen
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
28
|
Naringenin ameliorates kainic acid-induced morphological alterations in the dentate gyrus in a mouse model of temporal lobe epilepsy. Neuroreport 2018; 27:1182-9. [PMID: 27584687 DOI: 10.1097/wnr.0000000000000678] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Granule cell dispersion (GCD) in the dentate gyrus (DG) of the hippocampus is a morphological alteration characteristic of temporal lobe epilepsy. Recently, we reported that treatment with naringin, a flavonoid found in grapefruit and citrus fruits, reduced spontaneous recurrent seizures by inhibiting kainic acid (KA)-induced GCD and neuronal cell death in mouse hippocampus, suggesting that naringin might have beneficial effects for preventing epileptic events in the adult brain. However, it is still unclear whether the beneficial effects of naringin treatment are mediated by the metabolism of naringin into naringenin in the KA-treated hippocampus. To investigate this possibility, we evaluated whether intraperitoneal injections of naringenin could mimic naringin-induced effects against GCD caused by intrahippocampal KA injections in mice. Our results showed that treatment with naringenin delayed the onset of KA-induced seizures and attenuated KA-induced GCD by inhibiting activation of the mammalian target of rapamycin complex 1 in both neurons and reactive astrocytes in the DG. In addition, its administration attenuated the production of proinflammatory cytokines such as tumor necrosis tumor necrosis factor-α (TNFα) and interleukin-1β (IL-1β) from microglial activation in the DG following KA treatment. These results suggest that naringenin may be an active metabolite of naringin and help prevent the progression of epileptic insults in the hippocampus in vivo; therefore, naringenin may be a beneficial metabolite of naringin for the treatment of epilepsy.
Collapse
|
29
|
Navidhamidi M, Ghasemi M, Mehranfard N. Epilepsy-associated alterations in hippocampal excitability. Rev Neurosci 2018; 28:307-334. [PMID: 28099137 DOI: 10.1515/revneuro-2016-0059] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/03/2016] [Indexed: 11/15/2022]
Abstract
The hippocampus exhibits a wide range of epilepsy-related abnormalities and is situated in the mesial temporal lobe, where limbic seizures begin. These abnormalities could affect membrane excitability and lead to overstimulation of neurons. Multiple overlapping processes refer to neural homeostatic responses develop in neurons that work together to restore neuronal firing rates to control levels. Nevertheless, homeostatic mechanisms are unable to restore normal neuronal excitability, and the epileptic hippocampus becomes hyperexcitable or hypoexcitable. Studies show that there is hyperexcitability even before starting recurrent spontaneous seizures, suggesting although hippocampal hyperexcitability may contribute to epileptogenesis, it alone is insufficient to produce epileptic seizures. This supports the concept that the hippocampus is not the only substrate for limbic seizure onset, and a broader hyperexcitable limbic structure may contribute to temporal lobe epilepsy (TLE) seizures. Nevertheless, seizures also occur in conditions where the hippocampus shows a hypoexcitable phenotype. Since TLE seizures most often originate in the hippocampus, it could therefore be assumed that both hippocampal hypoexcitability and hyperexcitability are undesirable states that make the epileptic hippocampal network less stable and may, under certain conditions, trigger seizures.
Collapse
|
30
|
Scioscia M. D-chiro inositol phosphoglycans in preeclampsia: Where are we, where are we going? J Reprod Immunol 2017; 124:1-7. [DOI: 10.1016/j.jri.2017.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/15/2017] [Accepted: 09/27/2017] [Indexed: 12/24/2022]
|
31
|
Kim S, Jung UJ, Oh YS, Jeon MT, Kim HJ, Shin WH, Hong J, Kim SR. Beneficial Effects of Silibinin Against Kainic Acid-induced Neurotoxicity in the Hippocampus in vivo. Exp Neurobiol 2017; 26:266-277. [PMID: 29093635 PMCID: PMC5661059 DOI: 10.5607/en.2017.26.5.266] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/21/2017] [Accepted: 10/05/2017] [Indexed: 02/04/2023] Open
Abstract
Silibinin, an active constituent of silymarin extracted from milk thistle, has been previously reported to confer protection to the adult brain against neurodegeneration. However, its effects against epileptic seizures have not been examined yet. In order to investigate the effects of silibinin against epileptic seizures, we used a relevant mouse model in which seizures are manifested as status epilepticus, induced by kainic acid (KA) treatment. Silibinin was injected intraperitoneally, starting 1 day before an intrahippocampal KA injection and continued daily until analysis of each experiment. Our results indicated that silibinin-treatment could reduce seizure susceptibility and frequency of spontaneous recurrent seizures (SRS) induced by KA administration, and attenuate granule cell dispersion (GCD), a morphological alteration characteristic of the dentate gyrus (DG) in temporal lobe epilepsy (TLE). Moreover, its treatment significantly reduced the aberrant levels of apoptotic, autophagic and pro-inflammatory molecules induced by KA administration, resulting in neuroprotection in the hippocampus. Thus, these results suggest that silibinin may be a beneficial natural compound for preventing epileptic events.
Collapse
Affiliation(s)
- Sehwan Kim
- School of Life Sciences, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - Un Ju Jung
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Korea
| | - Yong-Seok Oh
- Department of Brain-Cognitive Science, Daegu-Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea
| | - Min-Tae Jeon
- School of Life Sciences, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - Hyung-Jun Kim
- Department of Neural Development and Disease, Department of Structure & Function of Neural Network, Korea Brain Research Institute, Daegu 41062, Korea
| | - Won-Ho Shin
- Predictive Model Research Center, Korea Institute of Toxicology, Daejeon 34114, Korea
| | - Jungwan Hong
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Korea
| | - Sang Ryong Kim
- School of Life Sciences, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea.,Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
32
|
Guo D, Zou J, Wong M. Rapamycin Attenuates Acute Seizure-induced Astrocyte Injury in Mice in Vivo. Sci Rep 2017; 7:2867. [PMID: 28588256 PMCID: PMC5460181 DOI: 10.1038/s41598-017-03032-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/21/2017] [Indexed: 11/12/2022] Open
Abstract
Astrocytes have been implicated in epileptogenesis and seizure-induced brain injury. Pathological studies reveal a variety of structural abnormalities in astrocytes, such as vacuolization and astrogliosis. While in vivo imaging methods have demonstrated rapid changes in astrocytes under a variety of physiological and pathological conditions, the acute effects of seizures on astrocyte morphology in vivo and corresponding mechanisms of seizure-induced astrocytic injury have not been documented. In this study, we utilized in vivo two-photon imaging to directly monitor the acute structural effects of kainate-induced seizures on cortical astrocytes. Kainate seizures cause an immediate, but transient, vacuolization of astrocytes, followed over several days by astrogliosis. These effects are prevented by pre- or post-treatment with rapamycin, indicating the mTOR pathway is involved in mediating seizure-induced astrocyte injury. These finding have clinical implications for mechanisms of seizure-induced astrocyte injury and potential therapeutic applications with mTOR inhibitors.
Collapse
Affiliation(s)
- Dongjun Guo
- Department of Neurology and the Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jia Zou
- Department of Neurology and the Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Michael Wong
- Department of Neurology and the Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
33
|
Niere F, Raab-Graham KF. mTORC1 Is a Local, Postsynaptic Voltage Sensor Regulated by Positive and Negative Feedback Pathways. Front Cell Neurosci 2017; 11:152. [PMID: 28611595 PMCID: PMC5447718 DOI: 10.3389/fncel.2017.00152] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/09/2017] [Indexed: 12/11/2022] Open
Abstract
The mammalian/mechanistic target of rapamycin complex 1 (mTORC1) serves as a regulator of mRNA translation. Recent studies suggest that mTORC1 may also serve as a local, voltage sensor in the postsynaptic region of neurons. Considering biochemical, bioinformatics and imaging data, we hypothesize that the activity state of mTORC1 dynamically regulates local membrane potential by promoting and repressing protein synthesis of select mRNAs. Our hypothesis suggests that mTORC1 uses positive and negative feedback pathways, in a branch-specific manner, to maintain neuronal excitability within an optimal range. In some dendritic branches, mTORC1 activity oscillates between the "On" and "Off" states. We define this as negative feedback. In contrast, positive feedback is defined as the pathway that leads to a prolonged depolarized or hyperpolarized resting membrane potential, whereby mTORC1 activity is constitutively on or off, respectively. We propose that inactivation of mTORC1 increases the expression of voltage-gated potassium alpha (Kv1.1 and 1.2) and beta (Kvβ2) subunits, ensuring that the membrane resets to its resting membrane potential after experiencing increased synaptic activity. In turn, reduced mTORC1 activity increases the protein expression of syntaxin-1A and promotes the surface expression of the ionotropic glutamate receptor N-methyl-D-aspartate (NMDA)-type subunit 1 (GluN1) that facilitates increased calcium entry to turn mTORC1 back on. Under conditions such as learning and memory, mTORC1 activity is required to be high for longer periods of time. Thus, the arm of the pathway that promotes syntaxin-1A and Kv1 protein synthesis will be repressed. Moreover, dendritic branches that have low mTORC1 activity with increased Kv expression would balance dendrites with constitutively high mTORC1 activity, allowing for the neuron to maintain its overall activity level within an ideal operating range. Finally, such a model suggests that recruitment of more positive feedback dendritic branches within a neuron is likely to lead to neurodegenerative disorders.
Collapse
Affiliation(s)
- Farr Niere
- Department of Physiology and Pharmacology, Wake Forest School of MedicineWinston-Salem, NC, United States
| | - Kimberly F. Raab-Graham
- Department of Physiology and Pharmacology, Wake Forest School of MedicineWinston-Salem, NC, United States
| |
Collapse
|
34
|
Switon K, Kotulska K, Janusz-Kaminska A, Zmorzynska J, Jaworski J. Molecular neurobiology of mTOR. Neuroscience 2017; 341:112-153. [PMID: 27889578 DOI: 10.1016/j.neuroscience.2016.11.017] [Citation(s) in RCA: 298] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/09/2016] [Accepted: 11/13/2016] [Indexed: 01/17/2023]
Abstract
Mammalian/mechanistic target of rapamycin (mTOR) is a serine-threonine kinase that controls several important aspects of mammalian cell function. mTOR activity is modulated by various intra- and extracellular factors; in turn, mTOR changes rates of translation, transcription, protein degradation, cell signaling, metabolism, and cytoskeleton dynamics. mTOR has been repeatedly shown to participate in neuronal development and the proper functioning of mature neurons. Changes in mTOR activity are often observed in nervous system diseases, including genetic diseases (e.g., tuberous sclerosis complex, Pten-related syndromes, neurofibromatosis, and Fragile X syndrome), epilepsy, brain tumors, and neurodegenerative disorders (Alzheimer's disease, Parkinson's disease, and Huntington's disease). Neuroscientists only recently began deciphering the molecular processes that are downstream of mTOR that participate in proper function of the nervous system. As a result, we are gaining knowledge about the ways in which aberrant changes in mTOR activity lead to various nervous system diseases. In this review, we provide a comprehensive view of mTOR in the nervous system, with a special focus on the neuronal functions of mTOR (e.g., control of translation, transcription, and autophagy) that likely underlie the contribution of mTOR to nervous system diseases.
Collapse
Affiliation(s)
- Katarzyna Switon
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, Warsaw 02-109, Poland
| | - Katarzyna Kotulska
- Department of Neurology and Epileptology, Children's Memorial Health Institute, Aleja Dzieci Polskich 20, Warsaw 04-730, Poland
| | | | - Justyna Zmorzynska
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, Warsaw 02-109, Poland
| | - Jacek Jaworski
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, Warsaw 02-109, Poland.
| |
Collapse
|
35
|
Tipping the scales: Lessons from simple model systems on inositol imbalance in neurological disorders. Eur J Cell Biol 2017; 96:154-163. [PMID: 28153412 DOI: 10.1016/j.ejcb.2017.01.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/18/2017] [Accepted: 01/21/2017] [Indexed: 11/20/2022] Open
Abstract
Inositol and inositol-containing compounds have signalling and regulatory roles in many cellular processes, suggesting that inositol imbalance may lead to wide-ranging changes in cellular functions. Indeed, changes in inositol-dependent signalling have been implicated in various diseases and cellular functions such as autophagy, and these changes have often been proposed as therapeutic targets. However, few studies have highlighted the links between inositol depletion and the downstream effects on inositol phosphates and phosphoinositides in disease states. For this research, many advances have employed simple model systems that include the social amoeba D. discoideum and the yeast S. cerevisiae, since these models enable a range of experimental approaches that are not possible in mammalian models. In this review, we discuss recent findings initiated in simple model systems and translated to higher model organisms where the effect of altered inositol, inositol phosphate and phosphoinositide levels impact on bipolar disorder, Alzheimer disease, epilepsy and autophagy.
Collapse
|
36
|
Sha L, Wang X, Li J, Shi X, Wu L, Shen Y, Xu Q. Pharmacologic inhibition of Hsp90 to prevent GLT-1 degradation as an effective therapy for epilepsy. J Exp Med 2016; 214:547-563. [PMID: 28028152 PMCID: PMC5294855 DOI: 10.1084/jem.20160667] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 10/11/2016] [Accepted: 12/13/2016] [Indexed: 12/12/2022] Open
Abstract
Sha et al. report that Hsp90β, which is up-regulated in astrocytes of human epileptogenic tissue, interacts with GLT-1 and recruits it to 20S proteasome for degradation. The Hsp90 inhibitor 17AAG exhibits beneficial effects in a model of temporal lobe epilepsy. The glutamate transporter GLT-1 is critical for the maintenance of low interstitial glutamate concentrations. Loss of GLT-1 is commonly observed in neurological disorders, including temporal lobe epilepsy (TLE). Despite the hypothesis that targeting the mechanisms of GLT-1 deficiency may be a novel strategy for treating drug-resistant epilepsy, the underlying molecular cascade remains largely unknown. Here, we show that Hsp90β is up-regulated in reactive astrocytes of the epileptic hippocampus in patients with TLE and mouse models of epilepsy. Inhibition of Hsp90, but not Hsp70, increased GLT-1 levels. Mechanistically, Hsp90β recruits GLT-1 to the 20S proteasome, thereby promoting GLT-1 degradation. Hsp90 inhibitor prevents GLT-1 degradation by disrupting the association between Hsp90β and GLT-1. Using a model of TLE, we demonstrated that long-term systemic administration of 17AAG dramatically suppressed spontaneous recurrent seizures and ameliorated astrogliosis. Overall, these results suggest that up-regulation of GLT-1 by inhibiting Hsp90β in reactive astrocytes may be a potential therapeutic target for the treatment of epilepsy and excitotoxicity.
Collapse
Affiliation(s)
- Longze Sha
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Xueqin Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Jing Li
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Xinze Shi
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Liwen Wu
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yan Shen
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Qi Xu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
37
|
Kim SR. Control of Granule Cell Dispersion by Natural Materials Such as Eugenol and Naringin: A Potential Therapeutic Strategy Against Temporal Lobe Epilepsy. J Med Food 2016; 19:730-6. [PMID: 27404051 DOI: 10.1089/jmf.2016.3712] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The hippocampus is an important brain area where abnormal morphological characteristics are often observed in patients with temporal lobe epilepsy (TLE), typically showing the loss of the principal neurons in the CA1 and CA3 areas of the hippocampus. TLE is frequently associated with widening of the granule cell layer of the dentate gyrus (DG), termed granule cell dispersion (GCD), in the hippocampus, suggesting that the control of GCD with protection of hippocampal neurons may be useful for preventing and inhibiting epileptic seizures. We previously reported that eugenol (EUG), which is an essential component of medicinal herbs and has anticonvulsant activity, is beneficial for treating epilepsy through its ability to inhibit GCD via suppression of mammalian target of rapamycin complex 1 (mTORC1) activation in the hippocampal DG in a kainic acid (KA)-treated mouse model of epilepsy in vivo. In addition, we reported that naringin, a bioflavonoid in citrus fruits, could exert beneficial effects, such as antiautophagic stress and antineuroinflammation, in the KA mouse model of epilepsy, even though it was unclear whether naringin might also attenuate the seizure-induced morphological changes of GCD in the DG. Similar to the effects of EUG, we recently observed that naringin treatment significantly reduced KA-induced GCD and mTORC1 activation, which are both involved in epileptic seizures, in the hippocampus of mouse brain. Therefore, these observations suggest that the utilization of natural materials, which have beneficial properties such as inhibition of GCD formation and protection of hippocampal neurons, may be useful in developing a novel therapeutic agent against TLE.
Collapse
Affiliation(s)
- Sang Ryong Kim
- 1 School of Life Sciences, Kyungpook National University , Daegu, Korea.,2 BK21 plus KNU Creative BioResearch Group, Kyungpook National University , Daegu, Korea.,3 Brain Science and Engineering Institute, Kyungpook National University , Daegu, Korea
| |
Collapse
|
38
|
Naringin attenuates granule cell dispersion in the dentate gyrus in a mouse model of temporal lobe epilepsy. Epilepsy Res 2016; 123:6-10. [DOI: 10.1016/j.eplepsyres.2016.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 02/18/2016] [Accepted: 03/10/2016] [Indexed: 01/01/2023]
|
39
|
Impact of rapamycin on status epilepticus induced hippocampal pathology and weight gain. Exp Neurol 2016; 280:1-12. [PMID: 26995324 DOI: 10.1016/j.expneurol.2016.03.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 03/11/2016] [Accepted: 03/14/2016] [Indexed: 02/07/2023]
Abstract
Growing evidence implicates the dentate gyrus in temporal lobe epilepsy (TLE). Dentate granule cells limit the amount of excitatory signaling through the hippocampus and exhibit striking neuroplastic changes that may impair this function during epileptogenesis. Furthermore, aberrant integration of newly-generated granule cells underlies the majority of dentate restructuring. Recently, attention has focused on the mammalian target of rapamycin (mTOR) signaling pathway as a potential mediator of epileptogenic change. Systemic administration of the mTOR inhibitor rapamycin has promising therapeutic potential, as it has been shown to reduce seizure frequency and seizure severity in rodent models. Here, we tested whether mTOR signaling facilitates abnormal development of granule cells during epileptogenesis. We also examined dentate inflammation and mossy cell death in the dentate hilus. To determine if mTOR activation is necessary for abnormal granule cell development, transgenic mice that harbored fluorescently-labeled adult-born granule cells were treated with rapamycin following pilocarpine-induced status epilepticus. Systemic rapamycin effectively blocked phosphorylation of S6 protein (a readout of mTOR activity) and reduced granule cell mossy fiber axon sprouting. However, the accumulation of ectopic granule cells and granule cells with aberrant basal dendrites was not significantly reduced. Mossy cell death and reactive astrocytosis were also unaffected. These data suggest that anti-epileptogenic effects of mTOR inhibition may be mediated by mechanisms other than inhibition of these common dentate pathologies. Consistent with this conclusion, rapamycin prevented pathological weight gain in epileptic mice, suggesting that rapamycin might act on central circuits or even peripheral tissues controlling weight gain in epilepsy.
Collapse
|
40
|
Drion CM, Borm LE, Kooijman L, Aronica E, Wadman WJ, Hartog AF, van Vliet EA, Gorter JA. Effects of rapamycin and curcumin treatment on the development of epilepsy after electrically induced status epilepticus in rats. Epilepsia 2016; 57:688-97. [DOI: 10.1111/epi.13345] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2016] [Indexed: 01/13/2023]
Affiliation(s)
- Cato M. Drion
- Center for Neuroscience; Swammerdam Institute for Life Sciences; University of Amsterdam; Amsterdam The Netherlands
| | - Lars E. Borm
- Center for Neuroscience; Swammerdam Institute for Life Sciences; University of Amsterdam; Amsterdam The Netherlands
| | - Lieneke Kooijman
- Center for Neuroscience; Swammerdam Institute for Life Sciences; University of Amsterdam; Amsterdam The Netherlands
| | - Eleonora Aronica
- Department (Neuro)Pathology; Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
- Epilepsy Institute in the Netherlands; Heemstede The Netherlands
| | - Wytse J. Wadman
- Center for Neuroscience; Swammerdam Institute for Life Sciences; University of Amsterdam; Amsterdam The Netherlands
| | - Aloysius F. Hartog
- Van‘t Hoff Institute for Molecular Sciences; University of Amsterdam; Amsterdam The Netherlands
| | - Erwin A. van Vliet
- Department (Neuro)Pathology; Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | - Jan A. Gorter
- Center for Neuroscience; Swammerdam Institute for Life Sciences; University of Amsterdam; Amsterdam The Netherlands
| |
Collapse
|
41
|
Deletion of mTOR in Reactive Astrocytes Suppresses Chronic Seizures in a Mouse Model of Temporal Lobe Epilepsy. Mol Neurobiol 2016; 54:175-187. [PMID: 26732600 DOI: 10.1007/s12035-015-9590-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 11/29/2015] [Indexed: 01/28/2023]
Abstract
Germline and somatic mutations in key genes of the mammalian target of rapamycin (mTOR) pathway have been identified in seizure-associated disorders. mTOR mutations lead to aberrant activation of mTOR signaling, and, although affected neurons are critical for epileptogenesis, the role of mTOR activation in glial cells remains poorly understood. We previously reported a consistent activation of the mTOR pathway in astrocytes in the epileptic foci of temporal lobe epilepsy. In this study, it was demonstrated that mTOR deletion from reactive astrocytes prevents increases in seizure frequency over the disease course. By using a tamoxifen-inducible mTOR conditional knockout system and kainic acid, a model was developed that allowed astrocyte-specific mTOR gene deletion in mice with chronic epilepsy. Animals in which mTOR was deleted from 44 % of the astrocyte population exhibited a lower seizure frequency compared with controls. Down-regulation of mTOR significantly ameliorated astrogliosis in the sclerotic hippocampus but did not rescue mossy fiber sprouting. In cultured astrocytes, the mTOR pathway modulated the stability of the astroglial glutamate transporter 1 (Glt1) and influenced the ability of astrocytes to remove extracellular glutamate. Taken together, these data indicate that astrocytes with activated mTOR signaling may provide conditions that are favorable for spontaneous recurrent seizures.
Collapse
|
42
|
Jeong KH, Lee DS, Kim SR. Effects of eugenol on granule cell dispersion in a mouse model of temporal lobe epilepsy. Epilepsy Res 2015. [DOI: 10.1016/j.eplepsyres.2015.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
43
|
Abstract
Focal cortical dysplasias are common malformations of cerebral cortical development and are highly associated with medically intractable epilepsy. They have been classified into neuropathological subtypes (type Ia, Ib, IIa, IIb, and III) based on the severity of cytoarchitectural disruption--tangential or radial dispersion, or loss of laminar structure--and the presence of unique cells types such as cytomegalic neurons or balloon cells. Most focal cortical dysplasias can be identified on neuroimaging and many require resective epilepsy surgery to cure refractory seizures. The pathogenesis of focal cortical dysplasias remains to be defined, although there is recent evidence to suggest that focal cortical dysplasias arise from de novo somatic mutations occurring during brain development. Some focal cortical dysplasia subtypes show a link to the mammalian target of rapamycin signaling cascade; this has now extended to other cortical malformations, including hemimegalencephaly.
Collapse
Affiliation(s)
- Peter B Crino
- Department of Neurology, Shriners Hospital Pediatric Research Center and Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
44
|
Crino PB. mTOR signaling in epilepsy: insights from malformations of cortical development. Cold Spring Harb Perspect Med 2015; 5:5/4/a022442. [PMID: 25833943 DOI: 10.1101/cshperspect.a022442] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Over the past decade enhanced activation of the mammalian target of rapamycin (mTOR)-signaling cascade has been identified in focal malformations of cortical development (MCD) subtypes, which have been collectively referred to as "mTORopathies." Mutations in mTOR regulatory genes (e.g., TSC1, TSC2, AKT3, DEPDC5) have been associated with several focal MCD highly associated with epilepsy such as tuberous sclerosis complex (TSC), hemimegalencephaly (HME; brain malformation associated with dramatic enlargement of one brain hemisphere), and cortical dysplasia. mTOR plays important roles in the regulation of cell division, growth, and survival, and, thus, aberrant activation of the cascade during cortical development can cause dramatic alterations in cell size, cortical lamination, and axon and dendrite outgrowth often observed in focal MCD. Although it is widely believed that structural alterations induced by hyperactivated mTOR signaling are critical for epileptogenesis, newer evidence suggests that mTOR activation on its own may enhance neuronal excitability. Clinical trials with mTOR inhibitors have shown efficacy in the treatment of seizures associated with focal MCD.
Collapse
Affiliation(s)
- Peter B Crino
- Shriners Hospital Pediatric Research Center and Department of Neurology, Temple University, Philadelphia, Pennsylvania 19140
| |
Collapse
|
45
|
Nguyen LH, Brewster AL, Clark ME, Regnier-Golanov A, Sunnen CN, Patil VV, D'Arcangelo G, Anderson AE. mTOR inhibition suppresses established epilepsy in a mouse model of cortical dysplasia. Epilepsia 2015; 56:636-46. [PMID: 25752454 DOI: 10.1111/epi.12946] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2015] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Hyperactivation of the mechanistic target of rapamycin (mTOR; also known as mammalian target of rapamycin) pathway has been demonstrated in human cortical dysplasia (CD) as well as in animal models of epilepsy. Although inhibition of mTOR signaling early in epileptogenesis suppressed epileptiform activity in the neuron subset-specific Pten knockout (NS-Pten KO) mouse model of CD, the effects of mTOR inhibition after epilepsy is fully established were not previously examined in this model. Here, we investigated whether mTOR inhibition suppresses epileptiform activity and other neuropathological correlates in adult NS-Pten KO mice with severe and well-established epilepsy. METHODS The progression of epileptiform activity, mTOR pathway dysregulation, and associated neuropathology with age in NS-Pten KO mice were evaluated using video-electroencephalography (EEG) recordings, Western blotting, and immunohistochemistry. A cohort of NS-Pten KO mice was treated with the mTOR inhibitor rapamycin (10 mg/kg i.p., 5 days/week) starting at postnatal week 9 and video-EEG monitored for epileptiform activity. Western blotting and immunohistochemistry were performed to evaluate the effects of rapamycin on the associated pathology. RESULTS Epileptiform activity worsened with age in NS-Pten KO mice, with parallel increases in the extent of hippocampal mTOR complex 1 and 2 (mTORC1 and mTORC2, respectively) dysregulation and progressive astrogliosis and microgliosis. Rapamycin treatment suppressed epileptiform activity, improved baseline EEG activity, and increased survival in severely epileptic NS-Pten KO mice. At the molecular level, rapamycin treatment was associated with a reduction in both mTORC1 and mTORC2 signaling and decreased astrogliosis and microgliosis. SIGNIFICANCE These findings reveal a wide temporal window for successful therapeutic intervention with rapamycin in the NS-Pten KO mouse model, and they support mTOR inhibition as a candidate therapy for established, late-stage epilepsy associated with CD and genetic dysregulation of the mTOR pathway.
Collapse
Affiliation(s)
- Lena H Nguyen
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, U.S.A; The Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, U.S.A; The Gordon and Mary Cain Pediatric Neurology Research Foundation Laboratories, Texas Children's Hospital, Houston, Texas, U.S.A
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Despite a large number of available medical options, many individuals with epilepsy are refractory to existing therapies that mainly target neurotransmitter or ion channel activity. A growing body of preclinical data has uncovered a molecular pathway that appears crucial in many genetic and acquired epilepsy syndromes. The mammalian target of rapamycin (mTOR) pathway regulates a number of cellular processes required in the growth, metabolism, structure, and cell-cell interactions of neurons and glia. Rapamycin and similar compounds inhibit mTOR complex 1 and decrease seizures, delay seizure development, or prevent epileptogenesis in many animal models of mTOR hyperactivation. However, the exact mechanisms by which mTOR inhibition drives decreased seizure activity have not been completely determined. Nonetheless, these preclinical data have led to limited use in humans with epilepsy due to tuberous sclerosis complex and polyhydramnios, megalencephaly, and symptomatic epilepsy with promising results. Currently, larger controlled studies are underway using mTOR inhibitors in individuals with tuberous sclerosis complex and intractable epilepsy.
Collapse
Affiliation(s)
- Adam P. Ostendorf
- Department of Neurology, Washington University School of Medicine, Box 8111, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Michael Wong
- Department of Neurology, Washington University School of Medicine, Box 8111, 660 South Euclid Avenue, St. Louis, MO 63110, USA,Hope Center for Neurological Disorders, Washington University School of Medicine, Box 8111, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| |
Collapse
|
47
|
Giorgi FS, Biagioni F, Lenzi P, Frati A, Fornai F. The role of autophagy in epileptogenesis and in epilepsy-induced neuronal alterations. J Neural Transm (Vienna) 2014; 122:849-62. [DOI: 10.1007/s00702-014-1312-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/09/2014] [Indexed: 12/12/2022]
|
48
|
Hester MS, Danzer SC. Hippocampal granule cell pathology in epilepsy - a possible structural basis for comorbidities of epilepsy? Epilepsy Behav 2014; 38:105-16. [PMID: 24468242 PMCID: PMC4110172 DOI: 10.1016/j.yebeh.2013.12.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/17/2013] [Accepted: 12/21/2013] [Indexed: 01/31/2023]
Abstract
Temporal lobe epilepsy in both animals and humans is characterized by abnormally integrated hippocampal dentate granule cells. Among other abnormalities, these cells make axonal connections with inappropriate targets, grow dendrites in the wrong direction, and migrate to ectopic locations. These changes promote the formation of recurrent excitatory circuits, leading to the appealing hypothesis that these abnormal cells may by epileptogenic. While this hypothesis has been the subject of intense study, less attention has been paid to the possibility that abnormal granule cells in the epileptic brain may also contribute to comorbidities associated with the disease. Epilepsy is associated with a variety of general findings, such as memory disturbances and cognitive dysfunction, and is often comorbid with a number of other conditions, including schizophrenia and autism. Interestingly, recent studies implicate disruption of common genes and gene pathways in all three diseases. Moreover, while neuropsychiatric conditions are associated with changes in a variety of brain regions, granule cell abnormalities in temporal lobe epilepsy appear to be phenocopies of granule cell deficits produced by genetic mouse models of autism and schizophrenia, suggesting that granule cell dysmorphogenesis may be a common factor uniting these seemingly diverse diseases. Disruption of common signaling pathways regulating granule cell neurogenesis may begin to provide mechanistic insight into the cooccurrence of temporal lobe epilepsy and cognitive and behavioral disorders.
Collapse
Affiliation(s)
- Michael S Hester
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Molecular and Developmental Biology Graduate Program, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Steve C Danzer
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Anesthesia, University of Cincinnati, Cincinnati, OH 45267, USA; Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45267, USA; Molecular and Developmental Biology Graduate Program, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
49
|
Evidence for mTOR pathway activation in a spectrum of epilepsy-associated pathologies. Acta Neuropathol Commun 2014; 2:71. [PMID: 25005575 PMCID: PMC4230418 DOI: 10.1186/2051-5960-2-71] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/06/2014] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Activation of the mTOR pathway has been linked to the cytopathology and epileptogenicity of malformations, specifically Focal Cortical Dysplasia (FCD) and Tuberous Sclerosis (TSC). Experimental and clinical trials have shown than mTOR inhibitors have anti-epileptogenic effects in TS. Dysmorphic neurones and balloon cells are hallmarks of FCDIIb and TSC, but similar cells are also occasionally observed in other acquired epileptogenic pathologies, including hippocampal sclerosis (HS) and Rasmussen's encephalitis (RE). Our aim was to explore mTOR pathway activation in a range of epilepsy-associated pathologies and in lesion-negative cases. RESULTS 50 epilepsy surgical pathologies were selected including HS ILAE type 1 with (5) and without dysmorphic neurones (4), FCDIIa (1), FCDIIb (5), FCDIIIa (5), FCDIIIb (3), FCDIIId (3), RE (5) and cortex adjacent to cavernoma (1). We also included pathology-negative epilepsy cases; temporal cortex (7), frontal cortex (2), paired frontal cortical samples with different ictal activity according to intracranial EEG recordings (4), cortex with acute injuries from electrode tracks (5) and additionally non-epilepsy surgical controls (3). Immunohistochemistry for phospho-S6 (pS6) ser240/244 and ser235/236 and double-labelling for Iba1, neurofilament, GFAP, GFAPdelta, doublecortin, and nestin were performed. Predominant neuronal labelling was observed with pS6 ser240/244 and glial labelling with pS6 ser235/236 in all pathology types but with evidence for co-expression in a proportion of cells in all pathologies. Intense labelling of dysmorphic neurones and balloon cells was observed in FCDIIb, but dysmorphic neurones were also labelled in RE and HS. There was no difference in pS6 labelling in paired samples according to ictal activity. Double-labelling immunofluorescent studies further demonstrated the co-localisation of pS6 with nestin, doublecortin, GFAPdelta in populations of small, immature neuroglial cells in a range of epilepsy pathologies. CONCLUSIONS Although mTOR activation has been more studied in the FCDIIb and TSC, our observations suggest this pathway is activated in a variety of epilepsy-associated pathologies, and in varied cell types including dysmorphic neurones, microglia and immature cell types. There was no definite evidence from our studies to suggest that pS6 expression is directly related to disease activity.
Collapse
|
50
|
Lasarge CL, Danzer SC. Mechanisms regulating neuronal excitability and seizure development following mTOR pathway hyperactivation. Front Mol Neurosci 2014; 7:18. [PMID: 24672426 PMCID: PMC3953715 DOI: 10.3389/fnmol.2014.00018] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 02/27/2014] [Indexed: 01/19/2023] Open
Abstract
The phosphatidylinositol-3-kinase/phosphatase and tensin homolog (PTEN)-mammalian target of rapamycin (mTOR) pathway regulates a variety of neuronal functions, including cell proliferation, survival, growth, and plasticity. Dysregulation of the pathway is implicated in the development of both genetic and acquired epilepsies. Indeed, several causal mutations have been identified in patients with epilepsy, the most prominent of these being mutations in PTEN and tuberous sclerosis complexes 1 and 2 (TSC1, TSC2). These genes act as negative regulators of mTOR signaling, and mutations lead to hyperactivation of the pathway. Animal models deleting PTEN, TSC1, and TSC2 consistently produce epilepsy phenotypes, demonstrating that increased mTOR signaling can provoke neuronal hyperexcitability. Given the broad range of changes induced by altered mTOR signaling, however, the mechanisms underlying seizure development in these animals remain uncertain. In transgenic mice, cell populations with hyperactive mTOR have many structural abnormalities that support recurrent circuit formation, including somatic and dendritic hypertrophy, aberrant basal dendrites, and enlargement of axon tracts. At the functional level, mTOR hyperactivation is commonly, but not always, associated with enhanced synaptic transmission and plasticity. Moreover, these populations of abnormal neurons can affect the larger network, inducing secondary changes that may explain paradoxical findings reported between cell and network functioning in different models or at different developmental time points. Here, we review the animal literature examining the link between mTOR hyperactivation and epileptogenesis, emphasizing the impact of enhanced mTOR signaling on neuronal form and function.
Collapse
Affiliation(s)
- Candi L Lasarge
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center Cincinnati, OH, USA
| | - Steve C Danzer
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center Cincinnati, OH, USA ; Department of Anesthesia, University of Cincinnati Cincinnati, OH, USA ; Department of Pediatrics, University of Cincinnati Cincinnati, OH, USA
| |
Collapse
|